Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CTST Công thức xác suất toàn phần và công thức Bayes (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn kết quả thích hợp

    Cho hai biến cố AB\ P(A) =
0,2;\ P(B) = 0,6;P\left( A|B \right) = 0,3. Tính \ P\left( \overline{A}B \right).

    Hướng dẫn:

    Theo công thức tính xác suất có điều kiện ta có:

    \ P\left( A|B \right) =
\frac{P(AB)}{P(B)}

    \Rightarrow P(AB) = P\left( A|B
\right).P(B) = 0,3.0,6 = 0,18.

    \ \overline{A}B\ AB là hai biến cố xung khắc và \ \overline{A}B \cup AB = B nên theo tính chất của xác suất, ta có:

    \ P\left( \overline{A}B \right) + P(AB)
= P(B)

    \Rightarrow P\left( \overline{A}B \right)
= P(B) - P(AB) = 0,6 - 0,18 = 0,42.

  • Câu 2: Vận dụng
    Chọn phương án đúng

    Tỷ lệ người nghiện thuốc là ở một vùng là 30\%. Biết rằng tỷ lệ người bị viêm họng trong số những người nghiện thuốc là 60\%, còn tỷ lệ người bị viêm họng trong số những người không nghiện là 40\%. Lấy ngẫu nhiên một người thấy người ấy bị viêm họng. Nếu người đó không bị viêm họng, tính xác suất người đó nghiện thuốc lá.

    Hướng dẫn:

    Gọi A là "người nghiện thuốc" và B là "người viêm họng" thì từ đề bài ta có:

    P(A) = 0,3;P\left( B|A ight) =
0,6;P\left( B|\overline{A} ight) = 0,4

    Cần tính xác suất là C = A|B.

    Sử dụng công thức Baye ta có:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight)P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,3.0,6}{0,3.0,6 + 0,7.0,4} = \frac{9}{23}

    Gọi D = A|\overline{B} ta có:

    P(D) = \frac{P\left( A\overline{B}
ight)}{P\left( \overline{B} ight)} = \frac{P(A) - P(AB)}{1 -
P(B)}

    = \frac{P(A) - P(A)P\left( B|A
ight)}{1 - P(B)} \approx 0,2222

  • Câu 3: Thông hiểu
    Tính xác suất chọn được áo chất lượng cao

    Một công ty may có hai chi nhánh cùng sản xuất một loại áo, trong đó có 56\% áo ở chi nhánh I và 44\% áo ở chi nhánh II. Tại chi nhánh I có 75\% áo chất lượng cao và tại chi nhánh II có 68\% áo chất lượng cao (kích thước và hình dáng bề ngoài của các áo là như nhau). Chọn ngẫu nhiên 1 áo. Xác suất chọn được áo chất lượng cao là (làm tròn đến chữ số thập phân thứ hai)

    Hướng dẫn:

    Gọi A là biến cố áo được chọn là áo chất lượng cao. B là biến cố áo được chọn ở chi nhánh I\overline{B} là biến cố áo được chọn ở chi nhánh II.

    Từ giải thiết ta có P(B) = 0,56, P\left( \left. \ A \right|B \right) =
0,75, P\left( \overline{B} \right)
= 0,44, P\left( \left. \ A
\right|\overline{B} \right) = 0,68.

    Theo công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A\left| B\right.\  \right) + P\left( \overline{B} \right).P\left( \left. \ A\right|\overline{B} \right)

    = 0,56.0,75 + 0,44.0,68 = 0,7192 \approx0,72.

    Vậy xác suất chọn được áo chất lượng cao là 0,72.

  • Câu 4: Nhận biết
    Kết luận đúng

    Giả sử AB là hai biến cố ngẫu nhiên thỏa mãn P(A) > 00 < P(B) < 1. Khi đó

    Hướng dẫn:

    Ta có: P\left( \left. \ B \right|A
\right) = \frac{P(B)P\left( \left. \ A \right|B \right)}{P(B)P\left(
\left. \ A \right|B \right) + P\left( \overline{B} \right)P\left( \left.
\ A \right|\overline{B} \right)}

  • Câu 5: Vận dụng
    Xét tính đúng sai của các khẳng định

    Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Hiền, trong đó có 1 bạn nữ và 2 bạn nam. Thầy giáo gọi ngẫu nhiên 1 bạn lên bảng.

    a) Xác suất để có tên Hiền là \frac{1}{10}. Đúng||Sai

    b) Xác suất để có tên Hiền, nhưng với điều kiện bạn đó nữ là \frac{3}{17}. Sai||Đúng

    c) Xác suất để có tên Hiền, nhưng với điều kiện bạn đó nam là \frac{2}{13}. Đúng||Sai

    d) Nếu thầy giáo gọi 1 bạn có tên là Hiền lên bảng thì xác xuất để bạn đó là bạn nữ là \frac{3}{17}. Sai||Đúng

    Đáp án là:

    Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Hiền, trong đó có 1 bạn nữ và 2 bạn nam. Thầy giáo gọi ngẫu nhiên 1 bạn lên bảng.

    a) Xác suất để có tên Hiền là \frac{1}{10}. Đúng||Sai

    b) Xác suất để có tên Hiền, nhưng với điều kiện bạn đó nữ là \frac{3}{17}. Sai||Đúng

    c) Xác suất để có tên Hiền, nhưng với điều kiện bạn đó nam là \frac{2}{13}. Đúng||Sai

    d) Nếu thầy giáo gọi 1 bạn có tên là Hiền lên bảng thì xác xuất để bạn đó là bạn nữ là \frac{3}{17}. Sai||Đúng

    a) Xác suất để thầy giáo gọi bạn đó lên bảng có tên Hiền là

    Gọi A là biến cố “tên là Hiền”

    Gọi B là biến cố “nữ”.

    Xác suất để học sinh được gọi có tên là Hiền là: P(A) = \frac{3}{30} = \frac{1}{10}

    b) Xác suất để thầy giáo gọi bạn đó lên bảng có tên Hiền, nhưng với điều kiện bạn đó nữ là P\left( A|B
\right)

    Ta có:

    P(B) = \frac{17}{30} ; P(A \cap B) = \frac{1}{30}

    Do đó: P\left( A|B \right) = \frac{P(A
\cap B)}{P(B)} = \frac{\frac{1}{30}}{\frac{17}{30}} =
\frac{1}{17}

    c) Gọi C là biến cố “nam”.

    Xác suất để thầy giáo gọi bạn đó lên bảng có tên Hiền, nhưng với điều kiện bạn đó nam làP\left( A|C
\right)

    Ta có:

    P(C) = \frac{13}{30} ; P(A \cap C) = \frac{2}{30}

    Do đó: P\left( A|C \right) = \frac{P(A
\cap C)}{P(C)} = \frac{\frac{2}{30}}{\frac{13}{30}} =
\frac{2}{13}

    d) Nếu thầy giáo gọi 1 bạn có tên là Hiền lên bảng thì xác xuất để bạn đó là bạn nữ là P\left( B|A
\right)

    P\left( B|A \right) = \frac{P(A \cap
B)}{P(A)} = \frac{\frac{1}{30}}{\frac{3}{30}} = \frac{1}{3}

    Đáp án: a) Đ, b) S, c) Đ, d) S.

  • Câu 6: Nhận biết
    Tính P(A|B)

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2, P(B) = 0,4. Tính P\left( A|B \right).

    Hướng dẫn:

    Ta có:

    A và B là hai biến cố độc lập nên: P\left( A|B \right) = P(A) =
0,2.

  • Câu 7: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hai biến cố AB, với P\left( \overline{A} \right) = 0,4\ ,\ P(B) = 0,7\
,\ P(A \cap B) = 0,3.

    a) P(A) = 0,6P\left( \overline{B} \right) = 0,3 Đúng||Sai

    b) P\left( A|B \right) =
\frac{2}{3}Sai||Đúng

    c) P\left( \overline{B}|A \right) =
\frac{1}{3} Sai||Đúng

    d) P\left( \overline{A} \cap B \right) =
\frac{3}{5} Sai||Đúng

    Đáp án là:

    Cho hai biến cố AB, với P\left( \overline{A} \right) = 0,4\ ,\ P(B) = 0,7\
,\ P(A \cap B) = 0,3.

    a) P(A) = 0,6P\left( \overline{B} \right) = 0,3 Đúng||Sai

    b) P\left( A|B \right) =
\frac{2}{3}Sai||Đúng

    c) P\left( \overline{B}|A \right) =
\frac{1}{3} Sai||Đúng

    d) P\left( \overline{A} \cap B \right) =
\frac{3}{5} Sai||Đúng

    a) Đúng.

    Ta có: P\left( \overline{A} \right) = 1 -
P(A) = 0,6

    P(B) = 1 - P\left( \overline{B} \right) =
0,3.

    b) Sai.

    Ta có: P\left( A|B \right) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

    c) Sai.

    Ta có: P\left( \overline{B}|A \right) = 1
- P\left( B|A \right) = \frac{P(A \cap B)}{P(A)} = 1 - \frac{0,3}{0,6} =
0,5.

    d) Sai.

    Ta có: P\left( \overline{A} \cap B
\right) = P\left( \overline{A}|B \right).P(B)

    P\left( \overline{A}|B \right) = 1 -
P\left( A|B \right) = \frac{P(A \cap B)}{P(B)} = 1 - \frac{0,3}{0,7} =
\frac{4}{7}

    P\left( \overline{B} \cap A \right) =
P\left( \overline{A}|B \right).P(B) = \frac{4}{7}.0,7 =
\frac{2}{5}.

  • Câu 8: Vận dụng
    Chọn đáp án đúng

    Một loài sinh vật có các kiểu gen AA, Aa, aa theo tỉ lệ: 1 : 2 : 1. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen AA thì các cá thể con đều có kiểu gen AA. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen Aa thì cá thể con có kiểu gen AA, Aa theo tỉ lệ 1 : 1. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen aa thì cá thể con chỉ có các kiểu Aa. Chọn một cá thể con từ cá thể mẹ có kiểu gen AA. Tính xác suất ñể cá thể con có kiểu gen Aa.

    Hướng dẫn:

    Gọi B là biến cố cá thể con có kiểu gen Aa

    A1 là biến cố cá thể bố có kiểu gen AA

    A2 là biến cố cá thể bố có kiểu gen Aa

    A3 là biến cố cá thể bố có kiểu gen aa

    Hệ: A1, A2, A3 là hệ đầy đủ

    Ta xác định được:

    P\left( A_{1} ight) =
\frac{1}{4};P\left( A_{2} ight) = \frac{2}{4};P\left( A_{3} ight) =
\frac{1}{4}

    P\left( B|A_{1} ight) = 0;P\left(
B|A_{2} ight) = \frac{1}{2};P\left( B|A_{3} ight) = 1

    Do đó:

    P(B) = P\left( A_{1} ight)P\left(
B|A_{1} ight) + P\left( A_{2} ight)P\left( B|A_{2} ight) + P\left(
A_{3} ight)P\left( B|A_{3} ight)

    \Rightarrow P(B) = \frac{1}{4}.0 +
\frac{2}{4}.\frac{1}{2} + \frac{1}{4}.1 = \frac{1}{4} + \frac{1}{4} =
\frac{1}{2}

  • Câu 9: Thông hiểu
    Tính xác suất P

    Có hai hộp thuốc:

    Hộp I có 2 vỉ thuốc ngoại và 5 vỉ thuốc nội.

    Hộp II có 3 vỉ thuốc ngoại và 6 vỉ thuốc nội.

    Từ hộp I và hộp II lần lượt lấy ra 2 vỉ thuốc và 1 vỉ thuốc. Từ 3 vỉ thuốc đó lại lấy ra một vỉ. Biết vỉ lấy ra sau cùng là thuốc ngoại. Tính xác suất để vỉ thuốc này thuộc hộp số II?

    Hướng dẫn:

    Gọi A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp I”

    A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp II”

    Ta có A1, A2 lập thành hệ đầy đủ các biến cố khi đó ta xác định được:

    P\left( A_{1} ight) =
\frac{2}{3};P\left( A_{2} ight) = \frac{1}{3}

    P\left( B|A_{1} ight) =
\frac{2}{7};P\left( B|A_{2} ight) = \frac{3}{9}

    Gọi B là biến cố “vỉ thuốc lấy ra sau cùng là thuốc ngoại”.

    Theo công thức xác suất toàn phần ta có:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2}
ight)

    \Rightarrow P(B) =
\frac{2}{3}.\frac{2}{7} + \frac{1}{3}.\frac{3}{9} =
\frac{19}{63}.

    Áp dụng công thức Bayes ta có:

    P\left( A_{2}|B ight) = \dfrac{P\left(A_{2} ight).P\left( B|A_{2} ight)}{P(B)} =\dfrac{\dfrac{1}{3}.\dfrac{3}{9}}{\dfrac{19}{63}} =\dfrac{7}{19}.

  • Câu 10: Thông hiểu
    Tính xác suất lấy được chính phẩm

    Có ba hộp giống nhau:

    Hộp thứ nhất đựng 10 sản phẩm trong đó có 6 chính phẩm.

    Hộp thứ hai đựng 15 sản phẩm trong đó có 10 chính phẩm.

    Hộp thứ ba đựng 20 sản phẩm trong đó có 15 chính phẩm.

    Lấy ngẫu nhiên một hộp và từ đó lấy ngẫu nhiên một sản phẩm. Tìm xác suất để lấy được chính phẩm?

    Hướng dẫn:

    Gọi A là biến cố: “Lấy được chính phẩm”. Biến cố A có thể xảy ra đồng thời với ba biến cố sau đây tạo nên một nhóm đầy đủ các biến cố:

    H_{1} - Sản phẩm lấy ra thuốc hộp I.

    H_{2} - Sản phẩm lấy ra thuốc hộp II.

    H_{3} - Sản phẩm lấy ra thuốc hộp III.

    Vì theo giả thiết của bài toán, các biến cố H_{1}; H_{2}; H_{3} là đồng khả năng, do đó:

    P\left( H_{1} ight) = P\left( H_{2}
ight) = P\left( H_{3} ight) = \frac{1}{3}

    Xác suất có điều kiện của biến cố A khi các biến cố H_{1}; H_{2}; H_{3} xảy ra bằng:

    P\left( A|H_{1} ight) =
\frac{6}{10};P\left( A|H_{2} ight) = \frac{10}{15};P\left( A|H_{3}
ight) = \frac{15}{20}

    Do đó:

    P(A) = P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2} ight) +
P\left( H_{3} ight).P\left( A|H_{3} ight)

    \Rightarrow P(A) =
\frac{1}{3}.\frac{6}{10} + \frac{1}{3}.\frac{10}{15} +
\frac{1}{3}.\frac{15}{20} = \frac{124}{180} = \frac{31}{45}

  • Câu 11: Vận dụng
    Tính xác suất để chọn được trứng không bị ung

    Một cửa hàng bán trứng gà, có hai loại trứng, trong đó có 65\% loại trứng gà Mỹ và 35\%trứng gà Nga, các trứng có kích thước như nhau. Các trứng gà Mỹ có tỉ lệ bị ung (hư) là 2\% và các trứng gà Nga có tỉ lệ bị ung là 3\%. Một khách hàng chọn mua ngấu nhiên 1 trứng gà từ cửa hàng. Tính xác suất để chọn được trứng không bị ung. (Kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Xét các biến cố:

    A: "Khách hàng chọn được loại trứng gà Mỹ ";

    B: "Khách hàng chọn được loại trứng gà không bị ung".

    Ta có: P(A) = 0,65;\ P\left( \overline{A}
\right) = 0,35;

    P\left( B|A \right) = 1 - P\left(
\overline{B}|A \right) = 1 - 0,02 = 0,98;

    P\left( B|\overline{A} \right) = 1 -
P\left( \overline{B}|\overline{A} \right) = 1 - 0,03 = 0,97

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A)P\left( B|A \right) + P\left(
\overline{A} \right)P\left( B|\overline{A} \right)

    = 0,65.0,98 + 0,35.0,97 = 0,9765 \approx
0,98.

  • Câu 12: Thông hiểu
    Tính giá trị của D

    Cho hai biến cố A,B thỏa mãn P(A) = 0,21;\ \ P(B) = 0,52;\  P\left( B|A\right) = 0,6. Khi đó P\left( A|B
\right) = \frac{a}{b} với a,b \in
\mathbb{N}^{*},\ \ \frac{a}{b} là phân số tối giản, giá trị của D = a + b là bao nhiêu?

    Hướng dẫn:

    Ta có: P(AB) = P(A).P\left( B|A \right) =
0,21.0,6 = 0,126.

    P(AB) = P(B).P\left( A|B
\right)

    \Rightarrow P\left( A|B \right) =
\frac{P(AB)}{P(B)} = \frac{0,126}{0,52} = \frac{63}{260}.

    Suy ra: a = 63b = 260.

    Vậy D = a + b = 63 + 260 =
323.

  • Câu 13: Thông hiểu
    Tính xác suất của biến cố

    Trong lễ khai giảng năm học mới, bạn An tham gia trò chơi gồm hai vòng. Xác suất thắng ở vòng chơi đầu tiên là 0,7. Nếu An thắng ở vòng thứ nhất thì xác suất thắng ở vòng hai là 0,8. Ngược lại, nếu An thua ở vòng thứ nhất thì xác suất thắng ở vòng hai là 0,4. Xác xuất để An thắng ở vòng chơi thứ hai là

    Hướng dẫn:

    Gọi biến cố A: “Bạn An thắng ở vòng thứ nhất”

    Biến cố B: “Bạn An thắng ở vòng thứ hai”

    Ta có sơ đồ hình cây biểu thị tình huống trên như sau:

    P(B) = P(A)P\left( B|A \right) + P\left(\overline{A} \right)P\left( B|\overline{A} \right)= 0,7.0,8 + 0,3.0,4 =0,68.

  • Câu 14: Vận dụng
    Xét tính đúng sai của các nhận định

    Khi kiểm tra sức khoẻ tổng quát của bệnh nhân ở một bệnh viện, người ta được kết quả như sau:

    - Có 40\% bệnh nhân bị đau dạ dày.

    - Có 30\% bệnh nhân thường xuyên bị stress.s

    - Trong số các bệnh nhân bị stress có 80\% bệnh nhân bị đau dạ dày.

    Chọn ngẫu nhiên 1 bệnh nhân.

    a) Xác suất chọn được bệnh nhân thường xuyên bị stress là 0,3 Đúng||Sai

    b) Xác suất chọn được bệnh nhân bị đau dạ dày, biết bệnh nhân đó thường xuyên bị stress, là 0,8. Đúng||Sai

    c) Xác suất chọn được bệnh nhân vừa thường xuyên bị stress vừa bị đau dạ dày là 0,24. Đúng||Sai

    d) Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày, là 0,6. Đúng||Sai

    Đáp án là:

    Khi kiểm tra sức khoẻ tổng quát của bệnh nhân ở một bệnh viện, người ta được kết quả như sau:

    - Có 40\% bệnh nhân bị đau dạ dày.

    - Có 30\% bệnh nhân thường xuyên bị stress.s

    - Trong số các bệnh nhân bị stress có 80\% bệnh nhân bị đau dạ dày.

    Chọn ngẫu nhiên 1 bệnh nhân.

    a) Xác suất chọn được bệnh nhân thường xuyên bị stress là 0,3 Đúng||Sai

    b) Xác suất chọn được bệnh nhân bị đau dạ dày, biết bệnh nhân đó thường xuyên bị stress, là 0,8. Đúng||Sai

    c) Xác suất chọn được bệnh nhân vừa thường xuyên bị stress vừa bị đau dạ dày là 0,24. Đúng||Sai

    d) Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày, là 0,6. Đúng||Sai

    Xét các biến cố: A: “Chọn được bệnh nhân thường xuyên bị stress”;

    B: “Chọn được bệnh nhân bị đau dạ dày”

    Khi đó, P(A) = 0,3;P(B) = 0,4;P(B \mid A)
= 0,8.

    Suy ra xác suất chọn được bệnh nhân thường xuyên bị stress vừa bị đau dạ dày là

    P(A \cap B) = P(A) \cdot P(B \mid A) =
0,3 \cdot 0,8 = 0,24;

    Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày, là P\left( A|B \right) =
\frac{P(A \cap B)}{P(B)} = \frac{0,24}{0,4} = 0,6.

    Đáp án: a) Đ, b) Đ, c) Đ, d) Đ.

  • Câu 15: Vận dụng
    Xét tính đúng sai của các nhận định sau

    Năm 2001, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là 70\%; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là 10\%. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,3 con trên 100000 con. Gọi X là biến cố một con bò bị bệnh bò điên, Y là biến cố một con bò phản ứng dương tính với xét nghiệm.

    a) P(X) = 13.10^{- 6}. Đúng||Sai

    b) P(Y \mid X) = 0,07. Sai||Đúng

    c) P\left( Y \mid \overline{X} \right) =
0,1. Đúng||Sai

    d) P(Y \cap X) = 91.10^{- 8}. Sai||Đúng

    Đáp án là:

    Năm 2001, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là 70\%; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là 10\%. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,3 con trên 100000 con. Gọi X là biến cố một con bò bị bệnh bò điên, Y là biến cố một con bò phản ứng dương tính với xét nghiệm.

    a) P(X) = 13.10^{- 6}. Đúng||Sai

    b) P(Y \mid X) = 0,07. Sai||Đúng

    c) P\left( Y \mid \overline{X} \right) =
0,1. Đúng||Sai

    d) P(Y \cap X) = 91.10^{- 8}. Sai||Đúng

    Tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,3 con trên 100\ 000 con nghĩa là P(X) = 13.10^{- 6}.

    Khi con bò bị bệnh bò điên, thì xác suất để ra phản ứng dương tính trong xét nghiệm là 70%, nghĩa là: P\left(
Y|X \right) = 0,7.

    Khi con bò không bị bệnh, thì xác xuất để xả ra phản ứng dương tính trong xét nghiệm đó là 10%, nghĩa là P\left(
Y|\overline{X} \right) = 0,1. Khi đó, ta có:

    P(Y \cap X) = P\left( Y|X \right).P(X) =
0,7\ .\ 13\ .\ 10^{- 6} = 91.10^{- 7}.

    Đáp án: a) Đ, b) S, c) Đ, d) S.

  • Câu 16: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố A;B với P(B) = 0,6;P\left( A|B ight) = 0,7;P\left(
A|\overline{B} ight) = 0,4. Giá trị P(A) bằng:

    Hướng dẫn:

    Ta có: P\left( \overline{B} ight) = 1 -
P(B) = 1 - 0,6 = 0,4

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,7 + 0,4.0,4 =
0,58

  • Câu 17: Thông hiểu
    Tính xác suất để chẩn đoán có bệnh

    Tại một phòng khám chuyên khoa tỷ lệ người đến khám có bệnh là 0,8. Người ta áp dụng phương pháp chẩn đoán mới thì thấy nếu khẳng định có bệnh thì đúng 9 trên 10 trường hợp; còn nếu khẳng định không bệnh thì đúng 5 trên 10 trường hợp. Tính xác suất để chẩn đoán có bệnh?

    Hướng dẫn:

    Gọi A là "người đến khám có bệnh" thì A, \overline{A} tạo thành hệ đầy đủ

    Gọi B là "Chẩn đoán có bệnh".

    Ta có P(A | B) = 0.9, P(A|B) = 0.5.

    Tìm P(B) từ:

    P\left( A|B ight) = \frac{P(AB)}{P(B)}
= \frac{P(A) - P\left( A|\overline{B} ight).P\left( \overline{B}
ight)}{P(B)}

    \Rightarrow P\left( A|B ight) =
\frac{P(A) - P\left( A|\overline{B} ight).\left\lbrack 1 - P(B)
ightbrack}{P(B)}

    \Rightarrow 0,9 = \frac{0,8 -
0,5\left\lbrack 1 - P(B) ightbrack}{P(B)}

    \Leftrightarrow P(B) = 0,75

  • Câu 18: Nhận biết
    Tính P(A|B)

    Cho P(A) = 0,3; P(B) = 0,5; P\left( B\left| A \right.\  \right) =
0,7. Khi đó P\left( A\left| B
\right.\  \right) bằng

    Hướng dẫn:

    Theo công thức Bayes, ta có:

    P\left( A\left| B \right.\  \right) =
\frac{P(A).P\left( B\left| A \right.\  \right)}{P(B)} =
\frac{0,3.0,7}{0,5} = 0,42.

  • Câu 19: Thông hiểu
    Xét tính đúng sai của các nhận định

    Có hai đội thi đấu môn Bóng bàn. Đội I có 6 vận động viên, đội II có 8 vận động viên. Xác suất đạt huy chương đồng của mỗi vận động viên đội I và đội II tương ứng là 0,80,65. Chọn ngẫu nhiên một vận động viên.

    a) [NB] Xác suất để vận động viên này thuộc đội I0,8. Sai||Đúng

    b) [TH] Xác suất để vận động viên được chọn đạt huy chương đồng là \frac{5}{7}. Đúng||Sai

    c) [TH] Xác suất để vận động viên này thuộc đội II và đạt huy chương đồng là 0,48. Sai||Đúng

    d) [VD] Xác suất để vận động viên này thuộc đội I và đạt huy chương đồng là \frac{12}{25}. Đúng||Sai

    Đáp án là:

    Có hai đội thi đấu môn Bóng bàn. Đội I có 6 vận động viên, đội II có 8 vận động viên. Xác suất đạt huy chương đồng của mỗi vận động viên đội I và đội II tương ứng là 0,80,65. Chọn ngẫu nhiên một vận động viên.

    a) [NB] Xác suất để vận động viên này thuộc đội I0,8. Sai||Đúng

    b) [TH] Xác suất để vận động viên được chọn đạt huy chương đồng là \frac{5}{7}. Đúng||Sai

    c) [TH] Xác suất để vận động viên này thuộc đội II và đạt huy chương đồng là 0,48. Sai||Đúng

    d) [VD] Xác suất để vận động viên này thuộc đội I và đạt huy chương đồng là \frac{12}{25}. Đúng||Sai

    a) Sai. Gọi A là biến cố: “Vận động viên được chọn thuộc đội I”.

    Ta có n(A) = 6, n(\Omega) = 14.

    Do đó P(A) = \frac{6}{14} = \frac{3}{7}
\approx 0,4286.

    b) Đúng. Ta có: \overline{A} là biến cố: “Vận động viên được chọn thuộc đội II”.

    Suy ra P\left( \overline{A} ight) =
\frac{4}{7}.

    B là biến cố: “Vận động viên được chọn đạt huy chương đồng”.

    Khi đó ta có: P\left( B|A ight) =
0,8, P\left( B|\overline{A} ight)
= 0,65.

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    P(B) = \frac{3}{7}.0,8 + \frac{4}{7}.0,65
= \frac{5}{7}.

    c) Sai. Áp dụng công thức Bayes ta có:

    P\left( \overline{A}|B ight) =
\frac{P\left( \overline{A} ight).P\left( B|\overline{A}
ight)}{P(B)} =\dfrac{\dfrac{4}{7}.0,65}{\dfrac{5}{7}} = \dfrac{13}{25} =
0,52.

    d) Đúng. Áp dụng công thức Bayes ta có:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(B)} =\dfrac{\dfrac{3}{7}.0,8}{\dfrac{5}{7}} = \dfrac{12}{25}.

  • Câu 20: Nhận biết
    Tìm khẳng định sai

    Giả sử AB là hai biến cố ngẫu nhiên thỏa mãn P(A) > 00 < P(B) < 1. Khẳng định nào dưới đây sai?

    Hướng dẫn:

    Giả sử AB là hai biến cố ngẫu nhiên thỏa mãn P(A) > 00 < P(B) < 1.

    Khi đó, công thức Bayes:

    P\left( B|A \right) = \frac{P(B)P\left(
A|B \right)}{P(B)P\left( A|B \right) + P\left( \overline{B}
\right)P\left( A|\overline{B} \right)}

    Hay còn có thể viết dưới dạng: P\left( B|A \right) =
\frac{P(B)P\left( A|B \right)}{P(A)}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo