Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CTST Công thức xác suất toàn phần và công thức Bayes (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xét tính đúng sai của các kết luận

    Một cuộc thi khoa học có 36 bộ câu hỏi, trong đó có 20 bộ câu hỏi về chủ đề tự nhiên và 16 bộ câu hỏi về chủ đề xã hội. Bạn An lấy ngẫu nhiên 1 bộ câu hỏi (lấy không hoàn lại), sau đó bạn Bình lấy ngẫu nhiên 1 bộ câu hỏi. Các khẳng định sau đúng hay sai?

    a) Xác suất bạn An chọn được bộ câu hỏi chủ đề tự nhiên là \frac{5}{9}Đúng||Sai

    b) Xác suất bạn Bình chọn câu hỏi chủ đề xã hội biết bạn An chọn được chủ đề tự nhiên là \frac{16}{27}Sai||Đúng

    c) Xác suất bạn Bình chọn câu hỏi chủ đề xã hội biết bạn An chọn được chủ đề xã hội là là \frac{15}{27}. Sai||Đúng

    d) Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội bằng \frac{4}{9}. Đúng||Sai

    Đáp án là:

    Một cuộc thi khoa học có 36 bộ câu hỏi, trong đó có 20 bộ câu hỏi về chủ đề tự nhiên và 16 bộ câu hỏi về chủ đề xã hội. Bạn An lấy ngẫu nhiên 1 bộ câu hỏi (lấy không hoàn lại), sau đó bạn Bình lấy ngẫu nhiên 1 bộ câu hỏi. Các khẳng định sau đúng hay sai?

    a) Xác suất bạn An chọn được bộ câu hỏi chủ đề tự nhiên là \frac{5}{9}Đúng||Sai

    b) Xác suất bạn Bình chọn câu hỏi chủ đề xã hội biết bạn An chọn được chủ đề tự nhiên là \frac{16}{27}Sai||Đúng

    c) Xác suất bạn Bình chọn câu hỏi chủ đề xã hội biết bạn An chọn được chủ đề xã hội là là \frac{15}{27}. Sai||Đúng

    d) Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội bằng \frac{4}{9}. Đúng||Sai

    Xét các biến cố:

    A: "Bạn An lấy được bộ câu hỏi về chủ đề tự nhiên";

    B: "Bạn Bình lấy được bộ câu hỏi về chủ đề xã hội".

    Khi đó P(A) = \frac{20}{36} =
\frac{5}{9},\ \ P\left( \overline{A} \right) = 1 - P(A) =
\frac{4}{9}

    Nếu bạn An chọn được một bộ câu hỏi về chủ đề tự nhiên thì sau đó còn 35 bộ câu hỏi, trong đó có 16 bộ câu hỏi về chủ đề xã hội, suy ra P\left( B|A \right) = \frac{16}{35}

    Nếu bạn An chọn được một bộ câu hỏi về chủ đề xã hội thì sau đó còn 35 bộ câu hỏi, trong đó có 15 bộ câu hỏi về chủ đề xã hội, suy raP\left( B|\overline{A} \right) =
\frac{15}{35}

    Theo công thức xác suất toàn phần, xác suất bạn Bình lấy được bộ câu hỏi về chủ đề

    xã hội là: P(B) = P(A).P\left( B|A
\right) + P\left( \overline{A} \right).P\left( B|\overline{A} \right) =
\frac{5}{9}.\frac{16}{35} + \frac{4}{9}.\frac{15}{35} =
\frac{4}{9}

  • Câu 2: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB sao cho P(A) = 0,6; P(B) = 0,4; P\left( A|B \right) = 0,3. Khi đó P\left( B|A \right) bằng?

    Hướng dẫn:

    Áp dụng công thức Bayes, ta có:

    P\left( B|A \right) = \frac{P(B)P\left(
A|B \right)}{P(A)} = \frac{0,4.0,3}{0,6} = 0,2.

  • Câu 3: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó

    Hướng dẫn:

    Ta có: P(A) = P(B)P\left( \left. \ A
\right|B \right) + P\left( \overline{B} \right)P\left( \left. \ A
\right|\overline{B} \right)

  • Câu 4: Vận dụng
    Chọn phương án gần đúng với đáp án

    Phòng thi đánh giá năng lực có 10 học sinh trong đó có 2 học sinh giỏi (trả lời 100% các câu hỏi), 3 học sinh khá (trả lời 80% các câu hỏi), 5 học sinh trung bình (trả lời 50% các câu hỏi). Gọi ngẫu nhiên một học sinh vào thi và phát đề có 4 câu hỏi (được lấy ngẫu nhiên từ 20 câu). Thấy học sinh này trả lời được cả 4 câu, tính xác suất để học sinh đó là học sinh khá? Xác suất gần bằng số nào sau đây?

    Hướng dẫn:

    Gọi A_{1};A_{2};A_{3} lần lượt là các biến cố gọi một học sinh Giỏi, Khá, Trung Bình

    Nên A_{1};A_{2};A_{3} là hệ biến cố đầy đủ.

    Gọi B “học sinh đó trả lời được 4 câu hỏi”

    Ta có: \left\{ \begin{matrix}
P\left( A_{1} ight) = \frac{C_{2}^{1}}{C_{10}^{1}} = \frac{1}{5} \\
P\left( A_{2} ight) = \frac{C_{3}^{1}}{C_{10}^{1}} = \frac{3}{10} \\
P\left( A_{3} ight) = \frac{C_{5}^{1}}{C_{10}^{1}} = \frac{1}{2} \\
\end{matrix} ight.

    Ta lại có:

    2 học sinh Giỏi (trả lời 100% các câu hỏi) ⇒ Trả lời 20 câu hỏi

    3 học sinh Khá (trả lời 80% các câu hỏi) ⇒ Trả lời 20.80\% = 16 câu hỏi.

    5 học sinh Trung Bình (trả lời 50% các câu hỏi) ⇒ Trả lời 20.50\% = 10 câu hỏi.

    Từ đó: \left\{ \begin{matrix}P\left( B|A_{1} ight) = \dfrac{C_{20}^{4}}{C_{20}^{4}} = 1 \\P\left( B|A_{2} ight) = \dfrac{C_{16}^{4}}{C_{20}^{4}} =\dfrac{364}{969} \\P\left( B|A_{3} ight) = \dfrac{C_{10}^{4}}{C_{20}^{4}} = \dfrac{14}{323}\\\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần:

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2} ight) + P\left(
B|A_{3} ight).P\left( A_{3} ight)

    \Rightarrow P(B) = 1.\frac{1}{5} +
\frac{364}{969}.\frac{3}{10} + \frac{14}{323}.\frac{1}{2} =
\frac{108}{323}

    Xác suất để sinh viên đó là sinh viên khá là P\left( A_{2}|B ight)

    Áp dụng công thức Bayes ta có:

    P\left( A_{2}|B ight) = \frac{P\left(
B|A_{2} ight).P\left( A_{2} ight)}{P(B)}

    \Rightarrow P\left( A_{2}|B ight) =\dfrac{\dfrac{364}{969}.\dfrac{3}{10}}{\dfrac{108}{323}} = \dfrac{91}{270}\approx 0,337

  • Câu 5: Thông hiểu
    Tính xác suất người được chọn là đàn ông

    Được biết có 5\% đàn ông bị mù màu và 0,25\% phụ nữ bị mù màu (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics – Understanding why and how, Springer, 2005). Giả sử số đàn ông bằng số phụ nữ. Chon một người bị mù màu. Xác suất để người đó là đàn ông là bao nhiêu?

    Hướng dẫn:

    Gọi A là biến cố người được chọn là đàn ông, B là biến cố người được chọn mù màu.

    Theo đề bài ra ta có P\left( \left. \ B
\right|A \right) = 0,05;P\left( \left. \ B \right|\overline{A} \right) =
0,0025.

    Vì số đàn ông bằng số phụ nữ nên ta có P(A) = P\left( \overline{A} \right) = 0,5.

    Áp dụng công thức Bayes ta có xác suất để chọn được một người đàn ông mù màu là:

    P\left( \left. \ A \right|B \right) =\frac{P(A).P\left( \left. \ B \right|A \right)}{P(A).P\left( \left. \ B \right|A \right) + P\left( \overline{A} \right).P\left( \left. \ B\right|\overline{A} \right)}

    = \frac{0,5.0,05}{0,5.0,05 + 0,5.0,0025}
= \frac{20}{21}.

  • Câu 6: Vận dụng
    Xét tính đúng sai của các kết luận

    Năm 2020, dịch COVID-19 bùng phát trên toàn thế giới. Các nhà khoa học đã phát triển một loại test nhanh để phát hiện virus SARS-CoV-2 gây bệnh COVID-19. Theo thống kê, khi một người nhiễm virus SARS-CoV-2 thì xác suất để test nhanh có kết quả dương tính là 90%. Tuy nhiên, khi một người không nhiễm virus, xác suất để test nhanh vẫn cho kết quả dương tính là 5%. Biết rằng tỷ lệ người nhiễm virus SARS-CoV-2 ở một quốc gia là 2% trong dân số.

    Gọi X là biến cố "một người nhiễm virus SARS-CoV-2" và Y là biến cố "một người có kết quả test nhanh dương tính".

    a) P(X) = 0,02. Đúng||Sai

    b) P(Y|X) = 0,9. Đúng||Sai

    c) P(X|Y) = 0,567. Đúng||Sai

    d) P(Y \cap X) = 0,06. Sai||Đúng

    Đáp án là:

    Năm 2020, dịch COVID-19 bùng phát trên toàn thế giới. Các nhà khoa học đã phát triển một loại test nhanh để phát hiện virus SARS-CoV-2 gây bệnh COVID-19. Theo thống kê, khi một người nhiễm virus SARS-CoV-2 thì xác suất để test nhanh có kết quả dương tính là 90%. Tuy nhiên, khi một người không nhiễm virus, xác suất để test nhanh vẫn cho kết quả dương tính là 5%. Biết rằng tỷ lệ người nhiễm virus SARS-CoV-2 ở một quốc gia là 2% trong dân số.

    Gọi X là biến cố "một người nhiễm virus SARS-CoV-2" và Y là biến cố "một người có kết quả test nhanh dương tính".

    a) P(X) = 0,02. Đúng||Sai

    b) P(Y|X) = 0,9. Đúng||Sai

    c) P(X|Y) = 0,567. Đúng||Sai

    d) P(Y \cap X) = 0,06. Sai||Đúng

    a) Ta có: P(X)là xác suất một người nhiễm virus SARS-CoV-2.
    Theo đề bài, tỷ lệ người nhiễm virus SARS-CoV-2 ở một quốc gia là 2\% = 0,02trong dân số.
    Vậy mệnh đề đúng.

    b) P(Y|X)là xác suất một người có kết quả test nhanh dương tính, với điều kiện người đó nhiễm virus SARS-CoV-2.

    Theo giả thiết, khi một người nhiễm virus SARS-CoV-2, xác suất để test nhanh có kết quả dương tính là 90\% =
0,9. Vậy mệnh đề đúng.

    c) P(X|Y) là xác suất một người nhiễm virus SARS-CoV-2, với điều kiện người đó có kết quả test nhanh dương tính.

    Ta có: P(Y|X) = 0,9.(cmt), P(X) = 0,02.

    P(Y) = P(Y|X).P(X) +
P(Y|\overline{X}).P(\overline{X}) = 0,9.0,02 + 0,05.0,98 = 0,0634.

    Thay vào công thức Bayes: P(X|Y) =
\frac{P(Y|X).P(X)}{P(Y)} = 0,567.

    Vậy mệnh đề đúng.

    d) Trong câu d, P(Y \cap X) là xác suất một người vừa nhiễm virus SARS-CoV-2 vừa có kết quả test nhanh dương tính.

    P(Y \cap X) = P(Y|X).P(X) = 0,9.0,02 =
0,05.

    Vậy mệnh đề sai.

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Biết nó là phế phẩm. Tính xác suất để sản phẩm đó do máy I sản xuất.

    Hướng dẫn:

    Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là "lấy ra sản phẩm là phế phẩm".

    Áp dụng công thức xác suất đầy đủ, ta có

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight)

    \Rightarrow P(A) = 0,25.0,1\% +
0,3.0,2\% + 0,45.0,3\% = 0,22\%

    Gọi B là "sản phẩm do máy I sản xuất". Khi đó ta cần tính P(B|A)

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)} = \frac{0,25.0,1\%}{0,22\%} \approx
0,1136

  • Câu 8: Vận dụng
    Chọn đáp án đúng

    Một người có 3 chỗ ưa thích như nhau để câu cua. Xác suất câu được cua ở mỗi chỗ lần lượt là 0,6;0,7;0,8. Biết rằng đến một chỗ người đó thả câu 3 lần và chỉ câu được một con cua. Tính xác suất để cá câu được ở chỗ thứ nhất?

    Hướng dẫn:

    Gọi A1, A2, A3 lần lượt là "cá câu được ở chỗ thứ i" thì hệ A1, A2, A3 tạo thành hệ đầy đủ.

    Dễ thấy P\left( A_{1} ight) = P\left(
A_{2} ight) = P\left( A_{3} ight) = \frac{1}{3}

    Gọi H là "thả câu 3 lần và chỉ câu được 1 con cua".

    Theo công thức toàn phần, ta có:

    P(H) = P\left( A_{1} ight)P\left(
H|A_{1} ight) + P\left( A_{2} ight)P\left( H|A_{2} ight) + P\left(
A_{3} ight)P\left( H|A_{3} ight)

    Ở đó \left\{ \begin{matrix}
P\left( H|A_{1} ight) = 3.0,6^{1}.0,4^{2} \\
P\left( H|A_{2} ight) = 3.0,7^{1}.0,3^{2} \\
P\left( H|A_{3} ight) = 3.0,8^{1}.0,2^{2} \\
\end{matrix} ight.\  \Rightarrow P(H) = 0,191

    Theo công thức Bayes suy ra:

    P\left( A_{1}|H ight) = \frac{P\left(
A_{1} ight).P\left( H|A_{1} ight)}{P(H)} \approx 0,5026

  • Câu 9: Thông hiểu
    Tính xác suất thu được tín hiệu

    Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng 0,840,16. do có nhiễu trên đường truyền nên \frac{1}{6} tín hiệu A bị méo và thu được như tín hiệu B còn \frac{1}{8} tín hiệu B bị méo và thu được như A. Tìm xác suất thu được tín hiệu A?

    Hướng dẫn:

    Gọi A, B lần lượt là "phát ra tín hiệu A, B".

    Khi đó A, B tạo thành hệ đầy đủ.

    P(A) = 0,84;P(B) = 0,16

    Gọi C là "thu được tín hiệu A".

    Khi đó: P\left( C|A ight) = \frac{5}{6};P\left( C|B
ight) = \frac{1}{8}

    Áp dụng công thức xác suất toàn phần ta có:

    P(C) = P(A).P\left( C|A ight) +
P(B).P\left( C|B ight)

    \Rightarrow P(C) = 0,84.\frac{5}{6} +
0,16.\frac{1}{8} = 0,72.

  • Câu 10: Thông hiểu
    Xét tính đúng sai của các phương án

    Cho hai biến cố A;B với P(A) > 0;P(B) > 0. Xét tính đúng sai của các khẳng định sau:

    a) P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(A)Đúng||Sai

    b) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(A)} Đúng||Sai

    c) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B}
ight)}Đúng||Sai

    d) P(A) = P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight) Đúng||Sai

    e) Biết P(B) = 0,8;P\left( A|B ight) =
0,7;P\left( A|\overline{B} ight) = 0,5 khi đó P(A) = 0,6.Sai||Đúng

    Đáp án là:

    Cho hai biến cố A;B với P(A) > 0;P(B) > 0. Xét tính đúng sai của các khẳng định sau:

    a) P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(A)Đúng||Sai

    b) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(A)} Đúng||Sai

    c) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B}
ight)}Đúng||Sai

    d) P(A) = P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight) Đúng||Sai

    e) Biết P(B) = 0,8;P\left( A|B ight) =
0,7;P\left( A|\overline{B} ight) = 0,5 khi đó P(A) = 0,6.Sai||Đúng

    Các khẳng định đúng là:

    a) P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(A)

    b) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(A)}

    c) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)}

    d) P(A) = P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)

    e) Ta có: P\left( \overline{B} ight) =
1 - P(B) = 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,5 =
0,66

  • Câu 11: Nhận biết
    Tính xác suất cỉa biến cố A

    Cho hai biến cố AB biết P(B) =
0,6\ ;\ \ P\left( A|B \right) = 0,3\ ;\ \ P\left( A|\overline{B} \right)
= 0,8. Tính P(A)

    Hướng dẫn:

    Ta có:

    P\left( \overline{B} \right) = 1 -
P(B) = 0,4

    \Rightarrow P(A) = P(B).P\left( A|B
\right) + P\left( \overline{B} \right).P\left( A|\overline{B}
\right)

    = 0,6.0,3 + 0,4.0,8 = 0,5

  • Câu 12: Thông hiểu
    Tính xác suất để viên bi được chọn màu đỏ

    Có hai chiếc hộp đựng 50 viên bi có kích thước và khối lượng như nhau. Sau khi thống kê nhận được bảng số liệu sau:

    Chọn ngẫu nhiên một hộp, sau đó lấy ra ngẫu nhiên một viên bi từ hộp được chọn. Xác suất để chọn được viên bi màu đỏ là

    Hướng dẫn:

    Xét hai biến cố

    A: “Chọn được hộp I”;

    B: “Chọn được viên bi màu đỏ”

    P(A) = \frac{1}{2} ; P\left( \overline{A} \right) =
\frac{1}{2} ; P\left( B|A \right) =
\frac{20}{35} = \frac{4}{7} ; P\left( B|\overline{A} \right) = \frac{5}{15} =
\frac{1}{3}.

    Áp dụng công thức xác suất toàn phần, ta có

    P(B) = P(A)P\left( B|A \right) + P\left(\overline{A} \right)P\left( B|\overline{A} \right)

    =\frac{1}{2}.\frac{4}{7} + \frac{1}{2}.\frac{1}{3} =\frac{19}{42}.

  • Câu 13: Vận dụng
    Chọn đáp án đúng

    Một cặp trẻ sinh đôi có thể do cùng một trứng (sinh đôi thật) hay do hai trứng khác nhau sinh ra (sinh đôi giả). Các cặp sinh đôi thật luôn luôn có cùng giới tính. Các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập với nhau và có xác suất là 0,5. Thống kê cho thấy 34\% cặp sinh đôi là trai; 30\% cặp sinh đôi là gái và 36\% cặp sinh đôi có giới tính khác nhau. Tính tỷ lệ cặp sinh đôi thật.

    Hướng dẫn:

    Gọi A: “Nhận được cặp sinh đôi thật”

    B: “Nhận được cặp sinh đôi có cùng giới tính”

    Do các cặp sinh đôi thật luôn luôn có cùng giới tính nên P\left( B|A ight) = 1

    Với các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập nhau và có xác suất là 0,5 nên P\left( B|\overline{A}
ight) = P\left( \overline{B}|\overline{A} ight) =
\frac{1}{2}

    Do thống kê trên các cặp sinh đôi nhận được thì:

    P(B) = 0,3 + 0,34 = 0,64

    \Rightarrow P\left( \overline{B} ight)
= 1 - P(B) = 0,36

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( B|A ight).P(A) +
P\left( B|\overline{A} ight).P\left( \overline{A} ight)

    = P\left( B|A ight).P(A) + P\left(
B|\overline{A} ight).\left\lbrack 1 - P(A) ightbrack

    Thay số ta xác định được P(A) =
0,28.

  • Câu 14: Nhận biết
    Xác định giá trị P(A)

    Nếu hai biến cố A, B thỏa mãn P(B) =
0,6;\ P\left( A\left| B \right.\  \right) = 0,5;P\left( A\left|
\overline{B} \right.\  \right) = 0,3 thì P(A) bằng:

    Hướng dẫn:

    Ta có:

    P(A) = P(B).P\left( A\left| B
\right.\  \right) + P\left( \overline{B} \right).P\left( A\left|
\overline{B} \right.\  \right)

    = 0,6.0,5 + 0,4.0,3 = 0,42

  • Câu 15: Vận dụng
    Tính xác suất P

    Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Tính xác suất để viên bi rút ra sau cùng màu đỏ?

    Hướng dẫn:

    Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",

    D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".

    Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.

    Ta có: \left\{ \begin{gathered}
  P\left( {{D_1}{D_2}} ight) = \frac{4}{6}.\frac{4}{7};P\left( {{D_1}{X_2}} ight) = \frac{4}{6}.\frac{3}{7} \hfill \\
  P\left( {{X_1}{D_2}} ight) = \frac{2}{6}.\frac{3}{7};P\left( {{X_1}{X_2}} ight) = \frac{2}{6}.\frac{4}{7} \hfill \\ 
\end{gathered}  ight.

    Gọi A là "viên bi rút ra sau cùng là màu đỏ".

    Ta xác định được: \left\{ \begin{gathered}
  P\left( {A|{D_1}{D_2}} ight) = \frac{4}{6};P\left( {A|{D_1}{X_2}} ight) = \frac{3}{6} \hfill \\
  P\left( {A|{X_1}{D_2}} ight) = \frac{5}{6};P\left( {A|{X_1}{X_2}} ight) = \frac{4}{6} \hfill \\ 
\end{gathered}  ight.

    Áp dụng công thức xác suất toàn phần:

    P(A) = P\left( D_{1}D_{2} ight)P\left(
A|D_{1}D_{2} ight) + P\left( D_{1}X_{2} ight)P\left( A|D_{1}X_{2}
ight)

    + P\left( X_{1}D_{2} ight)P\left(
A|X_{1}D_{2} ight) + P\left( X_{1}X_{2} ight)P\left( A|X_{1}X_{2}
ight)

    = \frac{4}{6}.\frac{4}{7}.\frac{4}{6} +
\frac{4}{6}.\frac{3}{7}.\frac{3}{6} +
\frac{2}{6}.\frac{3}{7}.\frac{5}{6} +
\frac{2}{6}.\frac{4}{7}.\frac{4}{6} = \frac{9}{14}

  • Câu 16: Thông hiểu
    Chọn đáp án đúng

    Một cuộc thi năng lực có 36 bộ câu hỏi, trơng đó có 20 bộ câu hỏi về chủ đề tự nhiên và 16 bộ câu hỏi về chủ đề xã hội. Bạn An lấy ngẫu nhiên một bộ câu hỏi (lấy không hoàn lại), sau đó bạn Bình lấy ngẫu nhiên một bộ câu hỏi. Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội bằng:

    Hướng dẫn:

    Xét các biến cố:

    A: "Bạn An lấy được bộ câu hỏi về chủ đề tự nhiên"

    B: "Bạn Bình lấy được bộ câu hỏi về chủ đề xã hội".

    Khi đó P(A) = \frac{20}{36} = \frac{5}{9}
\Rightarrow P\left( \overline{A} ight) = 1 - \frac{5}{9} =
\frac{4}{9}

    Nếu bạn An chọn được một bộ câu hỏi về chủ đề tự nhiên thì sau đó còn 35 bộ câu hỏi, trong đó có 16 bộ câu hỏi về chủ đề xã hội

    \Rightarrow P\left( B|A ight) =
\frac{16}{35}

    Nếu bạn An chọn được một bộ câu hỏi về chủ đề xã hội thì sau đó còn 35 bộ câu hỏi, trong đó có 15 bộ câu hỏi về chủ đề xã hội

    \Rightarrow P\left( B|\overline{A}
ight) = \frac{15}{35}

    Theo công thức xác suất toàn phần, xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội là:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) =
\frac{5}{9}.\frac{16}{35} + \frac{4}{9}.\frac{15}{35} =
\frac{4}{9}

  • Câu 17: Thông hiểu
    Tính xác suất của biến cố A

    Cho A, B là hai biến cố. Biết P(B) = 0,2. Nếu B không xảy ra thì thỉ lệ A xảy ra là 2\%. Nếu B xảy ra thì tỉ lệ A xảy ra 4\%. Xác suất của biến cố A là bao nhiêu?

    Hướng dẫn:

    Ta có:

    P(B) = 0,2 \Rightarrow P(\overline{B}) =
0,8.

    B xảy ra thì tỉ lệ A sảy ra 4\% nên P(A|B) = 0,04.

    Tương tự ta cũng có P(A|\overline{B}) =
0,02.

    Theo công thức xác suất toàn phần ta có:

    P(A) = P(B).P(A|B) +
P(\overline{B}).P(A|\overline{B})

    = 0,2.0,04 + 0,8.0,0 2 = 0,024.

  • Câu 18: Thông hiểu
    Xét tính đúng sai của các phương án

    Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60\% số viên bi màu đỏ đánh số và 50\% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số

    a) Số viên bi màu đỏ có đánh số là 30.Đúng||Sai

    b) Số viên bi màu vàng không đánh số là 15. Đúng||Sai

    c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là \frac{3}{5}. Sai||Đúng

    d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số \frac{7}{16}. Đúng||Sai

    Đáp án là:

    Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60\% số viên bi màu đỏ đánh số và 50\% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số

    a) Số viên bi màu đỏ có đánh số là 30.Đúng||Sai

    b) Số viên bi màu vàng không đánh số là 15. Đúng||Sai

    c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là \frac{3}{5}. Sai||Đúng

    d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số \frac{7}{16}. Đúng||Sai

    a) Số viên bi màu đỏ có đánh số là 60\%.50 = 30

    b) Số viên bi màu vàng không đánh số là 50\%.30 = 15

    c) Gọi A là biến cố “viên bi được lấy ra có đánh số” và B là biến cố “viên bi được lấy ra có màu đỏ”,

    ⇒ B là biến cố “viên bi được lấy ra có màu vàng”

    Lúc này ta đi tính P(A) theo công thức:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    Ta có: \left\{ \begin{matrix}
  P\left( B ight) = \dfrac{{50}}{{80}} = \dfrac{5}{8} \hfill \\
  P\left( {\overline B } ight) = \dfrac{{30}}{{80}} = \dfrac{3}{8} \hfill \\
  P\left( {A|B} ight) = 60\%  = \dfrac{3}{5} \hfill \\
  P\left( {A|\overline B } ight) = 100\%  - 50\%  = \dfrac{1}{2} \hfill \\ 
\end{matrix}  ight.

    Vậy P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight) =
\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} =
\frac{9}{16}.

    d) A là biến cố “viên bi được lấy ra có đánh số”

    \overline{A} là biến cố “viên bi được lấy ra không có đánh số”

    Ta có: P\left( \overline{A} ight) = 1 -
P(A) = 1 - \frac{9}{16} = \frac{7}{16}.

  • Câu 19: Nhận biết
    Chọn công thức đúng

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Hướng dẫn:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 20: Vận dụng
    Chọn đáp án đúng

    Tan giờ học buổi chiều một sinh viên có 60\% về nhà ngay, nhưng do giờ cao điểm nên có 30% ngày bị tắc đường nên bị về nhà muộn (từ 30 phút trở lên) còn 20\% số ngày sinh viên đó vào quán Internet cạnh trường để chơi Games, những ngày này xác suất về nhà muộn là 80\%. Còn lại những ngày khác sinh viên đó đi chơi với bạn bè có xác suất về muộn là 90\%. Hôm nay sinh viên đó về muộn. Tính xác suất để để sinh viên đó đi chơi với bạn bè.

    Hướng dẫn:

    Gọi B là biến cố sinh viên đó đi học về muộn

    E1 là biến cố tan học về nhà ngay = > P\left( E_{1} ight) = 0,6,P\left( B|E_{1}
ight) = 0,3

    E2 là biến cố tan học đi chơi game = > P\left( E_{2} ight) = 0,2,P\left( B|E_{2}
ight) = 0,8

    E3 là biến cố tan học về đi chơi với bạn = > P\left( E_{3} ight) = 0,2,P\left( B|E_{3}
ight) = 0,9

    B có thể xảy ra một trong 3 biến cố

    P(B) = P\left( E_{1} ight).P\left(
B|E_{1} ight) + P\left( E_{2} ight).P\left( B|E_{2} ight) +
P\left( E_{3} ight).P\left( B|E_{3} ight)

    = > P(B) = 0,52

    Xác suất để sinh viên đó đi chơi với bạn là:

    P\left( E_{3}|B ight) = \frac{P\left(
E_{3} ight).P\left( B|E_{3} ight)}{P(B)} = 0,375 =
37,5\%

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo