Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Ứng dụng hình học của Tích phân (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án chính xác vào ô trống

    Chuẩn bị cho lễ Giáng Sinh, bạn Lan đã làm một chiếc mũ “cách điệu” cho ông già Noel có dáng một khối tròn xoay. Mặt cắt qua trục của chiếc mũ như hình vẽ bên dưới. Biết rằng OO' =
7cm, OA = 8cm, OB = 16 cm, đường cong AB là một phần của parabol có đỉnh là điểmA. Thể tích của chiếc mũ. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 1944.

    Đáp án là:

    Chuẩn bị cho lễ Giáng Sinh, bạn Lan đã làm một chiếc mũ “cách điệu” cho ông già Noel có dáng một khối tròn xoay. Mặt cắt qua trục của chiếc mũ như hình vẽ bên dưới. Biết rằng OO' =
7cm, OA = 8cm, OB = 16 cm, đường cong AB là một phần của parabol có đỉnh là điểmA. Thể tích của chiếc mũ. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 1944.

    Kí hiệu tọa độ các điểm như hình vẽ:

    Ta gọi thể tích của chiếc mũ là V.

    Thể tích của khối trụ có bán kính đáy bằng OA = 8 cm và đường cao OO' = 7 cm là V_{1}.

    Thể tích của vật thể tròn xoay khi quay hình phẳng giới hạn bởi đường cong ABvà hai trục tọa độ quanh trục OyV_{2}.

    Ta có V = V_{1} + V_{2}

    V_{1} = 7.8^{2}\pi = 448\pi \left( cm^{3} ight).

    Chọn hệ trục tọa độ như hình vẽ.

    Do parabol có đỉnh A nên nó có phương trình dạng (P):y = a(x -
8)^{2}.

    (P) qua điểm B(0;16) nên a
= \frac{1}{4}.

    Do đó, (P):y = \frac{1}{4}(x -
8)^{2}.

    Từ đó suy ra x = 8 -
2\sqrt{y} (do x <
8).

    Suy ra V_{2} = \pi\int_{0}^{16}{\left( 8
- 2\sqrt{y} ight)^{2}dy} = \frac{512}{3}\pi \left( cm^{3} ight).

    Do đó V = V_{1} + V_{2} =
\frac{512}{3}\pi + 448\pi = \frac{1856}{3}\pi \approx 1944 \left( cm^{3} ight).

  • Câu 2: Nhận biết
    Chọn khẳng định đúng

    Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x);y = g(x) liên tục trên đoạn \lbrack a;bbrack và hai đường thẳng x = a;x = b;a < b

    Hướng dẫn:

    Ta có hình phẳng giới hạn bởi \left\{
\begin{matrix}
\left( C_{1} ight):y = f(x) \\
\left( C_{2} ight):y = g(x) \\
x = a \\
x = b \\
\end{matrix} ight.S =
\int_{a}^{b}{\left| f(x) - g(x) ight|dx}.

  • Câu 3: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hàm số y = f(x) = x^{2} - 5x +
4 có đồ thị như hình vẽ. Biết rằng đồ thị hàm số f(x) tạo với trục hoành và 2 đường thẳng x = 0,\ x = 4 một hình phẳng (H) gồm 2 phần có diện tích lần lượt là S_{1},\ S_{2}.

    Xét tính đúng, sai của các mệnh đề sau:

    a) [NB] f(x) là một nguyên hàm của hàm số g(x) = 2x -
5 trên \mathbb{R}. Đúng||Sai

    b) [TH] S_{1} =
\frac{11}{6}. Đúng||Sai

    c) [TH] S_{1} =
\int_{0}^{4}{f(x)dx} - S_{2}. Sai||Đúng

    d) [VD,VDC] Biết đường thẳng d:y = x + m( m là tham số ) cắt đồ thị y = f(x) tại hai điểm phân biệt và diện tích hình phẳng giới hạn bởi d(P) bằng \frac{4}{3}. Khi đó tổng các giá trị của tham số m bằng -4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{2} - 5x +
4 có đồ thị như hình vẽ. Biết rằng đồ thị hàm số f(x) tạo với trục hoành và 2 đường thẳng x = 0,\ x = 4 một hình phẳng (H) gồm 2 phần có diện tích lần lượt là S_{1},\ S_{2}.

    Xét tính đúng, sai của các mệnh đề sau:

    a) [NB] f(x) là một nguyên hàm của hàm số g(x) = 2x -
5 trên \mathbb{R}. Đúng||Sai

    b) [TH] S_{1} =
\frac{11}{6}. Đúng||Sai

    c) [TH] S_{1} =
\int_{0}^{4}{f(x)dx} - S_{2}. Sai||Đúng

    d) [VD,VDC] Biết đường thẳng d:y = x + m( m là tham số ) cắt đồ thị y = f(x) tại hai điểm phân biệt và diện tích hình phẳng giới hạn bởi d(P) bằng \frac{4}{3}. Khi đó tổng các giá trị của tham số m bằng -4. Đúng||Sai

    a) Đúng. Ta có: f'(x) = (x^{2} - 5x +
4)' = 2x - 5\ \ \ \forall x\mathbb{\in R}

    b) Đúng. Ta có:

    S_{1} = \int_{0}^{1}{f(x)dx =
\int_{0}^{1}{(x^{2} - 5x + 4)dx =}}\frac{11}{6}

    c) Sai. Ta có

    \int_{0}^{4}{f(x)dx} =
\int_{0}^{1}{f(x)dx + \int_{1}^{4}{f(x)dx}}

    = \int_{0}^{1}{\left| f(x) ight|dx -
\int_{1}^{4}{\left| f(x) ight|dx = S_{1} - S_{2}}}

    Suy ra : S_{1} = \int_{0}^{1}{f(x)dx} +
S_{2}.

    d) Đúng.

    Phương trình hoành độ giao điểm của d và đồ thị hàm số f(x)

    x^{2} - 5x + 4 = x + m \Leftrightarrow
x^{2} - 6x + 4 - m = 0

    d(P) cắt nhau tại hai điểm phân biệt

    \Leftrightarrow \Delta' = 9 - 4 + m = m + 5
> 0 \Leftrightarrow m > - 5

    Theo Viète: x_{1} + x_{2} = 6;x_{1}x_{2}
= 4 - m ( x_{1} <
x_{2})

    Ta có

    S = \int_{x_{1}}^{x_{2}}\left( m - x^{2}
+ 6x - 4 ight)dx

    = \left. \ \left( (m - 4)x + 3x^{2} -
\frac{x^{3}}{3} ight) ight|_{x_{1}}^{x_{2}}

    = \left( (m - 4) + 3\left( x_{1} + x_{2}
ight) - \frac{1}{3}\left\lbrack \left( x_{1} + x_{2} ight)^{2} -
x_{1}x_{2} ightbrack ight)\left( x_{2} - x_{1}
ight)

    = \frac{4}{3}\sqrt{(m + 5)^{3}} =
\frac{4}{3} \Leftrightarrow m = -
4

    Vậy S = - 4.

  • Câu 4: Thông hiểu
    Tính thể tích khối tròn xoay

    Cho tam giác ABC vuông tại A, cạnh AB =6,\ AC = 8M là trung điểm của cạnh AC. Khi đó thể tích của khối tròn xoay do tam giác BMC quanh cạnh AB là:

    Hướng dẫn:

    Hình vẽ minh họa

    Khi quay tam giác BMC quanh cạnh AB tạo ra 2 khối tròn xoay có thể tích là

    V = \frac{1}{3}\pi AC^{2}.AB -\frac{1}{3}\pi AM^{2}.AB

    = \frac{1}{3}\pi.8^{2}.6 -\frac{1}{3}\pi.4^{2}.6 = 96\pi

  • Câu 5: Nhận biết
    Tính thể tích tròn xoay

    Cho hình phẳng (H) giới hạn bởi các đường y = \cos x;y = 0;x = 0;x =
\frac{\pi}{2}. Thể tích vật thể tròn xoay có được khi (H) quay quanh trục Ox bằng:

    Hướng dẫn:

    Gọi V là thể tích khối tròn xoay cần tính. Ta có:

    V = \pi\int_{0}^{\frac{\pi}{2}}{\left(\cos x ight)^{2}dx} = \pi\int_{0}^{\frac{\pi}{2}}{\frac{1 +\cos2x}{2}dx}

    = \pi\left. \ \left( \frac{x}{2} +\frac{\sin2x}{4} ight) ight|_{0}^{\frac{\pi}{2}} =\frac{\pi^{2}}{4}

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Tính thể tích V của vật thể nằm giữa hai mặt phẳng x = 0x = \pi, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 \leq x
\leq \pi) là một tam giác đều cạnh 2\sqrt{\sin x}.

    Hướng dẫn:

    Ta có diện tích thiết diện: S(x) = \left(
2\sqrt{\sin x} \right)^{2}.\frac{\sqrt{3}}{4} = \sqrt{3}\sin
x.

    V = \int_{0}^{\pi}{S(x)}\ dx =\int_{0}^{\pi}{\sqrt{3}\sin x}\ dx= - \sqrt{3}\cos x\left|\begin{matrix}\pi \\0 \\\end{matrix} \right.\  = 2\sqrt{3}.

  • Câu 7: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình (H) giới hạn bởi đồ thị hàm số y= \frac{\sqrt{3}}{9}x^{3}, cung tròn có phương trình y = \sqrt{4 - x^{2}} (với 0 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Biết thể tích của khối tròn xoay tạo thành khi quay (H) quanh trục hoành là V = \left( \frac{- a}{b}\sqrt{3} + \frac{c}{d}ight)\pi, trong đó a;b;c;d \in\mathbb{N}^{*}\frac{a}{b};\frac{c}{d} là các phân số tối giản. Tính P = a + b + c +d?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình (H) giới hạn bởi đồ thị hàm số y= \frac{\sqrt{3}}{9}x^{3}, cung tròn có phương trình y = \sqrt{4 - x^{2}} (với 0 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Biết thể tích của khối tròn xoay tạo thành khi quay (H) quanh trục hoành là V = \left( \frac{- a}{b}\sqrt{3} + \frac{c}{d}ight)\pi, trong đó a;b;c;d \in\mathbb{N}^{*}\frac{a}{b};\frac{c}{d} là các phân số tối giản. Tính P = a + b + c +d?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng
    Tính thể tích nước

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Thông hiểu
    Chọn mệnh đề sai

    Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) =
\frac{1}{3}x^{3} - x^{2} - \frac{1}{3}x + 1 và trục hoành như hình vẽ:

    Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và trục hoành là:

    \frac{1}{3}x^{3} - x^{2} - \frac{1}{3}x
+ 1 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    Từ hình vẽ ta thấy \left\{ \begin{matrix}
f(x) > 0;\forall x \in ( - 1;1) \\
f(x) < 0;\forall x \in (1;3) \\
\end{matrix} ight.

    Do đó S = \int_{- 1}^{3}{\left| f(x)
ight|dx} = \int_{- 1}^{1}{f(x)dx} - \int_{1}^{3}{f(x)dx} = 2\int_{-
1}^{1}{f(x)dx}

    Vậy mệnh đề sai là: S =
2\int_{1}^{3}{f(x)dx}

  • Câu 10: Thông hiểu
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị (C) là đường cong như hình vẽ:

    Diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành và hai đường thẳng x = 0;x = 2 (phần tô đen) là:

    Hướng dẫn:

    Dựa vào hình vẽ ta thấy x \in
(0;1) thì \left\{ \begin{matrix}
f(x) > 0;\forall x \in (0;1) \\
f(x) < 0;\forall x \in (1;2) \\
\end{matrix} ight.

    Vậy S = \int_{0}^{1}{f(x)dx} -
\int_{1}^{2}{f(x)dx}

  • Câu 11: Thông hiểu
    Tính thể tích nước trong bể sau khi bơm

    Một bác thợ xây bơm nước vào bể chứa nước. Gọi h(t) là thể tích nước bơm được sau t giây. Cho h'(t) = 6at^{2} + 2bt và ban đầu bể không có nước. Sau 3 giây thì thể tích nước trong bể là 90m^{3}, sau 6 giây thì thể tích nước trong bể là 504m^{3}. Tính thể tích nước trong bể sau khi bơm được 9 giây.

    Hướng dẫn:

    Ta có:

    \int_{0}^{3}{\left( 6at^{2} + 2bt
\right)dt = 90}\Leftrightarrow \left. \ \left( 2at^{3} +
bt^{2} \right) \right|_{0}^{3} = 90 \Leftrightarrow 54a + 9b =
90 (1)

    \int_{0}^{6}{\left( 6at^{2} + 2bt
\right)dt = 504}\Leftrightarrow \left. \ \left( 2at^{3} +
bt^{2} \right) \right|_{0}^{6} = 504 \Leftrightarrow 432a + 36b =
504 (2)

    Từ (1), (2) \Rightarrow \left\{
\begin{matrix}
a = \frac{2}{3} \\
b = 6 \\
\end{matrix} \right.. Sau khi bơm 9 giây thì thể tích nước trong bể là:

    V = \int_{0}^{9}{\left( 4t^{2} + 12t
\right)dt}= \left. \ \left(
\frac{4}{3}t^{3} + 6t^{2} \right) \right|_{0}^{9} = 1458\left( m^{3}
\right).

  • Câu 12: Thông hiểu
    Xác định mệnh đề sai

    Cho hàm số f(x) = x^{4} - 5x^{2} +4. Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y =f(x) và trục hoành. Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Phương trình hoành độ giao điểm:

    x^{4} - 5x^{2} + 4 = 0 \Leftrightarrow\left\lbrack \begin{matrix}x^{2} = 1 \\x^{2} = 4 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = - 1 \\x = 2 \\x = - 2 \\\end{matrix} ight.

    Diện tích hình phẳng cần tìm là:

    S = \int_{- 2}^{2}{\left| f(x)ight|dx} = 2\int_{0}^{2}{\left| f(x) ight|dx}

    = 2\int_{0}^{1}{\left| f(x) ight|dx} +2\int_{1}^{2}{\left| f(x) ight|dx}

    = 2\left| \int_{0}^{1}{f(x)dx} ight| +2\left| \int_{1}^{2}{f(x)dx} ight| ((do trong khoảng (0; 1) và (1; 2) phương trình f(x) = 0 vô nghiệm)

    Vậy mệnh đề sai là: S = 2\left|\int_{0}^{2}{f(x)dx} ight|.

  • Câu 13: Thông hiểu
    Tính diện tích hình phẳng

    Cho đồ thị hàm số y = f(x) như hình vẽ và \int_{- 2}^{0}{f(x)dx} =
a;\int_{0}^{3}{f(x)dx} = b.

    Tính diện tích của phần được gạch chéo theo a;b.

    Hướng dẫn:

    Từ đồ thị ta suy ra \left\{
\begin{matrix}
f(x) \geq 0;\forall x \in \lbrack - 2;0brack \\
f(x) \leq 0;\forall x \in \lbrack 0;3brack \\
\end{matrix} ight.

    Do đó, diện tích phần gạch chéo là

    S = \int_{- 2}^{0}{\left| f(x)
ight|dx} + \int_{0}^{3}{\left| f(x) ight|dx}

    = \int_{- 2}^{0}{f(x)dx} -
\int_{0}^{3}{f(x)dx} = a - b.

  • Câu 14: Thông hiểu
    Tính diện tích hình phẳng

    Tính diện tích hình phẳng S giới hạn bởi đồ thị các hàm số y = 2^{x}y = 3 - x, trục hoành và trục tung.

    Hướng dẫn:

    Giao điểm 2^{x} = 3 - x
\Rightarrow Nhẩm được nghiệm 1

    S = \int_{0}^{1}\left| 2^{x} + x - 3
ight|dx = \left| \frac{2^{x}}{\ln2} + \frac{x^{2}}{2} - 3x
ight|_{0}^{1}

    = \frac{2}{\ln2} + \frac{1}{2} - 3 -
\frac{1}{\ln2} = \frac{1}{\ln2} - \frac{5}{2}

  • Câu 15: Thông hiểu
    Xác định công thức tính diện tích hình phẳng

    Diện tích hình phẳng H được giới hạn bởi hai đồ thị y = x^{3} - 2x - 1y = 2x - 1 được tính theo công thức

    Hướng dẫn:

    Phương trình hoành độ giao điểm của y =
x^{3} - 2x - 1y = 2x -
1 là:

    x^{3} - 2x - 1 = 2x - 1 \Leftrightarrow
x^{3} - 4x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 0 \\
x = - 2 \\
\end{matrix} ight.

    Vậy diện tích hình phẳng H được giới hạn bởi hai đồ thị y = x^{3} - 2x -
1y = 2x - 1 được tính theo công thức S = \int_{- 2}^{2}{\left|
x^{3} - 4x ight|dx}.

  • Câu 16: Thông hiểu
    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi hai đường y = x^{2} - 2xy = - x^{2} + x bằng:

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm

    x^{2} - 2x = - x^{2} + x \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \frac{3}{2} \\
\end{matrix} ight.

    Diện tích hình phẳng là:

    S = \int_{0}^{\frac{3}{2}}{\left| 2x^{2}
- 3x ight|dx} = \left| \int_{0}^{\frac{3}{2}}{\left( 2x^{2} - 3x
ight)dx} ight|

    = \left| \left. \ \left(
\frac{2}{3}x^{3} - \frac{3}{2}x^{2} ight) ight|_{0}^{\frac{3}{2}}
ight| = \frac{9}{8}

  • Câu 17: Thông hiểu
    Tìm diện tích hình phẳng

    Tính diện tích hình phẳng giới hạn bởi các đường y = x\sqrt{x^{2} + 1};x = 1 và trục hoành?

    Hướng dẫn:

    Phương trình hoành độ giao điểm

    x\sqrt{x^{2} + 1} = 0 \Leftrightarrow x
= 0

    Khi đó diện tích hình phẳng theo yêu cầu bài toán là:

    S = \int_{0}^{1}{x\sqrt{x^{2} + 1}dx} =
\frac{1}{2}\int_{0}^{1}{\sqrt{x^{2} + 1}d\left( x^{2} + 1
ight)}

    = \frac{1}{2}\left. \ \left( x^{2} + 1
ight)^{\frac{3}{2}} ight|_{0}^{1} = \frac{2\sqrt{2} -
1}{3}.

  • Câu 18: Thông hiểu
    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi các đường y = (x - 1)e^{2x}, trục hoành; x = 0x =
2 bằng:

    Hướng dẫn:

    Hoành độ giao điểm của đồ thị hàm số y =
(x - 1)e^{2x} và trục hoành là nghiệm của phương trình: (x - 1)e^{2x} = 0 \Leftrightarrow x =
1

    Diện tích hình phẳng giới hạn bởi các đường là:

    S = \int_{0}^{2}{\left| (x - 1)e^{2x}
ight|dx}

    = \int_{0}^{1}{\left\lbrack (1 -
x)e^{2x} ightbrack dx} + \int_{1}^{2}{\left\lbrack (x - 1)e^{2x}
ightbrack dx}

    = \frac{1}{2}\int_{0}^{1}{(1 - x)d\left(
e^{2x} ight)} + \frac{1}{2}\int_{1}^{2}{(x - 1)d\left( e^{2x}
ight)}

    = \frac{1}{2}\left. \ (1 - x)e^{2x}
ight|_{0}^{1} + \frac{1}{2}\int_{0}^{1}{e^{2x}dx} + \frac{1}{2}\left.
\ (x - 1)e^{2x} ight|_{1}^{2} -
\frac{1}{2}\int_{1}^{2}{e^{2x}dx}

    = \frac{e^{4}}{2} - \frac{1}{2} +
\frac{1}{4}\left. \ e^{2x} ight|_{0}^{1} - \frac{1}{4}\left. \ e^{2x}
ight|_{1}^{2}

    = \frac{e^{4}}{4} + \frac{e^{2}}{2} -
\frac{3}{4}

  • Câu 19: Thông hiểu
    Tính diện tích hình phẳng

    Hình phẳng giới hạn bởi các đường cong y
= x(1 - x)y = x^{3} -
x có diện tích bằng \frac{a}{b} là phân số tối giản. Kết luận nào sau đây đúng?

    Hướng dẫn:

    Ta có: x(1 - x) = x^{3} - x

    \Leftrightarrow x^{3} + x^{2} - 2x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 2 \\
x = 1 \\
\end{matrix} \right.

    Gọi S là diện tích hình phẳng giới hạn bởi các đường cong y = x(1 -
x)y = x^{3} - x.

    Khi đó S = \int_{- 2}^{1}{\left| x^{3} +
x^{2} - 2x \right|dx}

    = \int_{- 2}^{0}{\left| x^{3} + x^{2} -
2x \right|dx} + \int_{0}^{1}{\left| x^{3} + x^{2} - 2x
\right|dx}

    = \left| \int_{- 2}^{0}{\left( x^{3} +
x^{2} - 2x \right)dx} \right| + \left| \int_{0}^{1}{\left( x^{3} + x^{2}
- 2x \right)dx} \right|

    = \frac{8}{3} + \frac{5}{12} =
\frac{37}{12} (đvdt).

  • Câu 20: Thông hiểu
    Tính giá trị của S

    Diện tích hình phẳng giới hạn bởi đường cong y^{2} = 4x và đường thẳng x = 1 bằng S. Giá trị của S

    Hướng dẫn:

    Ta có: Phương trình tung độ giao điểm

    \frac{y^{2}}{4} = 1 \Leftrightarrow y =
\pm 2

    .\Rightarrow S = \left| \int_{-
2}^{2}{\left( \frac{y^{2}}{4} - 1 ight)d_{y}} ight| = \left| \left(
\frac{y^{2}}{12} - y ight)|_{- 2}^{2} ight| = \left| - \frac{4}{3} -
\frac{4}{3} ight| = \frac{8}{3}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo