Cho đồ thị hàm số . Diện tích hình phẳng (phần gạch trong hình) là:
Diện tích hình phẳng (phần gạch trong hình) là:
Cho đồ thị hàm số . Diện tích hình phẳng (phần gạch trong hình) là:
Diện tích hình phẳng (phần gạch trong hình) là:
Tính diện tích của hình phẳng
được giới hạn bởi các đường
, trục hoành và các đường thẳng
?
Diện tích hình phẳng cần tìm là:
Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, trục tung và đường thẳng
.
Phương trình hoành độ giao điểm .
![]()
.
Cho hàm số có đồ thị
. Các tiếp tuyến với đồ thị tại
và tại
cắt nhau tại
. Tính diện tích hình phẳng giới hạn bởi cung
của
và hai tiếp tuyến
?
Tập xác định
Tiếp tuyến tại O(0; 0) là OB:
Tiếp tuyến tại A(3; 3) là AB:
Suy ra
Diện tích hình giới hạn là
Diện tích hình phẳng giới hạn bởi , trục hoành,
và
là:
Ta có: nên ta có:
Gọi là hình phẳng giới hạn bởi các đường
. Tính thể tích vật thể tròn xoay tạo thành khi quay hình
quanh trục
?
Thể tích vật thể tròn xoay tạo thành khi quay hình quanh trục
là
.
Tính thể tích khối tròn xoay sinh bởi Elip (E): quay quanh trục hoành?
Xét có
. Do đó hai đỉnh thuộc trục lớn có tọa độ
Vì
Do đó thể tích khối tròn xoay là
Thể tích của khối tròn xoay sinh ra khi cho hình phẳng giới hạn bởi parabol và đường thẳng
xoay quanh trục
tính bởi công thức nào sau đây?
Hình vẽ minh họa
Ta có và
cắt nhau tại hai điểm
và
Suy ra thể tích khối tròn xoay đã cho bằng thể tích khối tròn xoay
trừ đi thể tích khối tròn xoay
. Trong đó:
được sinh ra khi quay hình phẳng giới hạn bởi các đường
, trục Ox, x = 0, x = 1.
được sinh ra khi quay hình phẳng giới hạn bởi các đường
, trục Ox, x = 0, x = 1.
Vậy thể tích khối tròn xoay đã cho bằng .
Tính diện tích của hình phẳng giới hạn bởi
,
,
,
.
Xét phương trình hoành độ giao điểm: .

Diện tích:
.
Xét hình phẳng giới hạn bởi các đường như hình vẽ (phần gạch sọc).
Diện tích hình phẳng được tính theo công thức
Ta có:
Tính diện tích hình phẳng S giới hạn bởi đồ thị các hàm số và
, trục hoành và trục tung.
Giao điểm Nhẩm được nghiệm 1
Một ly rượu thủy tinh có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của ly (bổ dọc cốc thành 2 phần bằng nhau) là một đường Parabol. Tính thể tích tối đa mà ly có thể chứa được (làm tròn 2 chữ số thập phân)


Parabol có phương trình
Thể tích tối đa cốc: .
Một họa tiết hình cánh bướm như hình vẽ bên.

Phần tô đậm được đính đá với giá thành . Phần còn lại được tô màu với giá thành
.
Cho Hỏi để trang trí
họa tiết như vậy cần số tiền bỏ ra là bao nhiêu?
Vì .
Parabol là: hoặc
Diện tích phần tô đậm là
Diện tích hình chữ nhật là
Diện tích phần trắng là
Tổng chi phí trang chí là:
Kiến trúc sư thiết kế một khu sinh hoạt cộng đồng có dạng hình chữ nhật với chiều rộng và chiều dài lần lượt là 60 m và 80 m. Trong đó, phần được tô màu đậm là sân chơi, phần còn lại để trồng hoa. Mỗi phần trồng hoa có đường biên cong là một phần của parabol với đỉnh thuộc một trục đối xứng của hình chữ nhật và khoảng cách từ đỉnh đó đến trung điểm cạnh tương ứng của hình chữ nhật bằng 20 m (xem hình minh họa). Diện tích của phần sân chơi là bao nhiêu mét vuông?
Đáp án: 3200
Kiến trúc sư thiết kế một khu sinh hoạt cộng đồng có dạng hình chữ nhật với chiều rộng và chiều dài lần lượt là 60 m và 80 m. Trong đó, phần được tô màu đậm là sân chơi, phần còn lại để trồng hoa. Mỗi phần trồng hoa có đường biên cong là một phần của parabol với đỉnh thuộc một trục đối xứng của hình chữ nhật và khoảng cách từ đỉnh đó đến trung điểm cạnh tương ứng của hình chữ nhật bằng 20 m (xem hình minh họa). Diện tích của phần sân chơi là bao nhiêu mét vuông?
Đáp án: 3200
Gắn hệ trục tọa độ Oxy như hình vẽ:
Ta có:
Khi đó diện tích phần parabol là:
Vậy diện tích toàn phần của sân chơi là:
Tính thể tích của vật thể nằm giữa hai mặt phẳng
và
, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
là một tam giác đều cạnh
.
Ta có diện tích thiết diện: .
.
Cho đường cong . Xét điểm
có hoành độ dương thuộc
, tiếp tuyến của
tại
tạo với
một hình phẳng có diện tích bằng
. Hoành độ điểm
thuộc khoảng nào dưới đây??
Ta có: có
Phương trình tiếp tuyến d của (C) tại A là
Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)
Vậy
Thể tích của khối tròn xoay do hình phẳng giới hạn bởi các đường
, trục hoành và đường thẳng
khi quay quanh trục
?
Phương trình hoành độ giao điểm của đường và trục hoành là:
Khi đó, thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường , trục hoành và đường thẳng x = 1 khi quay quanh trục Ox là:
Cho hàm số liên tục trên đoạn
. Gọi
là hình phẳng giới hạn bởi đồ thị
, trục hoành, hai đường thẳng
(như hình vẽ bên).
Giả sử là diện tích của hình phẳng
. Chọn công thức đúng?
Dựa vào đồ thị hình vẽ ta thấy:
+ Đồ thị cắt trục hoành tại điểm
+ Trên đoạn , đồ thị ở phía dưới trục hoành nên
+ Trên đoạn , đồ thị ở phía trên trục hoành nên
Do đó:
Tính thể tích của vật thể sinh ra khi quay quanh trục
hình phẳng giới hạn bởi đồ thị hàm số
, đường thẳng
và trục hoành?
Thể tích V của vật thể là:
Cắt một vật thể bởi hai mặt phẳng vuông góc với trục tại
và
. Một mặt phẳng tùy ý vuông góc với trục
tại điểm có hoành độ
(
) cắt vật thể đó theo thiết diện là một hình chữ nhật có độ dài hai cạnh là
và
. Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng trên
Diện tích thiết diện là:
Thể tích vật thể là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: