Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CTST Công thức xác suất toàn phần và công thức Bayes (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xét tính đúng sai của các phương án

    Giả sử 5\% email của bạn nhận được là email rác. Bạn sử dụng một hệ thống lọc email rác mà khả năng lọc đúng email rác của hệ thống này là 95\% và có 10\% những email không phải là email rác nhưng vẫn bị lọc. Các khẳng định sau đúng hay sai?

    Hướng dẫn:

    a) Gọi A: “Email nhận được là email rác”.

    Và B: “Email bị lọc đúng email rác của hệ thống lọc email rác”.

    Vì 5% email nhận được là rác nên xác suất nhận được một email rác là

    P(A) = 5\% = 0,05

    b) Xác suất email bị lọc của email rác là P\left( B|A ight) = 95\% = 0,95.

    c) Xác suất email nhận được không phải rác là P\left( \overline{A} ight) = 1 - P(A) = 1 - 0,05
= 0,95

    Xác suất email bị lọc của email không phải rác là P\left( B|\overline{A} ight) = 0,1

    Vậy xác suất chọn một email bị lọc bất kể là rác hay không là

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight)P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,95.0,05 + 0,1.0,95
= 0,1425

    d) Xác suất chọn một email trong số những email bị lọc thực sự là email rác là

    P\left( A|B ight) = \frac{P\left( B|A
ight).P(A)}{P(B)} = \frac{0,95.0,05}{0,1425} =
\frac{1}{3}.

  • Câu 2: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB. Biết P(B)
= 0,01; P\left( A|B \right) =
0,7; P\left( A|\overline{B} \right)
= 0,09. Khi đó P(A) bằng

    Hướng dẫn:

    Ta có: P(B) = 0,01 \Rightarrow P\left(
\overline{B} \right) = 1 - 0,01 = 0,99.

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B)P\left( A|B \right) + P\left(
\overline{B} \right)P\left( A|\overline{B} \right)

    = 0,01.0,7 + 0,99.0,09 =
0,0961.

  • Câu 3: Nhận biết
    Tính giá trị của P(A)

    Cho hai biến cố AB, với P(B) =
0,8, P\left( A|B \right) =
0,7, P\left( A|\overline{B} \right)
= 0,45. Giá trị P(A) bằng

    Hướng dẫn:

    Ta có: P\left( \overline{B} \right) = 1 -
P(B) = 1 - 0,8 = 0,2

    Công thức xác suất toàn phần

    P(A) = P(B).P\left( A|B \right) +
P\left( \overline{B} \right).P\left( A|\overline{B} \right)= 0,8.0,7 + 0,2.0,45 = 0,65

  • Câu 4: Vận dụng
    Chọn đáp án đúng

    Cho hai hộp đựng phiếu bốc thăm trúng thưởng giống nhau:

    Hộp thứ nhất có tỉ lệ trúng thưởng bằng \frac{3}{4}.

    Hộp thứ hai có tỉ lệ trúng thưởng bằng \frac{2}{3}.

    Chọn ngẫu nhiên một thùng và lấy ngẫu nhiên một phiếu trong thùng đó thấy phiếu đó trúng thưởng. Bỏ lại phiếu trở lại thùng, từ thùng đó lấy tiếp một phiếu. Tìm xác suất để lần thứ hai cũng lấy được phiếu trúng thưởng.

    Hướng dẫn:

    Gọi A là biến cố phiếu đầu tiên lấy là phiếu trúng thưởng.

    Biến cố A có thể xảy ra cùng với một trong các biến cố sau:

    H1 phiếu bốc thăm lấy ra từ thùng I.

    H2 phiếu bốc thăm lấy ra từ thùng II.

    Theo công thức xác xuất toàn phần ta có:

    P(A) = P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2}
ight)

    Theo dữ kiện đề bài ta có: \left\{
\begin{matrix}
P\left( H_{1} ight) = P\left( H_{2} ight) = \frac{1}{2} \\
P\left( A|H_{1} ight) = \frac{3}{4};P\left( A|H_{2} ight) =
\frac{2}{3} \\
\end{matrix} ight.

    Do đó: P(A) = \frac{1}{2}.\frac{3}{4} +
\frac{1}{2}.\frac{2}{3} = \frac{17}{24}

    Sau khi biến cố A đã xảy ra, xác suất của các biến cố H_{1};H_{2} thay đổi theo công thức Bayes như sau:

    P\left( H_{1}|A ight) = \frac{P\left(
H_{1} ight).P\left( A|H_{1} ight)}{P(A)} = \frac{3}{8}:\frac{17}{24}
= \frac{9}{17}

    P\left( H_{2}|A ight) = \frac{P\left(
H_{2} ight).P\left( A|H_{2} ight)}{P(A)} = \frac{1}{3}:\frac{17}{24}
= \frac{8}{17}

    Gọi B là biến cố lấy phiếu lần thứ hai là trúng thưởng.

    B vẫn có thể xảy ra với một trong hai giả thiết H_{1};H_{2} do đó theo công thức xác suất toàn phần ta có:

    P(B) = P\left( H_{1}|A ight).P\left(
B|H_{1}A ight) + P\left( H_{2}|A ight).P\left( B|H_{2}A
ight)

    Vì phiếu lấy lần thứ nhất bỏ trở lại thùng, do đó tỉ lệ trúng thưởng ở các thùng đó vẫn không thay đổi.

    Vì thế

    P\left( B|H_{1}A ight) =
\frac{3}{4};P\left( B|H_{2}A ight) = \frac{2}{3}

    \Rightarrow P(B) =
\frac{9}{17}.\frac{3}{4} + \frac{8}{17}.\frac{2}{3} = \frac{145}{204} =
0,71

  • Câu 5: Vận dụng
    Tính xác suất lấy được viên bi đánh số

    Một hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60% số viên bi màu đỏ đánh số và 50% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số. Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số bằng

    Hướng dẫn:

    Gọi A là biến cố “viên bi được lấy ra có đánh số”.

    Gọi B là biến cố “viên bi được lấy ra có màu đỏ”, suy ra \overline{B} là biến cố “viên bi được lấy ra có màu vàng”.

    Lúc này ta đi tính P(A) theo công thức:

    P(A) = P(B).P\left( A|B \right) + P\left(
\overline{B} \right).P\left( A|\overline{B} \right).

    Ta có:P(B) = \frac{50}{80} =
\frac{5}{8}.

    P\left( \overline{B} \right) =
\frac{30}{80} = \frac{3}{8}.

    P\left( A|B \right) = 60\% =
\frac{3}{5}.

    P\left( A|\overline{B} \right) = 100\% -
50\% = \frac{1}{2}.

    Vậy P(A) = P(B).P\left( A|B \right) +P\left( \overline{B} \right).P\left( A|\overline{B} \right)=\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} =\frac{9}{16}.

  • Câu 6: Vận dụng
    Xét tính đúng sai của các nhận định

    Một xí nghiệp mỗi ngày sản xuất ra 2000 sản phẩm trong đó có 39 sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra.

    a) Xác suất lấy ra sản phẩm lần thứ nhất bị lỗi là \frac{39}{2000}.Đúng||Sai

    b) Xác suất lấy ra được cả hai sản phẩm bị lỗi là \frac{2}{39}.Sai||Đúng

    c) Xác suất lấy ra sản phẩm lần thứ hai bị lỗi, biết rằng lấy lần thứ nhất sản phẩm không bị lỗi là \frac{39}{1999}. Đúng||Sai

    d) Xác suất lấy ra sản phẩm lần thứ hai bị lỗi là \frac{39}{2000}. Đúng||Sai

    Đáp án là:

    Một xí nghiệp mỗi ngày sản xuất ra 2000 sản phẩm trong đó có 39 sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra.

    a) Xác suất lấy ra sản phẩm lần thứ nhất bị lỗi là \frac{39}{2000}.Đúng||Sai

    b) Xác suất lấy ra được cả hai sản phẩm bị lỗi là \frac{2}{39}.Sai||Đúng

    c) Xác suất lấy ra sản phẩm lần thứ hai bị lỗi, biết rằng lấy lần thứ nhất sản phẩm không bị lỗi là \frac{39}{1999}. Đúng||Sai

    d) Xác suất lấy ra sản phẩm lần thứ hai bị lỗi là \frac{39}{2000}. Đúng||Sai

    a) Đ Xét các biến cố:

    A_{1}: Sản phẩm lấy ra lần thứ nhất bị lỗi. Khi đó, ta có: P\left( A_{1}
\right) = \frac{39}{2000}; P\left(
\overline{A_{1}} \right) = \frac{1961}{2000}.

    A_{2}: Sản phẩm lấy ra lần thứ hai bị lỗi.

    b) S - Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn 1999 sản phẩm và trong đó có 38 sản phẩm lỗi nên ta có: P\left( A_{2}\left| A_{1} \right.\ \right) =\frac{38}{1999}.

    c) Đ Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn 1999 sản phẩm trong đó có 39sản phẩm lỗi nên ta có: P\left( A_{2}\left| \overline{A_{1}}
\right.\  \right) = \frac{39}{1999}

    d) Đ - Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn 1999 sản phẩm và trong đó có 38 sản phẩm lỗi nên ta có: P\left( A_{2}\left| A_{1} \right.\  \right) = \frac{38}{1999}, suy ra P\left(
\overline{A_{2}}\left| A_{1} \right.\  \right) =
\frac{1961}{1999}.

    - Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn 1999 sản phẩm trong đó có 39sản phẩm lỗi nên ta có: P\left( A_{2}\left| \overline{A_{1}}
\right.\  \right) = \frac{39}{1999}, suy ra P\left( \overline{A_{2}}\left| \overline{A_{1}}
\right.\  \right) = \frac{1960}{1999}.

    Khi đó, xác suất để sản phẩm lấy ra lần thứ hai bị lỗi là:

    P\left( A_{2} \right) = P\left(A_{2}\left| A_{1} \right.\  \right).P\left( A_{1} \right) + P\left(A_{2}\left| \overline{A_{1}} \right.\  \right).P\left( \overline{A_{1}}\right)

    = \frac{38}{1999}.\frac{39}{2000} +\frac{39}{1999}.\frac{1961}{2000} = \frac{39}{2000}.

  • Câu 7: Thông hiểu
    Tính xác suất P

    Có ba kiện hàng (mỗi kiện hàng có 20 sản phẩm) với số sản phẩm tốt tương ứng của mỗi kiện là 18, 16, 12. Lấy ngẫu nhiên một kiện hàng, rồi từ đó lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Trả sản phẩm này lại kiện hàng vừa lấy, sau đó lại lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Tính xác suất để các sản phẩm tốt đó được lấy từ kiện hàng thứ nhất?

    Hướng dẫn:

    Gọi Ai là "sản phẩm lấy từ kiện thứ i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là các sản phẩm lấy ra đều tốt.

    P\left( A_{1} ight) = P\left( A_{2}
ight) = P\left( A_{3} ight) = \frac{1}{3}

    Áp dụng công thức xác suất toàn phần ta có:

    P\left( A|A_{1} ight) =
\frac{18}{20}.\frac{18}{20}

    P\left( A|A_{2} ight) =
\frac{16}{20}.\frac{16}{20}

    P\left( A|A_{3} ight) =
\frac{12}{20}.\frac{12}{20}

    Từ đó ta có:

    P(A) = P\left( A_{1} ight).P\left(
A|A_{1} ight) + P\left( A_{2} ight).P\left( A|A_{2} ight) +
P\left( A_{3} ight).P\left( A|A_{3} ight)

    \Rightarrow P(A) =
\frac{1}{3}.\frac{18}{20}.\frac{18}{20} +
\frac{1}{3}.\frac{16}{20}.\frac{16}{20} +
\frac{1}{3}.\frac{12}{20}.\frac{12}{20} = \frac{181}{300} \approx
0,6033

  • Câu 8: Thông hiểu
    Tính xác suất P

    Trước khi đưa sản phẩm ra thị trường người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 34 người tả lời “sẽ mua”, 97 người trả lời “có thể sẽ mua” và 69 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 70%, 30% và 1%. Tính xác suất người được phỏng vấn sẽ mua sản phẩm?

    Hướng dẫn:

    Gọi H1, H2, H3 lần lượt là 3 biến cố tương ứng với 3 cách trả lời của khách hàng được phỏng vấn:

    H1 – người đó trả lời “sẽ mua”

    H2 – người đó trả lời “có thể mua”

    H3 – người đó trả lời “không mua”

    H1, H2, H3 là một hệ đầy đủ các biến cố với xác suất tương ứng \frac{34}{200};\frac{97}{200};\frac{69}{200}

    Ta xác định được: P\left( A|H_{1} ight)
= 0,7;P\left( A|H_{2} ight) = 0,3;P\left( A|H_{3} ight) =
0,01

    Theo công thức xác suất đầy đủ ta có:

    P(A) = \frac{34}{200}.0,7 +
\frac{97}{200}.0,3 + \frac{69}{200}.0,01 = 0,268.

  • Câu 9: Vận dụng
    Tính xác suất chọn được học sinh thỏa mãn yêu cầu

    Tại trường THPT có 20\% học sinh tham gia câu lạc bộ bơi lội, trong số học sinh đó có 85\% học sinh biết bơi ếch. Ngoài ra, có 10\% số học sinh không tham gia câu lạc bộ bơi lội cũng biết bơi ếch. Chọn ngẫu nhiên 1 học sinh của trường. Giả sử học sinh đó biết bơi ếch. Xác suất chọn được học sinh thuộc câu lạc bộ bơi lội là bao nhiêu?

    Hướng dẫn:

    Xét các biến cố: A: "Chọn được học sinh thuộc câu lạc bộ bơi lội ";

    B: “Chọn được học sinh biết bơi ếch”.

    Khi đó P(A) = 0,2;\ \ P\left(
\overline{A} \right) = 0,8;\ \ P\left( B|A \right) = 0,85;\ \ P\left(
B|\overline{A} \right) = 0,1.

    Theo công thức xác suất toàn phần ta có:

    P(B) = P(A).P\left( B|A \right) + P\left(\overline{A} \right).P\left( B|\overline{A} \right)= 0,2.0,85 + 0,8.0,1= 0,25.

    Theo công thức Bayes, xác suất chọn được học sinh thuộc câu lạc bộ bơi lội, biết học sinh đó biết bơi ếch là:

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(B)} = \frac{0,2.0,85}{0,25} = 0,68.

  • Câu 10: Thông hiểu
    Xét tính đúng sai của các kết luận

    Một lớp học có 40 học sinh, trong đó có 15 học sinh nam và 25 học sinh nữ. Khi tổng kết cuối năm, lớp có 20 học sinh giỏi, trong đó có 8 học sinh nam và 12 học sinh nữ. Chọn ngẫu nhiên 1 học sinh trong lớp.

    a) Xác suất học sinh được chọn là học sinh giỏi bằng 0,5.Đúng||Sai

    b) Xác suất học sinh được chọn là học sinh nữ bằng 0,6.Sai||Đúng

    c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng 0,625.Sai||Đúng

    d) Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh giỏi bằng 0,48.Đúng||Sai

    Đáp án là:

    Một lớp học có 40 học sinh, trong đó có 15 học sinh nam và 25 học sinh nữ. Khi tổng kết cuối năm, lớp có 20 học sinh giỏi, trong đó có 8 học sinh nam và 12 học sinh nữ. Chọn ngẫu nhiên 1 học sinh trong lớp.

    a) Xác suất học sinh được chọn là học sinh giỏi bằng 0,5.Đúng||Sai

    b) Xác suất học sinh được chọn là học sinh nữ bằng 0,6.Sai||Đúng

    c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng 0,625.Sai||Đúng

    d) Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh giỏi bằng 0,48.Đúng||Sai

    Xét hai biến số sau:

    A: “Học sinh được chọn là học sinh giỏi”.

    B: “ Học sinh được chọn là học sinh nữ”.

    a) Đ Xác suất học sinh được chọn là học sinh giỏi: P(A) = \frac{20}{40} = 0,5.

    b) s Xác suất học sinh được chọn là học sinh nữ: P(B) = \frac{25}{40} = 0,625 \neq
0,6.

    c) s Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ:

    P(AB) = \frac{12}{40} = 0,3 \neq
0,625.

    d) Đ Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh nữ:

    P\left( A|B \right) = \frac{P(AB)}{P(B)}
= \frac{n(A \cap B)}{n(B)} = \frac{12}{25} = 0,48.

  • Câu 11: Nhận biết
    Tính xác suất P

    Cho hai biến cố AB với P(B) =
0,2;P\left( A|B ight) = 0,5;P\left( A|\overline{B} ight) =
0,4. Tính P\left( B|A
ight)?

    Hướng dẫn:

    Ta có: P(B) = 0,2 \Rightarrow P\left(
\overline{B} ight) = 1 - P(B) = 1 - 0,2 = 0,8

    Áp dụng công thức Bayes:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

    \Rightarrow P\left( B|A ight) =
\frac{0,2.0,5}{0,2.0,5 + 0,8.0,4} = \frac{5}{21} \approx 0,238 .

  • Câu 12: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hai biến cố AB là hai biến cố độc lập, với P\left( \overline{A} \right) = 0,4P(B) = 0,7.

    a) P(A) = 0,6. Đúng||Sai

    b) P\left( \left. \ A \right|\overline{B}
\right) = 0,7.Sai||Đúng

    c) P\left( \overline{\left. \ A \right|}B
\right) = 0,4. Đúng||Sai

    d) P\left( \overline{\left. \ B
\right|}\overline{A} \right) = 0,6. Sai||Đúng

    Đáp án là:

    Cho hai biến cố AB là hai biến cố độc lập, với P\left( \overline{A} \right) = 0,4P(B) = 0,7.

    a) P(A) = 0,6. Đúng||Sai

    b) P\left( \left. \ A \right|\overline{B}
\right) = 0,7.Sai||Đúng

    c) P\left( \overline{\left. \ A \right|}B
\right) = 0,4. Đúng||Sai

    d) P\left( \overline{\left. \ B
\right|}\overline{A} \right) = 0,6. Sai||Đúng

    a) Đ Vì P\left( \overline{A} \right) =
0,4nên P(A) = 1 - P\left(
\overline{A} \right) = 1 - 0,4 = 0,6.

    b) S Vì AB độc lập nên A\overline{B} độc lập.

    Do đó, P\left( \left. \ A
\right|\overline{B} \right) = P(A) = 1 - P\left( \overline{A} \right) =
1 - 0,6 = 0,4 \neq 0,7.

    c) Đ Vì AB độc lập nên B\overline{A} độc lập.

    Do đó, P\left( \overline{\left. \ A
\right|}B \right) = P\left( \overline{A} \right) = 0,4.

    d) S Vì AB độc lập nên \overline{B}\overline{A} độc lập.

    Do đó, P\left( \overline{\left. \ B
\right|}\overline{A} \right) = P\left( \overline{B} \right) = 0,7 \neq
0,6.

  • Câu 13: Nhận biết
    Kết luận đúng

    Giả sử AB là hai biến cố ngẫu nhiên thỏa mãn P(A) > 00 < P(B) < 1. Khi đó

    Hướng dẫn:

    Ta có: P\left( \left. \ B \right|A
\right) = \frac{P(B)P\left( \left. \ A \right|B \right)}{P(B)P\left(
\left. \ A \right|B \right) + P\left( \overline{B} \right)P\left( \left.
\ A \right|\overline{B} \right)}

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Có hai hộp bên ngoài giống nhau:

    Hộp thứ nhất đựng 1 sản phẩm lỗi và 9 sản phẩm tốt.

    Hộp thứ hai đựng 2 sản phẩm lỗi và 8 sản phẩm tốt.

    Lấy ngẫu nhiên một hộp, sau đó lấy ngẫu nhiên một sản phẩm. Xác suất để được sản phẩm tốt là:

    Hướng dẫn:

    Gọi A1 là biến cố lấy sản phẩm từ hộp thứ nhất.

    A2 là biến cố lấy sản phẩm từ hộp thứ hai.

    Vì chọn ngẫu nhiên nên P\left( A_{1}
ight) = P\left( A_{2} ight) = \frac{1}{2}

    Gọi B là biến cố lấy được sản phẩm tốt ta có:

    P\left( B|A_{1} ight) =
\frac{9}{10};P\left( B|A_{2} ight) = \frac{8}{10}

    Do đó:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2}
ight)

    \Rightarrow P(B) =
\frac{1}{2}.\frac{9}{10} + \frac{1}{2}.\frac{8}{10} = \frac{17}{20} =
0,85

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Một cửa hàng có hai loại bóng đèn Led, trong đó có 65\% bóng đèn Led là màu trắng và 35\% bóng đèn Led là màu xanh, các bóng đèn có kích thước như nhau. Các bóng đèn Led màu trắng có tỉ lệ hỏng là 2\% và các bóng đèn Led màu xanh có tỉ lệ hỏng là 3\%. Một khách hàng chọn mua ngẫu nhiên một bóng đèn Led từ cửa hàng. Xác suất để khách hàng chọn được bóng đèn Led không hỏng bằng bao nhiêu?

    Hướng dẫn:

    Xét các biến cố:

    A: "Khách hàng chọn được bóng đèn Led màu trắng"

    B: "Khách hàng chọn được bóng đèn Led không hỏng".

    Ta có:

    P(A) = 0,65 \Rightarrow P\left(
\overline{A} ight) = 1 - 0,65 = 0,35

    P\left( B|A ight) = 1 - P\left(
\overline{B}|A ight) = 1 - 0,02 = 0,98

    P\left( B|\overline{A} ight) = 1 -
P\left( \overline{B}|\overline{A} ight) = 1 - 0,03 = 0,97

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,65.0,98 + 0,35.0,97
= 0,9765

  • Câu 16: Vận dụng
    Chọn đáp án đúng

    Trong một kho rượu, số lượng rượu loại M và loại N bằng nhau. Người ta chọn ngẫu nhiên một chai và đưa cho 5 người nếm thử. Biết xác suất đoán đúng của mỗi người là 0,8. Có 3 người kết luận rượu loại M, 2 người kết luận rượu loại N. Hỏi khi đó xác suất chai rượu đó thuộc loại M là bao nhiêu?

    Hướng dẫn:

    Gọi A là chai rượu thuộc loại M thì A;\overline{A} tạo thành hệ đầy đủ và P(A) = P\left( \overline{A} ight) =
\frac{1}{2}

    Gọi H là "có 3 người kết luận rượu loại M và 2 người kết luận rượu loại N".

    Theo công thức toàn phần ta có:

    P(H) = P(A).P\left( H|A ight) +
P\left( \overline{A} ight).P\left( H|\overline{A} ight)

    \Rightarrow P(H) =
0,5.C_{5}^{3}.0,8^{3}.0,2^{2} + 0,5.C_{5}^{2}.0,8^{2}.0,2^{3} =
0,128

    Vậy xác suất cần tính là:

    P\left( A|H ight) = \frac{P(A).P\left(
H|A ight)}{P(H)} = \frac{0,5.C_{5}^{3}.0,8^{3}.0,2^{2}}{0,128} =
0,8

  • Câu 17: Nhận biết
    Tính xác suất

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,4;P(B) = 0,3;P\left( A|B ight) =
0,25 thì P\left( B|A
ight) bằng bao nhiêu?

    Hướng dẫn:

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,3.0,25}{0,4} = \frac{3}{16}

  • Câu 18: Thông hiểu
    Chọn kết quả đúng

    Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra hai xạ thủ và mỗi người bắn một viên đạn. Tìm xác suất để cả hai viên đạn đó trúng đích.

    Hướng dẫn:

    Gọi B là biến cố "Cả 2 viên đạn trúng đích".

    B_{i},(i = 1,2) là biến cố "Chọn được i xạ thủ loại I".

    P\left( {\text{ }B}_{0} ight) =\frac{C_{8}^{2}}{C_{10}^{2}} = \frac{28}{45};P\left( \text{ }B \mid B_{0} ight) = 0,7 \cdot 0,7 = 0,49

    P\left( {\text{ }B}_{1} ight) =\frac{C_{2}^{1} \cdot C_{8}^{1}}{C_{10}^{2}} = \frac{16}{45};P\left(\text{ }B \mid B_{1} ight) = 0,9 \cdot 0,7 = 0,63

    P\left( {\text{ }B}_{2} ight) =\frac{C_{2}^{2}}{C_{10}^{2}} = \frac{1}{45};P\left( \text{ }B \mid B_{2} ight) = 0,9.0,9 = 0,81

    Ta có B_{1},B_{2},B_{3} tạo thành họ đầy đủ các biến cố.

    Áp dụng công thức, ta có

    P(\text{ }B) = P\left( {\text{ }B}_{0}ight) \cdot P\left( \text{ }B \mid B_{0} ight) + P\left( {\text{}B}_{1} ight) \cdot P\left( \text{ }B \mid B_{1} ight) + P\left({\text{ }B}_{2} ight) \cdot P\left( \text{ }B \mid B_{2}ight)

    = \frac{28}{45} \cdot 0,49 +
\frac{16}{45} \cdot 0,63 + \frac{1}{45}0,81 = 0,5469

  • Câu 19: Vận dụng
    Chọn đáp án đúng

    Một loài sinh vật có các kiểu gen AA, Aa, aa theo tỉ lệ: 1 : 2 : 1. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen AA thì các cá thể con đều có kiểu gen AA. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen Aa thì cá thể con có kiểu gen AA, Aa theo tỉ lệ 1 : 1. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen aa thì cá thể con chỉ có các kiểu Aa. Chọn một cá thể con từ cá thể mẹ có kiểu gen AA. Tính xác suất ñể cá thể con có kiểu gen Aa.

    Hướng dẫn:

    Gọi B là biến cố cá thể con có kiểu gen Aa

    A1 là biến cố cá thể bố có kiểu gen AA

    A2 là biến cố cá thể bố có kiểu gen Aa

    A3 là biến cố cá thể bố có kiểu gen aa

    Hệ: A1, A2, A3 là hệ đầy đủ

    Ta xác định được:

    P\left( A_{1} ight) =
\frac{1}{4};P\left( A_{2} ight) = \frac{2}{4};P\left( A_{3} ight) =
\frac{1}{4}

    P\left( B|A_{1} ight) = 0;P\left(
B|A_{2} ight) = \frac{1}{2};P\left( B|A_{3} ight) = 1

    Do đó:

    P(B) = P\left( A_{1} ight)P\left(
B|A_{1} ight) + P\left( A_{2} ight)P\left( B|A_{2} ight) + P\left(
A_{3} ight)P\left( B|A_{3} ight)

    \Rightarrow P(B) = \frac{1}{4}.0 +
\frac{2}{4}.\frac{1}{2} + \frac{1}{4}.1 = \frac{1}{4} + \frac{1}{4} =
\frac{1}{2}

  • Câu 20: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Một chiếc hộp có 100 viên bi, trong đó có 70 viên bi có tô màu và 30 viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.

    a) Xác suất để bạn Nam lấy ra viên bi có tô màu là \frac{3}{7}. Đúng||Sai

    b) Sơ đồ cây biểu thị tình huống trên là. Đúng||Sai

    c) Xác suất để bạn Việt lấy ra viên bi có tô màu là: \frac{191}{330}Đúng||Sai

    d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là: \frac{139}{330}. Đúng||Sai

    Đáp án là:

    Một chiếc hộp có 100 viên bi, trong đó có 70 viên bi có tô màu và 30 viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.

    a) Xác suất để bạn Nam lấy ra viên bi có tô màu là \frac{3}{7}. Đúng||Sai

    b) Sơ đồ cây biểu thị tình huống trên là. Đúng||Sai

    c) Xác suất để bạn Việt lấy ra viên bi có tô màu là: \frac{191}{330}Đúng||Sai

    d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là: \frac{139}{330}. Đúng||Sai

    Gọi A là biến cố “bạn Việt lấy ra viên bi có tô màu”

    Gọi B là biến cố “bạn Nam lấy ra viên bi có tô màu”, suy ra B là biến cố “bạn Việt lấy ra viên bi không có tô màu”.

    a) Xác suất để bạn Nam lấy ra viên bi có tô màu là P(B) = \frac{70}{100} = \frac{7}{10}.

    b) Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 0,3

    P\left( A|B ight) = \frac{P(A \cap
B)}{P(B)} = \frac{n(A \cap B)}{n(B)} = \frac{70.69}{70.99} =
\frac{23}{33}

    P\left( A|\overline{B} ight) = 1 -
P\left( A|B ight) = 1 - \frac{23}{33} = \frac{10}{33}

    Sơ đồ cây cần tìm là:

    c) Xác suất để bạn Việt lấy ra viên bi có tô màu là:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) =
\frac{7}{10}.\frac{23}{33} + \frac{3}{10}.\frac{10}{33} =
\frac{191}{330}

    d) A là biến cố “bạn Việt lấy ra viên bi có tô màu” suy ra A là biến cố “bạn Việt lấy ra viên bi không có tô màu”

    \Rightarrow P\left( \overline{A} ight)
= 1 - P(A) = 1 - \frac{191}{330} = \frac{139}{330}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo