Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 6 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn mệnh đề sai

    Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Hai vectơ có độ dài bằng nhau và cùng hướng thì hai vectơ đó bằng nhau.

  • Câu 2: Thông hiểu
    Chọn đẳng thức đúng

    Cho hình hộp ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình bình hành ABCD. Đặt \overrightarrow{AC'} =
\overrightarrow{u},\overrightarrow{CA'} =
\overrightarrow{v}, \overrightarrow{BD'} =
\overrightarrow{x}, \overrightarrow{DB'} =
\overrightarrow{y}. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    + Gọi J,\ K lần lượt là trung điểm của AB,\ CD.

    +Ta có: 2\overrightarrow{OI} =\overrightarrow{OJ} + \overrightarrow{OK}= \frac{1}{2}\left(\overrightarrow{OA} + \ \overrightarrow{OB} + \overrightarrow{OC} +\overrightarrow{OD} \right)= - \frac{1}{4}(\overrightarrow{u} +\overrightarrow{v} + \ \overrightarrow{x} +\overrightarrow{y})

  • Câu 3: Thông hiểu
    Tìm đẳng thức sai

    Cho hình hộp ABCD.A_{1}B_{1}C_{1}D_{1}. Chọn đẳng thức sai?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có : \overrightarrow{BA} +
\overrightarrow{DD_{1}} + \overrightarrow{BD_{1}} = \overrightarrow{BA}
+ \overrightarrow{BB_{1}} + \overrightarrow{BD_{1}} =
\overrightarrow{BA_{1}} + \overrightarrow{BD_{1}} eq
\overrightarrow{BC} nên D sai.

    Do \overrightarrow{BC} =
\overrightarrow{B_{1}C_{1}}\overrightarrow{BA} =
\overrightarrow{B_{1}A_{1}} nên \overrightarrow{BC} + \overrightarrow{BA} =
\overrightarrow{B_{1}C_{1}} + \overrightarrow{B_{1}A_{1}}. A đúng

    Do \overrightarrow{AD} +
\overrightarrow{D_{1}C_{1}} + \overrightarrow{D_{1}A_{1}} =
\overrightarrow{AD} + \overrightarrow{D_{1}B_{1}} =
\overrightarrow{A_{1}D_{1}} + \overrightarrow{D_{1}B_{1}} =
\overrightarrow{A_{1}B_{1}} = \overrightarrow{DC} nên

    \overrightarrow{AD} +
\overrightarrow{D_{1}C_{1}} + \overrightarrow{D_{1}A_{1}} =
\overrightarrow{DC} nên B đúng.

    Do \overrightarrow{BC} +
\overrightarrow{BA} + \overrightarrow{BB_{1}} = \overrightarrow{BD} +
\overrightarrow{DD_{1}} = \overrightarrow{BD_{1}} nên C đúng.

  • Câu 4: Nhận biết
    Chọn khẳng định sai

    Trong không gian cho tứ diện ABCD, gọi M;N lần lượt là trung điểm của AD;BC. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của AD;BC suy ra \left\{ \begin{matrix}
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{AB} +
\overrightarrow{DC} ight) \\
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{BD} +
\overrightarrow{AC} ight) \\
\end{matrix} ight.

    Xét các phương án như sau:

    \overrightarrow{AB};\overrightarrow{DC};\overrightarrow{MN} đồng phẳng đúng vì \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{DC}
ight)

    \overrightarrow{AB};\overrightarrow{AC};\overrightarrow{MN} không đồng phẳng đúng vì MN không nằm trong (ABC)

    \overrightarrow{AN};\overrightarrow{CM};\overrightarrow{MN} đồng phẳng sai vì AN không nằm trong (MNC)

    \overrightarrow{BD};\overrightarrow{AC};\overrightarrow{MN} đồng phẳng đúng vì \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{BD} + \overrightarrow{AC}
ight).

  • Câu 5: Nhận biết
    Tính góc giữa hai vecto

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} thỏa mãn \left| \overrightarrow{a} \right| =
3, \left| \overrightarrow{b}
\right| = 2\overrightarrow{a}.\overrightarrow{b} = -
3. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b}

    Hướng dẫn:

    Ta có \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|.cos\left(
\overrightarrow{a},\overrightarrow{b} ight)

    \Rightarrow \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 3}{3.2} = -
\frac{1}{2}

    \Rightarrow \left(
\overrightarrow{a},\overrightarrow{b} ight) = 120^{0}

  • Câu 6: Thông hiểu
    Tính góc giữa hai vectơ

    Cho hình chóp OABCOA = OB = OC = 1, các cạnh OA;OB;OC đôi một vuông góc. Gọi M là trung điểm của AB. Tính tích vô hướng của hai vectơ \overrightarrow{OC};\overrightarrow{MA}.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{OM}.\overrightarrow{BC}
= \frac{1}{2}\left( \overrightarrow{OA} + \overrightarrow{OB}
ight)\left( \overrightarrow{OC} - \overrightarrow{OB}
ight)

    =
\overrightarrow{OM}.\overrightarrow{BC} = - \frac{BC^{2}}{2} = -
\frac{1}{2}

    Như vậy:

    \cos\left(
\overrightarrow{OM};\overrightarrow{BC} ight) =
\frac{\overrightarrow{OM}.\overrightarrow{BC}}{\left|
\overrightarrow{OM} ight|.\left| \overrightarrow{BC} ight|} =
\frac{1}{2}:\frac{\sqrt{2}.\sqrt{2}}{2} = - \frac{1}{2}

    \Rightarrow \left(
\overrightarrow{OM};\overrightarrow{BC} ight) = 120^{0}

  • Câu 7: Nhận biết
    Chọn mệnh đề đúng

    Cho hình lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} =
\overrightarrow{c};\overrightarrow{BC} = \overrightarrow{d}. Trong các mệnh đề sau, mệnh đề nào đúng?

    Hướng dẫn:

    Ta có: \overrightarrow{d} =
\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB} =
\overrightarrow{c} - \overrightarrow{b}

    Do đó \overrightarrow{b} -
\overrightarrow{c} + \overrightarrow{d} =
\overrightarrow{0}

  • Câu 8: Nhận biết
    Xác định mệnh đề đúng

    Cho tứ diện ABCD. Điểm N xác định bởi công thức \overrightarrow{AN} = \overrightarrow{AB} +
\overrightarrow{AC} - \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC} -
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AN} -
\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{AD}
\Leftrightarrow \overrightarrow{BN} = \overrightarrow{AD}

    Vậy N là đỉnh thứ tư của hình bình hành CDBN.

  • Câu 9: Nhận biết
    Chọn đáp án thích hợp

    Cho hình hộp ABCD.A'B'C'D'. Gọi MN lần lượt là trung điểm của BCCD. Vectơ nào sau đây bằng 2\overrightarrow{MN}?

    Hướng dẫn:

    Ta có \overrightarrow{B'D'} cùng hướng với \overrightarrow{MN}B'D' = 2MN, suy ra \overrightarrow{B'D'} =2\overrightarrow{MN}

  • Câu 10: Nhận biết
    Tính góc giữa hai vecto

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{EG}?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: EG//AC (do ACGE là hình chữ nhật)

    \Rightarrow \left(
\overrightarrow{AB},\overrightarrow{EG} ight) = \left(
\overrightarrow{AB},\overrightarrow{AC} ight) = \widehat{BAC} =
45{^\circ}

  • Câu 11: Nhận biết
    Xác định mệnh đề sai

    Trong các mệnh đề sau, mệnh đề nào sai?

    Hướng dẫn:

    Bằng quy tắc 3 điểm ta nhận thấy rằng: \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{0} đúng với mọi điểm A;B;C;D nằm trong không gian chứ không phải chỉ riêng 4 điểm đồng phẳng.

  • Câu 12: Thông hiểu
    Tính số đo góc giữa hai đường thẳng

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi MN lần lượt là trung điểm của ADSD. Số đo của góc (MN,SC) bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: AC = a\sqrt{2}

    \Rightarrow AC^{2} = 2a^{2} = SA^{2} +
SC^{2}

    \Rightarrow \Delta SAC vuông tại S.

    Khi đó: \overrightarrow{NM}.\overrightarrow{SC} =
\frac{1}{2}\overrightarrow{SA}.\overrightarrow{SC} = 0

    \Leftrightarrow \left(
\overrightarrow{NM},\overrightarrow{SC} ight) = 90{^\circ} \Rightarrow
(MN,SC) = 90{^\circ}

  • Câu 13: Nhận biết
    Chọn mệnh đề đúng

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Điểm M xác định bởi công thức \overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Do G là trọng tâm tam giác BCD nên \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} = 3\overrightarrow{AG}

    \Rightarrow \overrightarrow{AM} =
3\overrightarrow{AG}

    Vậy mệnh đề đúng là “M thuộc tia AGAM = 3AG”.

  • Câu 14: Nhận biết
    Chọn khẳng định đúng

    Trong không gian cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{AD} =
\overrightarrow{A_{1}D_{1}} = \overrightarrow{A_{1}C} +
\overrightarrow{CD_{1}} suy ra \overrightarrow{CD_{1}};\overrightarrow{AD};\overrightarrow{A_{1}C} đồng phẳng.

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Cho tứ diện ABCD. Gọi M;N lần lượt là trung điểm của các cạnh AB;CD. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{MN} = k.\left( \overrightarrow{AC}
+ \overrightarrow{BD} ight)?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có N là trung điểm của CD nên \overrightarrow{MC} + \overrightarrow{MD} =
2\overrightarrow{MN}

    M là trung điểm của AB nên \overrightarrow{MA} + \overrightarrow{MB} =
\overrightarrow{0}

    Suy ra \overrightarrow{MN} =
\frac{1}{2}.\left( \overrightarrow{MC} + \overrightarrow{MD}
ight)

    = \frac{1}{2}.\left( \overrightarrow{MA}
+ \overrightarrow{AC} + \overrightarrow{MB} + \overrightarrow{BD}
ight)

    = \frac{1}{2}.\left( \overrightarrow{AC}
+ \overrightarrow{BD} ight)

    \Rightarrow \overrightarrow{MN} =
\frac{1}{2}.\left( \overrightarrow{AC} + \overrightarrow{BD} ight)
\Rightarrow k = \frac{1}{2}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (67%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo