Gọi là diện tích hình phẳng giới hạn bởi các đường
. Mệnh đề nào dưới đây đúng?
Ta có:
Gọi là diện tích hình phẳng giới hạn bởi các đường
. Mệnh đề nào dưới đây đúng?
Ta có:
Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông cạnh bằng cm bằng cách khoét đi bốn phần bằng nhau có hình dạng parabol như hình bên. Biết
cm,
cm. Biết giá trang trí hoa văn
là 50.000 đồng, tính số tiền cần bỏ ra để trang trí hoa văn đó.


Đưa parabol vào hệ trục ta tìm được phương trình là:
.
Diện tích hình phẳng giới hạn bởi , trục hoành và các đường thẳng
,
là:
.
Tổng diện tích phần bị khoét đi:
.
Diện tích của hình vuông là: .
diện tích bề mặt hoa văn là: .
Vậy số tiền cần bỏ ra để trang trí hoa văn đó là: đồng
Cho hình phẳng được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Cho hình phẳng được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Xét là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, trục tung và đường thẳng
. Giá trị của
sao cho thể tích của khối tròn xoay tạo thành khi quay
quanh trục hoành bằng
là?
Thể tích khối tròn xoay tạo thành khi quay quanh trục hoành là:
Mà
Vậy là giá trị cần tìm.
Diện tích hình phẳng giới hạn bởi , trục hoành,
và
là:
Ta có: nên ta có:
Cho hàm số liên tục trên
và có đồ thị
cắt trục
tại ba điểm có hoành độ
với
như hình bên. Đặt
. Diện tích của hình phẳng giới hạn bởi đồ thị
và trục hoành (phần tô đậm) bằng bao nhiêu?

Diện tích hình phẳng phần tô đậm được tính như sau:
Một ly rượu thủy tinh có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của ly (bổ dọc cốc thành 2 phần bằng nhau) là một đường Parabol. Tính thể tích tối đa mà ly có thể chứa được (làm tròn 2 chữ số thập phân)


Parabol có phương trình
Thể tích tối đa cốc: .
Cho đồ thị hàm số như hình vẽ và
.
Tính diện tích của phần được gạch chéo theo .
Từ đồ thị ta suy ra
Do đó, diện tích phần gạch chéo là
.
Cho hình phẳng D giới hạn bởi đường cong , trục hoành và các đường thẳng
,
. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?
Thể tích khối tròn xoay được tạo nên bởi hình phẳng giới hạn bởi các đường ,
,
và trục hoành khi quay quanh Ox là:
(đvtt).
Trong mặt phẳng tọa độ , cho đường tròn
.
Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn quanh trục hoành.
Trong mặt phẳng tọa độ , cho đường tròn
.
Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn quanh trục hoành.
Cho hàm có đạo hàm liên tục trên
. Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
(phần gạch chéo trong hình vẽ):
Diện tích hình bằng:
Diện tích phần gạch chéo là:
.
Một vật thể nằm giữa hai mặt phẳng và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ
là một hình tròn có diện tích bằng
. Thể tích của vật thể là?
Ta có:
Một người có mảnh đất hình tròn có bán kính . Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được
nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây
vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).
Một người có mảnh đất hình tròn có bán kính . Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được
nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây
vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).
Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số quanh trục
bằng
Ta có:
Thể tích của khối tròn xoay do hình phẳng giới hạn bởi các đường
, trục hoành và đường thẳng
khi quay quanh trục
?
Phương trình hoành độ giao điểm của đường và trục hoành là:
Khi đó, thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường , trục hoành và đường thẳng x = 1 khi quay quanh trục Ox là:
Gọi là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành như hình vẽ:
Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là:
Từ hình vẽ ta thấy
Do đó
Vậy mệnh đề sai là:
Cho hàm số . Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số
, trục tung, trục hoành và đường thẳng
Ta có:
Tính diện tích S của hình phẳng giới hạn bởi các đường ?
Phương trình hoành độ giao điểm
Do đó, diện tích hình phẳng giới hạn bởi các đường
Khi cắt một vật thể hình chiếc niêm bởi mặt phẳng vuông góc với trục tại điểm có hoành độ
, mặt cắt là tam giác vuông có một góc
và độ dài một cạnh góc vuông là
(như hình vẽ). Tính thể tích vật thể hình chiếc niêm trên.

Diện tích tam giác vuông cân là:
Thể tích vật thể là:
.
Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số
trục hoành và hai đường thẳng
.
Diện tích của hình phẳng giới hạn bởi đồ thị hàm số
trục hoành và hai đường thẳng
được tính như sau:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: