Cho hàm số có đồ thị trên đoạn
như hình vẽ.
Tìm giá trị lớn nhất của hàm số
trên đoạn
Từ đồ thị hàm số trên đoạn
ta suy ra đồ thị hàm số
trên
như hình vẽ.
Do đó tại
Cho hàm số có đồ thị trên đoạn
như hình vẽ.
Tìm giá trị lớn nhất của hàm số
trên đoạn
Từ đồ thị hàm số trên đoạn
ta suy ra đồ thị hàm số
trên
như hình vẽ.
Do đó tại
Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua điện thoại thì giá tiền của mỗi điện thoại là
(nghìn đồng),
. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?
Đáp án: 1000||1 000
Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua điện thoại thì giá tiền của mỗi điện thoại là
(nghìn đồng),
. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?
Đáp án: 1000||1 000
Số tiền hãng thu được khi đại lí nhập chiếc điện thoại là
.
Ta có: .
Khi đó,
Học sinh tự vẽ bảng biến thiên
Ta suy ra:
Đại lí nhập cùng lúc chiếc điện thoại thì hãng có thể thu nhiều tiền nhất từ đại lí đó với
(đồng).
Đáp số: .
Gọi là tập hợp các giá trị của tham số
để giá trị lớn nhất của hàm số
trên đoạn
bằng
. Tính tổng các phần tử của tập
?
Ta có: . Suy ra hàm số
đồng biến trên đoạn
do đó
Theo giả thiết
Vậy nên tổng các phần tử của tập hợp
bằng
.
Một tạp chí bán được 25 000 đồng một cuốn. Chi phía xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức , C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 000 đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được từ quảng cá. Giả sử số cuốn in ra đều được bán hết. Tính số tiền lãi lớn nhất có thể có khi bán tạp chí.
Một tạp chí bán được 25 000 đồng một cuốn. Chi phía xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức , C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 000 đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được từ quảng cá. Giả sử số cuốn in ra đều được bán hết. Tính số tiền lãi lớn nhất có thể có khi bán tạp chí.
Nhà máy chuyên sản xuất một loại sản phẩm cho nhà máy
. Hai nhà máy thỏa thuận rằng, hằng tháng
cung cấp cho
số lượng sản phẩm theo đơn đặt hàng của
. Nếu số lượng đặt hàng là
tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm là
. Cho phí để
sản xuất
tấn sản phẩm trong một tháng là
triệu đồng. Xét tính đúng sai của các khẳng định dưới đây:
a) Chi phí để sản xuất
tấn sản phẩm trong một tháng là
triệu đồng. Đúng||Sai
b) Số tiền thu được khi bán
tấn sản phẩm cho
là
triệu đồng. Sai||Đúng
c) Lợi nhuận mà thu được khi bán
tấn sản phẩm
cho
là
. Đúng||Sai
d) bán cho
khoảng
tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất. Đúng||Sai
Nhà máy chuyên sản xuất một loại sản phẩm cho nhà máy
. Hai nhà máy thỏa thuận rằng, hằng tháng
cung cấp cho
số lượng sản phẩm theo đơn đặt hàng của
. Nếu số lượng đặt hàng là
tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm là
. Cho phí để
sản xuất
tấn sản phẩm trong một tháng là
triệu đồng. Xét tính đúng sai của các khẳng định dưới đây:
a) Chi phí để sản xuất
tấn sản phẩm trong một tháng là
triệu đồng. Đúng||Sai
b) Số tiền thu được khi bán
tấn sản phẩm cho
là
triệu đồng. Sai||Đúng
c) Lợi nhuận mà thu được khi bán
tấn sản phẩm
cho
là
. Đúng||Sai
d) bán cho
khoảng
tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất. Đúng||Sai
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
a) Chi phí để sản xuất
tấn sản phẩm trong một tháng là
triệu đồng. Do đó a) đúng.
b) Số tiền thu được khi bán
tấn sản phẩm cho
là
triệu đồng. Do đó b) sai.
c) Lợi nhuận mà thu được là:
Do đó c) đúng.
d) Xét hàm số ,
ta có:
,
.
Ta có ;
;
.
Vậy bán cho
khoảng
tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất bằng
. Do đó d) đúng.
Cho hai số thực a, b dương thỏa mãn . Giá trị nhỏ nhất của biểu thức
bằng:
Ta có:
Đặt
Tìm giá trị lớn nhất của hàm số
trên đoạn
.
Hàm số xác định và liên tục trên đoạn
.
Nếu thì
nên suy ra
.
Đạo hàm
Ta có
Nếu thì
nên suy ra
.
Đạo hàm
Ta có .
So sánh hai trường hợp, ta được
Cho một tấm nhôm hình vuông cạnh , người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng
, rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của
bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).
Đáp án: 2 dm
Cho một tấm nhôm hình vuông cạnh , người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng
, rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của
bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).
Đáp án: 2 dm
Ta có:
tại
Gọi là tập tất cả các số nguyên dương của tham số
để hàm số
đồng biến trên khoảng
. Tính tổng tất cả các phần tử của tập
?
Theo yêu cầu bài toán
Do đó
Vậy tổng tất cả các phần tử của tập bằng
.
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Giá trị lớn nhất của hàm số bằng bao nhiêu?
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Giá trị lớn nhất của hàm số bằng bao nhiêu?
Trên đoạn , hàm số
đại giá trị lớn nhất tại điểm
Tập xác định: .
Ta có .
Vậy .
Xác định giá trị nhỏ nhất của biểu thức , biết
với
là tham số và hàm số đồng biến trên
.
Ta có:
Hàm số đã cho đồng biến trên
Ta lại có:
Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:

Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]
Từ đồ thị ta có: f’(x) = 0 =>
Ta có bảng biến thiên như sau:

Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện
Giá trị lớn nhất của hàm số trên đoạn
bằng
Xét hàm số trên đoạn
Ta có:
.
Vậy giá trị lớn nhất của hàm số trên đoạn
bằng 15.
Cho hàm số có đồ thị như hình bên.
Giá trị lớn nhất của hàm số này trên đoạn bằng:
Nhận thấy trên đoạn đồ thị hàm số có điểm cao nhất có tọa độ
Giá trị lớn nhất của hàm số này trên đoạn
bằng 4
Cho x, y là các số thực thỏa mãn . Giá trị nhỏ nhất của biểu thức
bằng:
Đặt
Ta được
Xét
Vì
Cho hàm số thỏa mãn
. Chọn mệnh đề đúng?
Tập xác định
Ta có: . Vì hàm số đơn điệu trên
nên
Nếu Hàm số không có giá trị lớn nhất
Vậy
Từ một tấm bìa mỏng hình vuông cạnh , bạn Hoa cắt bỏ bốn tam giác cân bằng nhau có cạnh đáy là cạnh của hình vuông ban đầu và đỉnh là đỉnh của một hình vuông nhỏ phía trong rồi gập lên, ghép lại tạo thành một khối chóp tứ giác đều (Hình vẽ sau).
Thể tích của khối chóp có giá trị lớn nhất bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng phần mười)?
Đáp án: 7,3
Từ một tấm bìa mỏng hình vuông cạnh , bạn Hoa cắt bỏ bốn tam giác cân bằng nhau có cạnh đáy là cạnh của hình vuông ban đầu và đỉnh là đỉnh của một hình vuông nhỏ phía trong rồi gập lên, ghép lại tạo thành một khối chóp tứ giác đều (Hình vẽ sau).
Thể tích của khối chóp có giá trị lớn nhất bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng phần mười)?
Đáp án: 7,3
Gọi cạnh đáy của hình chóp tứ giác đều là x(dm) với như hình bên.
Ta có: .
Đường cao của hình chóp tứ giác đều là:
.
Thể tích khối chóp là:
Để tìm giá trị lớn nhất của V, ta đi tìm giá trị lớn nhất của hàm số với
.
Ta có:
Bảng biến thiên của f(x) như sau
Từ bảng biến thiên ta có:
tại
.
Vậy thể tích của khối chóp có giá trị lớn nhất bằng:
.
Cho hai số thực thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Cho hai số thực thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Giả thiết cho
Xét hàm số trên
Suy ra
Vậy hàm số luôn đồng biến trên
nên ta có:
Suy ra:
Xét hàm số
luôn nghịch biến trên
luôn nghịch biến trên
Vậy khi
.
Để làm một cửa sổ có dạng một hình bán nguyệt và một hình chữ nhật ghép lại như hình vẽ bên dưới, người ta dùng dây thép để làm các đường viền. Gọi
là độ dài cạnh của khung hình chữ nhật.

Xét tính đúng sai của các khẳng định sau:
a) Chiều dài dây để uốn ra bán nguyệt là . Đúng||Sai
b) Giá trị của tính theo
là
. Đúng||Sai
c) Diện tích của cửa sổ là . Sai||Đúng
d) Khi diện tích của cửa sổ lớn nhất thì . Đúng||Sai
Để làm một cửa sổ có dạng một hình bán nguyệt và một hình chữ nhật ghép lại như hình vẽ bên dưới, người ta dùng dây thép để làm các đường viền. Gọi
là độ dài cạnh của khung hình chữ nhật.

Xét tính đúng sai của các khẳng định sau:
a) Chiều dài dây để uốn ra bán nguyệt là . Đúng||Sai
b) Giá trị của tính theo
là
. Đúng||Sai
c) Diện tích của cửa sổ là . Sai||Đúng
d) Khi diện tích của cửa sổ lớn nhất thì . Đúng||Sai
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
a) Bán kính của hình bán nguyệt là nên nửa chu vi bán nguyệt là
b) Ta có .
c) Diện tích của cửa sổ:
.
d) đạt giá trị lớn nhất khi
nên
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: