Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 2 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Nhà máyA chuyên sản xuất một loại sản phẩm cho nhà máyB. Hai nhà máy thỏa thuận rằng, hằng tháng A cung cấp cho B số lượng sản phẩm theo đơn đặt hàng của B. Nếu số lượng đặt hàng là x tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm là P(x) =
45 - 0,001x^{2}. Cho phí để A sản xuất x tấn sản phẩm trong một tháng là C(x) = 100 + 30x triệu đồng. Xét tính đúng sai của các khẳng định dưới đây:

    a) Chi phí để A sản xuất 10 tấn sản phẩm trong một tháng là 400 triệu đồng. Đúng||Sai

    b) Số tiền A thu được khi bán 10 tấn sản phẩm cho B600 triệu đồng. Sai||Đúng

    c) Lợi nhuận mà A thu được khi bán x tấn sản phẩm (0 \leq x \leq 100) cho BH(x) = -
0,001x^{3} + 15x - 100. Đúng||Sai

    d) A bán cho B khoảng 70,7 tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất. Đúng||Sai

    Đáp án là:

    Nhà máyA chuyên sản xuất một loại sản phẩm cho nhà máyB. Hai nhà máy thỏa thuận rằng, hằng tháng A cung cấp cho B số lượng sản phẩm theo đơn đặt hàng của B. Nếu số lượng đặt hàng là x tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm là P(x) =
45 - 0,001x^{2}. Cho phí để A sản xuất x tấn sản phẩm trong một tháng là C(x) = 100 + 30x triệu đồng. Xét tính đúng sai của các khẳng định dưới đây:

    a) Chi phí để A sản xuất 10 tấn sản phẩm trong một tháng là 400 triệu đồng. Đúng||Sai

    b) Số tiền A thu được khi bán 10 tấn sản phẩm cho B600 triệu đồng. Sai||Đúng

    c) Lợi nhuận mà A thu được khi bán x tấn sản phẩm (0 \leq x \leq 100) cho BH(x) = -
0,001x^{3} + 15x - 100. Đúng||Sai

    d) A bán cho B khoảng 70,7 tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất. Đúng||Sai

    a) Đúng

    b) Sai

    c) Đúng

    d) Đúng

    a) Chi phí để A sản xuất 10 tấn sản phẩm trong một tháng là C(10) = 100 + 30.10 = 400triệu đồng. Do đó a) đúng.

    b) Số tiền A thu được khi bán 10 tấn sản phẩm cho BR(10) =
10.P(10) = 10.\left( 45 - 0,001.10^{2} \right) = 449 triệu đồng. Do đó b) sai.

    c) Lợi nhuận mà A thu được là:

    H(x) = R(x) - C(x) = xP(x) - C(x) = P(x)

    =45x - 0,001x^{3} - (100 + 30x) = - 0,001x^{3} + 15x - 100

    Do đó c) đúng.

    d) Xét hàm số H(x) = - 0,001x^{3} + 15x -
100, (0 \leq x \leq 100) ta có:

    H'(x) = - 0,003x^{2} + 15, H'(x) = 0\Leftrightarrow - 0,003x^{2} +15 = 0\Leftrightarrow x = 50\sqrt{2} .

    Ta có H(0) = - 100; H\left( 50\sqrt{2} \right) = 500\sqrt{2} -
100; H(100) = 400.

    Vậy A bán cho B khoảng 50\sqrt{2} \approx 70,7 tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất bằng H\left( 50\sqrt{2} \right) = 500\sqrt{2} -
100. Do đó d) đúng.

  • Câu 2: Thông hiểu
    Tìm m để hàm số đồng biến trên R

    Tìm tất cả các giá trị thực của tham số m để hàm số y = x^{4} - 2(m - 1)x^{2} + m + 2020 đồng biến trên khoảng ( - 3; - 1)?

    Hướng dẫn:

    Ta có: y' = 4x^{3} - 4(m -
1)x

    Hàm số đồng biến trên khoảng ( - 3; -
1) \Leftrightarrow y' \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow 4x^{3} - 4(m - 1)x \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow x^{2} \leq m - 1;\forall
x \in ( - 3; - 1)

    \Leftrightarrow m - 1 \geq \max_{\lbrack
- 3; - 1brack}x^{2} \Leftrightarrow m - 1 \geq 9 \Leftrightarrow m
\geq 10

    Vậy đáp án cần tìm là: m \geq
10.

  • Câu 3: Vận dụng
    Tìm m để bất phương trình có nghiệm

    Giá trị của tham số m để bất phương trình (x - 2 - m)\sqrt{x - 1} \leq m - 4 có nghiệm là:

    Hướng dẫn:

    Đặt t = \sqrt{x - 1};(t \geq
0)

    Khi đó bất phương trình ban đầu trở thành:

    \left( t^{2} - m - 1 ight).t \leq m - 4
\Leftrightarrow m \geq \frac{t^{3} - t + 4}{t + 1}

    Xét hàm số f(t) = \frac{t^{3} - t + 4}{t
+ 1} trên \lbrack 0; +
\infty)

    Ta có: f'(t) = \frac{2t^{3} + 3t^{2}
- 5}{(t + 1)^{2}} = \frac{(t - 1)\left( 2t^{2} + 5t + 5 ight)}{(t +
1)^{2}}

    f'(t) = 0 \Leftrightarrow t =
1

    Bảng biến thiên của f(t) = \frac{t^{3} -
t + 4}{t + 1};t \in \lbrack 0; + \infty)

    Từ bảng biến thiên suy ra để bất phương trình có nghiệm thì m \geq 2.

  • Câu 4: Vận dụng
    Tính tổng các giá trị của tham số m

    Tổng các giá trị nguyên âm của tham số m để hàm số y
= x^{3} + mx - \frac{1}{5x^{5}} đồng biến trên khoảng (0; + \infty) bằng:

    Hướng dẫn:

    Hàm số đồng biến trên khoảng (0; +
\infty)

    \Leftrightarrow y' = 3x^{2} + m +
\frac{1}{x^{6}} \geq 0;\forall x \in (0; + \infty)

    Theo bất đẳng thức Cauchy ta có:

    \Leftrightarrow y' = 3x^{2} +
\frac{1}{x^{6}} + m = \left( x^{2} + x^{2} + x^{2} + \frac{1}{x^{6}}
ight) + m

    \geq
4\sqrt[4]{x^{2}.x^{2}.x^{2}.\frac{1}{x^{6}}} = 4 + m;\forall x \in (0; +
\infty)

    (*) \Leftrightarrow m + 4 \geq 0
\Leftrightarrow m \geq - 4

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 4; - 3; - 2; - 1 ight\}

    Vậy tổng các giá trị của tham số m là -
10.

  • Câu 5: Thông hiểu
    Chọn đáp án đúng

    Một chất điểm chuyển động với vận tốc được cho bởi công thức v(t) = - t^{2} + 4t + 2 với t (giây) là khoảng thời gian tính từ khi chất điểm bắt đầu chuyển động. Hỏi tại thời điểm nào thì vận tốc của chất điểm là lớn nhất?

    Hướng dẫn:

    Ta có: v(t) = - t^{2} + 4t + 2 với t > 0.

    v'(t) = - 2t + 4

    v'(t) = 0 \Leftrightarrow - 2t + 4 =
0 \Leftrightarrow t = 2 (thỏa mãn).

    Bảng biến thiên

    Dựa vào bảng biến thiên, tại thời điểm t
= 2 giây thì vận tốc của chất điểm là lớn nhất.

  • Câu 6: Vận dụng
    Ghi đáp án đúng vào ô trống

    Cho hàm số f(x). Biết hàm số f'(x) có đồ thị như hình dưới đây. Trên \lbrack - 4\ ;\ 3brack, hàm số g(x) = 2f(x) + (1 - x)^{2} đạt giá trị nhỏ nhất tại điểm

    Đáp án: -1

    Đáp án là:

    Cho hàm số f(x). Biết hàm số f'(x) có đồ thị như hình dưới đây. Trên \lbrack - 4\ ;\ 3brack, hàm số g(x) = 2f(x) + (1 - x)^{2} đạt giá trị nhỏ nhất tại điểm

    Đáp án: -1

    Xét hàm số g(x) = 2f(x) + (1 -
x)^{2} trên \lbrack - 4\ ;\
3brack.

    Ta có: g'(x) = 2f'(x) - 2(1 -
x).

    g'(x) = 0 \Leftrightarrow f'(x) =
1 - x. Trên đồ thị hàm số f'(x) ta vẽ thêm đường thẳng y = 1 - x.

    Từ đồ thị ta thấy f'(x) = 1 - x
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 4 \\
x = - 1 \\
x = 3 \\
\end{matrix} ight..

    Bảng biến thiên của hàm số g(x) như sau:

    Vậy \min_{\lbrack - 4\ ;\ 3brack}g(x) =
g( - 1) \Leftrightarrow x = - 1.

  • Câu 7: Vận dụng cao
    Tính GTNN của biểu thức

    Cho hai số thực a, b dương thỏa mãn 2\left( {{a^2} + {b^2}} ight) + ab = \left( {a + b} ight)\left( {ab + 2} ight). Giá trị nhỏ nhất của biểu thức T = 4\left( {\frac{{{a^3}}}{{{b^3}}} + \frac{{{b^3}}}{{{a^3}}}} ight) - 9\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} ight) bằng:

    Hướng dẫn:

    Ta có:

    2\left( {\frac{a}{b} + \frac{b}{a}} ight) + 1 = \left( {a + b} ight)\left( {1 + \frac{2}{{ab}}} ight) = a + b + \frac{2}{a} + \frac{2}{b}

    \geqslant 2\sqrt {2\left( {a + b} ight)\left( {\frac{1}{a} + \frac{1}{b}} ight)}  = 2\sqrt {2\left( {2 + \frac{a}{b} + \frac{b}{a}} ight)}

    Đặt t = \frac{a}{b} + \frac{b}{a} \Rightarrow t \geqslant \frac{5}{2}

    \Rightarrow P = 4\left( {{t^3} - 3t} ight) - 9\left( {{t^2} - 2} ight) = 4{t^3} - 9{t^2} - 12t + 18 = f\left( t ight)

    \begin{matrix}  f'\left( t ight) = 12{t^2} - 18t - 12 > 0,\forall t > \dfrac{5}{2} \hfill \\   \Rightarrow f\left( t ight) \geqslant f\left( {\dfrac{5}{2}} ight) =  - \dfrac{{23}}{4} \hfill \\ \end{matrix}

  • Câu 8: Vận dụng
    Xác định vận tốc lớn nhất

    Người ta khảo sát gia tốc a(t) của một vật thể chuyển động (t là khoảng thời gian tính bằng giâu từ lúc vật thể chuyển động) từ giây thứ nhất đến giây thứ ba ghi nhận được a(t) là một hàm số liên tục có đồ thị như hình bên:

    Xác định vận tốc lớn nhất

    Hỏi trong thời gian từ giây thứ nhất đến giây thứ ba được khảo sát đó, thời điểm nào vận tốc lớn nhất?

    Gợi ý:

     Gợi ý: Mối quan hệ giữa gia tốc và vận tốc

    a\left( t ight) = v'\left( t ight)

    Hướng dẫn:

    Từ đồ thị ta có: a(t) = 0 => v’(t) = 0 = > t = 2

    Ta có bảng biến thiên:

    Xác định vận tốc lớn nhất

    => Vận tốc lớn nhất đạt được khi t = 2

  • Câu 9: Vận dụng cao
    Ghi đáp án vào ô trống

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Đáp án là:

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Gọi hàm số bậc ba y = f(x) = ax^{3} +
bx^{2} + cx + d

    \Rightarrow f'(x) = 3ax^{2} + 2bx +
c.

    Vì đồ thị hàm số đi qua hai điểm (0;1)
\Rightarrow d = 1.

    Vì đồ thị hàm số đi qua hai điểm A(2;5)
\Rightarrow 8a + 4b + 2c + 1 = 5.

    Vì hàm số có hai điểm cực trị x = 0;x =
2

    \Rightarrow \left\{ \begin{matrix}
f'(0) = 0 \\
f'(2) = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
c = 0 \\
12a + 4b = 0 \\
\end{matrix} ight. .

    \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow f(x) = - x^{3} + 3x^{2} + 1f'(x) = - 3x^{2} + 6x.

    Gọi M\left( x_{0};y_{0} ight),\ x_{0}
> 0, là điểm nằm trên hòn đảo và nối với mặt đường và d là tiếp tuyến của đồ thị hàm số song song với mặt đường.

    Suy ra M là tiếp điểm của d với y = f(x).

    Đường thẳng y = 36 - 9x có hệ số góc k = - 9

    \Rightarrow f'\left( x_{0} ight) =
- 9 \Leftrightarrow - 3x_{0}^{2} + 6x_{0} = - 9

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 3 \\
x_{0} = - 1 \\
\end{matrix} ight.\  \Rightarrow M(3;1).

    Độ dài cây cầu ngắn nhất bằng khoảng cách từ điểm M đến đường thẳng 9x + y - 36 = 0.

    h = \frac{|9.3 + 1 - 36|}{\sqrt{9^{2} +
1^{2}}} \approx 0,883.

    Vì đơn vị của hệ trục là 100m nên độ dài ngắn nhất của cây cầu là 88,3m.

  • Câu 10: Thông hiểu
    Tính giá trị biểu thức P

    Biết rằng hàm số f(x) = x^{3} - 3x^{2} -
9x + 28 đạt giá trị nhỏ nhất trên đoạn \lbrack 0;4brack tại x_{0}. Tính P
= x_{0} + 2018.

    Hướng dẫn:

    Đạo hàm f'(x) = 3x^{2} - 6x -
9

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 otin \lbrack 0;4brack \\
x = 3 \in \lbrack 0;4brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(0) = 28 \\
f(3) = 1 \\
f(4) = 8 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;4brack}f(x) =
1 khi x = 3 = x_{0} ightarrow P =
2021

  • Câu 11: Thông hiểu
    Tìm m thỏa mãn điều kiện

    Gọi m là giá trị nhỏ nhất của hàm số y = x - 1 + \frac{4}{x - 1} trên khoảng (1; + \infty). Tìm m?

    Hướng dẫn:

    Tập xác định D = R\backslash\left\{ 1
ight\}.

    y' = \frac{x^{2} - 2x - 3}{(x -
1)^{2}}\ \ ,\ y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight..

    Bảng biến thiên:

    \Rightarrow m = \min_{(1; + \ \infty)}y =
4 khi x = 3

  • Câu 12: Vận dụng
    Xét tính đúng sai của các mệnh đề sau

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trong đoạn \lbrack -
1;3brack như hình.

    Các mệnh đề sau đúng hay sai?

    a) [NB] Trên \lbrack -
1;3brack hàm số y = f(x)2 điểm cực trị. Đúng||Sai

    b) [TH] Giá trị lớn nhất của hàm số y =
f(x) trên đoạn \lbrack -
1;3brack6. Sai|||Đúng

    c) [TH] Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn \lbrack - 1;3brackbằng 6. Đúng||Sai

    d) [VD] Hàm số g(x) = f(4 - x) có đạt giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack 1;3brack lần lượt bằng a\ và\ b. Khi đó giá trị của a^{2} + b^{2} = 53. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trong đoạn \lbrack -
1;3brack như hình.

    Các mệnh đề sau đúng hay sai?

    a) [NB] Trên \lbrack -
1;3brack hàm số y = f(x)2 điểm cực trị. Đúng||Sai

    b) [TH] Giá trị lớn nhất của hàm số y =
f(x) trên đoạn \lbrack -
1;3brack6. Sai|||Đúng

    c) [TH] Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn \lbrack - 1;3brackbằng 6. Đúng||Sai

    d) [VD] Hàm số g(x) = f(4 - x) có đạt giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack 1;3brack lần lượt bằng a\ và\ b. Khi đó giá trị của a^{2} + b^{2} = 53. Đúng||Sai

    a) Đúng.

    Trên \lbrack -
1;3brack hàm số y = f(x) đạt cực trị tại x\  = \ 0;\ x\  = \
2.

    b) Sai.

    Giá trị lớn nhất của hàm số y =
f(x) trên đoạn \lbrack -
1;3brack7 khi x = 3. Mệnh đề sai.

    c) Đúng.

    Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn \lbrack - 1;3brack bằng - 1 + 7\  = 6. Mệnh đề đúng.

    d) Đúng.

    Xét Hàm số g(x) = f(4 -
x) trên đoạn \lbrack
1;3brack.

    Ta có g'(x) = - f'(4 -
x)

    g'(x) = 0 \Leftrightarrow f'(4 -
x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
4 - x = 0 \\
4 - x = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 4 otin \lbrack 1;3brack \\
x = 2 \in \lbrack 1;3brack \\
\end{matrix} ight.

    Ta có;

    g(1) = f(3) = 7;g(2) = f(2) = 2;2 <
g(3) = f(1) < 7

    Do đó y = g(x) đạt giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack
1;3brack bằng 27.

    Hay a = 2,b = 7. Khi đó giá trị của a^{2} + b^{2} = 53. Mệnh đề đúng.

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Đáp án là:

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Ta có:

    h'(t) = 24 + 10t -t^{2}

    h'(t) = 0

    \Leftrightarrow 24 + 10t - t^{2} = 0\Leftrightarrow \left\lbrack \begin{matrix}t = - 2(ktm) \\t = 12(tm) \\\end{matrix} ight.

    Bảng biến thiên:

    Mực nước lên cao nhất thì phải mất 12 giờ.

    Hay mực nước lên cao nhất là lúc 20 giờ.

    Vậy phải thông báo cho dân di dời vào 15giờ chiều cùng ngày.

  • Câu 14: Thông hiểu
    Tính giá trị của biểu thức P

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = x + \sqrt{4 - x^{2}} lần lượt là M;m. Tính giá trị biểu thức P = M^{2} - m^{2}?

    Hướng dẫn:

    Tập xác định D = \lbrack -
2;2brack

    Ta có: y' = 1 - \frac{x}{\sqrt{4 -
x^{2}}} \Rightarrow y' = 0 \Leftrightarrow 1 - \frac{x}{\sqrt{4 -
x^{2}}} = 0

    \Leftrightarrow x = \sqrt{4 - x^{2}}
\Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x^{2} = 4 - x^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x = \pm \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow x = \sqrt{2}

    Khi đó: \left\{ \begin{matrix}
f(2) = 2;f( - 2) = - 2 \\
f\left( \sqrt{2} ight) = 2\sqrt{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\max_{\lbrack - 2;2brack}f(x) = M = 2\sqrt{2} \\
\min_{\lbrack - 2;2brack}f(x) = m = - 2 \\
\end{matrix} ight.

    \Rightarrow P = M^{2} - m^{2} =
4

  • Câu 15: Thông hiểu
    Tìm các số thực dương của tham số m

    Có bao nhiêu số thực dương m để giá trị lớn nhất của hàm số y = x^{3} - 3x +
1 trên đoạn \lbrack m + 1;m +
2brack bằng 53?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên thì để giá trị lớn nhất của hàm số y = x^{3} - 3x + 1 trên đoạn \lbrack m + 1;m + 2brack bằng 53 thì m + 1
> 1 \Leftrightarrow m > 0.

    Khi đó \max_{\lbrack m + 1;m +
2brack}f(x) = f(m + 2) = (x + 2)^{3} - 3(m + 2) + 1 = 53

    \Leftrightarrow m^{3} + 6m^{2} + 9m - 50
= 0 \Leftrightarrow m = 2

    Khi đó chỉ có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 16: Vận dụng cao
    Ghi đáp án vào ô trống

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đáp án là:

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đặt HE = x_{}và_{}FK = y, với x,\ y > 0

    Ta có: HE + KF = 24 \Rightarrow x + y =24 \Rightarrow y = 24 - x

    \left\{ \begin{matrix}AE = \sqrt{25 + x^{2}} \\BF = \sqrt{49 + y^{2}} = \sqrt{49 + (24 - x)^{2}} \\\end{matrix} ight.

    Nhận định AB ngắn nhất khi AE + BF nhỏ nhất ( vì EF không đổi).

    Xét hàm số f(x) = \sqrt{x^{2} + 25} +\sqrt{(24 - x)^{2} + 49}

    f'(x) = \frac{x}{\sqrt{x^{2} + 25}} +\frac{x - 24}{\sqrt{x^{2} - 48x + 625}},\ \forall x \in(0;24).

    Cho f'(x) = 0 \Rightarrow x =10

    Bảng biến thiên

    Vậy\underset{(0;24)\ \ \ \ \ \ \ \ \ \}{\min f(x)} = f(10) = 12\sqrt{5}

    Khi đó BF = \sqrt{49 + (24 - 10)^{2}} =7\sqrt{5} \approx 16\ km

  • Câu 17: Thông hiểu
    Xác định vận tốc của chuyển động

    Vận tốc của một chất điểm được xác định bởi công thức v(t) = t^{3} - 10t^{2} + 29t - 20 (với v được tính bằng giây). Vận tốc của chất điểm tại thời điểm gia tốc nhỏ nhất gần bằng:

    Hướng dẫn:

    Gia tốc của chất điểm a(t) = v'(t) =
3t^{2} - 20t + 29 gia tốc là hàm số bậc hai ẩn t đạt giá trị nhỏ nhất tại t = \frac{10}{3}

    Tại đó, vận tốc của chất điểm bằng v\left( \frac{10}{3} ight) = \frac{70}{27}
\approx 2,59.

  • Câu 18: Vận dụng
    Xét tính đúng sai của các nhận định

    Có hai cây cột, một cây cao 12m và một cây cao 28mđứng cách nhau 30m.Chúng được giữ bằng hai sợi dây, gắn vào một cọc duy nhất nối từ mặt đất đến đỉnh mỗi cột. Gọi x là khoảng cách từ cột cao 12m đến cọc.

    Xét tính đúng sai của các nhận định dưới đây:

    a) Để tổng chiều dài của dây ngắn nhất thì x \in (0;30).Đúng||Sai

    b) Chiều dài sợi dây nối từ cọc đến đỉnh cột cao 28m\sqrt{1684 + x^{2}}. Sai||Đúng

    c) Tổng chiều dài của dây là \sqrt{144 +
x^{2}} + \sqrt{1684 - 60x + x^{2}}. Đúng||Sai

    d) Tổng chiều dài ngắn nhất của dây là 48,5m. Sai||Đúng

    Đáp án là:

    Có hai cây cột, một cây cao 12m và một cây cao 28mđứng cách nhau 30m.Chúng được giữ bằng hai sợi dây, gắn vào một cọc duy nhất nối từ mặt đất đến đỉnh mỗi cột. Gọi x là khoảng cách từ cột cao 12m đến cọc.

    Xét tính đúng sai của các nhận định dưới đây:

    a) Để tổng chiều dài của dây ngắn nhất thì x \in (0;30).Đúng||Sai

    b) Chiều dài sợi dây nối từ cọc đến đỉnh cột cao 28m\sqrt{1684 + x^{2}}. Sai||Đúng

    c) Tổng chiều dài của dây là \sqrt{144 +
x^{2}} + \sqrt{1684 - 60x + x^{2}}. Đúng||Sai

    d) Tổng chiều dài ngắn nhất của dây là 48,5m. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    a) Rõ ràng để tổng chiều dài dây ngắn nhất thì cọc phải nằm trong khoảng giữa hai cây cột nên x \in
(0;30).

    b) AC = x \Rightarrow BC = 30 -
x nên chiều dài sợi dây nối từ cọc đến đỉnh cột cao 28m là:

    \sqrt{28^{2} + (30 - x)^{2}} = \sqrt{1684 - 60x +
x^{2}}.

    c) Chiều dài sợi dây nối từ cọc đến đỉnh cột cao 12m\sqrt{12^{2} + x^{2}} = \sqrt{144 +
x^{2}}

    Suy ra tổng chiều dài của sợi dây là \sqrt{144 + x^{2}} + \sqrt{1684 - 60x +
x^{2}}.

    d) Xét hàm số f(x) = \sqrt{144 + x^{2}} +
\sqrt{1684 - 60x + x^{2}} với x \in
\lbrack 0;30\rbrack

    Ta có f'(x) = \frac{x}{\sqrt{144 +
x^{2}}} + \frac{x - 30}{\sqrt{1684 - 60x + x^{2}}}

    f'(x) = 0 \Leftrightarrow
x\sqrt{1684 - 60x + x^{2}} = (30 - x)\sqrt{144 + x^{2}}

    \Rightarrow x^{2}\left( 1684 - 60x +
x^{2} \right) = (30 - x)^{2}\left( 144 + x^{2} \right)

    \Leftrightarrow 640x^{2} + 8540x -
129600 = 0

    \Leftrightarrow x = 9;x = -
\frac{45}{2}

    Do x \in \lbrack 0;30\rbrack nên ta nhận x = 9

    Ta có f(0) \approx 53,04;f(9) = 50;f(30)
= 60,31

    Vậy chiều dài ngắn nhất của dây là 50m.

  • Câu 19: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hai số thực x \geq 0;1 \leq y \leq
3 thỏa mãn 2^{x - 2y}.(2x + 1) = 4y
+ 2x + 4. Tìm giá trị nhỏ nhất của biểu thức P = 2^{x - y - 2} - x - y^{2} + 2037?

    Đáp án: 2025

    Đáp án là:

    Cho hai số thực x \geq 0;1 \leq y \leq
3 thỏa mãn 2^{x - 2y}.(2x + 1) = 4y
+ 2x + 4. Tìm giá trị nhỏ nhất của biểu thức P = 2^{x - y - 2} - x - y^{2} + 2037?

    Đáp án: 2025

    Giả thiết cho 2^{x - 2y}.(2x + 1) = 4y +
2x + 4

    \Leftrightarrow 2^{x}.(2x + 1) = 2(2y +
x + 2)2^{2y}

    \Leftrightarrow 2^{x}.(2x + 1) = 2^{2y +
1}(2y + x + 2)

    \Leftrightarrow 2^{2x}.(2x + 1) = 2^{2y
+ x + 1}(2y + x + 1 + 1)

    Xét hàm số f(t) = 2^{t}.(t + 1) trên (0\ ; + \infty)

    Suy ra f'(t) = 2^{t}.(t + 1)ln2 + 2^{t} > 0,\
\forall t \in (0\ ; + \infty)

    Vậy hàm số f(t) luôn đồng biến trên (0\ ; + \infty) nên ta có:

    \Leftrightarrow 2^{2x}.(2x + 1) = 2^{2y
+ x + 1}(2y + x + 1 + 1)

    \Leftrightarrow 2x = 2y + x + 1
\Leftrightarrow x = 2y + 1

    Suy ra: P = 2^{x - y - 2} - x - y^{2} +
2037

    = 2^{y - 1} - \left( y^{2} + 2y + 1
ight) + 2037

    = \frac{1}{4}.2^{y + 1} - (y + 1)^{2} +
2037

    Xét hàm số g(a) = \frac{1}{4}.2^{a} -
a^{2};\ a \in \lbrack 2\ ;4brack

    g^{'(a)} = \frac{2^{a}.ln2}{4} -
2a

    \Rightarrow g''(a) =
\frac{2^{a}.ln^{2}2}{4} - 2 < 0,\forall\ a \in \lbrack 2\
;4brack

    \Rightarrow g'(a) luôn nghịch biến trên \lbrack 2\
;4brack

    \Rightarrow \max_{\lbrack 2\
;4brack}g'(a) = g'(2) = ln2 - 4 < 0

    \Rightarrow g(a) luôn nghịch biến trên \lbrack 2\ ;4brack

    \Rightarrow \min g(a) = g(4) = -
12

    Vậy \min P = - 12 + 2037 = 2025 khi y + 1 = 4 \Rightarrow y = 3\ ;x =
7.

  • Câu 20: Vận dụng
    Xác định m thỏa mãn yêu cầu đề bài

    Cho hàm số y = f(x) có bảng biến thiên trên đoạn \lbrack -
4;4brack như hình vẽ:

    Có bao nhiêu giá trị của tham số m trên đoạn \lbrack - 4;4brack sao cho giá trị lớn nhất của hàm số y = f\left( \left| x^{3}
ight| + 3|x| ight) + f(m) trên đoạn \lbrack - 1;1brack bằng 1?

    Hướng dẫn:

    Ta có: x \in \lbrack - 1;1brack
\Rightarrow |x| \in \lbrack 0;1brack \Rightarrow \left| x^{3} ight|
\in \lbrack 0;1brack

    Suy ra t = \left| x^{3} ight| + 3|x|
\in \lbrack 0;4brack

    Khi đó f\left( \left| x^{3} ight| +
3|x| ight) \in \lbrack - 3;3brack hay f\left( \left| x^{3} ight| + 3|x| ight) + f(m)
\in \left\lbrack - 3 + f(m);3 + f(m) ightbrack

    Theo yêu cầu bài toán \Leftrightarrow 3 +
f(m) = 1 \Leftrightarrow f(m) = - 2

    Nhìn vào bảng biến thiên ta thấy f(m) = -
2 có ba nghiệm

    Vậy có 3 giá trị của tham số m thỏa mãn yêu cầu bài toán.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo