Cho hai biến cố và
với
,
,
. Tính
.
Ta có .
Công thức xác suất toàn phần:
.
Cho hai biến cố và
với
,
,
. Tính
.
Ta có .
Công thức xác suất toàn phần:
.
Trong một trường học, tỉ lệ học sinh nữ là . Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia lớp học bổ trợ kiến thức lần lượt là
và
. Gặp ngẫu nhiên một học sinh của trường. Biết rằng học sinh có tham gia lớp học bổ trợ kiến thức. Tính xác suất học sinh đó là nam?
Gọi lần lượt là các biến cố gặp được một học sinh nữ, một học sinh nam
Nên 1 2 A A, là hệ biến cố đầy đủ.
Gọi B “Học sinh đó tham gia lớp học bổ trợ kiến thức”
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Xác suất để học sinh đó là nam, biết rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes:
Tỉ lệ người dân đã tiêm vắc xin phòng bệnh ở một địa phương là
. Trong số những người đã tiêm phòng, tỉ lệ mắc bệnh
là
; trong số những người chưa tiêm, tỉ lệ mắc bệnh
là
. Chọn ngẫu nhiên một người ở địa phương đó. Tính xác suất người được chọn mắc bệnh
.
Gọi là biến cố “Người dân được tiêm phòng bệnh
”
là biến cố “Người dân mắc bệnh
”.
Ta có .
Tỉ lệ mắc bệnh khi tiêm phòng là: .
Tỉ lệ mắc bệnh khi chưa tiêm phòng là .
Xác suất người này mắc bệnh là:
Cho hai biến cố và
là hai biến cố ngẫu nhiên mà
,
, công thức Bayes là:
Ta có: .
Trong một vùng dân cư, cứ người thì có
người hút thuốc lá. Biết tỷ lệ người bị viêm họng trong số người hút thuốc lá là
, trong số người không hút thuốc lá là
. Khám ngẫu nhiên một người và thấy người đó bị viêm họng. Nếu người đó không bị viêm họng thì xác suất để người đó hút thuốc lá là bao nhiêu?
Gọi A: "Người này hút thuốc"
B: "Người này bị viêm họng"
Theo giả thiết ta có:
Ta thấy rằng là một hệ đầy đủ các biến cố.
Theo công thức xác suất toàn phần ta tính được:
Theo công thức Bayes, xác suất để người đó hút thuốc lá khi biết người đó không bị viêm họng là:
Để gây đột biến cho một tính trạng người ta tìm cách tác động lên hai gen bằng phóng xạ. Xác suất đột biến của tính trạng do gen
là
; do gen B là
và do cả hai gen là
. Tính xác suất để có đột biến ở tính trạng đó biết rằng phóng xạ có thể tác động lên gen
với xác suất
và lên gen
với xác suất
?
Gọi C là biến cố có đột biến ở tính trạng đang xét
A là biến cố phóng xạ tác dụng lên gen A
B là biến cố phóng xạ tác dụng lên gen B
C1 là biến cố phóng xạ chỉ tác động lên gen A
C2 là biến cố phóng xạ chỉ tác dụng lên gen B
C3 là biến cố phóng xạ tác dụng lên cả 2 gen
là biến cố phóng xạ không tác dụng lên gen nào
Khi đó hệ là một hệ đầy đủ
Mặt khác độc lập nên
Mặt khác và
Theo công thức xác suất toàn phần ta có:
Phòng thi đánh giá năng lực có 10 học sinh trong đó có 2 học sinh giỏi (trả lời 100% các câu hỏi), 3 học sinh khá (trả lời 80% các câu hỏi), 5 học sinh trung bình (trả lời 50% các câu hỏi). Gọi ngẫu nhiên một học sinh vào thi và phát đề có 4 câu hỏi (được lấy ngẫu nhiên từ 20 câu). Thấy học sinh này trả lời được cả 4 câu, tính xác suất để học sinh đó là học sinh khá? Xác suất gần bằng số nào sau đây?
Gọi lần lượt là các biến cố gọi một học sinh Giỏi, Khá, Trung Bình
Nên là hệ biến cố đầy đủ.
Gọi B “học sinh đó trả lời được 4 câu hỏi”
Ta có:
Ta lại có:
2 học sinh Giỏi (trả lời 100% các câu hỏi) ⇒ Trả lời 20 câu hỏi
3 học sinh Khá (trả lời 80% các câu hỏi) ⇒ Trả lời câu hỏi.
5 học sinh Trung Bình (trả lời 50% các câu hỏi) ⇒ Trả lời câu hỏi.
Từ đó:
Áp dụng công thức xác suất toàn phần:
Xác suất để sinh viên đó là sinh viên khá là
Áp dụng công thức Bayes ta có:
Được biết có đàn ông bị mù màu và
phụ nữ bị mù màu (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics – Understanding why and how, Springer, 2005). Giả sử số đàn ông bằng số phụ nữ. Chon một người bị mù màu. Xác suất để người đó là đàn ông là bao nhiêu?
Gọi là biến cố người được chọn là đàn ông,
là biến cố người được chọn mù màu.
Theo đề bài ra ta có .
Vì số đàn ông bằng số phụ nữ nên ta có .
Áp dụng công thức Bayes ta có xác suất để chọn được một người đàn ông mù màu là:
Dây chuyền lắp ráp nhận được các chi tiết do hai máy sản xuất. Trung bình máy thứ nhất cung cấp chi tiết, máy thứ hai cung cấp
chi tiết. Biết
chi tiết do máy thứ nhất sản xuất đều đạt tiêu chuẩn và
chi tiết do máy thứ hai sản xuất là đạt tiêu chuẩn. Lấy ngẫu nhiên từ dây chuyển một sản phẩm, thấy nó đạt tiêu chuẩn. Tìm xác suất để sản phẩm đó do máy thứ nhất sản xuất.
Gọi A là biến cố chi tiết lấy từ dây chuyển đạt tiêu chuẩn.
Biến cố A có thể xảy ra đồng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố.
H1 chi tiết máy do máy một sản xuất.
H2 chi tiết máy do máy hai sản xuất.
Như vậy xác suất để chi tiết máy dó máy một sản xuất bằng:
Theo dữ kiện đề bài cho ta có:
Do đó:
Tan giờ học buổi chiều một sinh viên có về nhà ngay, nhưng do giờ cao điểm nên có 30% ngày bị tắc đường nên bị về nhà muộn (từ 30 phút trở lên) còn
số ngày sinh viên đó vào quán Internet cạnh trường để chơi Games, những ngày này xác suất về nhà muộn là
. Còn lại những ngày khác sinh viên đó đi chơi với bạn bè có xác suất về muộn là
. Tính xác suất để trong một ngày nào đó sinh viên không về muộn.
Gọi B là biến cố sinh viên đó đi học về muộn
là biến cố sinh viên đó đi học không về muộn
E1 là biến cố tan học về nhà ngay
E2 là biến cố tan học đi chơi game
E3 là biến cố tan học về đi chơi với bạn
B có thể xảy ra một trong 3 biến cố
Giả sử tỉ lệ người dân của tỉnh T nghiện thuốc lá là ; tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là
, trong số người không nghiện thuốc lá là
. Hỏi khi ta gặp ngẫu nhiên một người dân của tỉnh T thì khả năng mà đó bị bệnh phổi là bao nhiêu
?
Gọi A là biến cố “người nghiện thuốc lá”, suy ra A là biến cố “người không nghiện thuốc lá”
Gọi B là biến cố “người bị bệnh phổi”
Để người mà ta gặp bị bệnh phổi thì người đó nghiện thuốc lá hoặc không nghiện thuốc lá.
Ta cần tính
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Tìm xác suất nó là phế phẩm.
Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.
Gọi A là "lấy ra sản phẩm là phế phẩm".
Áp dụng công thức xác suất toàn phần, ta có
Cho hai biến cố và
, với
.
a) và
Đúng||Sai
b) Sai||Đúng
c) Sai||Đúng
d) Sai||Đúng
Cho hai biến cố và
, với
.
a) và
Đúng||Sai
b) Sai||Đúng
c) Sai||Đúng
d) Sai||Đúng
a) Đúng.
Ta có:
.
b) Sai.
Ta có: .
c) Sai.
Ta có: .
d) Sai.
Ta có:
Mà
.
Cho hai biến cố và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Người ta khảo sát khả năng chơi nhạc cụ của một nhóm học sinh nam nữ tại một trường phổ thông T. Xét phép thử chọn ngẫu nhiên 1 học sinh trong nhóm đó. Gọi là biến cố “học sinh được chọn biết chơi ít nhất một nhạc cụ”, và
là biến cố “học sinh được chọn là nam”. Biết xác xuất học sinh được chọn là nam bằng
; xác suất học sinh được chọn là nam và biết chơi ít nhất một nhạc cụ là
; xác suất học sinh được chọn là nữ và biết chơi ít nhất một nhạc cụ là
. Tính
?
Theo bài ra ta có:
Theo công thức xác suất toàn phần, ta có:
.
Cho hai biến cố và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét các biến cố: : "Lần thứ nhất lấy ra chai nước loại I";
: "Lần thứ hai lấy ra chai nước loại
".
a) . Sai||Đúng
b) . Sai||Đúng
c) . Đúng||Sai
d) . Đúng||Sai
Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét các biến cố: : "Lần thứ nhất lấy ra chai nước loại I";
: "Lần thứ hai lấy ra chai nước loại
".
a) . Sai||Đúng
b) . Sai||Đúng
c) . Đúng||Sai
d) . Đúng||Sai
Ta có: .
Nếu lần thứ nhất lấy ra chai loại I thì két còn 23 chai nước, trong đó có 15 chai loại I, 8 chai loại II.
Suy ra .
Nếu lần thứ nhất lấy ra chai loại II thì két còn 23 chai nước, trong đó có 16 chai loại I, 7 chai loại II.
Suy ra .
Theo công thức xác suất toàn phần, ta có:
Ta có: ;
Có 3 hộp bi:
Hộp 1: Có 3 xanh, 4 đỏ, 5 vàng.
Hộp 2: Có 4 xanh, 5 đỏ, 6 vàng.
Hộp 3: Có 5 xanh, 6 đỏ, 7 vàng
Chọn ngẫu nhiên 1 hộp và từ hộp đó lấy ngẫu nhiên 1 bi. Tính xác suất để bi lấy ra là bi xanh. Nếu bi lấy ra không là bi xanh, tính xác suất để bi đó được lấy từ hộp 2?
Gọi lần lượt là các biến cố “Chọn được hộp thứ 1, 2, 3” ta có hệ
là hệ biến cố xung khắc và đầy đủ:
Gọi B là biến cố “Lấy được bi xanh”
Ta có:
là biến cố bi lấy ra không phải là bi xanh, ta cần tính:
Trong một kho rượu, số lượng rượu loại M và loại N bằng nhau. Người ta chọn ngẫu nhiên một chai và đưa cho 5 người nếm thử. Biết xác suất đoán đúng của mỗi người là 0,8. Có 3 người kết luận rượu loại M, 2 người kết luận rượu loại N. Hỏi khi đó xác suất chai rượu đó thuộc loại M là bao nhiêu?
Gọi A là chai rượu thuộc loại M thì tạo thành hệ đầy đủ và
Gọi H là "có 3 người kết luận rượu loại M và 2 người kết luận rượu loại N".
Theo công thức toàn phần ta có:
Vậy xác suất cần tính là:
Nếu hai biến cố A, B thỏa mãn thì
bằng:
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: