Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CTST Công thức xác suất toàn phần và công thức Bayes (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định giá trị P(A)

    Cho hai biến cố AB với P(B) =
0,8, P\left( A|B \right) =
0,7, P\left( A|\overline{B} \right)
= 0,45. Tính P(A).

    Hướng dẫn:

    Ta có P\left( \overline{B} \right) = 1 -
P(B) = 1 - 0,8 = 0,2.

    Công thức xác suất toàn phần:

    P(A) = P(B).P\left( A|B \right) + P\left(\overline{B} \right).P\left( A|\overline{B} \right)

    = 0,8.0,7 + 0,2.0,45= 0,65.

  • Câu 2: Thông hiểu
    Tính xác suất

    Trong một trường học, tỉ lệ học sinh nữ là 52\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia lớp học bổ trợ kiến thức lần lượt là 18\%15\%. Gặp ngẫu nhiên một học sinh của trường. Biết rằng học sinh có tham gia lớp học bổ trợ kiến thức. Tính xác suất học sinh đó là nam?

    Hướng dẫn:

    Gọi A_{1};A_{2} lần lượt là các biến cố gặp được một học sinh nữ, một học sinh nam

    Nên 1 2 A A, là hệ biến cố đầy đủ.

    Gọi B “Học sinh đó tham gia lớp học bổ trợ kiến thức”

    Ta có: \left\{ \begin{matrix}
P\left( A_{1} ight) = 52\% = 0,52 \\
P\left( A_{2} ight) = 1 - 0,52 = 0,48 \\
P\left( B|A_{1} ight) = 18\% = 0,18 \\
P\left( B|A_{2} ight) = 15\% = 0,15 \\
\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2}
ight)

    \Rightarrow P(B) = 0,18.0,52 + 0,15.0,48
= \frac{207}{1250} = 0,1656

    Xác suất để học sinh đó là nam, biết rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes:

    P\left( A_{2}|B ight) = \frac{P\left(
B|A_{2} ight).P\left( A_{2} ight)}{P(B)} = \frac{0,15.0,48}{0,1656}
= \frac{10}{23}

  • Câu 3: Vận dụng
    Tính xác suất người được chọn mắc bệnh A

    Tỉ lệ người dân đã tiêm vắc xin phòng bệnh A ở một địa phương là 65\%. Trong số những người đã tiêm phòng, tỉ lệ mắc bệnh A5\%; trong số những người chưa tiêm, tỉ lệ mắc bệnh A17\%. Chọn ngẫu nhiên một người ở địa phương đó. Tính xác suất người được chọn mắc bệnh A.

    Hướng dẫn:

    Gọi X là biến cố “Người dân được tiêm phòng bệnh A

    Y là biến cố “Người dân mắc bệnh A”.

    Ta có P(X) = 0,65 \Rightarrow P\left( \overline{X}
\right) = 0,35.

    Tỉ lệ mắc bệnh khi tiêm phòng là: P\left(
Y|X \right) = 0,05.

    Tỉ lệ mắc bệnh khi chưa tiêm phòng là P\left( Y|\overline{X} \right) =
0,17.

    Xác suất người này mắc bệnh A là:

    P(Y) = P(X).P\left( Y|X \right) +
P\left( \overline{X} \right).P\left( Y|\overline{X} \right)

    = 0,65.0,05 + 0,35.0,17 =
0,092

  • Câu 4: Nhận biết
    Chọn công thức đúng

    Cho hai biến cố AB là hai biến cố ngẫu nhiên màP(A) > 0,P(B) > 0, công thức Bayes là:

    Hướng dẫn:

    Ta có: P\left( B|A \right) =
\frac{P(B).P\left( A|B \right)}{P(A)}.

  • Câu 5: Thông hiểu
    Tính xác suất

    Trong một vùng dân cư, cứ 100 người thì có 30 người hút thuốc lá. Biết tỷ lệ người bị viêm họng trong số người hút thuốc lá là 60\%, trong số người không hút thuốc lá là 30\%. Khám ngẫu nhiên một người và thấy người đó bị viêm họng. Nếu người đó không bị viêm họng thì xác suất để người đó hút thuốc lá là bao nhiêu?

    Hướng dẫn:

    Gọi A: "Người này hút thuốc"

    B: "Người này bị viêm họng"

    Theo giả thiết ta có: P(A) = 0,3;P\left(
B|A ight) = 0,6;P\left( B|\overline{A} ight) = 0,3

    Ta thấy rằng A;\overline{A} là một hệ đầy đủ các biến cố.

    Theo công thức xác suất toàn phần ta tính được:

    P(B) = P\left( B|A ight)P(A) + P\left(
B|\overline{A} ight)P\left( \overline{A} ight)

    = 0,6.0,3 + 0,3.0,7 = 0,39

    \Rightarrow P\left( \overline{B} ight)
= 1 - P(B) = 0,61

    Theo công thức Bayes, xác suất để người đó hút thuốc lá khi biết người đó không bị viêm họng là:

    P\left( A|\overline{B} ight) =
\frac{P\left( \overline{B}|A ight)P(A)}{P\left( \overline{B} ight)}
= \frac{0,4.0,3}{0,61} = 0,197

  • Câu 6: Vận dụng
    Tính xác suất theo yêu cầu

    Để gây đột biến cho một tính trạng người ta tìm cách tác động lên hai gen A, B bằng phóng xạ. Xác suất đột biến của tính trạng do gen A0,4; do gen B là 0,5 và do cả hai gen là 0,9. Tính xác suất để có đột biến ở tính trạng đó biết rằng phóng xạ có thể tác động lên gen A với xác suất 0,7 và lên gen B với xác suất 0,6?

    Hướng dẫn:

    Gọi C là biến cố có đột biến ở tính trạng đang xét

    A là biến cố phóng xạ tác dụng lên gen A

    B là biến cố phóng xạ tác dụng lên gen B

    C1 là biến cố phóng xạ chỉ tác động lên gen A

    C2 là biến cố phóng xạ chỉ tác dụng lên gen B

    C3 là biến cố phóng xạ tác dụng lên cả 2 gen

    C_{4} là biến cố phóng xạ không tác dụng lên gen nào

    Khi đó hệ C_{1},C_{2},C_{3},C_{4} là một hệ đầy đủ

    C_{1} = A\overline{\text{ }B},C_{2} =\overline{A}\text{ }B,C_{3} = AB,C_{4} = \overline{A}\overline{\text{}B}

    Mặt khác A;B độc lập nên 

    P\left( C_{1} ight) = P(\text{}A)P(\overline{\text{ }B}) = 0,28,P\left( C_{2} ight) =P(\overline{\text{ }A})P(\text{ }B) = 0,18

    P\left( C_{3} ight) = P(\text{}A)P(\text{ }B) = 0,42;P\left( C_{4} ight) = P(\overline{\text{}A})P(\overline{\text{ }B}) = 0,12

    Mặt khác P\left( C|C_{1} ight) =0,4;P\left( C|C_{2} ight) = 0,5;P\left( C|C_{3} ight) = 0,9P\left( C/C_{4} ight) = 0

    Theo công thức xác suất toàn phần ta có:

    P(C) = 0,28.0,4 + 0,18.0,5 + 0,42.0,9 +0,12.0 = 0,58

  • Câu 7: Vận dụng
    Chọn phương án gần đúng với đáp án

    Phòng thi đánh giá năng lực có 10 học sinh trong đó có 2 học sinh giỏi (trả lời 100% các câu hỏi), 3 học sinh khá (trả lời 80% các câu hỏi), 5 học sinh trung bình (trả lời 50% các câu hỏi). Gọi ngẫu nhiên một học sinh vào thi và phát đề có 4 câu hỏi (được lấy ngẫu nhiên từ 20 câu). Thấy học sinh này trả lời được cả 4 câu, tính xác suất để học sinh đó là học sinh khá? Xác suất gần bằng số nào sau đây?

    Hướng dẫn:

    Gọi A_{1};A_{2};A_{3} lần lượt là các biến cố gọi một học sinh Giỏi, Khá, Trung Bình

    Nên A_{1};A_{2};A_{3} là hệ biến cố đầy đủ.

    Gọi B “học sinh đó trả lời được 4 câu hỏi”

    Ta có: \left\{ \begin{matrix}
P\left( A_{1} ight) = \frac{C_{2}^{1}}{C_{10}^{1}} = \frac{1}{5} \\
P\left( A_{2} ight) = \frac{C_{3}^{1}}{C_{10}^{1}} = \frac{3}{10} \\
P\left( A_{3} ight) = \frac{C_{5}^{1}}{C_{10}^{1}} = \frac{1}{2} \\
\end{matrix} ight.

    Ta lại có:

    2 học sinh Giỏi (trả lời 100% các câu hỏi) ⇒ Trả lời 20 câu hỏi

    3 học sinh Khá (trả lời 80% các câu hỏi) ⇒ Trả lời 20.80\% = 16 câu hỏi.

    5 học sinh Trung Bình (trả lời 50% các câu hỏi) ⇒ Trả lời 20.50\% = 10 câu hỏi.

    Từ đó: \left\{ \begin{matrix}P\left( B|A_{1} ight) = \dfrac{C_{20}^{4}}{C_{20}^{4}} = 1 \\P\left( B|A_{2} ight) = \dfrac{C_{16}^{4}}{C_{20}^{4}} =\dfrac{364}{969} \\P\left( B|A_{3} ight) = \dfrac{C_{10}^{4}}{C_{20}^{4}} = \dfrac{14}{323}\\\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần:

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2} ight) + P\left(
B|A_{3} ight).P\left( A_{3} ight)

    \Rightarrow P(B) = 1.\frac{1}{5} +
\frac{364}{969}.\frac{3}{10} + \frac{14}{323}.\frac{1}{2} =
\frac{108}{323}

    Xác suất để sinh viên đó là sinh viên khá là P\left( A_{2}|B ight)

    Áp dụng công thức Bayes ta có:

    P\left( A_{2}|B ight) = \frac{P\left(
B|A_{2} ight).P\left( A_{2} ight)}{P(B)}

    \Rightarrow P\left( A_{2}|B ight) =\dfrac{\dfrac{364}{969}.\dfrac{3}{10}}{\dfrac{108}{323}} = \dfrac{91}{270}\approx 0,337

  • Câu 8: Thông hiểu
    Tính xác suất người được chọn là đàn ông

    Được biết có 5\% đàn ông bị mù màu và 0,25\% phụ nữ bị mù màu (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics – Understanding why and how, Springer, 2005). Giả sử số đàn ông bằng số phụ nữ. Chon một người bị mù màu. Xác suất để người đó là đàn ông là bao nhiêu?

    Hướng dẫn:

    Gọi A là biến cố người được chọn là đàn ông, B là biến cố người được chọn mù màu.

    Theo đề bài ra ta có P\left( \left. \ B
\right|A \right) = 0,05;P\left( \left. \ B \right|\overline{A} \right) =
0,0025.

    Vì số đàn ông bằng số phụ nữ nên ta có P(A) = P\left( \overline{A} \right) = 0,5.

    Áp dụng công thức Bayes ta có xác suất để chọn được một người đàn ông mù màu là:

    P\left( \left. \ A \right|B \right) =\frac{P(A).P\left( \left. \ B \right|A \right)}{P(A).P\left( \left. \ B \right|A \right) + P\left( \overline{A} \right).P\left( \left. \ B\right|\overline{A} \right)}

    = \frac{0,5.0,05}{0,5.0,05 + 0,5.0,0025}
= \frac{20}{21}.

  • Câu 9: Thông hiểu
    Chọn đáp án đúng

    Dây chuyền lắp ráp nhận được các chi tiết do hai máy sản xuất. Trung bình máy thứ nhất cung cấp 60\% chi tiết, máy thứ hai cung cấp 40\% chi tiết. Biết 90\% chi tiết do máy thứ nhất sản xuất đều đạt tiêu chuẩn và 85\% chi tiết do máy thứ hai sản xuất là đạt tiêu chuẩn. Lấy ngẫu nhiên từ dây chuyển một sản phẩm, thấy nó đạt tiêu chuẩn. Tìm xác suất để sản phẩm đó do máy thứ nhất sản xuất.

    Hướng dẫn:

    Gọi A là biến cố chi tiết lấy từ dây chuyển đạt tiêu chuẩn.

    Biến cố A có thể xảy ra đồng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố.

    H1 chi tiết máy do máy một sản xuất.

    H2 chi tiết máy do máy hai sản xuất.

    Như vậy xác suất để chi tiết máy dó máy một sản xuất bằng:

    P\left( H_{1}|A ight) = \frac{P\left(
H_{1} ight).P\left( A|H_{1} ight)}{P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2}
ight)}

    Theo dữ kiện đề bài cho ta có:\left\{
\begin{matrix}
P\left( H_{1} ight) = 0,6;P\left( H_{2} ight) = 0,4 \\
P\left( A|H_{1} ight) = 0,9;P\left( A|H_{2} ight) = 0,85 \\
\end{matrix} ight.

    Do đó:

    P\left( H_{1}|A ight) =
\frac{0,6.0,9}{0,6.0,9 + 0,4.0,85} = 0,614

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Tan giờ học buổi chiều một sinh viên có 60\% về nhà ngay, nhưng do giờ cao điểm nên có 30% ngày bị tắc đường nên bị về nhà muộn (từ 30 phút trở lên) còn 20\% số ngày sinh viên đó vào quán Internet cạnh trường để chơi Games, những ngày này xác suất về nhà muộn là 80\%. Còn lại những ngày khác sinh viên đó đi chơi với bạn bè có xác suất về muộn là 90\%. Tính xác suất để trong một ngày nào đó sinh viên không về muộn.

    Hướng dẫn:

    Gọi B là biến cố sinh viên đó đi học về muộn

    \overline{B} là biến cố sinh viên đó đi học không về muộn

    E1 là biến cố tan học về nhà ngay = > P\left( E_{1} ight) = 0,6,P\left( B|E_{1}
ight) = 0,3

    E2 là biến cố tan học đi chơi game = > P\left( E_{2} ight) = 0,2,P\left( B|E_{2}
ight) = 0,8

    E3 là biến cố tan học về đi chơi với bạn = > P\left( E_{3} ight) = 0,2,P\left( B|E_{3}
ight) = 0,9

    B có thể xảy ra một trong 3 biến cố

    P(B) = P\left( E_{1} ight).P\left(
B|E_{1} ight) + P\left( E_{2} ight).P\left( B|E_{2} ight) +
P\left( E_{3} ight).P\left( B|E_{3} ight)

    = > P(B) = 0,52

    = > P\left( \overline{B} ight) = 1
- 0,52 = 0,48

  • Câu 11: Thông hiểu
    Tính số phần trăm mắc bệnh

    Giả sử tỉ lệ người dân của tỉnh T nghiện thuốc lá là 20\%; tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là 70\%, trong số người không nghiện thuốc lá là 15\%. Hỏi khi ta gặp ngẫu nhiên một người dân của tỉnh T thì khả năng mà đó bị bệnh phổi là bao nhiêu \%?

    Hướng dẫn:

    Gọi A là biến cố “người nghiện thuốc lá”, suy ra A là biến cố “người không nghiện thuốc lá”

    Gọi B là biến cố “người bị bệnh phổi”

    Để người mà ta gặp bị bệnh phổi thì người đó nghiện thuốc lá hoặc không nghiện thuốc lá.

    Ta cần tính P(B)

    Ta có: \left\{ \begin{matrix}P(A) = 0,2 \Rightarrow P\left( \overline{A} ight) = 1 - P(A) = 0,8 \\P\left( B|A ight) = 0,7 \\P\left( B|\overline{A} ight) = 0,15 \\\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P(A).P\left( B|A ight) +P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,2..0,7 + 0,8.0,15 =0,26

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Tìm xác suất nó là phế phẩm.

    Hướng dẫn:

    Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là "lấy ra sản phẩm là phế phẩm".

    Áp dụng công thức xác suất toàn phần, ta có

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight)

    \Rightarrow P(A) = 0,25.0,1\% +
0,3.0,2\% + 0,45.0,3\% = 0,22\%

  • Câu 13: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hai biến cố AB, với P\left( \overline{A} \right) = 0,4\ ,\ P(B) = 0,7\
,\ P(A \cap B) = 0,3.

    a) P(A) = 0,6P\left( \overline{B} \right) = 0,3 Đúng||Sai

    b) P\left( A|B \right) =
\frac{2}{3}Sai||Đúng

    c) P\left( \overline{B}|A \right) =
\frac{1}{3} Sai||Đúng

    d) P\left( \overline{A} \cap B \right) =
\frac{3}{5} Sai||Đúng

    Đáp án là:

    Cho hai biến cố AB, với P\left( \overline{A} \right) = 0,4\ ,\ P(B) = 0,7\
,\ P(A \cap B) = 0,3.

    a) P(A) = 0,6P\left( \overline{B} \right) = 0,3 Đúng||Sai

    b) P\left( A|B \right) =
\frac{2}{3}Sai||Đúng

    c) P\left( \overline{B}|A \right) =
\frac{1}{3} Sai||Đúng

    d) P\left( \overline{A} \cap B \right) =
\frac{3}{5} Sai||Đúng

    a) Đúng.

    Ta có: P\left( \overline{A} \right) = 1 -
P(A) = 0,6

    P(B) = 1 - P\left( \overline{B} \right) =
0,3.

    b) Sai.

    Ta có: P\left( A|B \right) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

    c) Sai.

    Ta có: P\left( \overline{B}|A \right) = 1
- P\left( B|A \right) = \frac{P(A \cap B)}{P(A)} = 1 - \frac{0,3}{0,6} =
0,5.

    d) Sai.

    Ta có: P\left( \overline{A} \cap B
\right) = P\left( \overline{A}|B \right).P(B)

    P\left( \overline{A}|B \right) = 1 -
P\left( A|B \right) = \frac{P(A \cap B)}{P(B)} = 1 - \frac{0,3}{0,7} =
\frac{4}{7}

    P\left( \overline{B} \cap A \right) =
P\left( \overline{A}|B \right).P(B) = \frac{4}{7}.0,7 =
\frac{2}{5}.

  • Câu 14: Nhận biết
    Chọn công thức đúng

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Hướng dẫn:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Người ta khảo sát khả năng chơi nhạc cụ của một nhóm học sinh nam nữ tại một trường phổ thông T. Xét phép thử chọn ngẫu nhiên 1 học sinh trong nhóm đó. Gọi A là biến cố “học sinh được chọn biết chơi ít nhất một nhạc cụ”, và B là biến cố “học sinh được chọn là nam”. Biết xác xuất học sinh được chọn là nam bằng 0,6; xác suất học sinh được chọn là nam và biết chơi ít nhất một nhạc cụ là 0,3; xác suất học sinh được chọn là nữ và biết chơi ít nhất một nhạc cụ là 0,15. Tính P(A)?

    Hướng dẫn:

    Theo bài ra ta có: \left\{ \begin{matrix}
P(B) = 0,6 \Rightarrow P\left( \overline{B} ight) = 1 - 0,6 = 0,4 \\
P\left( A|B ight) = 0,3 \\
P\left( A|\overline{B} ight) = 0,15 \\
\end{matrix} ight.

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,3 + 0,4.0,15 =
0,24.

  • Câu 16: Nhận biết
    Tính P(A)

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Hướng dẫn:

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 17: Vận dụng
    Xét tính đúng sai của các kết luận

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét các biến cố: A : "Lần thứ nhất lấy ra chai nước loại I"; B : "Lần thứ hai lấy ra chai nước loại I ".
    a) P(B \mid A) = \frac{16}{23}. Sai||Đúng
    b) P\left( B \mid \overline{A} \right) =
\frac{15}{23}. Sai||Đúng
    c) P\left( \overline{B} \mid A \right) =
\frac{8}{23}. Đúng||Sai
    d) P\left( \overline{B} \mid \overline{A}
\right) = \frac{7}{23}. Đúng||Sai

    Đáp án là:

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét các biến cố: A : "Lần thứ nhất lấy ra chai nước loại I"; B : "Lần thứ hai lấy ra chai nước loại I ".
    a) P(B \mid A) = \frac{16}{23}. Sai||Đúng
    b) P\left( B \mid \overline{A} \right) =
\frac{15}{23}. Sai||Đúng
    c) P\left( \overline{B} \mid A \right) =
\frac{8}{23}. Đúng||Sai
    d) P\left( \overline{B} \mid \overline{A}
\right) = \frac{7}{23}. Đúng||Sai

    Ta có: P(A) = \frac{16}{24} =
\frac{2}{3};P\left( \overline{A} \right) = \frac{8}{24} =
\frac{1}{3}.

    Nếu lần thứ nhất lấy ra chai loại I thì két còn 23 chai nước, trong đó có 15 chai loại I, 8 chai loại II.

    Suy ra P(B \mid A) =
\frac{15}{23}.

    Nếu lần thứ nhất lấy ra chai loại II thì két còn 23 chai nước, trong đó có 16 chai loại I, 7 chai loại II.

    Suy ra P\left( B \mid \overline{A}
\right) = \frac{16}{23}.

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A) \cdot P(B \mid A) + P\left(
\overline{A} \right) \cdot P\left( B \mid \overline{A} \right) =
\frac{2}{3} \cdot \frac{15}{23} + \frac{1}{3} \cdot \frac{16}{23} =
\frac{2}{3}

    Ta có: P\left( \overline{B} \mid A
\right) = 1 - P(B \mid A) = 1 - \frac{15}{23} =
\frac{8}{23};

    P\left( \overline{B} \mid \overline{A}
\right) = 1 - P\left( B \mid \overline{A} \right) = 1 - \frac{16}{23} =
\frac{7}{23}

  • Câu 18: Vận dụng
    Tính xác suất P

    Có 3 hộp bi:

    Hộp 1: Có 3 xanh, 4 đỏ, 5 vàng.

    Hộp 2: Có 4 xanh, 5 đỏ, 6 vàng.

    Hộp 3: Có 5 xanh, 6 đỏ, 7 vàng

    Chọn ngẫu nhiên 1 hộp và từ hộp đó lấy ngẫu nhiên 1 bi. Tính xác suất để bi lấy ra là bi xanh. Nếu bi lấy ra không là bi xanh, tính xác suất để bi đó được lấy từ hộp 2?

    Hướng dẫn:

    Gọi A_{1};A_{2};A_{3} lần lượt là các biến cố “Chọn được hộp thứ 1, 2, 3” ta có hệ A_{1};A_{2};A_{3} là hệ biến cố xung khắc và đầy đủ:

    P\left( A_{1} ight) = P\left( A_{2}
ight) = P\left( A_{3} ight) = \frac{1}{3}

    Gọi B là biến cố “Lấy được bi xanh”

    Ta có:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2} ight) +
P\left( A_{3} ight).P\left( B|A_{3} ight)

    \Rightarrow P(B) =
\frac{1}{3}.\frac{3}{12} + \frac{1}{3}.\frac{4}{15} +
\frac{1}{3}.\frac{5}{18} \approx 26,48\%

    \overline{B} là biến cố bi lấy ra không phải là bi xanh, ta cần tính:

    P\left( A_{2}|B ight) = \frac{P\left(
A_{2} ight).P\left( \overline{B}|A_{2} ight)}{P\left( \overline{B}
ight)} = \frac{\frac{1}{3}.\frac{11}{15}}{1 - 0,2648} =
33,25\%

  • Câu 19: Vận dụng
    Chọn đáp án đúng

    Trong một kho rượu, số lượng rượu loại M và loại N bằng nhau. Người ta chọn ngẫu nhiên một chai và đưa cho 5 người nếm thử. Biết xác suất đoán đúng của mỗi người là 0,8. Có 3 người kết luận rượu loại M, 2 người kết luận rượu loại N. Hỏi khi đó xác suất chai rượu đó thuộc loại M là bao nhiêu?

    Hướng dẫn:

    Gọi A là chai rượu thuộc loại M thì A;\overline{A} tạo thành hệ đầy đủ và P(A) = P\left( \overline{A} ight) =
\frac{1}{2}

    Gọi H là "có 3 người kết luận rượu loại M và 2 người kết luận rượu loại N".

    Theo công thức toàn phần ta có:

    P(H) = P(A).P\left( H|A ight) +
P\left( \overline{A} ight).P\left( H|\overline{A} ight)

    \Rightarrow P(H) =
0,5.C_{5}^{3}.0,8^{3}.0,2^{2} + 0,5.C_{5}^{2}.0,8^{2}.0,2^{3} =
0,128

    Vậy xác suất cần tính là:

    P\left( A|H ight) = \frac{P(A).P\left(
H|A ight)}{P(H)} = \frac{0,5.C_{5}^{3}.0,8^{3}.0,2^{2}}{0,128} =
0,8

  • Câu 20: Nhận biết
    Xác định giá trị P(A)

    Nếu hai biến cố A, B thỏa mãn P(B) =
0,6;\ P\left( A\left| B \right.\  \right) = 0,5;P\left( A\left|
\overline{B} \right.\  \right) = 0,3 thì P(A) bằng:

    Hướng dẫn:

    Ta có:

    P(A) = P(B).P\left( A\left| B
\right.\  \right) + P\left( \overline{B} \right).P\left( A\left|
\overline{B} \right.\  \right)

    = 0,6.0,5 + 0,4.0,3 = 0,42

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo