Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 2 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Xét tính đúng sai của các khẳng định

    Bạn Lan muốn dùng tấm bìa hình chữ nhật có chiều rộng 3\ dm, chiều dài 5\ dm để làm một chiếc hộp không nắp, bằng cách cắt bỏ đi 4 hình vuông nhỏ có cạnh bằng x\ dm ở bốn góc của tấm bìa như hình vẽ. Các mệnh đề sau đúng hay sai?

    a) [NB] Điều kiện của x0 < x
< \frac{3}{2}. Đúng||Sai

    b) [TH] Diện tích mặt đáy của chiếc hộp là (3 - 2x)(5 - 2x) Đúng||Sai

    c) [TH] Thể tích của chiếc hộp là 4x^{3} - 16x^{2} + 15. Sai||Đúng

    d) [VD, VDC] Với x =
\frac{8 - \sqrt{19}}{6} thì chiếc hộp có thể tích lớn nhất. Đúng||Sai

    Đáp án là:

    Bạn Lan muốn dùng tấm bìa hình chữ nhật có chiều rộng 3\ dm, chiều dài 5\ dm để làm một chiếc hộp không nắp, bằng cách cắt bỏ đi 4 hình vuông nhỏ có cạnh bằng x\ dm ở bốn góc của tấm bìa như hình vẽ. Các mệnh đề sau đúng hay sai?

    a) [NB] Điều kiện của x0 < x
< \frac{3}{2}. Đúng||Sai

    b) [TH] Diện tích mặt đáy của chiếc hộp là (3 - 2x)(5 - 2x) Đúng||Sai

    c) [TH] Thể tích của chiếc hộp là 4x^{3} - 16x^{2} + 15. Sai||Đúng

    d) [VD, VDC] Với x =
\frac{8 - \sqrt{19}}{6} thì chiếc hộp có thể tích lớn nhất. Đúng||Sai

    a) Đúng. Điều kiện của x0 < x < \frac{3}{2}.

    b) Đúng. Chiều rộng của mặt đáy là 3 -
2x, chiều dài của mặt đáy là 5 -
2x.

    Diện tích mặt đáy của chiếc hộp là (3 -
2x)(5 - 2x)

    c) Sai. Chiều cao của chiếc hộp là x.

    Thể tích của chiếc hộp là (3 - 2x)(5 -
2x)x = 4x^{3} - 16x^{2} + 15x

    d) Đúng. Xét hàm số f(x) = 4x^{3} -
16x^{2} + 15x trên \left(
0;\frac{3}{2} ight)

    f'(x) = 12x^{2} - 32x +
15

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = \dfrac{8 + \sqrt{19}}{6} \\
x = \dfrac{8 - \sqrt{19}}{6} \\
\end{matrix} ight.

    Bảng biến thiên

    Vậy x = \frac{8 - \sqrt{19}}{6} thì chiếc hộp có thể tích lớn nhất.

  • Câu 2: Vận dụng
    Ghi đáp án vào ô trống

    Cho một tấm nhôm hình vuông có cạnh là 30\ cm. Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là x\ cm, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm x để thể tích chiếc hộp là lớn nhất.

    Đáp án: 5

    Đáp án là:

    Cho một tấm nhôm hình vuông có cạnh là 30\ cm. Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là x\ cm, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm x để thể tích chiếc hộp là lớn nhất.

    Đáp án: 5

    Chiều cao của chiếc hộp khi gập tấm nhôm là x\ cm.

    Kích thước đáy hai đáy của chiếc hộp là (30 - 2x)\ cm.

    Ta có \left\{ \begin{matrix}
x > 0 \\
30 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 0 \\
x < 15 \\
\end{matrix} ight.\  \Leftrightarrow 0 < x < 15.

    Thể tích chiếc hộp là V(x) = x(30 -
2x)^{2} = 4x^{3} - 120x^{2} + 900x.

    V'(x) = 12x^{2} - 240x +
900.

    V'(x) = 0 \Leftrightarrow 12x^{2} -
240x + 900 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 5 \\
x = 15 \\
\end{matrix} ight.

    Bài toán trở thành, tìm x (0 < x < 15) sao cho V(x) là lớn nhất.

    Vậy cần cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là 5\ cmđể chiếc hộp tạo thành có thể tích lớn nhất.

  • Câu 3: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hai số thực x \geq 0;1 \leq y \leq
3 thỏa mãn 2^{x - 2y}.(2x + 1) = 4y
+ 2x + 4. Tìm giá trị nhỏ nhất của biểu thức P = 2^{x - y - 2} - x - y^{2} + 2037?

    Đáp án: 2025

    Đáp án là:

    Cho hai số thực x \geq 0;1 \leq y \leq
3 thỏa mãn 2^{x - 2y}.(2x + 1) = 4y
+ 2x + 4. Tìm giá trị nhỏ nhất của biểu thức P = 2^{x - y - 2} - x - y^{2} + 2037?

    Đáp án: 2025

    Giả thiết cho 2^{x - 2y}.(2x + 1) = 4y +
2x + 4

    \Leftrightarrow 2^{x}.(2x + 1) = 2(2y +
x + 2)2^{2y}

    \Leftrightarrow 2^{x}.(2x + 1) = 2^{2y +
1}(2y + x + 2)

    \Leftrightarrow 2^{2x}.(2x + 1) = 2^{2y
+ x + 1}(2y + x + 1 + 1)

    Xét hàm số f(t) = 2^{t}.(t + 1) trên (0\ ; + \infty)

    Suy ra f'(t) = 2^{t}.(t + 1)ln2 + 2^{t} > 0,\
\forall t \in (0\ ; + \infty)

    Vậy hàm số f(t) luôn đồng biến trên (0\ ; + \infty) nên ta có:

    \Leftrightarrow 2^{2x}.(2x + 1) = 2^{2y
+ x + 1}(2y + x + 1 + 1)

    \Leftrightarrow 2x = 2y + x + 1
\Leftrightarrow x = 2y + 1

    Suy ra: P = 2^{x - y - 2} - x - y^{2} +
2037

    = 2^{y - 1} - \left( y^{2} + 2y + 1
ight) + 2037

    = \frac{1}{4}.2^{y + 1} - (y + 1)^{2} +
2037

    Xét hàm số g(a) = \frac{1}{4}.2^{a} -
a^{2};\ a \in \lbrack 2\ ;4brack

    g^{'(a)} = \frac{2^{a}.ln2}{4} -
2a

    \Rightarrow g''(a) =
\frac{2^{a}.ln^{2}2}{4} - 2 < 0,\forall\ a \in \lbrack 2\
;4brack

    \Rightarrow g'(a) luôn nghịch biến trên \lbrack 2\
;4brack

    \Rightarrow \max_{\lbrack 2\
;4brack}g'(a) = g'(2) = ln2 - 4 < 0

    \Rightarrow g(a) luôn nghịch biến trên \lbrack 2\ ;4brack

    \Rightarrow \min g(a) = g(4) = -
12

    Vậy \min P = - 12 + 2037 = 2025 khi y + 1 = 4 \Rightarrow y = 3\ ;x =
7.

  • Câu 4: Thông hiểu
    Tìm giá trị lớn nhất của tham số m

    Cho hàm số f(x) = \frac{x - m^{2}}{x +
8} với m là tham số thực. Tìm giá trị lớn nhất của m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack
0;3brack bằng - 2.

    Hướng dẫn:

    Đạo hàm y' = \frac{8 + m^{2}}{(x +
8)^{2}} > 0,\ \forall x \in \lbrack 0;3brack.

    Suy ra hàm số f(x) đồng biến trên đoạn \lbrack 0;3brack

    \Rightarrow \min_{\lbrack
0;3brack}f(x) = f(0) = - \frac{m^{2}}{8}

    Thao bài ra: \min_{\lbrack
0;3brack}f(x) = - 2 \Leftrightarrow - \frac{m^{2}}{8} = - 2
\Leftrightarrow m = \pm 4

    Suy ra giá trị m lớn nhất là m = 4.

  • Câu 5: Thông hiểu
    Tính GTNN của hàm số trên khoảng

    Giả sử m là giá trị nhỏ nhất của hàm số y = x + \frac{4}{x} trên khoảng \left( {0; + \infty } ight). Tính giá trị của m.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' = 1 - \dfrac{4}{{{x^2}}} \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 2\left( {tm} ight)} \\   {x =  - 2\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Tính GTNN của hàm số trên khoảng

    => Giá trị nhỏ nhất của hàm số bằng 4

    => y(2) = 4

    => m = 4

  • Câu 6: Thông hiểu
    Chọn mệnh đề đúng

    Xét hàm số f(x) = x^{3} + x - \cos x -
4 trên nửa khoảng \lbrack 0; +
\infty). Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Ta có f'(x) = 3x^{2} + 1 + \sin x
> 0,\forall x\mathbb{\in R}.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0; + \infty).

    Khi đó hàm số không có giá trị lớn nhất nhưng có giá trị nhỏ nhất là \min_{\lbrack 0; + \infty)}f(x) = f(0) = -
5.

  • Câu 7: Vận dụng cao
    Tính tổng GTLN và GTNN của hàm số

    Cho hàm số f(x) liên tục trên khoảng (0; +∞) thỏa mãn 3x.f\left( x ight) - {x^2}.f'\left( x ight) = 2{f^2}\left( x ight), với f(x) ≠ 0 với ∀x ∈ (0; +∞) và f\left( 1 ight) = \frac{1}{3}. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [1;2]. Tính tổng M + m.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  3x.f\left( x ight) - {x^2}.f'\left( x ight) = 2{f^2}\left( x ight) \hfill \\   \Rightarrow 3{x^2}f\left( x ight) - {x^3}f'\left( x ight) = 2x{f^2}\left( x ight) \hfill \\   \Rightarrow \dfrac{{3{x^2}f\left( x ight) - {x^3}f'\left( x ight)}}{{{f^2}\left( x ight)}} = 2x \hfill \\   \Rightarrow \left( {\dfrac{{{x^3}}}{{f\left( x ight)}}} ight)' = 2x \Rightarrow \dfrac{{{x^3}}}{{f\left( x ight)}} = {x^2} + C \hfill \\ \end{matrix}

    Thay x = 1 vào ta có: \left\{ {\begin{array}{*{20}{c}}  {\dfrac{1}{{f\left( 1 ight)}} = 1 + C} \\   {f\left( 1 ight) = \dfrac{1}{3}} \end{array}} ight. \Rightarrow C = 2

    \begin{matrix}   \Rightarrow f\left( x ight) = \dfrac{{{x^3}}}{{{x^2} + 2}} \hfill \\  f'\left( x ight) = \dfrac{{{x^4} + 6{x^2}}}{{{{\left( {{x^2} + 2} ight)}^2}}} \hfill \\  f'\left( x ight) = 0 \Rightarrow x = 0 \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Tính tổng GTLN và GTNN của hàm số

    Khi đó f(x) đồng biến trên [1; 2]

    => \left\{ {\begin{array}{*{20}{c}}  {m = f\left( 1 ight) = \dfrac{1}{3}} \\   {M = f\left( 2 ight) = \dfrac{4}{3}} \end{array}} ight. \Rightarrow m + M = \dfrac{5}{3}

  • Câu 8: Vận dụng cao
    Chọn đáp án đúng:

    Xét hàm số  y = f(x) = \left | x^{4}-4x^{3} +4x+a \right |. Gọi M,m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [0;2]. Có bao nhiêu số nguyên a thuộc [-4;4] sao cho M \leq 2m?

  • Câu 9: Vận dụng
    Tìm m để bất phương trình nghiệm đúng với mọi x

    Tìm các giá trị của tham số m để bất phương trình \frac{{{x^2} + 3x + 3}}{{x + 1}} \geqslant m nghiệm đúng với mọi x \in \left[ {0;1} ight]

    Hướng dẫn:

    Xét hàm số g\left( x ight) = \frac{{{x^2} + 3x + 3}}{{x + 1}},x \in \left[ {0;1} ight] ta có:

    \begin{matrix}  g\left( x ight) = x + 2 + \dfrac{1}{{x + 1}} \hfill \\   \Rightarrow g'\left( x ight) = 1 - \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\  g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0\left( {tm} ight)} \\   {x =  - 2\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => \left\{ {\begin{array}{*{20}{c}}  {g\left( 0 ight) = 3} \\   {g\left( 1 ight) = \dfrac{7}{2}} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;1} ight]} g\left( x ight) = \frac{7}{2};\mathop {\min }\limits_{\left[ {0;1} ight]} g\left( x ight) = 3

    Ta có:

    \frac{{{x^2} + 3x + 3}}{{x + 1}} \geqslant m,\left( {\forall x \in \left[ {0;1} ight]} ight) \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {g\left( 0 ight) = 3} \\   {g\left( 1 ight) = \dfrac{7}{2}} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left[ {0;1} ight]} g\left( x ight) \geqslant m \Leftrightarrow m \leqslant 3

  • Câu 10: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị của đạo hàm y = f'(x) như hình vẽ sau:

    Trên đoạn \lbrack - 3;4brack, hàm số g(x) = 2f(x) + (1 - x)^{2} đạt giá trị nhỏ nhất tại điểm nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị của đạo hàm y = f'(x) như hình vẽ sau:

    Trên đoạn \lbrack - 3;4brack, hàm số g(x) = 2f(x) + (1 - x)^{2} đạt giá trị nhỏ nhất tại điểm nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x^{3} - 3x + 2. Khi đó nhận định nào đúng, nhận định nào sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x^{3} - 3x + 2. Khi đó nhận định nào đúng, nhận định nào sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) SAI vì Tập xác định của hàm số đã cho là \mathbb{R}.

    b) ĐÚNG. Thay x =
0 ta được y = 2.

    c) SAI. Ta có y' =
3x^{2} - 3. Ta thấy y'(0) = - 3
\neq 0. Suy ra hàm số không đạt cực trị tại điểm x = 0.

    d) ĐÚNG. Ta có y' =
3x^{2} - 3.Suy ra y' = 0
\Leftrightarrow x = 1\ (TM);x = - 1\ (KTM).

    y(0) = 2;y(2) = 4;y(1) = 0. Vậy giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4.

  • Câu 12: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f( -2x) trên đoạn \left\lbrack -1;\frac{1}{2} ightbrack. Tính giá trị của biểu thức B = 2m + 3M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f( -2x) trên đoạn \left\lbrack -1;\frac{1}{2} ightbrack. Tính giá trị của biểu thức B = 2m + 3M?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Khi đó, giá trị lớn nhất của hàm số g(x)
= f\left( 2 - x^{2} ight) trên \left\lbrack 0;\sqrt{2} ightbrack là:

    Hướng dẫn:

    Đặt t = 2 - x^{2};t' = - 2x \leq
0;\forall x \in \left\lbrack 0;\sqrt{2} ightbrack \Rightarrow t \in
\lbrack 0;2brack

    \Rightarrow \max_{\left\lbrack
0;\sqrt{2} ightbrack}g(x) = \max_{\lbrack 0;2brack}f(t) =
f(0)

  • Câu 14: Vận dụng
    Tính tổng các phần tử của S

    Cho hàm số y = {x^3} + m{x^2} - \left( {{m^2} + m + 1} ight)x. Gọi S là tập hợp các giá trị thực của tham số m sao cho giá trị nhỏ nhất của hàm số trên đoạn \left[ { - 1;1} ight] bằng -6. Tính tổng các phần tử của S.

    Hướng dẫn:

    Ta có: f'\left( x ight) =  - 3{x^2} + 2mx - {m^2} - m - 1;\forall x \in \mathbb{R}

    \Delta ' =  - 2{m^2} - 3m - 3 < 0,\forall m \in \mathbb{R}

    => y' < 0;\forall x \in \left[ { - 1;1} ight]

    Do đó hàm số f\left( x ight) nghịch biến trên \left( { - 1;1} ight)

    => \mathop {\min y}\limits_{\left[ { - 1;1} ight]}  = y\left( 1 ight) =  - 6

    Ta lại có:

    \begin{matrix}  y\left( 1 ight) =  - 2 - {m^2} \hfill \\   \Rightarrow  - 2 - {m^2} =  - 6 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 2} \\   {m =  - 2} \end{array}} ight. \Rightarrow \sum m  = 0 \hfill \\ \end{matrix}

  • Câu 15: Vận dụng
    Ghi đáp án vào ô trống

    Để uốn 4m thanh kim loại thành hình như sau:

    Gọi r bán kính của nửa đường tròn. Tìm r(m) để diện tích tạo thành đạt giá trị lớn nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Để uốn 4m thanh kim loại thành hình như sau:

    Gọi r bán kính của nửa đường tròn. Tìm r(m) để diện tích tạo thành đạt giá trị lớn nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng
    Xác định mệnh đề đúng

    Cho hàm số y = \frac{x + m}{x -
1} (với m là tham số thực) thỏa mãn \min_{\lbrack 2;4brack}y =
3. Mệnh đề nào dưới đây là đúng?

    Hướng dẫn:

    Đạo hàm f'(x) = - \frac{m + 1}{(x -
1)^{2}}.

    TH1. Với m > - \ 1 suy ra f'(x) = - \frac{m + 1}{(x - 1)^{2}} <
0;\ \ \forall x eq 1 nên hàm số f(x) nghịch biến trên mỗi khoảng xác định.

    Khi đó \min_{\lbrack 2;4brack}y = f(4)
= \frac{m + 4}{3} = 3 \Leftrightarrow m = 5 (thỏa mãn).

    TH2. Với m < -  1 suy ra f'(x) = - \frac{m + 1}{(x - 1)^2} >
0;\ \ \forall x eq 1 nên hàm số f(x) đồng biến trên mỗi khoảng xác định.

    Khi đó \min_{\lbrack 2;4brack}y = f(2)
= m + 2 = 3 \Leftrightarrow m = 1 (Không thỏa mãn).

    Vậy m = 5 là giá trị cần tìm và thỏa mãn điều kiện m > 4.

  • Câu 17: Vận dụng
    Ghi đáp án vào ô trống

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 4t^{3} - \frac{t^{4}}{2}(người). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?

    Đáp án: Ngày thứ 4||tư

    Đáp án là:

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 4t^{3} - \frac{t^{4}}{2}(người). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?

    Đáp án: Ngày thứ 4||tư

    Điều kiện t \geq 0.

    Ta có g(t) = f'(t) = 12t^{2} -
2t^{3}, g'(t) = 24t -
6t^{2}, g'(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} ight..

    Bảng biến thiên:

    Vậy tốc độ truyền bệnh lớn nhất vào ngày thứ 4.

    Đáp số: 4.

  • Câu 18: Thông hiểu
    Tìm GTLN của hàm số

    Giá trị lớn nhất của hàm số y = \sqrt { - {x^2} + 4x} trên khoảng (0; 3)

    Hướng dẫn:

    Tập xác định D = \left[ {0;4} ight]

    Xét hàm số y = \sqrt { - {x^2} + 4x} trên khoảng (0;3)

    Ta có:

    \begin{matrix}  y' = \frac{{ - x + 2}}{{\sqrt { - {x^2} + 4x} }} \hfill \\  y' = 0 \Leftrightarrow x = 2 \hfill \\ \end{matrix}

    Ta có bảng biến thiên:

    Tìm GTLN của hàm số

    Trên khoảng (0; 3) giá trị lớn nhất của hàm số y = 2

  • Câu 19: Vận dụng cao
    Ghi đáp án vào ô trống

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất M của hàm số f(x) = sin^{3}x + cos2x + \sin x +
3.

    Hướng dẫn:

    Ta có f(x) = sin^{3}x + cos2x + \sin x +
3 = sin^{3}x - 2sin^{2}x + \sin x + 4.

    Đặt t = \sin x\ ;( - 1 \leq t \leq1).

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = t^{3} - 2t^{2} + t + 4 trên đoạn \lbrack -
1;1brack''.

    Đạo hàm g'(t) = 3t^{2} - 4t +
1

    \Rightarrow g'(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \in \lbrack - 1;1brack \\
t = \frac{1}{3} \in \lbrack - 1;1brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
g( - 1) = 0 \\
g\left( \dfrac{1}{3} ight) = \dfrac{112}{27} \\
g(1) = 4 \\
\end{matrix} ight. \Rightarrow
\max_{\lbrack - 1;1brack}g(t) = g\left( \dfrac{1}{3} ight) =
\frac{112}{27}

    \Rightarrow \max_{x\mathbb{\in R}}f(x) =
\frac{112}{27}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo