Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CTST Công thức xác suất toàn phần và công thức Bayes (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm P(A)

    Cho 2 biến cố AB, tìm P(A) biết P\left( A|B \right) = 0,8; P\left( A|\overline{B} \right) = 0,3; P(B) = 0,4.

    Hướng dẫn:

    Ta có:

    P(B) = 0,4 \Rightarrow P\left(
\overline{B} \right) = 1 - 0,4 = 0,6.

    Theo công thức xác suất toàn phần:

    P(A) = P(B).P\left( A|B \right) +
P\left( \overline{B} \right).P\left( A|\overline{B} \right)

    \Leftrightarrow P(A) = 0,4.0,8\  +
0,6.0,3 = 0,5.

  • Câu 2: Vận dụng
    Chọn phương án gần đúng với đáp án

    Phòng thi đánh giá năng lực có 10 học sinh trong đó có 2 học sinh giỏi (trả lời 100% các câu hỏi), 3 học sinh khá (trả lời 80% các câu hỏi), 5 học sinh trung bình (trả lời 50% các câu hỏi). Gọi ngẫu nhiên một học sinh vào thi và phát đề có 4 câu hỏi (được lấy ngẫu nhiên từ 20 câu). Thấy học sinh này trả lời được cả 4 câu, tính xác suất để học sinh đó là học sinh khá? Xác suất gần bằng số nào sau đây?

    Hướng dẫn:

    Gọi A_{1};A_{2};A_{3} lần lượt là các biến cố gọi một học sinh Giỏi, Khá, Trung Bình

    Nên A_{1};A_{2};A_{3} là hệ biến cố đầy đủ.

    Gọi B “học sinh đó trả lời được 4 câu hỏi”

    Ta có: \left\{ \begin{matrix}
P\left( A_{1} ight) = \frac{C_{2}^{1}}{C_{10}^{1}} = \frac{1}{5} \\
P\left( A_{2} ight) = \frac{C_{3}^{1}}{C_{10}^{1}} = \frac{3}{10} \\
P\left( A_{3} ight) = \frac{C_{5}^{1}}{C_{10}^{1}} = \frac{1}{2} \\
\end{matrix} ight.

    Ta lại có:

    2 học sinh Giỏi (trả lời 100% các câu hỏi) ⇒ Trả lời 20 câu hỏi

    3 học sinh Khá (trả lời 80% các câu hỏi) ⇒ Trả lời 20.80\% = 16 câu hỏi.

    5 học sinh Trung Bình (trả lời 50% các câu hỏi) ⇒ Trả lời 20.50\% = 10 câu hỏi.

    Từ đó: \left\{ \begin{matrix}P\left( B|A_{1} ight) = \dfrac{C_{20}^{4}}{C_{20}^{4}} = 1 \\P\left( B|A_{2} ight) = \dfrac{C_{16}^{4}}{C_{20}^{4}} =\dfrac{364}{969} \\P\left( B|A_{3} ight) = \dfrac{C_{10}^{4}}{C_{20}^{4}} = \dfrac{14}{323}\\\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần:

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2} ight) + P\left(
B|A_{3} ight).P\left( A_{3} ight)

    \Rightarrow P(B) = 1.\frac{1}{5} +
\frac{364}{969}.\frac{3}{10} + \frac{14}{323}.\frac{1}{2} =
\frac{108}{323}

    Xác suất để sinh viên đó là sinh viên khá là P\left( A_{2}|B ight)

    Áp dụng công thức Bayes ta có:

    P\left( A_{2}|B ight) = \frac{P\left(
B|A_{2} ight).P\left( A_{2} ight)}{P(B)}

    \Rightarrow P\left( A_{2}|B ight) =\dfrac{\dfrac{364}{969}.\dfrac{3}{10}}{\dfrac{108}{323}} = \dfrac{91}{270}\approx 0,337

  • Câu 3: Thông hiểu
    Xét tính đúng sai của các kết luấn

    Trong một hộp có 8 viên bi màu xanh và 6 viên bi màu đỏ, các viên bi cùng kích thước và cùng khối lượng. Bạn Hùng lấy ngẫu nhiên một viên bi từ hộp, không trả lại. Sau đó bạn Nam lấy ngẫu nhiên một viên bi trong số các bi còn lại trong hộp. Gọi A là biến cố: “Hùng lấy được viên bi màu đỏ”, B là biến cố: “Nam lấy được viên bi màu xanh”. Các khẳng định sau đây đúng hay sai?

    a) Với \Omega là không gian mẫu. n(\Omega) = 196.Sai||Đúng

    b) P(B) =
\frac{8}{13}Sai||Đúng

    c) P(AB) =
\frac{24}{91}Đúng||Sai

    d) P\left( A|B \right) =
\frac{6}{13}Đúng||Sai

    Đáp án là:

    Trong một hộp có 8 viên bi màu xanh và 6 viên bi màu đỏ, các viên bi cùng kích thước và cùng khối lượng. Bạn Hùng lấy ngẫu nhiên một viên bi từ hộp, không trả lại. Sau đó bạn Nam lấy ngẫu nhiên một viên bi trong số các bi còn lại trong hộp. Gọi A là biến cố: “Hùng lấy được viên bi màu đỏ”, B là biến cố: “Nam lấy được viên bi màu xanh”. Các khẳng định sau đây đúng hay sai?

    a) Với \Omega là không gian mẫu. n(\Omega) = 196.Sai||Đúng

    b) P(B) =
\frac{8}{13}Sai||Đúng

    c) P(AB) =
\frac{24}{91}Đúng||Sai

    d) P\left( A|B \right) =
\frac{6}{13}Đúng||Sai

    a) Sai

    Nam có 14 cách lấy ngẫu nhiên một viên bi trong hộp

    Hùng có 13 cách lấy một viên bi còn lại trong hộp (vì Nam lấy bi và không trả lại)

    Do đó n(\Omega) = 14.13 =
182.

    b) Sai

    Nam có 8 cách lấy một viên bi màu xanh, Hùng có 13 cách lấy một viên bi còn lại trong hộp. Dó đó n(B) = 8.13 =
104 \Rightarrow P(B) = \frac{n(B)}{n(\Omega)} =
\frac{4}{7}.

    c) Đúng

    Nam có 8 cách lấy một viên bi màu xanh, Hùng có 6 cách lấy một viên bi màu đỏ. Do đó n(AB) = 8.6 = 48
\Rightarrow P(AB) = \frac{n(AB)}{n(\Omega)} =
\frac{24}{91}.

    d) Đúng

    Ta có: P\left( A|B \right) =
\frac{P(AB)}{P(B)} = \frac{6}{13}

  • Câu 4: Nhận biết
    Xác định câu đúng

    Chọn khẳng định đúng.

    Hướng dẫn:

    Câu đúng là : « Với hai biến cố A,BP(A)
> 0,P(B) > 0, ta có:

    P(B|A) =
\frac{P(B).P(A|B)}{P(A)}

  • Câu 5: Thông hiểu
    Tính P(A|B)

    Cho P(A) = 0,35; P\left( B|A \right) = 0,4P\left( B|\overline{A} \right) = 0,3. Giá trị của P\left( A|B \right)

    Hướng dẫn:

    P(A) = 0,35 nên P\left( \overline{A} \right) = 1 - 0,35 =
0,65.

    Theo công thức Bayes ta có:

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(A).P\left( B|A \right) + P\left( \overline{A}
\right).P\left( B|\overline{A} \right)}= \frac{0,35.0,4}{0,35.0,4 + 0,65.0,3} =
\frac{28}{67}.

  • Câu 6: Vận dụng
    Xét tính đúng sai của các khẳng định sau

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét các biến cố: A: "Lần thứ nhất lấy ra chai nước loại I; B: "Lần thứ hai lấy ra chai nước loại I".

    a) P(B \mid A) = \frac{16}{23}. Sai||Đúng

    b) P(B \mid \overline{A}) =
\frac{15}{23}. Sai||Đúng

    c) P(\overline{B} \mid A) =
\frac{8}{23}. Đúng||Sai

    d) P(\overline{B} \mid \overline{A}) =
\frac{7}{23}. Đúng||Sai

    Đáp án là:

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét các biến cố: A: "Lần thứ nhất lấy ra chai nước loại I; B: "Lần thứ hai lấy ra chai nước loại I".

    a) P(B \mid A) = \frac{16}{23}. Sai||Đúng

    b) P(B \mid \overline{A}) =
\frac{15}{23}. Sai||Đúng

    c) P(\overline{B} \mid A) =
\frac{8}{23}. Đúng||Sai

    d) P(\overline{B} \mid \overline{A}) =
\frac{7}{23}. Đúng||Sai

    Ta có: P(A) = \frac{16}{24} =
\frac{2}{3};P(\overline{A}) = \frac{8}{24} = \frac{1}{3}.

    Nếu lần thứ nhất lấy ra chai loại I thì két còn 23 chai nước, trong đó có 15 chai loại I, 8 chai loại II. Suy ra P(B
\mid A) = \frac{15}{23}.

    Nếu lần thứ nhất lấy ra chai loại II thì két còn 23 chai nước, trong đó có 16 chai loại I, 7 chai loại II. Suy ra P(B \mid \overline{A}) =
\frac{16}{23}.

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A).P(B \mid A) +
P(\overline{A}).P(B \mid \overline{A}) = \frac{2}{3} \cdot \frac{15}{23}
+ \frac{1}{3} \cdot \frac{16}{23} = \frac{2}{3}.

    Ta có: P(\overline{B} \mid A) = 1 - P(B
\mid A) = 1 - \frac{15}{23} = \frac{8}{23};

    P(\overline{B} \mid \overline{A}) = 1 -
P(B \mid \overline{A}) = 1 - \frac{16}{23} = \frac{7}{23}.

    Đáp án: a) S, b) S, c) Đ, d) Đ.

  • Câu 7: Thông hiểu
    Xét tính đúng sai của các nhận định

    Có hai đội thi đấu môn Bóng bàn. Đội I có 6 vận động viên, đội II có 8 vận động viên. Xác suất đạt huy chương đồng của mỗi vận động viên đội I và đội II tương ứng là 0,80,65. Chọn ngẫu nhiên một vận động viên.

    a) [NB] Xác suất để vận động viên này thuộc đội I0,8. Sai||Đúng

    b) [TH] Xác suất để vận động viên được chọn đạt huy chương đồng là \frac{5}{7}. Đúng||Sai

    c) [TH] Xác suất để vận động viên này thuộc đội II và đạt huy chương đồng là 0,48. Sai||Đúng

    d) [VD] Xác suất để vận động viên này thuộc đội I và đạt huy chương đồng là \frac{12}{25}. Đúng||Sai

    Đáp án là:

    Có hai đội thi đấu môn Bóng bàn. Đội I có 6 vận động viên, đội II có 8 vận động viên. Xác suất đạt huy chương đồng của mỗi vận động viên đội I và đội II tương ứng là 0,80,65. Chọn ngẫu nhiên một vận động viên.

    a) [NB] Xác suất để vận động viên này thuộc đội I0,8. Sai||Đúng

    b) [TH] Xác suất để vận động viên được chọn đạt huy chương đồng là \frac{5}{7}. Đúng||Sai

    c) [TH] Xác suất để vận động viên này thuộc đội II và đạt huy chương đồng là 0,48. Sai||Đúng

    d) [VD] Xác suất để vận động viên này thuộc đội I và đạt huy chương đồng là \frac{12}{25}. Đúng||Sai

    a) Sai. Gọi A là biến cố: “Vận động viên được chọn thuộc đội I”.

    Ta có n(A) = 6, n(\Omega) = 14.

    Do đó P(A) = \frac{6}{14} = \frac{3}{7}
\approx 0,4286.

    b) Đúng. Ta có: \overline{A} là biến cố: “Vận động viên được chọn thuộc đội II”.

    Suy ra P\left( \overline{A} ight) =
\frac{4}{7}.

    B là biến cố: “Vận động viên được chọn đạt huy chương đồng”.

    Khi đó ta có: P\left( B|A ight) =
0,8, P\left( B|\overline{A} ight)
= 0,65.

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    P(B) = \frac{3}{7}.0,8 + \frac{4}{7}.0,65
= \frac{5}{7}.

    c) Sai. Áp dụng công thức Bayes ta có:

    P\left( \overline{A}|B ight) =
\frac{P\left( \overline{A} ight).P\left( B|\overline{A}
ight)}{P(B)} =\dfrac{\dfrac{4}{7}.0,65}{\dfrac{5}{7}} = \dfrac{13}{25} =
0,52.

    d) Đúng. Áp dụng công thức Bayes ta có:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(B)} =\dfrac{\dfrac{3}{7}.0,8}{\dfrac{5}{7}} = \dfrac{12}{25}.

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Trong một trường học, tỉ lệ học sinh nữ là 52\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ nghệ thuật lần lượt là 18\%15\%. Chọn ngẫu nhiên một học sinh của trường. Tính xác suất học sinh được chọn có tham gia câu lạc bộ nghệ thuật.

    Hướng dẫn:

    Gọi A là biến cố “học sinh được chọn là học sinh nữ “ và B là biến cố “Học sinh được chọn tham gia câu lạc bộ nghệ thuật”

    Khi đó ta có P(A) = 0,52, P\left( B|A \right) = 0, 18, P\left( B|\overline{A} \right) = 0,15

    Suy ra P\left( \overline{A} \right) = 1 -
P(A) = 0,48.

    Áp dụng công thức xác suất toàn phần ta có

    P(B) = P(A)P\left( B|A \right) + P\left(
\overline{A} \right)P\left( B|\overline{A} \right)

    = 0,52.0,18 + 0,48.0,15 =
0,1656.

  • Câu 9: Nhận biết
    Tính P(B|A)

    Cho hai biến cố AB, với P(B) =
0,8, P\left( A|B \right) =
0,7, P\left( A|\overline{B} \right)
= 0,45. Tính P\left( B|A
\right).

    Hướng dẫn:

    Ta có: P\left( \overline{B} \right) = 1
- 0,8 = 0,2.

    Công thức Bayes:

    P\left( B|A \right) =
\frac{P(B)P\left( A|B \right)}{P(B)P\left( A|B \right) + P\left(
\overline{B} \right)P\left( A|\overline{B} \right)}

    \Rightarrow P\left( B|A \right) =
\frac{0,8.0,7}{0,8.0,7 + 0,2.0,45} = \frac{56}{65}.

  • Câu 10: Thông hiểu
    Xét tính đúng sai của mỗi mệnh đề

    Một hộp chứa 4 quả bóng màu đỏ và 6 quả bóng màu xanh. Lấy từ hộp hai lần liên tiếp mỗi lần 1 quả bóng. Gọi A là biến cố “Lần 2 lấy được quả màu xanh”; B là biến cố “ Lần 1 lấy được quả bóng màu đỏ”. Khi đó

    a) Xác suất xảy ra biến cố B là: P(B) = \frac{2}{5}.Đúng||Sai

    b) Xác suất xảy ra biến cố Akhi B xảy ra là: P(A\backslash B) =
\frac{3}{5}.Sai||Đúng

    c) Xác suất xảy ra biến cố Akhi Bkhông xảy ra là: P\left( A\backslash\overline{B} \right) =
\frac{5}{9}. Đúng||Sai

    d) Xác suất xảy ra cả biến cố AB là:P(AB) = \frac{4}{15}. Đúng||Sai

    Đáp án là:

    Một hộp chứa 4 quả bóng màu đỏ và 6 quả bóng màu xanh. Lấy từ hộp hai lần liên tiếp mỗi lần 1 quả bóng. Gọi A là biến cố “Lần 2 lấy được quả màu xanh”; B là biến cố “ Lần 1 lấy được quả bóng màu đỏ”. Khi đó

    a) Xác suất xảy ra biến cố B là: P(B) = \frac{2}{5}.Đúng||Sai

    b) Xác suất xảy ra biến cố Akhi B xảy ra là: P(A\backslash B) =
\frac{3}{5}.Sai||Đúng

    c) Xác suất xảy ra biến cố Akhi Bkhông xảy ra là: P\left( A\backslash\overline{B} \right) =
\frac{5}{9}. Đúng||Sai

    d) Xác suất xảy ra cả biến cố AB là:P(AB) = \frac{4}{15}. Đúng||Sai

    a) Ta có P(B) = \frac{n(B)}{n(\Omega)} =
\frac{4}{10} = \frac{2}{5}.

    b) Lần 1 lấy được quả bóng màu đỏ nên số bóng còn lại là 9 nên n(\Omega) = 9. Do có 6 quả bóng màu xanh và lần 1 lấy được quả bóng đỏ nên số phần tử thuận lợi cho biến cố An(A) =
6

    P(A\backslash B) = \frac{6}{9} =
\frac{2}{3}.

    c) Do biến cố B không xảy ra tức là lần 1 lấy 1 quả màu xanh nên số bóng còn lại là 5 quả xanh và 4 quả đỏ. Do đó P\left( A\backslash\overline{B}
\right) = \frac{5}{9}.

    d) Ta có P(AB) = P(B).P(A\backslash B) =
\frac{2}{5}.\frac{6}{9} = \frac{4}{15}.

    Chú ý: Không thể tính theo công thức P(AB) = P(A).P(B\backslash A).

  • Câu 11: Vận dụng
    Chọn đáp án đúng

    Trong một kho rượu, số lượng rượu loại M và loại N bằng nhau. Người ta chọn ngẫu nhiên một chai và đưa cho 5 người nếm thử. Biết xác suất đoán đúng của mỗi người là 0,8. Có 3 người kết luận rượu loại M, 2 người kết luận rượu loại N. Hỏi khi đó xác suất chai rượu đó thuộc loại M là bao nhiêu?

    Hướng dẫn:

    Gọi A là chai rượu thuộc loại M thì A;\overline{A} tạo thành hệ đầy đủ và P(A) = P\left( \overline{A} ight) =
\frac{1}{2}

    Gọi H là "có 3 người kết luận rượu loại M và 2 người kết luận rượu loại N".

    Theo công thức toàn phần ta có:

    P(H) = P(A).P\left( H|A ight) +
P\left( \overline{A} ight).P\left( H|\overline{A} ight)

    \Rightarrow P(H) =
0,5.C_{5}^{3}.0,8^{3}.0,2^{2} + 0,5.C_{5}^{2}.0,8^{2}.0,2^{3} =
0,128

    Vậy xác suất cần tính là:

    P\left( A|H ight) = \frac{P(A).P\left(
H|A ight)}{P(H)} = \frac{0,5.C_{5}^{3}.0,8^{3}.0,2^{2}}{0,128} =
0,8

  • Câu 12: Thông hiểu
    Tính xác suất khỏi bệnh

    Điều trị phương pháp I, phương pháp II, phương pháp III tương ứng cho 5000,3000,2000 bệnh nhân. Xác suất khỏi của các phương pháp tương ứng là 0,85;0,9;0,95. Tìm xác suất khỏi của 3 phương pháp khi điều trị cho bệnh nhân

    Hướng dẫn:

    Tổng số bệnh nhân điều trị là 10000 người

    Gọi A1 là biến cố bệnh nhân điều trị bởi phương pháp thứ I.

    A2 là biến cố bệnh nhân điều trị bởi phương pháp thứ II.

    A3 là biến cố bệnh nhân điều trị bởi phương pháp thứ III.

    Khi đó: P\left( A_{1} ight) =
0,5;P\left( A_{2} ight) = 0,3;P\left( A_{3} ight) = 0,2

    Gọi B là biến cố điều trị khỏi bệnh.

    Khi đó P\left( B|A_{1} ight) =
0,85;P\left( B|A_{2} ight) = 0,9;P\left( B|A_{3} ight) =
0,95

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2} ight) +
P\left( A_{3} ight).P\left( B|A_{3} ight)

    \Rightarrow P(A) = 0,5.0,85 + 0,3.0,9 +
0,2.0,95 = 0,885

  • Câu 13: Vận dụng
    Chọn đáp án đúng

    Cho hai hộp đựng phiếu bốc thăm trúng thưởng giống nhau:

    Hộp thứ nhất có tỉ lệ trúng thưởng bằng \frac{3}{4}.

    Hộp thứ hai có tỉ lệ trúng thưởng bằng \frac{2}{3}.

    Chọn ngẫu nhiên một thùng và lấy ngẫu nhiên một phiếu trong thùng đó thấy phiếu đó trúng thưởng. Bỏ lại phiếu trở lại thùng, từ thùng đó lấy tiếp một phiếu. Tìm xác suất để lần thứ hai cũng lấy được phiếu trúng thưởng.

    Hướng dẫn:

    Gọi A là biến cố phiếu đầu tiên lấy là phiếu trúng thưởng.

    Biến cố A có thể xảy ra cùng với một trong các biến cố sau:

    H1 phiếu bốc thăm lấy ra từ thùng I.

    H2 phiếu bốc thăm lấy ra từ thùng II.

    Theo công thức xác xuất toàn phần ta có:

    P(A) = P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2}
ight)

    Theo dữ kiện đề bài ta có: \left\{
\begin{matrix}
P\left( H_{1} ight) = P\left( H_{2} ight) = \frac{1}{2} \\
P\left( A|H_{1} ight) = \frac{3}{4};P\left( A|H_{2} ight) =
\frac{2}{3} \\
\end{matrix} ight.

    Do đó: P(A) = \frac{1}{2}.\frac{3}{4} +
\frac{1}{2}.\frac{2}{3} = \frac{17}{24}

    Sau khi biến cố A đã xảy ra, xác suất của các biến cố H_{1};H_{2} thay đổi theo công thức Bayes như sau:

    P\left( H_{1}|A ight) = \frac{P\left(
H_{1} ight).P\left( A|H_{1} ight)}{P(A)} = \frac{3}{8}:\frac{17}{24}
= \frac{9}{17}

    P\left( H_{2}|A ight) = \frac{P\left(
H_{2} ight).P\left( A|H_{2} ight)}{P(A)} = \frac{1}{3}:\frac{17}{24}
= \frac{8}{17}

    Gọi B là biến cố lấy phiếu lần thứ hai là trúng thưởng.

    B vẫn có thể xảy ra với một trong hai giả thiết H_{1};H_{2} do đó theo công thức xác suất toàn phần ta có:

    P(B) = P\left( H_{1}|A ight).P\left(
B|H_{1}A ight) + P\left( H_{2}|A ight).P\left( B|H_{2}A
ight)

    Vì phiếu lấy lần thứ nhất bỏ trở lại thùng, do đó tỉ lệ trúng thưởng ở các thùng đó vẫn không thay đổi.

    Vì thế

    P\left( B|H_{1}A ight) =
\frac{3}{4};P\left( B|H_{2}A ight) = \frac{2}{3}

    \Rightarrow P(B) =
\frac{9}{17}.\frac{3}{4} + \frac{8}{17}.\frac{2}{3} = \frac{145}{204} =
0,71

  • Câu 14: Vận dụng
    Xét tính đúng sai của các khẳng định

    Một doanh nghiệp có 45% nhân viên là nữ. Tỉ lệ nhân viên nữ và tỉ lệ nhân viên nam mua bảo hiểm nhân thọ lần lượt là 7% và 5%. Chọn ngẫu nhiên một nhân viên của doanh nghiệp

    a) Xác suất nhân viên được chọn có mua bảo hiểm nhân thọ là 0,061. Sai||Đúng

    b) Biết rằng nhân viên được chọn có mua bảo hiểm nhân thọ. Xác suất nhân viên đó là nam là \frac{55}{118}. Đúng||Sai

    c) Biết rằng nhân viên được chọn có mua bảo hiểm nhân thọ. Xác suất nhân viên đó là nữ là \frac{63}{118}. Đúng||Sai

    d) Biết rằng nhân viên được chọn có mua bảo hiểm nhân thọ. Khi đó nhân viên đó là nam nhiều hơn là nữ.Sai||Đúng

    Đáp án là:

    Một doanh nghiệp có 45% nhân viên là nữ. Tỉ lệ nhân viên nữ và tỉ lệ nhân viên nam mua bảo hiểm nhân thọ lần lượt là 7% và 5%. Chọn ngẫu nhiên một nhân viên của doanh nghiệp

    a) Xác suất nhân viên được chọn có mua bảo hiểm nhân thọ là 0,061. Sai||Đúng

    b) Biết rằng nhân viên được chọn có mua bảo hiểm nhân thọ. Xác suất nhân viên đó là nam là \frac{55}{118}. Đúng||Sai

    c) Biết rằng nhân viên được chọn có mua bảo hiểm nhân thọ. Xác suất nhân viên đó là nữ là \frac{63}{118}. Đúng||Sai

    d) Biết rằng nhân viên được chọn có mua bảo hiểm nhân thọ. Khi đó nhân viên đó là nam nhiều hơn là nữ.Sai||Đúng

    Gọi A là biến cố “Nhân viên được chọn là nữ” và B là biến cố “Nhân viên được chọn có mua bảo hiểm nhân thọ”.

    Theo đề ta có P(A) = 0,45; P\left( B|A \right) = 0,07; P\left( B|\overline{A} \right) = 0,05. Suy ra P\left( \overline{A} \right) =
0,55.

    a) Sai.

    Ta có P(B) = P(A).P\left( B|A \right) +
P\left( \overline{A} \right).P\left( B|\overline{A} \right) = 0,45.0,07
+ 0,55.0,05 = 0,059.

    b) Đúng.

    P\left( \overline{A}|B \right) =
\frac{P\left( \overline{A} \right).P\left( B|\overline{A} \right)}{P(B)}
= \frac{0,55.0,05}{0,059} = \frac{55}{118}.

    c) Đúng.

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(B)} = \frac{0,45.0,07}{0,059} =
\frac{63}{118}.

    d) Sai.

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(B)} = \frac{0,45.0,07}{0,059} =
\frac{63}{118}

    Do P\left( A|B \right) = \frac{63}{118}
> \frac{55}{118} = P\left( \overline{A}|B \right) nên nhân viên được chọn có mua bảo hiểm nhân thọ là nữ sẽ nhiều hơn là nam.

  • Câu 15: Nhận biết
    Tính P(A)

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Hướng dẫn:

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 16: Nhận biết
    Tính xác suất của biến cố B

    Cho sơ đồ hình cây như sau

    Tính xác suất của biến cố B.

    Hướng dẫn:

    Ta có P(B) = 0,4.0,6 + 0,4.0,3 =
0,36.

  • Câu 17: Thông hiểu
    Tính P(A|B)

    Cho hai biến cố AB, với P(A) =
0,2, P\left( B|A \right) = 0,7, P\left( B|\overline{A} \right)
= 0,15. Tính P\left( A|B
\right).

    Hướng dẫn:

    Ta có: P(A) = 0,2 \Rightarrow P\left(
\overline{A} \right) = 0,8, P\left(
B|A \right) = 0,7, P\left(
B|\overline{A} \right) = 0,15.

    P(B) = P(A).P\left( B|A \right) +
P\left( \overline{A} \right).P\left( B|\overline{A} \right) 

    \Rightarrow P(B) = 0,2.0,7 + 0,8.0,15 =
0,26.

    Theo công thức Bayes:

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(B)} \Rightarrow P\left( A|B \right) =
\frac{0,2.0,7}{0,26} = \frac{7}{13}.

  • Câu 18: Vận dụng
    Tìm xác suất để lấy được quả bóng màu trắng

    Có hai chiếc hộp đựng bóng. Hộp I có 7 quả bóng trắng và 8 quả bóng xanh. Hộp II có 5 quả bóng trắng và 3 quả bóng xanh. Trước tiên, từ hộp I lấy ra ngẫu nhiên 1 quả bóng rồi cho vào hộp II. Sau đó, từ hộp II lấy ra ngẫu nhiên 1 quả bóng. Xác suất để quả bóng được lấy ra màu trắng là

    Hướng dẫn:

    Gọi A là biến cố: “Lấy được quả bóng trắng từ hộp I”.

    Gọi B là biến cố: “Lấy được quả bóng trắng từ hộp II”.

    Theo công thức xác suất toàn phần

    P(B) = P(A).P\left( B\left| A
\right.\  \right) + P\left( \overline{A} \right).P\left( B\left|
\overline{A} \right.\  \right)

    Ta có P(A) = \frac{7}{15}; P\left( \overline{A} \right) = 1 - P(A) = 1 -
\frac{7}{15} = \frac{8}{15}.

    Nếu A xảy ra thì hộp II có 6 quả bóng trắng và 3 quả bóng xanh.

    Vậy P\left( B\left| A \right.\  \right) =
\frac{6}{9} = \frac{2}{3}.

    Nếu A không xảy ra thì hộp II có 5 quả bóng trắng và 4 quả bóng xanh.

    Vậy P\left( B\left| \overline{A}
\right.\  \right) = \frac{5}{9}.

    Vậy P(B) = \frac{7}{15}.\frac{2}{3} +
\frac{8}{15}.\frac{5}{9} = \frac{82}{135}.

  • Câu 19: Thông hiểu
    Tính xác suất của biến cố A

    Cho A, B là hai biến cố. Biết P(B) = 0,2. Nếu B không xảy ra thì thỉ lệ A xảy ra là 2\%. Nếu B xảy ra thì tỉ lệ A xảy ra 4\%. Xác suất của biến cố A là bao nhiêu?

    Hướng dẫn:

    Ta có:

    P(B) = 0,2 \Rightarrow P(\overline{B}) =
0,8.

    B xảy ra thì tỉ lệ A sảy ra 4\% nên P(A|B) = 0,04.

    Tương tự ta cũng có P(A|\overline{B}) =
0,02.

    Theo công thức xác suất toàn phần ta có:

    P(A) = P(B).P(A|B) +
P(\overline{B}).P(A|\overline{B})

    = 0,2.0,04 + 0,8.0,0 2 = 0,024.

  • Câu 20: Thông hiểu
    Chọn đáp án đúng

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P\left( B|A
ight)?

    Hướng dẫn:

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    Áp dụng công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)} = \frac{0,8.0,7}{0,65} = \frac{56}{65} \approx
0,86

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo