Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 19 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Xét tính đúng sai của các nhận định

    Khi kiểm tra sức khoẻ tổng quát của bệnh nhân ở một bệnh viện, người ta được kết quả như sau:

    - Có 40\% bệnh nhân bị đau dạ dày.

    - Có 30\% bệnh nhân thường xuyên bị stress.s

    - Trong số các bệnh nhân bị stress có 80\% bệnh nhân bị đau dạ dày.

    Chọn ngẫu nhiên 1 bệnh nhân.

    a) Xác suất chọn được bệnh nhân thường xuyên bị stress là 0,3 Đúng||Sai

    b) Xác suất chọn được bệnh nhân bị đau dạ dày, biết bệnh nhân đó thường xuyên bị stress, là 0,8. Đúng||Sai

    c) Xác suất chọn được bệnh nhân vừa thường xuyên bị stress vừa bị đau dạ dày là 0,24. Đúng||Sai

    d) Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày, là 0,6. Đúng||Sai

    Đáp án là:

    Khi kiểm tra sức khoẻ tổng quát của bệnh nhân ở một bệnh viện, người ta được kết quả như sau:

    - Có 40\% bệnh nhân bị đau dạ dày.

    - Có 30\% bệnh nhân thường xuyên bị stress.s

    - Trong số các bệnh nhân bị stress có 80\% bệnh nhân bị đau dạ dày.

    Chọn ngẫu nhiên 1 bệnh nhân.

    a) Xác suất chọn được bệnh nhân thường xuyên bị stress là 0,3 Đúng||Sai

    b) Xác suất chọn được bệnh nhân bị đau dạ dày, biết bệnh nhân đó thường xuyên bị stress, là 0,8. Đúng||Sai

    c) Xác suất chọn được bệnh nhân vừa thường xuyên bị stress vừa bị đau dạ dày là 0,24. Đúng||Sai

    d) Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày, là 0,6. Đúng||Sai

    Xét các biến cố: A: “Chọn được bệnh nhân thường xuyên bị stress”;

    B: “Chọn được bệnh nhân bị đau dạ dày”

    Khi đó, P(A) = 0,3;P(B) = 0,4;P(B \mid A)
= 0,8.

    Suy ra xác suất chọn được bệnh nhân thường xuyên bị stress vừa bị đau dạ dày là

    P(A \cap B) = P(A) \cdot P(B \mid A) =
0,3 \cdot 0,8 = 0,24;

    Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày, là P\left( A|B \right) =
\frac{P(A \cap B)}{P(B)} = \frac{0,24}{0,4} = 0,6.

    Đáp án: a) Đ, b) Đ, c) Đ, d) Đ.

  • Câu 2: Vận dụng
    Tính xác suất lấy được viên bi đánh số

    Một hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60% số viên bi màu đỏ đánh số và 50% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số. Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số bằng

    Hướng dẫn:

    Gọi A là biến cố “viên bi được lấy ra có đánh số”.

    Gọi B là biến cố “viên bi được lấy ra có màu đỏ”, suy ra \overline{B} là biến cố “viên bi được lấy ra có màu vàng”.

    Lúc này ta đi tính P(A) theo công thức:

    P(A) = P(B).P\left( A|B \right) + P\left(
\overline{B} \right).P\left( A|\overline{B} \right).

    Ta có:P(B) = \frac{50}{80} =
\frac{5}{8}.

    P\left( \overline{B} \right) =
\frac{30}{80} = \frac{3}{8}.

    P\left( A|B \right) = 60\% =
\frac{3}{5}.

    P\left( A|\overline{B} \right) = 100\% -
50\% = \frac{1}{2}.

    Vậy P(A) = P(B).P\left( A|B \right) +P\left( \overline{B} \right).P\left( A|\overline{B} \right)=\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} =\frac{9}{16}.

  • Câu 3: Vận dụng cao
    Tính xác suất để cuộc gọi là đúng

    Một ứng dụng được sử dụng để chặn cuộc gọi rác trong điện thoại. Tuy nhiên, vì ứng dụng không tuyệt đối hoàn hảo nên một cuộc gọi rác bị chặn với xác suất 0,8 và một cuộc gọi đúng (không phải là cuộc gọi rác) bị chặn với xác suất 0,01. Thống kê cho thấy tỉ lệ cuộc gọi rác là 10\%. Chọn ngẫu nhiên một cuộc gọi không bị chặn. Xác suất để đó là cuộc gọi đúng là

    Hướng dẫn:

    Gọi A là biến cố: “cuộc gọi được chọn là cuộc gọi rác”, B là biến cố: “cuộc gọi được chọn bị chặn” thì \overline{B} là biến cố: “cuộc gọi được chọn không bị chặn”.

    Theo đầu bài ta có: P(A) = 0,1; P\left( \overline{A} \right) = 0,9; P\left( \left. \ B \right|A \right) =
0,8; P\left( \left. \ B
\right|\overline{A} \right) = 0,01.

    Ta có:

    P(B) = P\left( \left. \ B \right|A
\right).P(A) + P\left( \left. \ B \right|\overline{A} \right).P\left(
\overline{A} \right)

    = 0,8.0,1 + 0,01.0,9 =
0,089.

    P\left( \left. \ B \right|\overline{A}
\right) = 0,01 \Rightarrow P\left( \left. \ \overline{B}
\right|\overline{A} \right) = 0,99

    P\left( \left. \ B \right|A \right) = 0,8
\Rightarrow P\left( \left. \ \overline{B} \right|A \right) =
0,2

    Theo công thức Bayes ta có:

    P\left( \left. \ \overline{A}
\right|\overline{B} \right) = \frac{P\left( \overline{A} \right).P\left(
\left. \ \overline{B} \right|\overline{A} \right)}{P\left( \overline{A}
\right).P\left( \left. \ \overline{B} \right|\overline{A} \right) +
P(A).P\left( \left. \ \overline{B} \right|A \right)}

    = \frac{0,9.0,99}{0,9.0,99 + 0,1.0,2} =
\frac{891}{911}.

  • Câu 4: Thông hiểu
    Chọn đáp án chính xác

    Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng 0,850,15. do có nhiễu trên đường truyền nên \frac{1}{7} tín hiệu A bị méo và thu được như tín hiệu B còn \frac{1}{8} tín hiệu B bị méo cà thu được như A. Xác suất thu được tín hiệu A là:

    Hướng dẫn:

    Gọi A là biến cố “Phát tín hiệu A ”

    Gọi B là biến cố “Phát tín hiệu A ”

    Gọi TA là biến cố “Phát được tín hiệu A ”

    Gọi TB là biến cố “Phát được tín hiệu B”.

    Ta cần tính P\left( T_{A}
ight) ta có: \left\{\begin{matrix}P(A) = 0,85 \\P\left( T_{B}|A ight) = \dfrac{1}{7} \Rightarrow P\left( T_{A}|Aight) = 1 - \dfrac{1}{7} = \dfrac{6}{7} \\P(B) = 0,15 \\P\left( T_{A}|B ight) = \dfrac{1}{8} \\\end{matrix} ight. khi đó:

    P\left( T_{A} ight) = P(A).P\left(
T_{A}|A ight) + P(B).P\left( T_{A}|B ight)

    \Rightarrow P\left( T_{A} ight) =
0,85.\frac{6}{7} + 0,15.\frac{1}{8} = \frac{837}{1120}

  • Câu 5: Vận dụng
    Tính xác suất P

    Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Tính xác suất để viên bi rút ra sau cùng màu đỏ?

    Hướng dẫn:

    Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",

    D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".

    Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.

    Ta có: \left\{ \begin{gathered}
  P\left( {{D_1}{D_2}} ight) = \frac{4}{6}.\frac{4}{7};P\left( {{D_1}{X_2}} ight) = \frac{4}{6}.\frac{3}{7} \hfill \\
  P\left( {{X_1}{D_2}} ight) = \frac{2}{6}.\frac{3}{7};P\left( {{X_1}{X_2}} ight) = \frac{2}{6}.\frac{4}{7} \hfill \\ 
\end{gathered}  ight.

    Gọi A là "viên bi rút ra sau cùng là màu đỏ".

    Ta xác định được: \left\{ \begin{gathered}
  P\left( {A|{D_1}{D_2}} ight) = \frac{4}{6};P\left( {A|{D_1}{X_2}} ight) = \frac{3}{6} \hfill \\
  P\left( {A|{X_1}{D_2}} ight) = \frac{5}{6};P\left( {A|{X_1}{X_2}} ight) = \frac{4}{6} \hfill \\ 
\end{gathered}  ight.

    Áp dụng công thức xác suất toàn phần:

    P(A) = P\left( D_{1}D_{2} ight)P\left(
A|D_{1}D_{2} ight) + P\left( D_{1}X_{2} ight)P\left( A|D_{1}X_{2}
ight)

    + P\left( X_{1}D_{2} ight)P\left(
A|X_{1}D_{2} ight) + P\left( X_{1}X_{2} ight)P\left( A|X_{1}X_{2}
ight)

    = \frac{4}{6}.\frac{4}{7}.\frac{4}{6} +
\frac{4}{6}.\frac{3}{7}.\frac{3}{6} +
\frac{2}{6}.\frac{3}{7}.\frac{5}{6} +
\frac{2}{6}.\frac{4}{7}.\frac{4}{6} = \frac{9}{14}

  • Câu 6: Vận dụng
    Xét tính đúng sai của các kết luận

    Năm 2020, dịch COVID-19 bùng phát trên toàn thế giới. Các nhà khoa học đã phát triển một loại test nhanh để phát hiện virus SARS-CoV-2 gây bệnh COVID-19. Theo thống kê, khi một người nhiễm virus SARS-CoV-2 thì xác suất để test nhanh có kết quả dương tính là 90%. Tuy nhiên, khi một người không nhiễm virus, xác suất để test nhanh vẫn cho kết quả dương tính là 5%. Biết rằng tỷ lệ người nhiễm virus SARS-CoV-2 ở một quốc gia là 2% trong dân số.

    Gọi X là biến cố "một người nhiễm virus SARS-CoV-2" và Y là biến cố "một người có kết quả test nhanh dương tính".

    a) P(X) = 0,02. Đúng||Sai

    b) P(Y|X) = 0,9. Đúng||Sai

    c) P(X|Y) = 0,567. Đúng||Sai

    d) P(Y \cap X) = 0,06. Sai||Đúng

    Đáp án là:

    Năm 2020, dịch COVID-19 bùng phát trên toàn thế giới. Các nhà khoa học đã phát triển một loại test nhanh để phát hiện virus SARS-CoV-2 gây bệnh COVID-19. Theo thống kê, khi một người nhiễm virus SARS-CoV-2 thì xác suất để test nhanh có kết quả dương tính là 90%. Tuy nhiên, khi một người không nhiễm virus, xác suất để test nhanh vẫn cho kết quả dương tính là 5%. Biết rằng tỷ lệ người nhiễm virus SARS-CoV-2 ở một quốc gia là 2% trong dân số.

    Gọi X là biến cố "một người nhiễm virus SARS-CoV-2" và Y là biến cố "một người có kết quả test nhanh dương tính".

    a) P(X) = 0,02. Đúng||Sai

    b) P(Y|X) = 0,9. Đúng||Sai

    c) P(X|Y) = 0,567. Đúng||Sai

    d) P(Y \cap X) = 0,06. Sai||Đúng

    a) Ta có: P(X)là xác suất một người nhiễm virus SARS-CoV-2.
    Theo đề bài, tỷ lệ người nhiễm virus SARS-CoV-2 ở một quốc gia là 2\% = 0,02trong dân số.
    Vậy mệnh đề đúng.

    b) P(Y|X)là xác suất một người có kết quả test nhanh dương tính, với điều kiện người đó nhiễm virus SARS-CoV-2.

    Theo giả thiết, khi một người nhiễm virus SARS-CoV-2, xác suất để test nhanh có kết quả dương tính là 90\% =
0,9. Vậy mệnh đề đúng.

    c) P(X|Y) là xác suất một người nhiễm virus SARS-CoV-2, với điều kiện người đó có kết quả test nhanh dương tính.

    Ta có: P(Y|X) = 0,9.(cmt), P(X) = 0,02.

    P(Y) = P(Y|X).P(X) +
P(Y|\overline{X}).P(\overline{X}) = 0,9.0,02 + 0,05.0,98 = 0,0634.

    Thay vào công thức Bayes: P(X|Y) =
\frac{P(Y|X).P(X)}{P(Y)} = 0,567.

    Vậy mệnh đề đúng.

    d) Trong câu d, P(Y \cap X) là xác suất một người vừa nhiễm virus SARS-CoV-2 vừa có kết quả test nhanh dương tính.

    P(Y \cap X) = P(Y|X).P(X) = 0,9.0,02 =
0,05.

    Vậy mệnh đề sai.

  • Câu 7: Vận dụng
    Xét tính đúng sai của các nhận định

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M, N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A: “Cây phát triển bình thường trên lô đất M”;

    B: “Cây phát triển bình thường trên lô đất N”.

    a) Các cặp biến cố \overline{A}và B, A và \overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A}\  \cap B D = \ A \cap
\overline{B} không là hai biến cố xung khắc. Sai||Đúng

    c) P(\overline{A}) = 0,56; P(\overline{B}) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    Đáp án là:

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M, N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A: “Cây phát triển bình thường trên lô đất M”;

    B: “Cây phát triển bình thường trên lô đất N”.

    a) Các cặp biến cố \overline{A}và B, A và \overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A}\  \cap B D = \ A \cap
\overline{B} không là hai biến cố xung khắc. Sai||Đúng

    c) P(\overline{A}) = 0,56; P(\overline{B}) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    a) Do hai lô đất khác nhau. Nên các cặp biến cố \overline{A}và B, A và \overline{B} là độc lập. Suy ra đúng.

    b) Do C \cap D = \overline{A}\  \cap
A\  \cap B \cap \overline{B} = \varnothing nên hai biến cố C, D xung khắc. Suy ra sai.

    c) Tacó: P(\overline{A}) = 1 – P(A) = 1 – 0,56 = 0,44;

    P(\overline{B}) = 1 – P(B) = l – 0,62 = 0,38. Suy ra sai.

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là:

    P(C \cup D) = P(C) + P(D) = P\left(
\overline{A}\  \right).P(B) + P(A).P\left( \overline{B} \right)

    = 0,44. 0,62 + 0,56.0,38 = 0,4856. Suy ra đúng.

  • Câu 8: Vận dụng
    Xét tính đúng sai của các khẳng định

    Khi điều tra tình hình sức khoẻ của người cao tuổi tại một địa phương, người ta thấy rằng có 40\% người cao tuổi bị bệnh tiểu đường. Số người bị bệnh huyết áp cao trong những người bị bệnh tiểu đường là 70\%, trong những người không bị bệnh tiểu đường là 25\%. Chọn ngẫu nhiên 1 người cao tuổi để kiểm tra sức khoẻ. Gọi A là biến cố chọn được người bị bệnh tiểu đường. Gọi B là biến cố chọn được người bị bệnh huyết ấp cao.

    a) P\left( \overline{A} \right) =
0,6. Sai||Đúng

    b) P(B \mid A) = 0,8. Sai||Đúng

    c) P\left( B \mid \overline{A} \right) =
0,25. Đúng||Sai

    d) P(B) = 0,44. Sai||Đúng

    Đáp án là:

    Khi điều tra tình hình sức khoẻ của người cao tuổi tại một địa phương, người ta thấy rằng có 40\% người cao tuổi bị bệnh tiểu đường. Số người bị bệnh huyết áp cao trong những người bị bệnh tiểu đường là 70\%, trong những người không bị bệnh tiểu đường là 25\%. Chọn ngẫu nhiên 1 người cao tuổi để kiểm tra sức khoẻ. Gọi A là biến cố chọn được người bị bệnh tiểu đường. Gọi B là biến cố chọn được người bị bệnh huyết ấp cao.

    a) P\left( \overline{A} \right) =
0,6. Sai||Đúng

    b) P(B \mid A) = 0,8. Sai||Đúng

    c) P\left( B \mid \overline{A} \right) =
0,25. Đúng||Sai

    d) P(B) = 0,44. Sai||Đúng

    a) P(A) = 0,4 \Rightarrow P(\overline{A})
= 1 - P(A) = 0,6.

    b) P(B \mid A) = 0,7.

    c) P\left( B \mid \overline{A} \right) =
0,25.

    d) P(B) = P(A).P(B|A) +
P(\overline{A}).P(B|\overline{A}) = 0,4.0,7 + 0,6.0,25 =
0,43.

    Đáp án: a) S, b) S, c) Đ, d) S.

  • Câu 9: Thông hiểu
    Xét tính đúng sai của các phương án

    Giả sử 5\% email của bạn nhận được là email rác. Bạn sử dụng một hệ thống lọc email rác mà khả năng lọc đúng email rác của hệ thống này là 95\% và có 10\% những email không phải là email rác nhưng vẫn bị lọc. Các khẳng định sau đúng hay sai?

    Hướng dẫn:

    a) Gọi A: “Email nhận được là email rác”.

    Và B: “Email bị lọc đúng email rác của hệ thống lọc email rác”.

    Vì 5% email nhận được là rác nên xác suất nhận được một email rác là

    P(A) = 5\% = 0,05

    b) Xác suất email bị lọc của email rác là P\left( B|A ight) = 95\% = 0,95.

    c) Xác suất email nhận được không phải rác là P\left( \overline{A} ight) = 1 - P(A) = 1 - 0,05
= 0,95

    Xác suất email bị lọc của email không phải rác là P\left( B|\overline{A} ight) = 0,1

    Vậy xác suất chọn một email bị lọc bất kể là rác hay không là

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight)P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,95.0,05 + 0,1.0,95
= 0,1425

    d) Xác suất chọn một email trong số những email bị lọc thực sự là email rác là

    P\left( A|B ight) = \frac{P\left( B|A
ight).P(A)}{P(B)} = \frac{0,95.0,05}{0,1425} =
\frac{1}{3}.

  • Câu 10: Vận dụng
    Chọn đáp án đúng

    Trong quân sự, một máy bay chiến đấu của đối phương có thể xuất hiện ở vị trí X với xác suất 0,55. Nếu máy bay đó không xuất hiện ở vị trí X thì nó xuât hiện ở vị trí Y. Để phòng thủ, các bệ phóng tên lửa được bố trí tại các vị trí X và Y. Khi máy bay đối phương xuất hiện ở vị trí X hoặc Y thì tên lửa sẽ được phóng để hạ máy bay đó. Xét phương án tác chiến sau:

    Nếu máy bay xuất hiện tại X thì bắn hai quả tên lửa và nếu máy bay xuất hiện tại Y thì bắn 1 quả tên lửa. Biết rằng, xác suất bắn trúng máy bay của mỗi quả tên lửa là 0,8 và các bệ phóng tên lửa hoạt động độc lập. Máy bay bị bắn hạ nếu nó trúng ít nhất 1 quả tên lửa.

    Tính xác suất bắn hạ máy bay đối phương trong phương án tác chiến nêu trên?

    Hướng dẫn:

    Xét biến cố A: “Máy bay xuất hiện ở vị trí X”, điều đó có nghĩa là biến cố \overline{0,0637}: “Máy bay xuất hiện ở vị trí Y”.

    Xét biến cố B: “Máy bay bị bắn hạ”.

    Ta có P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    Tính được P(A) = 0,55;P\left(
\overline{A} ight) = 0,45

    Tính P\left( B|A ight): Đây là xác suất để máy bay bị bắn hạ tại vị trí X.

    Máy bay bị bắn hạ nếu nó trúng ít nhất một 1 quả tên lửa (trong 2 quả tên lửa đối với máy bay ở vị trí X), mà xác suất bắn trúng máy bay của mỗi quả tên lửa là 0,8, vậy:

    P\left( B|A
ight) = 1 - (1 - 0,8).(1 - 0,8) = 0,96

    Tính P\left( B|\overline{A}
ight): Đây là xác suất để máy bay bị bắn hạ tại vị trí Y.

    Máy bay bị bắn hạ nếu nó trúng ít nhất một 1 quả tên lửa (trong 1 quả tên lửa đối với máy bay ở vị trí Y), mà xác suất bắn trúng máy bay của mỗi quả tên lửa là 0,8 vậy P\left(
B|\overline{A} ight) = 0,8

    \Rightarrow P(B) = 0,55.0,96 + 0,45.0,8
= 0,888

    Vậy xác suất để máy bay bị bắn hạ là P\left( B|\overline{A} ight) =
0,888

  • Câu 11: Vận dụng cao
    Chọn đáp án đúng

    Giả sử có một loại bệnh S mà tỉ lệ người mắc bệnh là 0,1\%. Giả sử có một loại xét nghiệm, mà ai mắc bệnh S khi xét nghiệm cũng có phản ứng dương tính, nhưng tỉ lệ phản ứng dương tính giả là 5\% (tức là trong số những người không bị bệnh S có 5\% số người xét nghiệm lại có phản ứng dương tính). Khi một người xét nghiệm có phản ứng dương tính thì khả năng mắc bệnh S của người đó là bao nhiêu phần trăm (làm tròn kết quả đến hàng phần trăm)?

    Hướng dẫn:

    Gọi A là biến cố: “Người đó mắc bệnh S”

    B là biến cố: “Người đó xét nghiệm có phản ứng dương tính”.

    Ta cần tính P\left( A|B
\right).

    Ta có: P(A) = 0,001; P\left( \overline{A} \right) = 1 - P(A) = 1 -
0,001 = 0,999;

    P\left( B|A \right)
= 1; P\left( B|\overline{A} \right)
= 0,05.

    Thay vào công thức Bayes ta được:

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(A).P\left( B|A \right) + P\left( \overline{A}
\right).P\left( B|\overline{A} \right)}

    = \frac{0,001.1}{0,001.1 + 0,999.0,05} =
\frac{20}{1019} \approx 1,96\%.

  • Câu 12: Vận dụng cao
    Chọn đáp án chính xác nhất

    Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.

    Hướng dẫn:

    Gọi A_{i} là "trong 5 sản phẩm cuối có i chính phẩm".

    Khi đó hệ A_{0},A_{1},A_{2},A_{3},A_{4},A_{5} tạo thành hệ đầy đủ

    A_{0} xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.

    Suy ra P\left( A_{0} ight) =
0

    A_{1} xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.

    P\left( A_{1} ight) =
\frac{C_{3}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}}
= \frac{1}{225}

    A_{2} xảy ra nếu lấy 1 chính, 1 phế từ lô I,1 chính, 2 phế từ lô II hoặc 2 phế từ lô I,2 chính, 1 phế từ lô II

    P\left( A_{2} ight) =
\frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}} + \frac{C_{3}^{2}}{C_{10}^{2}}
\cdot \frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}} =
\frac{14}{225}

    A_{3} xảy ra nếu lấy 2 chính từ lô I,1 chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô I,2 chính, 1 phế từ lô II hoặc 2 phế từ lô I,3 chính từ lô II

    P\left( A_{3} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}}
+ \frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}} + \frac{C_{3}^{2}}{C_{10}^{2}}
\cdot \frac{C_{8}^{3}}{C_{10}^{3}} = \frac{7}{25}

    A_{4} xảy ra nếu lấy 2 chính từ lô I,2 chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô I,3 chính từ lô II

    P\left( A_{4} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}}
+ \frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{3}}{C_{10}^{3}} = \frac{98}{225}

    A_{5} xảy ra nếu lấy 2 chính từ lô I,3 chính từ lô II

    P\left( A_{5} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{3}}{C_{10}^{3}} =
\frac{49}{225}

    Gọi A là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ

    P(\bar{A}) = \sum_{i =
0}^{5}\mspace{2mu}\mspace{2mu} P\left( A_{i} ight)P\left( \bar{A} \mid
A_{i} ight)

    = \frac{C_{5}^{2}}{C_{5}^{2}} \cdot 0 +
\frac{C_{4}^{2}}{C_{5}^{2}} \cdot \frac{1}{225} +
\frac{C_{3}^{2}}{C_{5}^{2}} \cdot \frac{14}{225} +
\frac{C_{2}^{2}}{C_{5}^{2}} \cdot \frac{7}{25} + 0 \cdot \frac{98}{225}
+ 0 \cdot \frac{49}{225}

    \simeq 0.4933

    Suy ra P(A) = 1 - P(\bar{A}) \simeq
0,6507.

  • Câu 13: Vận dụng cao
    Tính xác suất theo yêu cầu

    Một kho hàng có 85\% sản phẩm loại I và 15\% sản phẩm loại II, trong đó có 1\% sản phẩm loại I bị hỏng, 4\% sản phẩm loại II bị hỏng. Các sản phẩm có kích thước và hình dạng như nhau. Một khách hàng chọn ngẫu nhiên 1 sản phẩm. Tính xác suất để sản phẩm đó loại I và sản phẩm đó không bị hỏng. (kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Xét các biến cố:

    A: "Khách hàng chọn được sản phẩm loại I ";

    B: "Khách hàng chọn được sản phẩm không bị hỏng".

    Ta có: P(A) = 0,85; P\left( \overline{A} \right) = 0,15;\ P\left( B|A\right) = 1 - P\left( \overline{B}|A \right) = 1 - 0,01 =0,99;

    P\left( B|\overline{A} \right) = 1 -
P\left( \overline{B}|\overline{A} \right) = 1 - 0,04 =
0,96.

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A)P\left( B|A \right) + P\left(
\overline{A} \right)P\left( B|\overline{A} \right)

    = 0,85.0,99 + 0,15.0,96 =
0,9855

    Theo công thức Bayes, ta có:

    P\left( A|B
\right) = \frac{P(A).P\left( B|A \right)}{P(B)} =
\frac{0,85.0,99}{0,9855} \approx 0,85.

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Một bình đựng hạt giống có 7 hạt loại A và 6 hạt loại B. Lấy ngẫu nhiên lần thứ nhất ra 2 hạt, lần thứ hai ra một hạt. Tính xác suất để hạt giống lấy ra lần 2 là hạt loại A.

    Hướng dẫn:

    Gọi F là biến cố hạt lấy ra lần hai là loại A. H0, H1, H2 lần lượt là biến cố hai hạt lấy ra lần thứ nhất có 0,1, 2 hạt loại B.

    {H0, H1, H2} là một hệ đầy đủ.

    Áp dụng công thức xác suất đầy đủ ta có

    P(F) = P\left( H_{0} ight).P\left(
F|H_{0} ight) + P\left( H_{1} ight).P\left( F|H_{1} ight) +
P\left( H_{2} ight).P\left( F|H_{2} ight)

    \Rightarrow P(F) =
\frac{C_{7}^{2}}{C_{13}^{2}}.\frac{5}{11} +
\frac{C_{7}^{1}.C_{6}^{1}}{C_{13}^{2}}.\frac{6}{11} +
\frac{C_{6}^{2}}{C_{13}^{2}}.\frac{7}{11} = 0,538.

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Một công ty du lịch bố trí chỗ cho đoàn khách tại ba khách sạn A;B;C theo tỉ lệ 20\%;50\%;30\%. Tỉ lệ hỏng điều hòa ở ba khách sạn lần lượt là 5\%;4\%;8\%. Tính xác suất để một khách nghỉ ở phòng điều hòa bị hỏng.

    Hướng dẫn:

    Gọi H ” Để một khách ở phòng điều hòa bị hỏng”

    Gọi A;B;C lần lượt là các biến cố Khách nghỉ tại ba khách sạn A;B;C.

    Ta có: \left\{ \begin{matrix}
P(A) = 20\% = 0,2;P\left( H|A ight) = 5\% = 0,05 \\
P(B) = 50\% = 0,5;P\left( H|B ight) = 4\% = 0,04 \\
P(C) = 30\% = 0,3;P\left( H|C ight) = 8\% = 0,08 \\
\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(H) = P\left( H|A ight)P(A) + P\left(
H|B ight)P(B) + P\left( H|C ight)P(C)

    P(H) = 0,05.0,2 + 0,04.0,5 + 0,08.0,3 =
\frac{27}{500}.

  • Câu 16: Vận dụng cao
    Ghi đáp án vào ô trống

    Có hai chiếc hộp, hộp I có 6 quả bóng màu đỏ và 4 quả bóng màu vàng, hộp II có 7 quả bóng màu đỏ và 3 quả bóng màu vàng, các quả bóng có cùng kích thước và khối lượng. Lấy ngẫu nhiên một quả bóng từ hộp I bỏ vào hộp II. Sau đó, lấy ra ngẵu nhiên một quả bóng từ hộp II. Tính xác suất để quả bóng được lấy ra từ hộp II là quả bóng được chuyển từ hộp I sang, biết rằng quả bóng đó có màu đỏ (làm tròn kết quả đến hảng phần trăm).

    Đáp án 0,08

    Đáp án là:

    Có hai chiếc hộp, hộp I có 6 quả bóng màu đỏ và 4 quả bóng màu vàng, hộp II có 7 quả bóng màu đỏ và 3 quả bóng màu vàng, các quả bóng có cùng kích thước và khối lượng. Lấy ngẫu nhiên một quả bóng từ hộp I bỏ vào hộp II. Sau đó, lấy ra ngẵu nhiên một quả bóng từ hộp II. Tính xác suất để quả bóng được lấy ra từ hộp II là quả bóng được chuyển từ hộp I sang, biết rằng quả bóng đó có màu đỏ (làm tròn kết quả đến hảng phần trăm).

    Đáp án 0,08

    Gọi 𝐴 là biến cố: “Quả bóng lấy ra từ hộp II là quả bóng được chuyển từ hộp I sang “. Khi đó, \overline{A} là biến cố: Quả bóng lấy ra từ hộp II là quả bóng của hộp II ban đầu “.

    Gọi B là biến cố: “Quả bóng lấy ra từ hộp II có màu đỏ, sau khi có một quả bóng từ hộp I chuyển sang hộp II“

    Ta cần tính P\left( A|B ight) =
\frac{P(A).P\left( B|A ight)}{P(B)}

    P(B) = P(B.A) + P\left( B.\overline{A}
ight)

    = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    = \frac{1}{11}.\frac{6}{10} +
\frac{10}{11}.\frac{7}{10} = \frac{76}{110} = \frac{38}{55}

    P\left( A|B ight) = \dfrac{P(A).P\left(
B|A ight)}{P(B)} = \dfrac{\dfrac{1}{11}.\dfrac{6}{10}}{\dfrac{38}{35}} =
\dfrac{3}{38} \approx 0,08

  • Câu 17: Vận dụng
    Ghi đáp án vào ô trống

    Một công ty đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,4 và khả năng thắng thầu của dự án 2 là 0,5. Khả năng thắng thầu cả 2 dự án là 0,3. Xác suất để công ty thắng thầu dự án 2 biết công ty thắng thầu dự án 1 là a. Xác suất để công ty thắng thầu dự án 2 biết công ty không thắng thầu dự án 1 là b. Khi đó biểu thức P = 4.a + 3b là bao nhiêu?

    Đáp án: 4

    Đáp án là:

    Một công ty đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,4 và khả năng thắng thầu của dự án 2 là 0,5. Khả năng thắng thầu cả 2 dự án là 0,3. Xác suất để công ty thắng thầu dự án 2 biết công ty thắng thầu dự án 1 là a. Xác suất để công ty thắng thầu dự án 2 biết công ty không thắng thầu dự án 1 là b. Khi đó biểu thức P = 4.a + 3b là bao nhiêu?

    Đáp án: 4

    Gọi A là biến cố: “Thắng thầu dự án 1”

    Gọi B là biến cố: “Thắng thầu dự án 2”.

    Theo giả thiết suy ra: P(A) =
0,4; P(B) = 0,5P(AB) = 0,3

    Gọi D là biến cố: “Thắng thầu dự án 2 biết công ty thắng thầu dự án 1” \Rightarrow D = B|A

    Khi đó:

    P(D) = P\left( B|A ight) =
\frac{P(AB)}{P(A)} = \frac{0,3}{0,4} = \frac{3}{4}

    Gọi E là biến cố: “Thắng thầu dự án 2 biết công ty không thắng thầu dự án 1” \Rightarrow E = B|\overline{A}

    Khi đó:

    P(E) = P\left( B|\overline{A} ight) =
\frac{P\left( \overline{A}B ight)}{P\left( \overline{A} ight)} =
\frac{P(B) - P(AB)}{1 - P(A)}

    =
\frac{0,5 - 0,3}{1 - 0,4} = \frac{0,2}{0,6} = \frac{1}{3}

    Vậy P = 4.\frac{3}{4} + 3.\frac{1}{3} =
4.

  • Câu 18: Vận dụng cao
    Tính xác suất của biến cố

    Hai máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất 35\%, máy II sản xuất 65\% tổng sản lượng. Tỉ lệ phế phẩm của các máy lần lượt là 0,3\% 0,7\%. Chọn ngẫu nhiên 1 sản phẩm từ kho. Tính xác suất để chọn được phế phẩm do máy I sản xuất?

    Hướng dẫn:

    Gọi A_{1}là biến cố “Sản phẩm được chọn do máy I sản xuất”

    A_{2} là biến cố “Sản phẩm được chọn do máy II sản xuất”

    B là biến cố “Sản phẩm được chọn là phế phẩm”

    Suy ra A_{1}|B là biến cố “chọn được phế phẩm do máy I sản xuất”

    Ta có P\left( A_{1} \right) =
0,35, P\left( A_{2} \right) =
0,65, P\left( B|A_{1} \right) =
0,003, P\left( B|A_{2} \right) =
0,007

    P(B) = P\left( B|A_{1} \right).P\left(
A_{1} \right) + P\left( B|A_{2} \right).P\left( A_{2} \right) =
0,0056

    Theo công thức Bayes có:

    P\left( A_{1}|B \right) = \frac{P\left(
B|A_{1} \right).P\left( A_{1} \right)}{P(B)} = 0,1875.

  • Câu 19: Vận dụng
    Tính xác suất bi màu đỏ

    Có 3 hộp đựng bi: hộp thứ nhất có 3 bi đỏ, 2 bi trắng; hộp thứ hai có 2 bi đỏ, 2 bi trắng; hộp thứ ba không có viên nào. Lấy ngẫu nhiên 1 viên bi từ hộp thứ nhất và 1 viên bi từ hộp thứ hai bỏ vào hộp thứ ba. Sau đó từ hộp thứ ba lấy ngẫu nhiên ra 1 viên bi. Tính xác suất để viên bi đó màu đỏ?

    Hướng dẫn:

    Gọi A1, A2 lần lượt là "lấy bi đỏ từ hợp thứ 1 (thứ 2) bỏ vào hộp thứ ba" thì A_{1}A_{2};\overline{A_{1}}A_{2};A_{1}\overline{A_{2}};\overline{A_{1}}\overline{A_{2}} tạo thành một hệ đầy đủ.

    Ta có: \left\{ \begin{matrix}
P\left( A_{1}A_{2} ight) = 0,3;P\left( \overline{A_{1}}A_{2} ight) =
0,2 \\
P\left( A_{1}\overline{A_{2}} ight) = 0,3;P\left(
\overline{A_{1}}\overline{A_{2}} ight) = 0,2 \\
\end{matrix} ight.

    Gọi A "lấy ra từ hộp 3 một viên bi màu đỏ". Ta có:

    P\left( A|A_{1}A_{2} ight) = 1;P\left(
A|\overline{A_{1}}A_{2} ight) = 0,5

    P\left( A|A_{1}\overline{A_{2}} ight)
= 0,5;P\left( A|\overline{A_{1}}\overline{A_{2}} ight) =
0

    Áp dụng công thức xác suất đầy đủ ta có:

    P(A) = P\left( A_{1}A_{2} ight)P\left(
A|A_{1}A_{2} ight) + P\left( \overline{A_{1}}A_{2} ight)P\left(
A|\overline{A_{1}}A_{2} ight)

    + P\left(
\overline{A_{1}}\overline{A_{2}} ight)P\left(
A|\overline{A_{1}}\overline{A_{2}} ight) + P\left(
A_{1}\overline{A_{2}} ight)P\left( A_{1}\overline{A_{2}}
ight)

    = 0,3.1 + 0,3.0,5 + 0,2.0,5 + 0,2.0 =
0,55

  • Câu 20: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Một chiếc hộp có 100 viên bi, trong đó có 70 viên bi có tô màu và 30 viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.

    a) Xác suất để bạn Nam lấy ra viên bi có tô màu là \frac{3}{7}. Đúng||Sai

    b) Sơ đồ cây biểu thị tình huống trên là. Đúng||Sai

    c) Xác suất để bạn Việt lấy ra viên bi có tô màu là: \frac{191}{330}Đúng||Sai

    d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là: \frac{139}{330}. Đúng||Sai

    Đáp án là:

    Một chiếc hộp có 100 viên bi, trong đó có 70 viên bi có tô màu và 30 viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.

    a) Xác suất để bạn Nam lấy ra viên bi có tô màu là \frac{3}{7}. Đúng||Sai

    b) Sơ đồ cây biểu thị tình huống trên là. Đúng||Sai

    c) Xác suất để bạn Việt lấy ra viên bi có tô màu là: \frac{191}{330}Đúng||Sai

    d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là: \frac{139}{330}. Đúng||Sai

    Gọi A là biến cố “bạn Việt lấy ra viên bi có tô màu”

    Gọi B là biến cố “bạn Nam lấy ra viên bi có tô màu”, suy ra B là biến cố “bạn Việt lấy ra viên bi không có tô màu”.

    a) Xác suất để bạn Nam lấy ra viên bi có tô màu là P(B) = \frac{70}{100} = \frac{7}{10}.

    b) Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 0,3

    P\left( A|B ight) = \frac{P(A \cap
B)}{P(B)} = \frac{n(A \cap B)}{n(B)} = \frac{70.69}{70.99} =
\frac{23}{33}

    P\left( A|\overline{B} ight) = 1 -
P\left( A|B ight) = 1 - \frac{23}{33} = \frac{10}{33}

    Sơ đồ cây cần tìm là:

    c) Xác suất để bạn Việt lấy ra viên bi có tô màu là:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) =
\frac{7}{10}.\frac{23}{33} + \frac{3}{10}.\frac{10}{33} =
\frac{191}{330}

    d) A là biến cố “bạn Việt lấy ra viên bi có tô màu” suy ra A là biến cố “bạn Việt lấy ra viên bi không có tô màu”

    \Rightarrow P\left( \overline{A} ight)
= 1 - P(A) = 1 - \frac{191}{330} = \frac{139}{330}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo