Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CTST Công thức xác suất toàn phần và công thức Bayes (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án vào ô trống

    Một xí nghiệp mỗi ngày sản xuất ra 2000 sản phẩm trong đó có 39 sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).

    Đáp án: 0,02

    Đáp án là:

    Một xí nghiệp mỗi ngày sản xuất ra 2000 sản phẩm trong đó có 39 sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).

    Đáp án: 0,02

    Xét các biến cố:

    A_{1}: Sản phẩm lấy ra lần thứ nhất bị lỗi.

    Khi đó, ta có: P\left( A_{1}
ight) = \frac{39}{2000}; P\left(
\overline{A_{1}} ight) = \frac{1961}{2000}.

    A_{2}: Sản phẩm lấy ra lần thứ hai bị lỗi.

    Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn 1999 sản phẩm và trong đó có 38 sản phẩm lỗi nên ta có:

    P\left( {{A_2}\left| {{A_1}} ight.} ight) = \frac{{38}}{{1999}}, suy ra P\left(
\overline{A_{2}}\left| A_{1} ight.\  ight) =
\frac{1961}{1999}.

    Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn 1999 sản phẩm trong đó có 39sản phẩm lỗi nên ta có:

    P\left( A_{2}\left| \overline{A_{1}}
ight.\  ight) = \frac{39}{1999}, suy ra P\left( \overline{A_{2}}\left| \overline{A_{1}}
ight.\  ight) = \frac{1960}{1999}.

    Khi đó, xác suất để sản phẩm lấy ra lần thứ hai bị lỗi là:

    P\left( A_{2} ight) = P\left(
A_{2}\left| A_{1} ight.\  ight).P\left( A_{1} ight) + P\left(
A_{2}\left| \overline{A_{1}} ight.\  ight).P\left( \overline{A_{1}}
ight)

    = \frac{38}{1999}.\frac{39}{2000} +
\frac{39}{1999}.\frac{1961}{2000} \approx 0,02.

    Đáp số: 0,02.

  • Câu 2: Thông hiểu
    Chọn đáp án đúng

    Có hai hộp đựng bóng giống nhau (khác màu sắc):

    Hộp thứ chứa 10 quả bóng trong đó có 9 quả màu đen.

    Hộp thứ hai chứa 20 quả bóng trng đó có 18 quả màu đen,

    Từ hộp thứ nhất lấy ngẫu nhiên một quả bóng bỏ sang hộp thứ hai. Tìm xác suất để lấy ngẫu nhiên một quả bóng từ hộp thứ hai được quả màu đen?

    Hướng dẫn:

    Gọi A là biến cố lấy được quả bóng màu đen từ hộp thứ hai.

    Biến cố A có thể xảy ra đòng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố:

    H1 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai là màu đen.

    H2 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai không phải màu đen.

    Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai là quả bóng màu đen bằng: P\left( H_{1} ight) =
\frac{9}{10}

    Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai không phải quả bóng màu đen bằng: P\left( H_{2} ight) =
\frac{1}{10}

    Xác suất có điều kiện để từ hộp thứ hai lấy được quả bóng màu đen khi các giả thuyết H_{1};H_{2} xảy ra là:

    P\left( A|H_{1} ight) =
\frac{19}{21};P\left( A|H_{2} ight) = \frac{18}{21} =
\frac{6}{7}

    Do đó:

    P(A) = P\left( H_{1} ight).\left(
A|H_{1} ight) + P\left( H_{2} ight)P\left( A|H_{2}
ight)

    \Rightarrow P(A) =
\frac{9}{10}.\frac{19}{21} + \frac{1}{10}.\frac{6}{7} = 0,9

  • Câu 3: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB. Biết P(B)
= 0,01; P\left( A|B \right) =
0,7; P\left( A|\overline{B} \right)
= 0,09. Khi đó P(A) bằng

    Hướng dẫn:

    Ta có: P(B) = 0,01 \Rightarrow P\left(
\overline{B} \right) = 1 - 0,01 = 0,99.

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B)P\left( A|B \right) + P\left(
\overline{B} \right)P\left( A|\overline{B} \right)

    = 0,01.0,7 + 0,99.0,09 =
0,0961.

  • Câu 4: Vận dụng
    Chọn đáp án đúng

    Một loài sinh vật có các kiểu gen AA, Aa, aa theo tỉ lệ: 1 : 2 : 1. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen AA thì các cá thể con đều có kiểu gen AA. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen Aa thì cá thể con có kiểu gen AA, Aa theo tỉ lệ 1 : 1. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen aa thì cá thể con chỉ có các kiểu Aa. Chọn một cá thể con từ cá thể mẹ có kiểu gen AA. Tính xác suất ñể cá thể con có kiểu gen Aa.

    Hướng dẫn:

    Gọi B là biến cố cá thể con có kiểu gen Aa

    A1 là biến cố cá thể bố có kiểu gen AA

    A2 là biến cố cá thể bố có kiểu gen Aa

    A3 là biến cố cá thể bố có kiểu gen aa

    Hệ: A1, A2, A3 là hệ đầy đủ

    Ta xác định được:

    P\left( A_{1} ight) =
\frac{1}{4};P\left( A_{2} ight) = \frac{2}{4};P\left( A_{3} ight) =
\frac{1}{4}

    P\left( B|A_{1} ight) = 0;P\left(
B|A_{2} ight) = \frac{1}{2};P\left( B|A_{3} ight) = 1

    Do đó:

    P(B) = P\left( A_{1} ight)P\left(
B|A_{1} ight) + P\left( A_{2} ight)P\left( B|A_{2} ight) + P\left(
A_{3} ight)P\left( B|A_{3} ight)

    \Rightarrow P(B) = \frac{1}{4}.0 +
\frac{2}{4}.\frac{1}{2} + \frac{1}{4}.1 = \frac{1}{4} + \frac{1}{4} =
\frac{1}{2}

  • Câu 5: Thông hiểu
    Tính xác xuất của biến cố

    Một hộp chứa bóng xanh và bóng đỏ. Biết rằng xác suất của việc chọn được một quả bóng xanh là 0.6. Xác suất chọn được một quả bóng xanh biết rằng quả bóng đó là bị lỗi là 0.7. Xác suất chọn được một quả bóng bị lỗi là 0.2. Xác suất chọn bóng bị lỗi biết bóng đã chọn màu xanh là bao nhiêu?

    Hướng dẫn:

    Gọi biến cố X:''Chọn được quả bóng xanh'', biến cố L:''chọn được quả bóng lỗi''.

    Ta có:

    P(X) = 0.6 : xác suất chọn được bóng xanh.

    P(X|L) = 0.7: xác suất chọn được bóng xanh biết bóng bị lỗi.

    P(L) = 0.2: xác suất chọn được bóng bị lỗi.

    Xác suất chọn bóng bị lỗi biết bóng đã chọn màu xanh là:

    P(L|X) = P\left( X|L
\right).\frac{P(L)}{P(X)} = 0.7.\frac{0.2}{0.6} =
\frac{7}{30}

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Tan giờ học buổi chiều một sinh viên có 60\% về nhà ngay, nhưng do giờ cao điểm nên có 30% ngày bị tắc đường nên bị về nhà muộn (từ 30 phút trở lên) còn 20\% số ngày sinh viên đó vào quán Internet cạnh trường để chơi Games, những ngày này xác suất về nhà muộn là 80\%. Còn lại những ngày khác sinh viên đó đi chơi với bạn bè có xác suất về muộn là 90\%. Tính xác suất để trong một ngày nào đó sinh viên không về muộn.

    Hướng dẫn:

    Gọi B là biến cố sinh viên đó đi học về muộn

    \overline{B} là biến cố sinh viên đó đi học không về muộn

    E1 là biến cố tan học về nhà ngay = > P\left( E_{1} ight) = 0,6,P\left( B|E_{1}
ight) = 0,3

    E2 là biến cố tan học đi chơi game = > P\left( E_{2} ight) = 0,2,P\left( B|E_{2}
ight) = 0,8

    E3 là biến cố tan học về đi chơi với bạn = > P\left( E_{3} ight) = 0,2,P\left( B|E_{3}
ight) = 0,9

    B có thể xảy ra một trong 3 biến cố

    P(B) = P\left( E_{1} ight).P\left(
B|E_{1} ight) + P\left( E_{2} ight).P\left( B|E_{2} ight) +
P\left( E_{3} ight).P\left( B|E_{3} ight)

    = > P(B) = 0,52

    = > P\left( \overline{B} ight) = 1
- 0,52 = 0,48

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Trong một kì thi tốt nghiệp trung học phổ thông, một tỉnh X có 80\% học sinh lựa chọn tổ hợp A00 (gồm các môn Toán, Vật lí, Hoá học). Biết rằng, nếu một học sinh chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là 0,6; còn nếu một học sinh không chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là 0,7. Chọn ngẫu nhiên một học sinh của tỉnh X đã tốt nghiệp trung học phổ thông trong kì thi trên. Biết rằng học sinh này đã đỗ đại học. Tính xác suất để học sinh đó chọn tổ hợp A00. (Kết quả làm tròn đến chữ số thập phân thứ 2).

    Hướng dẫn:

    Gọi A: “Học sinh đó chọn tổ hợp A00”

    Và B: “Học sinh đó đỗ đại học”.

    Ta cần tính P\left( A|B
ight)

    Ta có: P(A) = 0,8 \Rightarrow P\left(
\overline{A} ight) = 1 - P(A) = 0,2

    P\left( B|A ight) là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó chọn tổ hợp A00

    \Rightarrow P\left( B|A ight) =
0,6

    P\left( B|\overline{A} ight)là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó không chọn tổ hợp A00

    \Rightarrow P\left( B|\overline{A}
ight) = 0,7

    Thay vào công thức Bayes ta được:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,8.0,6}{0,8.0,6 + 0,2.0,7} \approx 0,77

  • Câu 8: Thông hiểu
    Tính xác suất lấy được bi trắng

    Hộp I: 5 bi trắng và 5 bi đen. Hộp II: 6 bi trắng và 4 bi đen. Bỏ hai viên bi từ hộp I sang hộp II. Sau đó lấy ra 1 viên bi. Tính xác suất để lấy được bi trắng.

    Hướng dẫn:

    Gọi A là biến cố lấy được bi trắng

    Cách 1: Ta có sơ đồ cây mô tả như sau:

    P(A) = P\left( H_{0} ight).P\left(
A|H_{0} ight) + P\left( H_{1} ight).P\left( A|H_{1} ight) +
P\left( H_{2} ight).P\left( A|H_{2} ight) =
\frac{7}{12}.

    Cách 2: Gọi K1 là biến cố lấy bi ra từ hộp II của hộp I

    Gọi K2 là biến cố lấy bi ra từ hộp II của hộp II

    Ta xác định được:

    \left\{ \begin{gathered}
  P\left( {{K_1}} ight) = \frac{{C_2^1}}{{C_{12}^1}};P\left( {{K_2}} ight) = \frac{{C_{10}^1}}{{C_{12}^1}} \hfill \\
  P\left( {A|{E_1}} ight) = \frac{{C_5^1}}{{C_{10}^1}};P\left( {A|{E_2}} ight) = \frac{{C_6^1}}{{C_{10}^1}} \hfill \\ 
\end{gathered}  ight.

    Khi đó: P(A) = P\left( K_{1}
ight).P\left( A|K_{1} ight) + P\left( K_{2} ight).P\left( A|K_{2}
ight) = \frac{7}{12}

  • Câu 9: Vận dụng
    Tính xác suất P

    Có 3 hộp bi:

    Hộp 1: Có 3 xanh, 4 đỏ, 5 vàng.

    Hộp 2: Có 4 xanh, 5 đỏ, 6 vàng.

    Hộp 3: Có 5 xanh, 6 đỏ, 7 vàng

    Chọn ngẫu nhiên 1 hộp và từ hộp đó lấy ngẫu nhiên 1 bi. Tính xác suất để bi lấy ra là bi xanh. Nếu bi lấy ra không là bi xanh, tính xác suất để bi đó được lấy từ hộp 2?

    Hướng dẫn:

    Gọi A_{1};A_{2};A_{3} lần lượt là các biến cố “Chọn được hộp thứ 1, 2, 3” ta có hệ A_{1};A_{2};A_{3} là hệ biến cố xung khắc và đầy đủ:

    P\left( A_{1} ight) = P\left( A_{2}
ight) = P\left( A_{3} ight) = \frac{1}{3}

    Gọi B là biến cố “Lấy được bi xanh”

    Ta có:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2} ight) +
P\left( A_{3} ight).P\left( B|A_{3} ight)

    \Rightarrow P(B) =
\frac{1}{3}.\frac{3}{12} + \frac{1}{3}.\frac{4}{15} +
\frac{1}{3}.\frac{5}{18} \approx 26,48\%

    \overline{B} là biến cố bi lấy ra không phải là bi xanh, ta cần tính:

    P\left( A_{2}|B ight) = \frac{P\left(
A_{2} ight).P\left( \overline{B}|A_{2} ight)}{P\left( \overline{B}
ight)} = \frac{\frac{1}{3}.\frac{11}{15}}{1 - 0,2648} =
33,25\%

  • Câu 10: Nhận biết
    Chọn công thức đúng

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Hướng dẫn:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 11: Nhận biết
    Xác định giá trị P(A)

    Nếu hai biến cố A, B thỏa mãn P(B) =
0,6;\ P\left( A\left| B \right.\  \right) = 0,5;P\left( A\left|
\overline{B} \right.\  \right) = 0,3 thì P(A) bằng:

    Hướng dẫn:

    Ta có:

    P(A) = P(B).P\left( A\left| B
\right.\  \right) + P\left( \overline{B} \right).P\left( A\left|
\overline{B} \right.\  \right)

    = 0,6.0,5 + 0,4.0,3 = 0,42

  • Câu 12: Vận dụng
    Tính xác suất chọn được hướng dẫn viên theo yêu cầu

    Trong một đoàn du lịch đi tham quan Hội An, gồm có 10 nam và 12 nữ, hướng dẫn viên du lịch chọn ngẫu nhiên từ danh sách đoàn lần lượt 2 người. Tính xác suất để hướng dẫn viên chọn được lần 2 là người nam. (kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Gọi A là biến cố: "Lần thứ nhất chọn được người nam";

    Gọi Blà biến cố: " Lần thứ hai chọn được người nam ". Ta cần tính P(B).

    Ta có: P(A) = \frac{10}{22} =
\frac{5}{11};\ P\left( \overline{A} \right) = 1 - \frac{5}{11} =
\frac{6}{11}.

    Nếu lần thứ nhất chọn được người nam thì còn lại 21 người, trong đó có 9 người nam, suy ra P\left( B|A \right) =
\frac{9}{21} = \frac{3}{7}.

    Nếu lần thứ nhất chọn được người nữ thì còn lại 21 người, trong đó có 10 người nam, suy ra P\left( B|\overline{A}
\right) = \frac{10}{21}.

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A)P\left( B|A \right) + P\left(
\overline{A} \right)P\left( B|\overline{A} \right)

    = \frac{5}{11}.\frac{3}{7} +
\frac{6}{11}.\frac{10}{21} = \frac{5}{11} \simeq 0,45.

  • Câu 13: Thông hiểu
    Tính P(B)

    Cho hai biến cố A,\ B thỏa mãn P(A) = 0,4;\ P\left( A|B \right) = 0,5;\
P\left( \left. \ A \right|\overline{B} \right) = 0,1. Khi đó, P(B) bằng:

    Hướng dẫn:

    Đặt P(B) =x, suy ra P\left( \overline{B} \right) = 1 - x.

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B \right) +
P\left( \overline{B} \right).P\left( A|\overline{B} \right)

    \Leftrightarrow 0,4 = 0,5x + 0,1(1 -
x)

    \Leftrightarrow 0,3 = 0,4x

    \Leftrightarrow x = 0,75

    Vậy P(B) = 0,75.

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB sao cho P(A) = 0,6; P(B) = 0,4; P\left( A|B \right) = 0,3. Khi đó P\left( B|A \right) bằng?

    Hướng dẫn:

    Áp dụng công thức Bayes, ta có:

    P\left( B|A \right) = \frac{P(B)P\left(
A|B \right)}{P(A)} = \frac{0,4.0,3}{0,6} = 0,2.

  • Câu 15: Thông hiểu
    Tính P(B)

    Cho P(A) = 0,4; P\left( B|A \right) = 0,2P\left( B|\overline{A} \right) = 0,3. Giá trị của P(B) là:

    Hướng dẫn:

    P(A) = 0,4 nên P\left( \overline{A} \right) = 1 - 0,4 =
0,6.

    Theo công thức xác suất toàn phần ta có:

    P(B) = P(A).P\left( B|A \right) + P\left(\overline{A} \right).P\left( B|\overline{A} \right)

    = 0,4.0,2 + 0,6.0,3= 0,26.

  • Câu 16: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB với 0 <
P(A) < 1. Biết P(A) =0,1;P\left( \overline{A} ight) = 0,9;P\left( B|A ight) = 0,3;P\left(B|\overline{A} ight) = 0,6. Tính P(B)?

    Hướng dẫn:

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,1.0,3 + 0,9.0,6 =
0,57

  • Câu 17: Vận dụng
    Tính xác suất P

    Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Tính xác suất để viên bi rút ra sau cùng màu đỏ?

    Hướng dẫn:

    Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",

    D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".

    Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.

    Ta có: \left\{ \begin{gathered}
  P\left( {{D_1}{D_2}} ight) = \frac{4}{6}.\frac{4}{7};P\left( {{D_1}{X_2}} ight) = \frac{4}{6}.\frac{3}{7} \hfill \\
  P\left( {{X_1}{D_2}} ight) = \frac{2}{6}.\frac{3}{7};P\left( {{X_1}{X_2}} ight) = \frac{2}{6}.\frac{4}{7} \hfill \\ 
\end{gathered}  ight.

    Gọi A là "viên bi rút ra sau cùng là màu đỏ".

    Ta xác định được: \left\{ \begin{gathered}
  P\left( {A|{D_1}{D_2}} ight) = \frac{4}{6};P\left( {A|{D_1}{X_2}} ight) = \frac{3}{6} \hfill \\
  P\left( {A|{X_1}{D_2}} ight) = \frac{5}{6};P\left( {A|{X_1}{X_2}} ight) = \frac{4}{6} \hfill \\ 
\end{gathered}  ight.

    Áp dụng công thức xác suất toàn phần:

    P(A) = P\left( D_{1}D_{2} ight)P\left(
A|D_{1}D_{2} ight) + P\left( D_{1}X_{2} ight)P\left( A|D_{1}X_{2}
ight)

    + P\left( X_{1}D_{2} ight)P\left(
A|X_{1}D_{2} ight) + P\left( X_{1}X_{2} ight)P\left( A|X_{1}X_{2}
ight)

    = \frac{4}{6}.\frac{4}{7}.\frac{4}{6} +
\frac{4}{6}.\frac{3}{7}.\frac{3}{6} +
\frac{2}{6}.\frac{3}{7}.\frac{5}{6} +
\frac{2}{6}.\frac{4}{7}.\frac{4}{6} = \frac{9}{14}

  • Câu 18: Thông hiểu
    Tính số phần trăm mắc bệnh

    Giả sử tỉ lệ người dân của tỉnh T nghiện thuốc lá là 20\%; tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là 70\%, trong số người không nghiện thuốc lá là 15\%. Hỏi khi ta gặp ngẫu nhiên một người dân của tỉnh T thì khả năng mà đó bị bệnh phổi là bao nhiêu \%?

    Hướng dẫn:

    Gọi A là biến cố “người nghiện thuốc lá”, suy ra A là biến cố “người không nghiện thuốc lá”

    Gọi B là biến cố “người bị bệnh phổi”

    Để người mà ta gặp bị bệnh phổi thì người đó nghiện thuốc lá hoặc không nghiện thuốc lá.

    Ta cần tính P(B)

    Ta có: \left\{ \begin{matrix}P(A) = 0,2 \Rightarrow P\left( \overline{A} ight) = 1 - P(A) = 0,8 \\P\left( B|A ight) = 0,7 \\P\left( B|\overline{A} ight) = 0,15 \\\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P(A).P\left( B|A ight) +P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,2..0,7 + 0,8.0,15 =0,26

  • Câu 19: Vận dụng
    Tính xác suất chọn được học sinh thỏa mãn yêu cầu

    Tại trường THPT có 20\% học sinh tham gia câu lạc bộ bơi lội, trong số học sinh đó có 85\% học sinh biết bơi ếch. Ngoài ra, có 10\% số học sinh không tham gia câu lạc bộ bơi lội cũng biết bơi ếch. Chọn ngẫu nhiên 1 học sinh của trường. Giả sử học sinh đó biết bơi ếch. Xác suất chọn được học sinh thuộc câu lạc bộ bơi lội là bao nhiêu?

    Hướng dẫn:

    Xét các biến cố: A: "Chọn được học sinh thuộc câu lạc bộ bơi lội ";

    B: “Chọn được học sinh biết bơi ếch”.

    Khi đó P(A) = 0,2;\ \ P\left(
\overline{A} \right) = 0,8;\ \ P\left( B|A \right) = 0,85;\ \ P\left(
B|\overline{A} \right) = 0,1.

    Theo công thức xác suất toàn phần ta có:

    P(B) = P(A).P\left( B|A \right) + P\left(\overline{A} \right).P\left( B|\overline{A} \right)= 0,2.0,85 + 0,8.0,1= 0,25.

    Theo công thức Bayes, xác suất chọn được học sinh thuộc câu lạc bộ bơi lội, biết học sinh đó biết bơi ếch là:

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(B)} = \frac{0,2.0,85}{0,25} = 0,68.

  • Câu 20: Thông hiểu
    Chọn đáp án đúng

    Cho bảng dữ liệu sau về kết quả xét nghiệm một loại bệnh:

    Dương tính

    Âm tính

    Mắc bệnh

    100

    20

    Không mắc bệnh

    30

    850

    Nếu một người có kết quả xét nghiệm dương tính, xác suất người đó mắc bệnh là bao nhiêu?

    Hướng dẫn:

    Gọi biến cố A: "Người đó mắc bệnh"

    Biến cố B:''Người đó có kết quả xét nghiệm dương tính''.

    Với P\left( B|A \right): xác suất kết quả dương tính khi người đó mắc bệnh

    P\left( B|A \right) = \frac{100}{100 +
20} = \frac{5}{6}.

    \begin{matrix}P(A) = \dfrac{100 + 20}{1000} = \dfrac{120}{1000} = 0.12.\end{matrix}

    P(B) = \frac{100 + 30}{1000} = 0.13

    Từ đó suy ra: P\left( A|B \right) =
\frac{P\left( B|A \right).P(A)}{P(B)} = \frac{5}{6}.\frac{0.12}{0.13} =
0.7692 \simeq 77\%.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo