Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Ứng dụng hình học của Tích phân (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định công thức diện tích hình phẳng

    Cho đồ thị hàm số y = f(x). Diện tích hình phẳng (phần gạch trong hình) là:

    Hướng dẫn:

    Diện tích hình phẳng (phần gạch trong hình) là: S = \int_{- 3}^{0}{f(x)dx} +
\int_{4}^{0}{f(x)dx}

  • Câu 2: Thông hiểu
    Tính diện tích hình phẳng D

    Tính diện tích S_{D} của hình phẳng D được giới hạn bởi các đường y = \left| \frac{\ln x}{x} ight|, trục hoành và các đường thẳng x =
\frac{1}{e};x = 2?

    Hướng dẫn:

    Diện tích hình phẳng cần tìm là:

    S_{D} = \int_{\frac{1}{e}}^{2}{\left|
\frac{\ln x}{x} ight|dx} = \int_{\frac{1}{e}}^{1}{\left| \frac{\ln
x}{x} ight|dx} + \int_{1}^{2}{\left| \frac{\ln x}{x}
ight|dx}

    = - \int_{\frac{1}{e}}^{1}{\frac{\ln
x}{x}dx} + \int_{1}^{2}{\frac{\ln x}{x}dx}

    = - \left. \ \frac{\left( \ln x
ight)^{2}}{2} ight|_{\frac{1}{e}}^{1} + \left. \ \frac{\left( \ln x
ight)^{2}}{2} ight|_{1}^{2}

    = \frac{1}{2} + \frac{\ln^{2}2}{2} =\frac{1}{2}\left( 1 + \ln^{2}2 ight)

  • Câu 3: Thông hiểu
    Tính diện tích S của hình phẳng

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x^{3} -
1, trục hoành, trục tung và đường thẳng x = 2.

    Hướng dẫn:

    Phương trình hoành độ giao điểm x^{3} - 1
= 0 \Leftrightarrow x = 1.

    Ảnh có chứa hàng, Hình chữ nhật, biểu đồ, Song songMô tả được tạo tự động

    S = \int_{0}^{2}\left| x^{3} - 1
\right|\ dx = \int_{0}^{1}\left| x^{3} - 1 \right|dx +
\int_{1}^{2}\left| x^{3} - 1 \right|dx

    = \int_{0}^{1}\left( 1 - x^{3} \right)dx
+ \int_{1}^{2}\left( x^{3} - 1 \right)dx

    = \left. \ \left( x - \frac{x^{4}}{4}
\right) \right|_{0}^{1} + \left. \ \left( \frac{x^{4}}{4} - x \right)
\right|_{1}^{2} = \frac{7}{2}.

  • Câu 4: Thông hiểu
    Tính diện tích hình phẳng

    Cho hàm số y = x^{2} - 2x có đồ thị (P). Các tiếp tuyến với đồ thị tại O(0;0) và tại A(3;3) cắt nhau tại B. Tính diện tích hình phẳng giới hạn bởi cung OA của (P) và hai tiếp tuyến BO;BA?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    y' = 2x - 2

    Tiếp tuyến tại O(0; 0) là OB: y =
y'(0)(x - 0) + 0 \Leftrightarrow y = - 2x

    Tiếp tuyến tại A(3; 3) là AB: y =
y'(3)(x - 3) + 3 \Leftrightarrow y = 4x - 9

    Suy ra OA \cap OB = B\left( \frac{3}{2};
- 3 ight)

    Diện tích hình giới hạn là

    S = \int_{0}^{\frac{3}{2}}{x^{2}dx} +
\int_{\frac{3}{2}}^{3}{\left( x^{2} - 6x + 9 ight)dx} = \frac{9}{8} +
\frac{9}{8} = \frac{9}{4}

  • Câu 5: Thông hiểu
    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi (C):y =
3x^{4} - 4x^{2} + 5, trục hoành, x
= 1x = 2 là:

    Hướng dẫn:

    Ta có: 3x^{4} - 4x^{2} + 5 > 0;\forall
x\mathbb{\in R} nên ta có:

    S = \int_{1}^{2}{\left( 3x^{4} - 4x^{2}
+ 5 ight)dx} = \left. \ \left( \frac{3}{5}x^{5} - \frac{4}{3}x^{3} +
5x ight) ight|_{1}^{2} = \frac{214}{15}

  • Câu 6: Nhận biết
    Tìm thể tích khối tròn xoay

    Gọi (D) là hình phẳng giới hạn bởi các đường y = \frac{x}{4};y = 0;x = 1;x
= 4. Tính thể tích vật thể tròn xoay tạo thành khi quay hình (D) quanh trục Ox?

    Hướng dẫn:

    Thể tích vật thể tròn xoay tạo thành khi quay hình (D) quanh trục Ox

    V = \pi\int_{1}^{4}{\left( \frac{x}{4}
ight)^{2}dx} = \left. \ \frac{\pi x^{3}}{48} ight|_{1}^{4} =
\frac{21\pi}{16}.

  • Câu 7: Thông hiểu
    Tính thể tích khối tròn xoay

    Tính thể tích khối tròn xoay sinh bởi Elip (E): \frac{x^{2}}{4} + \frac{y^{2}}{1} = 1 quay quanh trục hoành?

    Hướng dẫn:

    Xét (E)a^{2} = 4 \Rightarrow a = 2. Do đó hai đỉnh thuộc trục lớn có tọa độ ( -
2;0),(2;0)

    \frac{x^{2}}{4} + \frac{y^{2}}{1} = 1
\Rightarrow y^{2} = 1 - \frac{x^{2}}{4}

    Do đó thể tích khối tròn xoay là V_{Ox} =
\pi\int_{- 2}^{2}{y^{2}dx} = \pi\int_{- 2}^{2}{\left( 1 -
\frac{x^{2}}{4} ight)dx} = \frac{8\pi}{3}

  • Câu 8: Thông hiểu
    Chọn công thức tính thể tích khối tròn xoay

    Thể tích của khối tròn xoay sinh ra khi cho hình phẳng giới hạn bởi parabol (P):y = x^{2} và đường thẳng d:y = x xoay quanh trục Ox tính bởi công thức nào sau đây?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có (P)d cắt nhau tại hai điểm (0;0),(1;1)x > x^{2};\forall x \in (0;1)

    Suy ra thể tích khối tròn xoay đã cho T bằng thể tích khối tròn xoay T_{1} trừ đi thể tích khối tròn xoay T_{2}. Trong đó:

    T_{1} được sinh ra khi quay hình phẳng giới hạn bởi các đường d, trục Ox, x = 0, x = 1.

    T_{2} được sinh ra khi quay hình phẳng giới hạn bởi các đường (P), trục Ox, x = 0, x = 1.

    Vậy thể tích khối tròn xoay đã cho bằng \pi\int_{0}^{1}{x^{2}dx} -
\pi\int_{0}^{1}{x^{4}dx}.

  • Câu 9: Thông hiểu
    Tìm diện tích hình phẳng

    Tính diện tích S của hình phẳng giới hạn bởi y = x^{2} - 2x, y = 0, x = -
4, x = 1.

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm: x^{2} - 2x = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} \right..

    Diện tích: S = \int_{- 4}^{1}{\left|
x^{2} - 2x \right|dx} = \int_{- 4}^{0}{\left( x^{2} - 2x \right)dx} -
\int_{0}^{1}{\left( x^{2} - 2x \right)dx}

    = \left. \ \left( \frac{x^{3}}{3} - x^{2}
\right) \right|_{- 4}^{0} - \left. \ \left( \frac{x^{3}}{3} - x^{2}
\right) \right|_{0}^{1} = 38.

  • Câu 10: Nhận biết
    Tìm công thức tính diện tích thích hợp

    Xét hình phẳng (H) giới hạn bởi các đường như hình vẽ (phần gạch sọc).

    Diện tích hình phẳng (H) được tính theo công thức

    Hướng dẫn:

    Ta có:

    S = \int_{0}^{1}{\left| f(x) ight|dx}
+ \int_{1}^{4}{\left| g(x) ight|dx}

    = \int_{0}^{1}{f(x)dx} +
\int_{1}^{4}{g(x)dx}

  • Câu 11: Thông hiểu
    Tính diện tích hình phẳng

    Tính diện tích hình phẳng S giới hạn bởi đồ thị các hàm số y = 2^{x}y = 3 - x, trục hoành và trục tung.

    Hướng dẫn:

    Giao điểm 2^{x} = 3 - x
\Rightarrow Nhẩm được nghiệm 1

    S = \int_{0}^{1}\left| 2^{x} + x - 3
ight|dx = \left| \frac{2^{x}}{\ln2} + \frac{x^{2}}{2} - 3x
ight|_{0}^{1}

    = \frac{2}{\ln2} + \frac{1}{2} - 3 -
\frac{1}{\ln2} = \frac{1}{\ln2} - \frac{5}{2}

  • Câu 12: Thông hiểu
    Tính thể tích chiếc ly

    Một ly rượu thủy tinh có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của ly (bổ dọc cốc thành 2 phần bằng nhau) là một đường Parabol. Tính thể tích tối đa mà ly có thể chứa được (làm tròn 2 chữ số thập phân)

    Hướng dẫn:

    Parabol có phương trình y =
\frac{5}{8}x^{2} \Leftrightarrow x^{2} = \frac{8}{5}y

    Thể tích tối đa cốc: V =
\pi\int_{0}^{10}\left( \frac{8}{5}y \right)dy \approx
251,33.

  • Câu 13: Vận dụng
    Chọn đáp án đúng

    Một họa tiết hình cánh bướm như hình vẽ bên.

    Phần tô đậm được đính đá với giá thành 500.000đ/m^{2}. Phần còn lại được tô màu với giá thành 250.000đ/m^{2}.

    Cho AB = 4dm;BC = 8dm. Hỏi để trang trí 1000 họa tiết như vậy cần số tiền bỏ ra là bao nhiêu?

    Hướng dẫn:

    Vì AB = 4dm;BC = 8dm. \Rightarrow A( -
2;4),B(2;4),C(2; - 4),D( - 2; - 4).

    Parabol là: y = x^{2} hoặc y = - x^{2}

    Diện tích phần tô đậm là S_{1} =
4\int_{0}^{2}{x^{2}dx = \frac{32}{3}\begin{matrix}
\\
\end{matrix}(dm^{2})}

    Diện tích hình chữ nhật là S = 4.8 =
32\begin{matrix}
\\
\end{matrix}(m^{2})

    Diện tích phần trắng là S_{2} = S - S_{1}
= 32 - \frac{32}{3} = \frac{64}{3}\begin{matrix}
\\
\end{matrix}(dm^{2})

    Tổng chi phí trang chí là: T = \left(
\frac{32}{3}.5000 + \frac{64}{3}.2500 \right).1000 \approx
106666667đ

  • Câu 14: Vận dụng
    Ghi đáp án vào ô trống

    Kiến trúc sư thiết kế một khu sinh hoạt cộng đồng có dạng hình chữ nhật với chiều rộng và chiều dài lần lượt là 60 m và 80 m. Trong đó, phần được tô màu đậm là sân chơi, phần còn lại để trồng hoa. Mỗi phần trồng hoa có đường biên cong là một phần của parabol với đỉnh thuộc một trục đối xứng của hình chữ nhật và khoảng cách từ đỉnh đó đến trung điểm cạnh tương ứng của hình chữ nhật bằng 20 m (xem hình minh họa). Diện tích của phần sân chơi là bao nhiêu mét vuông?

    Đáp án: 3200 m^{2}

    Đáp án là:

    Kiến trúc sư thiết kế một khu sinh hoạt cộng đồng có dạng hình chữ nhật với chiều rộng và chiều dài lần lượt là 60 m và 80 m. Trong đó, phần được tô màu đậm là sân chơi, phần còn lại để trồng hoa. Mỗi phần trồng hoa có đường biên cong là một phần của parabol với đỉnh thuộc một trục đối xứng của hình chữ nhật và khoảng cách từ đỉnh đó đến trung điểm cạnh tương ứng của hình chữ nhật bằng 20 m (xem hình minh họa). Diện tích của phần sân chơi là bao nhiêu mét vuông?

    Đáp án: 3200 m^{2}

    Gắn hệ trục tọa độ Oxy như hình vẽ:

    Ta có: A(30;0),B(0;20)

    \Rightarrow (P):y = \frac{- 1}{45}x^{2}
+ 20

    Khi đó diện tích phần parabol là:

    4\int_{0}^{30}{\left( \frac{-
1}{45}x^{2} + 20 ight)dx} = 1600\left( m^{2} ight)

    Vậy diện tích toàn phần của sân chơi là: 60.80 - 1600 = 3200\left( m^{2}
ight)

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Tính thể tích V của vật thể nằm giữa hai mặt phẳng x = 0x = \pi, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 \leq x
\leq \pi) là một tam giác đều cạnh 2\sqrt{\sin x}.

    Hướng dẫn:

    Ta có diện tích thiết diện: S(x) = \left(
2\sqrt{\sin x} \right)^{2}.\frac{\sqrt{3}}{4} = \sqrt{3}\sin
x.

    V = \int_{0}^{\pi}{S(x)}\ dx =\int_{0}^{\pi}{\sqrt{3}\sin x}\ dx= - \sqrt{3}\cos x\left|\begin{matrix}\pi \\0 \\\end{matrix} \right.\  = 2\sqrt{3}.

  • Câu 16: Vận dụng
    Chọn đáp án đúng

    Cho đường cong (C):y = x^{3}. Xét điểm A có hoành độ dương thuộc (C), tiếp tuyến của (C) tại A tạo với (C) một hình phẳng có diện tích bằng 27. Hoành độ điểm A thuộc khoảng nào dưới đây??

    Hướng dẫn:

    Ta có: y' = 3x^{2}A \in (C) \Rightarrow A\left( a;a^{3} ight);(a
> 0)

    Phương trình tiếp tuyến d của (C) tại A là d:y = 3a^{2}(x - a) + a^{3}

    x^{3} = 3a^{2}(x - a) +
a^{3}

    \Leftrightarrow (x - a)^{2}(x + 2a) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = a \\
x = - 2a \\
\end{matrix} ight.

    Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)

    S = 27 \Leftrightarrow \int_{-
2a}^{a}\left| x^{3} - 3a^{2}(x - a) - a^{3} ight|dx = 27

    \Leftrightarrow \left| \int_{-
2a}^{a}\left( x^{3} - 3a^{2}x + 2a^{3} ight)dx ight| =
27

    \Leftrightarrow \left| \left. \ \left(
\frac{x^{4}}{4} - \frac{3a^{2}x^{2}}{2} + 2a^{3}x ight) ight|_{-
2a}^{a} ight| = 27

    \Leftrightarrow \frac{27}{4}a^{4} = 27
\Leftrightarrow \left\lbrack \begin{matrix}
a = \sqrt{2}(tm) \\
a = - \sqrt{2}(ktm) \\
\end{matrix} ight.

    Vậy a = \sqrt{2} \in \left( 1;\frac{3}{2}
ight)

  • Câu 17: Thông hiểu
    Chọn đáp án đúng

    Thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường y =
x\sqrt{x^{2} + 1}, trục hoành và đường thẳng x = 1 khi quay quanh trục Ox?

    Hướng dẫn:

    Phương trình hoành độ giao điểm của đường y = x\sqrt{x^{2} + 1} và trục hoành là:

    x\sqrt{x^{2} + 1} = 0 \Leftrightarrow x
= 0

    Khi đó, thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường y = x\sqrt{x^{2} + 1}, trục hoành và đường thẳng x = 1 khi quay quanh trục Ox là:

    V = \pi\int_{0}^{1}{\left( x\sqrt{x^{2}
+ 1} ight)^{2}dx} = \pi\int_{0}^{1}{\left( x^{4} + x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} +
\frac{x^{3}}{3} ight) ight|_{0}^{1} = \frac{8\pi}{15}

  • Câu 18: Thông hiểu
    Chọn công thức đúng

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack a;bbrack. Gọi D là hình phẳng giới hạn bởi đồ thị (C):y = f(x), trục hoành, hai đường thẳng x = a;x = b (như hình vẽ bên).

    Giả sử S_{D} là diện tích của hình phẳng D. Chọn công thức đúng?

    Hướng dẫn:

    Dựa vào đồ thị hình vẽ ta thấy:

    + Đồ thị cắt trục hoành tại điểm O(0;0)

    + Trên đoạn \lbrack a;0brack, đồ thị ở phía dưới trục hoành nên \left|
f(x) ight| = - f(x)

    + Trên đoạn \lbrack 0;bbrack, đồ thị ở phía trên trục hoành nên \left|
f(x) ight| = f(x)

    Do đó: S_{D} = \int_{a}^{b}{\left| f(x)
ight|dx} = - \int_{a}^{0}{f(x)dx} + \int_{0}^{b}{f(x)dx}

  • Câu 19: Thông hiểu
    Xác định thể tích V

    Tính thể tích V của vật thể sinh ra khi quay quanh trục Ox hình phẳng giới hạn bởi đồ thị hàm số y =
e^{x}.\sqrt{x}, đường thẳng x =
1 và trục hoành?

    Hướng dẫn:

    Thể tích V của vật thể là:

    V = \pi\int_{0}^{1}{\left( e^{x}\sqrt{x}
ight)^{2}dx} = \pi\int_{0}^{1}{\left( e^{2x}.x ight)dx}

    = \frac{\pi}{2}\int_{0}^{1}{xd\left(
e^{2x} ight)} = \frac{\pi}{2}\left\lbrack \left. \ \left( x.e^{2x}
ight) ight|_{0}^{1} - \int_{0}^{1}{e^{2x}dx}
ightbrack

    = \frac{\pi}{4}\left( e^{2} + 1
ight)

  • Câu 20: Thông hiểu
    Tính thể tích theo yêu cầu

    Cắt một vật thể bởi hai mặt phẳng vuông góc với trục Ox tại x =
1x = 3. Một mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x (1 \leq x \leq 3) cắt vật thể đó theo thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x3x^{2}
- 2. Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng trên

    Hướng dẫn:

    Diện tích thiết diện là: S(x) = 3x.\left(
3x^{2} - 2 ight) = 9x^{3} - 6x

    \Rightarrow Thể tích vật thể là: V = \int_{1}^{3}{\left( 9x^{3} - 6x
ight)dx = 156}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo