Nguyên hàm của hàm số là:
Ta có:
Nguyên hàm của hàm số là:
Ta có:
Tìm a, b, c, d để là một nguyên hàm của
.
Ta có
Biết luôn có hai số để
là một nguyên hàm của hàm số
và thỏa mãn
. Khẳng định nào sau đây là đúng và đầy đủ nhất?
Do . Vì luôn có hai số
để
là một nguyên hàm của hàm số
nên
không phải là hàm hằng.
Từ giả thiết
Lấy nguyên hàm hai vế với vi phân ta được:
với C là hằng số.
TH1: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
TH2: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
Vậy khẳng định đúng và đầy đủ nhất là .
Biết rằng liên tục trên
là một nguyên hàm của hàm số
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Cho . Hỏi
là nguyên hàm của hàm số nào dưới đây?
Để tìm là nguyên hàm của hàm số nào trong số 4 hàm số trên, ta sẽ đi đạo hàm
từ đó suy ra
.
Ta có
.
Cho là một nguyên hàm của hàm số và
. Tính
Sử dụng tích phân từng phần
Cách 1:
Đặt
Khi đó
=>
Mặt khác
=> C = 0
=>
=>
Cách 2: . Sử dụng máy tính cầm tay để tính.
Cho hàm số có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Họ nguyên hàm của hàm số là
Phân tích
Ta có:
Khi đó , đồng nhất hệ số thì ta được
Giải chi tiết
Ta có
Đáp số bài tập kiểm tra khả năng vận dụng:
Gọi F(x) là một nguyên hàm của hàm số , F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)
Biến đổi
Ta có:
=>
=>
=>
Khi đó:
Theo bài ra ta có: F(x) + F(-2) = 0,5
=>
=>
=>
Tìm nguyên hàm của hàm số .
Ta có
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và . Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Nguyên hàm của hàm số là
Đặt thì
.
Khi đó
.
Thay ta được
Nguyên hàm của hàm số ?
Nhận thấy là nghiệm bội ba của phương trình
, do đó ta biến đổi:
Từ đây ta có
Ta có
Tìm nguyên hàm của hàm số
Sử dụng tích phân từng phần
Đặt
=>
=>
Theo phương pháp đổi biến số , nguyên hàm của
là:
Ta có:
.
Đặt .
.
Biết rằng nguyên hàm của hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Sử dụng phương pháp đồng nhất thức, ta có:
Suy ra
Khi đó
Mà
Vậy
Tìm nguyên hàm của hàm số
Ta có:
(Áp dụng công thức )
Xác định hàm số f(x) biết rằng
Mà
Vậy hàm số cần tìm là
Một nguyên hàm của là :
Ta có:
Đặt:
Khi đó:
Cho hàm số f(x) xác định trên thỏa mãn
. Giá trị của biểu thức
là bao nhiêu?
Ta có:
Khi đó
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: