Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Bài 1 Nguyên hàm KNTT (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tìm giá trị biểu thức

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}, f(0) = 0;f'(0) eq 0;f( - 2) > 2 và thỏa mãn hệ thức f(x)f'(x) + 18x^{2}
= \left( 3x^{2} + x ight)f'(x) + (6x + 1)f(x) với \forall x\mathbb{\in R}. Giá trị của f( - 2) là:

    Hướng dẫn:

    Ta có:

    f(x)f'(x) + 18x^{2} = \left( 3x^{2}
+ x ight)f'(x) + (6x + 1)f(x)

    \Leftrightarrow 2f(x)f'(x) + 36x^{2}
= 2\left( 3x^{2} + x ight)f'(x) + 2(6x + 1)f(x)

    \Leftrightarrow 2f(x)f'(x) -
\left\lbrack 2\left( 3x^{2} + x ight)f'(x) + 2(6x + 1)f(x)
ightbrack = - 36x^{2}

    \Rightarrow \left\lbrack f^{2}(x) -
2\left( 3x^{2} + x ight)f(x) ightbrack' = -
36x^{2}

    \Rightarrow \int_{}^{}{\left\lbrack
f^{2}(x) - 2\left( 3x^{2} + x ight)f(x) ightbrack'dx} =
\int_{}^{}{\left( - 36x^{2} ight)dx}

    \Rightarrow f^{2}(x) - 2\left( 3x^{2} +
x ight)f(x) = - 12x^{3} + C

    Mặt khác f(0) = 0 \Rightarrow C =
0

    Vậy f^{2}(x) - 2\left( 3x^{2} + x
ight)f(x) = - 12x^{3}

    \Rightarrow f^{2}( - 2) - 20f( - 2) = 96
\Leftrightarrow \left\lbrack \begin{matrix}
f( - 2) = 24 \\
f( - 2) = - 4 \\
\end{matrix} ight.

    f( - 2) > 2 \Rightarrow f( - 2) =
24.

  • Câu 2: Vận dụng cao
    Chọn công thức đúng

    Cho hàm số f\left( x ight) = \left( {{x^2} - 1} ight){e^{{x^3} - 3x}} biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của 3e^2F(x)?

    Hướng dẫn:

     Ta có:

    F\left( x ight) = \int {\left( {{x^2} - 1} ight){e^{{x^3} - 3x}}dx = \frac{1}{3}\int {{e^{{x^3} - 3x}}d\left( {{x^3} - 3x} ight) = \frac{1}{3}{e^{{x^3} - 3x}} + C} }

    F'\left( x ight) = f\left( x ight) = \left( {{x^2} - 1} ight){e^{{x^3} - 3x}} = 0 \Rightarrow x =  \pm 1

    \begin{matrix}  F''\left( x ight) = 2x.{e^{{x^3} - 3x}} + \left( {{x^2} - 1} ight)\left( {3{x^2} - 3} ight){e^{{x^3} - 3x}} \hfill \\  F''\left( 1 ight) > 0;F''\left( { - 1} ight) < 0 \hfill \\ \end{matrix}

    Do đó hàm số đạt cực tiểu tại x = 1

    Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)

    => F\left( 1 ight) = 0 \Rightarrow \frac{1}{3}{e^{ - 2}} + C = 0 \Rightarrow C =  - \frac{1}{{3{e^2}}}

    => F\left( x ight) = \frac{{{e^{{x^3} - 3x + 2}} - 1}}{{3{e^2}}} Hay  3e^2F(x) = e^{{x^3} - 3x + 2} - 1

  • Câu 3: Vận dụng
    Giá trị của hàm số

    Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2}. Giá trị của f(2) là:

    Hướng dẫn:

     Chọn f(x) = ax3 + bx2 + cx + d

    Ta có:

    \begin{matrix}  f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow a{x^3} + 2{x^2} + cx + d = x\left( {3a{x^2} + 2bx + c} ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3a - 2} \\   {b = 2b - 3} \\   {d = 0} \\   {c = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1} \\   {b = 3} \\   {c = 0} \\   {d = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy f\left( x ight) = {x^3} + 3{x^2} => f(x) = 20

  • Câu 4: Thông hiểu
    Chọn đáp án thích hợp

    Nguyên hàm của hàm số x.lnx

    Hướng dẫn:

    Ta có \int_{}^{}{x.lnx}dx.

    Đặt \left\{ \begin{matrix}
\ln x = u \Rightarrow \dfrac{1}{x}dx = du \\
dv = xdx \Rightarrow v = \dfrac{x^{2}}{2} \\
\end{matrix} ight.

    Theo phương pháp nguyên hàm từng phần ta có

    \int_{}^{}{x.\ln x}dx = \int_{}^{}{udv = uv
- \int_{}^{}{vdu} = \frac{x^{2}}{2}.\ln x -
\int_{}^{}{\frac{x^{2}}{2}.\frac{1}{x}dx}}

    = \frac{x^{2}.lnx}{2} -
\int_{}^{}{\frac{x}{2}dx = \frac{x^{2}.\ln x}{2} - \frac{x^{2}}{4} +
C}.

  • Câu 5: Vận dụng cao
    Tính giá trị biểu thức T

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}}, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)

    Gợi ý:

     Biến đổi f\left( x ight) = \frac{1}{{\left( {x + a} ight)\left( {x + b} ight)\left( {x + c} ight)}} = \frac{A}{{x + a}} + \frac{B}{{x + b}} + \frac{C}{{x + c}}

    Hướng dẫn:

     Ta có: f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}} = \frac{A}{x} + \frac{B}{{{x^2}}} + \frac{C}{{x + 1}} = \frac{{\left( {A + C} ight){x^2} + (A + B)x + B}}{{{x^2}\left( {x + 1} ight)}}

    => \left\{ {\begin{array}{*{20}{c}}  {A + C = 0} \\   {B = 1} \\   {A + B = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {A =  - 1} \\   {B = 1} \\   {B = 1} \end{array}} ight.

    => F\left( x ight) = \int {f\left( x ight)dx = \int {\left( { - \frac{1}{x} + \frac{1}{{{x^2}}} + \frac{1}{{x + 1}}} ight)dx} }

    => F\left( x ight) =  - \ln \left| x ight| - \frac{1}{x} + \ln \left| {x + 1} ight| + C = \ln \left| {\frac{{x + 1}}{x}} ight| - \frac{1}{x} + C

    Khi đó: F\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_1}{\text{ khi x}} \in \left( {0; + \infty } ight)} \\   {\ln \left( {\dfrac{{ - x - 1}}{x}} ight) - \dfrac{1}{x} + {C_2}{\text{ khi x}} \in \left( { - 1; + \infty } ight)} \\   {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_3}{\text{ khi x}} \in \left( { - \infty ; - 1} ight)} \end{array}} ight.

    Theo bài ra ta có: F(x) + F(-2) = 0,5

    => \left( {\ln 2 - 1 + {C_1}} ight) + \left( {\ln \frac{1}{2} + \frac{1}{2} + {C_2}} ight) = \frac{1}{2}

    => {C_1} + {C_2} = 1

    => F\left( 2 ight) + F\left( { - 3} ight) = \left( {\ln \frac{3}{2} + \frac{1}{2} + {C_1}} ight) + \left( {\ln \frac{2}{3} + \frac{1}{2} + {C_1}} ight) = \frac{5}{6}

  • Câu 6: Vận dụng
    Chọn đáp án đúng

    Một nguyên hàm của f(x) =
\frac{x}{sin^{2}x} là :

    Hướng dẫn:

    Ta có: I =\int_{}^{}{\frac{x}{sin^2x}dx}

    Đặt: \left\{ \begin{matrix}
u = x \\
dv = \frac{1}{sin^{2}x}dx \\
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = - \cot x \\
\end{matrix} \right.

    Khi đó: I = uv - \int_{}^{}{vdu} = -x\cot x + \int_{}^{}{\cot xdx}= - x\cot x + \ln\left| \sin x \right| +C

  • Câu 7: Vận dụng
    Chọn đáp án đúng

    Tìm H = \int_{}^{}\frac{x^{2}dx}{\left(
x\sin x + \cos x \right)^{2}}?

    Hướng dẫn:

    Ta có : H =
\int_{}^{}{\frac{x^{2}}{\left( x\sin x + \cos x \right)^{2}}dx =
\int_{}^{}{\frac{x\cos x}{\left( x\sin x + \cos x
\right)^{2}}.\frac{x}{\cos x}dx}}

    Đặt \left\{ \begin{matrix}u = \dfrac{x}{\cos x} \\dv = \dfrac{x\cos x}{\left( x\sin x + \cos x \right)^{2}}dx =\dfrac{d\left( x\sin x + \cos x \right)}{\left( x\sin x + \cos x\right)^{2}} \\\end{matrix} \right.

    \Rightarrow \left\{ \begin{matrix}du = \dfrac{x\sin x + \cos x}{cos^{2}x}dx \\v = - \dfrac{1}{x\sin x + \cos x} \\\end{matrix} \right.

    \Rightarrow H = - \frac{x}{\cos
x}.\frac{1}{xsinx + \cos x} +
\int_{}^{}{\frac{1}{cos^{2}x}dx}

    = \frac{- x}{\cos x\left( x\sin x + \cos
x \right)} + \tan x + C

  • Câu 8: Thông hiểu
    Hàm số F(x) = 2sinx - 3cosx là một nguyên hàm của hàm số

    Hàm số F\left( x ight) = 2\sin x - 3\cos x là một nguyên hàm của hàm số nào sau đây?

    Gợi ý:

     \int {\left[ {f\left( x ight) + g\left( x ight)} ight]dx}  = \int {f\left( x ight)dx}  + \int {g\left( x ight)dx}

    \int {\sin xudu =  - \cos u + C}

    \int {\cos udu = \sin u + C}

    Hướng dẫn:

     F'\left( x ight) = f\left( x ight) = 2\cos x + 3\sin x

  • Câu 9: Thông hiểu
    Tìm đáp án đúng

    Tìm nguyên hàm F(x) của hàm số f(x) = x.\ln\left( ex^{2} \right) với x > 0.

    Hướng dẫn:

    Ta có

    f(x) = x.\left( \ln e + 2\ln x ight) =
x(1 + 2\ln x)

    = x^{2}.\frac{1}{x} + (2x)\ln x =
x^{2}.\left( \ln x ight)' + \left( x^{2}
ight)'.\ln x

    = \left( x^{2}\ln x ight)'
\Rightarrow F(x) = x^{2}.\ln x + C

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Hãy xác định hàm số f(x) từ đẳng thức: x^{2} + xy + C =
\int_{}^{}{f(y)dy}

    Hướng dẫn:

    Ta có: \left( x^{2} + xy \right)' = x
+ C

    Vậy f(x) = x.

  • Câu 11: Vận dụng
    Tính nguyên hàm của I

    Tìm nguyên hàm I = \int_{}^{}{x\ln(2x -
1)dx}.

    Hướng dẫn:

    Đặt u = \ln(2x - 1) \Rightarrow du =
\frac{2}{2x - 1}dx;dv = xdx \Rightarrow v = \frac{x^{2}}{2}

    Khi đó

    \int_{}^{}{x\ln(2x - 1)dx} =\frac{x^{2}}{2}.\ln(2x - 1) - \int_{}^{}{\frac{x^{2}}{2}.\frac{2}{2x -
1}}dx

    = \frac{x^{2}}{2}.\ln|2x - 1| -
\int_{}^{}{\frac{x^{2}}{2x - 1}dx}

    = \frac{x^{2}}{2}.\ln|2x - 1| -
\int_{}^{}{\left( \frac{x}{2} + \frac{1}{4} + \frac{1}{4(2x - 1)}
ight)dx}

    = \frac{x^{2}}{2}.\ln|2x - 1| - \left(
\frac{x^{2}}{4} + \frac{x}{4} + \frac{1}{8}.\ln\left| (2x - 1) ight|
ight) + C

    = \frac{4x^{2} - 1}{8}.\ln|2x - 1| -
\frac{x(x + 1)}{4} + C

  • Câu 12: Vận dụng
    Xác định số cực trị của đồ thị hàm số

    Biết F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}}. Hỏi đồ thị của hàm số y = F(x) có bao nhiêu điểm cực trị?

    Hướng dẫn:

    F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}} nên suy ra F'(x) = f(x) = \frac{x - \cos
x}{x^{2}}

    Ta có: F'(x) = 0 \Leftrightarrow
\frac{x - \cos x}{x^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x - \cos x = 0 \\
x \in \lbrack - 1;1brack\backslash\left\{ 0 ight\} \\
\end{matrix} ight.\ (1)

    Xét hàm số g(x) = x - \cos x trên \lbrack - 1;1brack, ta có: g'(x) = 1 + \sin x \geq 0;\forall x \in
\lbrack - 1;1brack suy ra hàm số g(x) đồng biến trên \lbrack - 1;1brack.

    Vậy phương trình g(x) = x - \cos x = 0 có nhiều nhất một nghiệm trên \lbrack -
1;1brack (2)

    Mặt khác ta có hàm số g(x) = x - \cos
x liên tục trên (0;1)\left\{ \begin{matrix}
g(0) = 0 - cos0 = - 1 < 0 \\
g(1) = 1 - cos1 > 0 \\
\end{matrix} ight. nên g(0)g(1)
< 0.

    Suy ra tồn tại x_{0} \in
(0;1) sao cho g\left( x_{0} ight)
= 0 (3)

    Từ (1); (2); (3) suy ra phương trình F'(x) = 0 có nghiệm duy nhất x_{0} eq 0.

    Đồng thời vì x_{0} là nghiệm bội lẻ nên F'(x) đổi dấu qua x = x_{0}

    Vậy đồ thị hàm số y = F(x) có một điểm cực trị.

  • Câu 13: Vận dụng
    Xác định nguyên hàm của hàm số

    Nguyên hàm của I =
\int_{}^{}{xsin^{2}x}dx là:

    Hướng dẫn:

    Ta biến đổi:

    I = \int_{}^{}{xsin^{2}x}dx =
\int_{}^{}{x\left( \frac{1 - cos2x}{2} \right)dx}

    = \frac{1}{2}\int_{}^{}{xdx -
\frac{1}{2}\int_{}^{}{xcos2x}}dx = \frac{1}{4}x^{2} -
\frac{1}{2}\underset{I_{1}}{\overset{\int_{}^{}{xcos2xdx}}{︸}} +
C_{1}

    \mathbf{I}_{\mathbf{1}}\mathbf{=}\int_{}^{}{\mathbf{x}\mathbf{cos2}\mathbf{xdx}}.

    Đặt\left\{ \begin{matrix}
u = x \\
dv = cos2x \\
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = \frac{1}{2}sin2x \\
\end{matrix} \right..

    \Rightarrow I_{1} = \int_{}^{}{xcos2xdx}
= \frac{1}{2}xsin2x - \frac{1}{2}\int_{}^{}{sin2xdx =} \frac{1}{2}xsin2x + \frac{1}{4}cos2x +
C.

    \Rightarrow I = \frac{1}{4}\left( x^{2} -
\frac{1}{2}cos2x - xsin2x \right) + C = \frac{1}{8}\left( 2x^{2} - 2xsin2x - cos2x
\right) + C

    = - \frac{1}{8}cos2x + \frac{1}{4}\left(
x^{2} + xsin2x \right) + C.

  • Câu 14: Vận dụng
    Tìm tập nghiệm S của phương trình

    Cho F(x) là nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{{e^x} + 3}} thỏa mãn F\left( 0 ight) =  - \frac{{ - 1}}{3}\ln 4. Tìm tập nghiệm S của phương trình 3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2

    Hướng dẫn:

    F\left( x ight) = \int {\frac{1}{{{e^x} + 3}}dx}  = \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}

     Đặt t = {e^x} \Rightarrow dt = {e^x}dx

    \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}  = \int {\frac{1}{{t\left( {t + 3} ight)}}dt}

    = \int {\left( {\frac{1}{{3t}} - \frac{1}{{3\left( {t + 3} ight)}}} ight)dt = \frac{{\ln |t|}}{3} - \frac{{\ln |t + 3|}}{3} + C}

    = \frac{{\ln \left( {{e^x}} ight)}}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C = \frac{x}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C

    F\left( 0 ight) =  - \frac{1}{3}\ln 4 \Rightarrow  - \frac{{\ln 4}}{3} + C =  - \frac{1}{3}\ln 4 \Rightarrow C = 0

    Ta có:

    \begin{matrix}  3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow 3\left[ {\dfrac{x}{3} - \dfrac{{\ln \left( {{e^x} + 3} ight)}}{3}} ight] + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow x = 2 \hfill \\ \end{matrix}

  • Câu 15: Vận dụng
    Tính giá trị của biểu thức T

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{1}{{x - 1}};f\left( 0 ight) = 2017;f\left( 2 ight) = 2018. Giá trị của biểu thức T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] là bao nhiêu?

    Hướng dẫn:

     \begin{matrix}  f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\dfrac{1}{{x - 1}}dx}  \hfill \\   = \ln \left| {x - 1} ight| + C = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  1}}} \\   {\ln \left( {1 - x} ight) + {C_2}{\text{ khi x  <  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 2017 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 2017} \\   {f\left( 2 ight) = 2018 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 2018} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 2017} \\   {{C_1} = 2018} \end{array}} ight.

    Khi đó

    \begin{matrix}  T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] \hfill \\   = \left[ {\ln \left( {3 - 1} ight) + 2018 - 2018} ight].\left[ {\ln \left( {1 - \left( { - 1} ight)} ight) + 2017 - 2017} ight] \hfill \\   = \ln 2.\ln 2 = {\ln ^2}2 \hfill \\ \end{matrix}

  • Câu 16: Vận dụng
    Chọn mệnh đề đúng

    Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x} trên khoảng (0;\pi). Biết rằng giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3}. Chọn mệnh đề đúng trong các mệnh đề sau?

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} =\int_{}^{}{\dfrac{2\cos x - 1}{\sin^{2}x}dx} =\int_{}^{}{\dfrac{2\cos x}{\sin^{2}x}dx} -\int_{}^{}{\dfrac{1}{\sin^{2}x}dx}

    = \int_{}^{}\frac{2d\left( \sin xight)}{\sin^{2}x} - \int_{}^{}{\frac{1}{\sin^{2}x}dx} = - \frac{2}{\sin x} + \cot x + C

    F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x} trên khoảng (0;\pi) nên hàm số F(x) có công thức dạng F(x) = - \frac{2}{\sin x} + \cot x + C với mọi x \in (0;\pi)

    Xét hàm số F(x) = - \frac{2}{\sin x} +
\cot x + C xác định và liên tục trên (0;\pi)

    Ta có: F'(x) = f(x) = \frac{2\cos x -1}{\sin^{2}x}

    \Rightarrow F'(x) = 0\Leftrightarrow \frac{2\cos x - 1}{\sin^{2}x} = 0

    \Leftrightarrow \cos x = \frac{1}{2}
\Leftrightarrow x = \pm \frac{\pi}{3} + k2\pi;\left( k\mathbb{\in Z}
ight)

    Trên khoảng (0;\pi) phương trình F'(x) = 0 có một nghiệm x = \frac{\pi}{3}

    Ta có bảng biến thiên như sau:

    \underset{(0;\pi)}{\max F(x)} = F\left(
\frac{\pi}{3} ight) = - \sqrt{3} + C. Theo bài ra ta có: - \sqrt{3} + C = \sqrt{3} \Rightarrow C =
2\sqrt{3}

    Do đó F(x) = - \frac{2}{\sin x} + \cot x
+ 2\sqrt{3} suy ra F\left(
\frac{\pi}{6} ight) = 3\sqrt{3} - 4.

  • Câu 17: Vận dụng
    Tìm nguyên hàm của hàm số f(x)

    Nguyên hàm của hàm số f(x) = \frac{2x}{(1
- x)^{3}}?

    Hướng dẫn:

    Nhận thấy x = 1 là nghiệm bội ba của phương trình (x - 1)^{3} = 0, do đó ta biến đổi:

    \frac{2x}{(1 - x)^{3}} =
\frac{A}{1 - x} + \frac{B}{(1 - x)^{2}} + \frac{C}{(1 - x)^{3}}

    =\frac{A\left( x^{2} - 2x + 1 ight) + B(1 - x) + C}{(1 -
x)^{3}}

    = \frac{Ax^{2} + ( - 2A - B)x + A + B +
C}{(1 - x)^{3}}

    Từ đây ta có \left\{ \begin{matrix}
A = 0 \\
- 2A - B = 2 \\
A + B +C=0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 0 \\
B = -2 \\
C = 2 \\
\end{matrix} ight.

    Ta có \int_{}^{}{\frac{2x}{(1 - x)^{3}}dx
= \int_{}^{}\left( \frac{- 2}{(1 - x)^{2}} + \frac{2}{(1 - x)^{3}}
ight)dx }= \frac{2}{x - 1} - \frac{1}{(x - 1)^{2}} + C

  • Câu 18: Vận dụng
    Tính giá trị biểu thức

    Cho hàm số f'(x) thỏa mãn f(2) = - \frac{1}{25}f'(x) = 4x^{3}.\left\lbrack f(x)
\right\rbrack^{2} với mọi x\mathbb{\in R}. Giá trị của f(1) bằng?

    Hướng dẫn:

    Ta có:

    f'(x) = 4x^{3}.\left\lbrack f(x)
\right\rbrack^{2} \Rightarrow \frac{f'(x)}{\left\lbrack f(x)
\right\rbrack^{2}} = 4x^{3}

    \Rightarrow
\int_{}^{}{\frac{f'(x)}{\left\lbrack f(x) \right\rbrack^{2}}dx} =
\int_{}^{}{4x^{3}dx}

    \Leftrightarrow \frac{- 1}{f(x)} = x^{4}
+ C;\left( C = C_{2} - C_{1} \right)

    Vậy f(x) = - \frac{1}{x^{4} +
C}

    Theo bài ra ta có: f(2) = - \frac{1}{25}
\Leftrightarrow - \frac{1}{2^{4} + C} = - \frac{1}{25} \Leftrightarrow C
= 9

    Vậy f(x) = - \frac{1}{x^{4} + 9}
\Leftrightarrow f(1) = - \frac{1}{1^{4} + 9} = -
\frac{1}{10}

  • Câu 19: Vận dụng
    Viết phương trình tiếp tuyến

    Cho hàm số y = f(x) thỏa mãn f'(x) - f(x) = e^{x}f(0) = 2. Phương trình tiếp tuyến của đồ thị hàm số y(x) = f(x) tại giao điểm với trục hoành là:

    Hướng dẫn:

    Ta có: f'(x) - f(x) = e^{x}. Nhân cả hai vế với e^{- x} ta được:

    e^{- x}f'(x) - e^{- x}.f(x) =
1

    \Leftrightarrow \left( e^{- x}.f(x)
ight)' = 1

    Lấy nguyên hàm hai vế ta được:

    \Leftrightarrow \int_{}^{}{\left( e^{-
x}.f(x) ight)'dx} = \int_{}^{}{1dx} \Leftrightarrow e^{- x}.f(x) =
x + C

    f(0) = 2 \Rightarrow f(0) = 0 + C
\Leftrightarrow C = 2

    Suy ra e^{- x}.f(x) = x + 2
\Leftrightarrow f(x) = \frac{x + 2}{e^{- x}} = (x + 2)e^{x}

    \Rightarrow f'(x) = (x +
3)e^{x}

    Xét phương trình hoành độ giao điểm (x +
2)e^{x} = 0 \Leftrightarrow x = - 2

    Ta có: f'( - 2) = ( - 2 + 3)e^{- 2} =
e^{- 2};f( - 2) = 0

    Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng -2 là: y = e^{- 2}(x + 2)

  • Câu 20: Vận dụng
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) liên tục nhận giá trị dương trên (0; +\infty) và thỏa mãn f(1) =1; f(x) = f'(x).\sqrt{3x +1};\forall x > 0. Giá trị f(3) gần nhất với giá trị nào sau đây?

    Hướng dẫn:

    \left\{ \begin{matrix}f(x) > 0 \\f(x) = f'(x)\sqrt{3x + 1} \\\end{matrix} ight.\  \Rightarrow \frac{f'(x)}{f(x)} =\frac{1}{\sqrt{3x + 1}}

    \Rightarrow\int_{}^{}{\frac{f'(x)}{f(x)}dx} = \int_{}^{}{\frac{1}{\sqrt{3x +1}}dx} \Rightarrow \ln f(x) = \frac{2\sqrt{3x + 1}}{3} + C

    f(1) = 1 \Rightarrow C = -\frac{4}{3}

    \Rightarrow f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}} \Rightarrow f\left( 3 ight)  \approx 2,17

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo