Cho . Hỏi
là nguyên hàm của hàm số nào dưới đây?
Để tìm là nguyên hàm của hàm số nào trong số 4 hàm số trên, ta sẽ đi đạo hàm
từ đó suy ra
.
Ta có
.
Cho . Hỏi
là nguyên hàm của hàm số nào dưới đây?
Để tìm là nguyên hàm của hàm số nào trong số 4 hàm số trên, ta sẽ đi đạo hàm
từ đó suy ra
.
Ta có
.
Cho là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
Ta có: F(x) là một nguyên hàm của hàm số nên:
Hay
Xét
Đặt
Khi đó
Cho hàm số thỏa mãn
và
với mọi
. Tính
?
Ta có:
Với
Do đó
Vậy
Biết là nguyên hàm của hàm số
. Hỏi đồ thị của hàm số
có bao nhiêu điểm cực trị?
Vì là nguyên hàm của hàm số
nên suy ra
Ta có:
Xét hàm số trên
, ta có:
suy ra hàm số
đồng biến trên
.
Vậy phương trình có nhiều nhất một nghiệm trên
(2)
Mặt khác ta có hàm số liên tục trên
và
nên
.
Suy ra tồn tại sao cho
(3)
Từ (1); (2); (3) suy ra phương trình có nghiệm duy nhất
.
Đồng thời vì là nghiệm bội lẻ nên
đổi dấu qua
Vậy đồ thị hàm số có một điểm cực trị.
Nguyên hàm của là:
Ta đặt:
.
.
Xét .
Đặt .
.
.
Tìm nguyên hàm của hàm số
Ta có:
(Áp dụng công thức )
Tìm nguyên hàm của hàm số
Ta có
Theo phương pháp đổi biến số , nguyên hàm của
là:
Ta có:
.
Đặt .
.
Họ nguyên hàm của là:
Ta đặt:
.
.
Nguyên hàm của hàm số là
Ta có
.
Cho là một nguyên hàm của hàm số và
. Tính
Sử dụng tích phân từng phần
Cách 1:
Đặt
Khi đó
=>
Mặt khác
=> C = 0
=>
=>
Cách 2: . Sử dụng máy tính cầm tay để tính.
Cho hàm số f(x) xác định trên thỏa mãn
. Giá trị của biểu thức
là bao nhiêu?
Ta có:
Khi đó
Tìm nguyên hàm của hàm số
Ta có
Tìm nguyên hàm của hàm số
Sử dụng tích phân từng phần
Đặt
=>
=>
Tìm nguyên hàm của hàm số
, biết rằng
?
Ta có:
Vậy .
Hàm số là nguyên hàm của
. Hỏi hàm số
có bao nhiêu điểm cực trị?
TXĐ:
Ta có:
Phương trình có 1 nghiệm đơn
và một nghiệm kép
nên hàm số
có 1 điểm cực trị.
Cho a, b là các số hữu tỉ thỏa mãn
Tính giá trị biểu thức M = a + b.
=>
=>
Biết là một nguyên hàm của hàm số
trên khoảng
. Gọi
là một nguyên hàm của
thỏa mãn
. Giá trị của
bằng:
Ta có:
Do đó
Suy ra
Nên
Vậy
Từ đó
Vậy
Cho hàm số thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Lấy nguyên hàm hai vế ta được:
. Theo bài ra ta có:
Suy ra
Vậy
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:
Tìm ?
Ta có :
Đặt
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: