Họ nguyên hàm của là:
Ta đặt:
.
.
Họ nguyên hàm của là:
Ta đặt:
.
.
Xác định hàm số f(x) biết rằng
Mà
Vậy hàm số cần tìm là
Cho hàm số biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của
?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)
=>
=> Hay
Một nguyên hàm của là :
Ta có:
Đặt:
Khi đó:
Nguyên hàm của là:
Ta biến đổi:
.
Đặt.
.
.
Cho hàm số thỏa mãn
và
với mọi
. Tính
?
Ta có:
Với
Do đó
Vậy
Cho hàm số liên tục nhận giá trị dương trên
và thỏa mãn
;
. Giá trị
gần nhất với giá trị nào sau đây?
Vì
Mà
Nguyên hàm của hàm số ?
Nhận thấy là nghiệm bội ba của phương trình
, do đó ta biến đổi:
Từ đây ta có
Ta có
Cho hàm số có một nguyên hàm là
thỏa mãn
. Giá trị của
bằng:
Ta có:
Lại có
Do đó:
Tìm nguyên hàm .
Đặt
Khi đó
Cho F(x) là một nguyên hàm của hàm số . Hàm số
có bao nhiêu điểm cực trị?
=> có 5 nghiệm đơn
=> Hàm số có 5 điểm cực trị
Theo phương pháp đổi biến số , nguyên hàm của
là:
Ta có:
.
Đặt .
.
Cho hàm số xác định trên
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là
Nguyên hàm của hàm số là:
Thay vì đi tìm nguyên hàm của hàm số theo cách truyền thống, ta có thể giải bài toán bằng bảng ở trên như sau:
Nguyên hàm của là:
Ta đặt:
.
.
Xét .
Đặt .
.
.
Cho hàm số thỏa mãn
và
với mọi
. Giá trị của
bằng?
Ta có:
Vậy
Theo bài ra ta có:
Vậy
Tìm a, b, c, d để là một nguyên hàm của
.
Ta có
Biết là nguyên hàm của hàm số
. Hỏi đồ thị của hàm số
có bao nhiêu điểm cực trị?
Vì là nguyên hàm của hàm số
nên suy ra
Ta có:
Xét hàm số trên
, ta có:
suy ra hàm số
đồng biến trên
.
Vậy phương trình có nhiều nhất một nghiệm trên
(2)
Mặt khác ta có hàm số liên tục trên
và
nên
.
Suy ra tồn tại sao cho
(3)
Từ (1); (2); (3) suy ra phương trình có nghiệm duy nhất
.
Đồng thời vì là nghiệm bội lẻ nên
đổi dấu qua
Vậy đồ thị hàm số có một điểm cực trị.
Biết rằng nguyên hàm của hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Sử dụng phương pháp đồng nhất thức, ta có:
Suy ra
Khi đó
Mà
Vậy
Xác định nguyên hàm của hàm số
?
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: