Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 19 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn đáp án đúng

    Một người có 3 chỗ ưa thích như nhau để câu cua. Xác suất câu được cua ở mỗi chỗ lần lượt là 0,6;0,7;0,8. Biết rằng đến một chỗ người đó thả câu 3 lần và chỉ câu được một con cua. Tính xác suất để cá câu được ở chỗ thứ nhất?

    Hướng dẫn:

    Gọi A1, A2, A3 lần lượt là "cá câu được ở chỗ thứ i" thì hệ A1, A2, A3 tạo thành hệ đầy đủ.

    Dễ thấy P\left( A_{1} ight) = P\left(
A_{2} ight) = P\left( A_{3} ight) = \frac{1}{3}

    Gọi H là "thả câu 3 lần và chỉ câu được 1 con cua".

    Theo công thức toàn phần, ta có:

    P(H) = P\left( A_{1} ight)P\left(
H|A_{1} ight) + P\left( A_{2} ight)P\left( H|A_{2} ight) + P\left(
A_{3} ight)P\left( H|A_{3} ight)

    Ở đó \left\{ \begin{matrix}
P\left( H|A_{1} ight) = 3.0,6^{1}.0,4^{2} \\
P\left( H|A_{2} ight) = 3.0,7^{1}.0,3^{2} \\
P\left( H|A_{3} ight) = 3.0,8^{1}.0,2^{2} \\
\end{matrix} ight.\  \Rightarrow P(H) = 0,191

    Theo công thức Bayes suy ra:

    P\left( A_{1}|H ight) = \frac{P\left(
A_{1} ight).P\left( H|A_{1} ight)}{P(H)} \approx 0,5026

  • Câu 2: Vận dụng cao
    Chọn đáp án đúng

    Một chiếc máy bay có thể xuất hiện không phận của điểm A với xác suất là \frac{2}{3} hoặc không phận của điểm B với xác suất là \frac{1}{3}. Giả sử có 3 phương án bố trí 4 khẩu pháo để hạ máy bay như sau:

    Phương án 1: 3 khẩu đặt ở điểm A và 1 khẩu đặt ở điểm B.

    Phương án 2: 2 khấu đặt ở điểm A và 2 khẩu đặt ở điểm B.

    Phương án 3: 1 khẩu đặt ở điểm A và 3 khẩu đặt ở điểm B.

    Biết rằng xác suất bắn trúng (hạ máy bay) của mỗi khẩu bằng 0,7 và các khẩu pháo bắn độc lập với nhau. Phương án nào xác suất bắn trúng máy bay cao nhất?

    Hướng dẫn:

    Phương án 1: 3 khẩu đặt tại A và 1 khẩu đặt tại B Nếu có 3 khẩu đặt tại A thì để máy bay rơi cần ít nhất một khẩu bắn trúng.

    Xác suất để ít nhất một khẩu tại A bắn trúng máy bay:

    1 - 0,3^{3} = 0,973 (tính theo biến cố đối của biến cố: không có khẩu nào bắn trúng)

    => Xác suất để máy bay rơi trong phương án I:

    P_{1} = \frac{2}{3}.0,973 +
\frac{1}{3}.0,7 = 0,882

    Phương án 2: 2 khẩu đặt tại 4 và 2 khẩu đặt tại B Nếu có 2 khẩu đặt tại A thì để máy bay rơi cần ít nhất một khẩu bắn trúng.

    Xác suất để ít nhất một khẩu tại A bắn trúng máy bay:

    1 - 0,3^{2} = 0,91

    Tương tự, xác suất để ít nhất một khẩu tại B bắn trúng máy bay:

    => Xác suất để máy bay rơi trong phương án II:

    P_{2} = \frac{2}{3}.0,91 +
\frac{1}{3}.0,91 = 0,91

    Phương án 3: 1 khẩu đặt tại A và 3 khẩu đặt tại B com Nếu có 3 khẩu đặt tại B thì để máy bay rơi cần ít nhất một khẩu bắn trúng.

    Xác suất để ít nhất một khẩu tại B bắn trúng máy bay:

    1 - 0,3^{3} = 0,973

    => Xác suất để máy bay rơi trong phương án III:

    P_{3} = \frac{2}{3}.0,7 +
\frac{1}{3}.0,973 = 0,791

    Vậy phương án 2 có xác suất bắn trúng máy bay cao nhất.

  • Câu 3: Vận dụng cao
    Chọn đáp án đúng

    Một hãng hàng không cho biết rằng 5\% số khách đặt trước vé cho các chuyến đã định sẽ hoãn không đi chuyến bay đó. Do đó hãng đã đưa ra một chính sách là sẽ bán 52 ghế cho một chuyến bay mà trong đó mỗi chuyến chỉ trở được 50 khách hàng. Tìm xác suất để tất cả các khách đặt chỗ trước và không hoãn chuyến bay đều có ghế. Biết rằng xác suất bán được 51 vé hoặc 52 vé là như nhau và bằng 10\%?

    Hướng dẫn:

    Gọi A là "bán được 52 vé", B là "bán được 51 vé" và C là "bán được nhiều nhất 50 vé".

    Khi đó A, B, C tạo thành hệ đầy đủ.

    Ta có P(A) = 0,1; P(B) = 0,1; P(C) = 0,8

    Gọi H là "khách đặt chỗ trước và không hoãn chuyến đều có ghế".

    Biến cố H|A xảy ra nếu có ít nhất 2 khách hủy chuyến, H|B xảy ra nếu có ít nhất 1 khách hủy chuyến. Tính trực tiếp xác suất của các sự kiện này đều khá phức tạp.

    Do đó để cho đơn giản ta tìm P\left(\overline{H} ight).

    Ta có: \left\{ \begin{matrix}P\left( \overline{H}|A ight) = 0,95^{52}.0,05^{0} +52.0,95^{51}.0,05^{1} \\P\left( \overline{H}|B ight) = 0,95^{51}.0,05^{0} \\P\left( \overline{H}|C ight) = 0 \\\end{matrix} ight.

    Do đó:

    P\left( \overline{H} ight) =P(A).P\left( \overline{H}|A ight) + P(B).P\left( \overline{H}|Bight) + P(C).P\left( \overline{H}|C ight)

    \Rightarrow P\left( \overline{H} ight)= 0,1\left( 0,95^{52}.0,05^{0} + 52.0,95^{51}.0,05^{1} ight)+0,1.0,95^{51}.0,05^{0} + 0,8.0 \approx 0,033

    \Rightarrow P(H) = 1 - P\left(\overline{H} ight) \approx 0,9667 = 96,67\%

  • Câu 4: Vận dụng
    Xét tính đúng sai của các kết luận

    Một kho hàng có 85\% sản phẩm loại I và 15\% sản phẩm loại II, trong đó có 1\% sản phẩm loại I bị hỏng, 4\% sản phẩm loại II bị hỏng. Các sản phẩm có kích thước và hình dạng như nhau. Một khách hàng chọn ngẫu nhiên 1 sản phẩm. Xét các biến cố:

    A: "Khách hàng chọn được sản phẩm loại I ";

    B: "Khách hàng chọn được sản phẩm không bị hỏng".

    Các mệnh đề sau đúng hay sai?

    a) P(A) = 0,85. Đúng||Sai

    b) P\left( B|A \right) = 0,99. Đúng||Sai

    c) P(B) = 0,9855. Đúng||Sai

    d) P\left( A|B \right) = 0,95. Sai||Đúng

    Đáp án là:

    Một kho hàng có 85\% sản phẩm loại I và 15\% sản phẩm loại II, trong đó có 1\% sản phẩm loại I bị hỏng, 4\% sản phẩm loại II bị hỏng. Các sản phẩm có kích thước và hình dạng như nhau. Một khách hàng chọn ngẫu nhiên 1 sản phẩm. Xét các biến cố:

    A: "Khách hàng chọn được sản phẩm loại I ";

    B: "Khách hàng chọn được sản phẩm không bị hỏng".

    Các mệnh đề sau đúng hay sai?

    a) P(A) = 0,85. Đúng||Sai

    b) P\left( B|A \right) = 0,99. Đúng||Sai

    c) P(B) = 0,9855. Đúng||Sai

    d) P\left( A|B \right) = 0,95. Sai||Đúng

    a) Đúng

    Ta có:P(A) = 0,85.

    b) Đúng

    Ta có:P\left( B|A \right) = 1 - P\left(
\overline{B}|A \right) = 1 - 0,01 = 0,99.

    c) Đúng

    Ta có:P\left( \overline{A}\  \right) =
0,15.

    P\left( B|\overline{A} \right) = 1 -
P\left( \overline{B}|\overline{A} \right) = 1 - 0,04 = 0,96

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A).P\left( B|A \right) + P\left(
\overline{A} \right).P\left( B|\overline{A} \right) = 0,85.0,99 +
0,15.0,96 = 0,9855.

    d) Sai

    Theo công thức Bayes, ta có: P\left( A|B
\right) = \frac{P(A).P\left( B|A \right)}{P(B)} =
\frac{0,85.0,99}{0,9855} \approx 0,854.

  • Câu 5: Vận dụng
    Xét tính đúng sai của các nhận định

    Khi kiểm tra sức khoẻ tổng quát của bệnh nhân ở một bệnh viện, người ta được kết quả như sau:

    - Có 40\% bệnh nhân bị đau dạ dày.

    - Có 30\% bệnh nhân thường xuyên bị stress.s

    - Trong số các bệnh nhân bị stress có 80\% bệnh nhân bị đau dạ dày.

    Chọn ngẫu nhiên 1 bệnh nhân.

    a) Xác suất chọn được bệnh nhân thường xuyên bị stress là 0,3 Đúng||Sai

    b) Xác suất chọn được bệnh nhân bị đau dạ dày, biết bệnh nhân đó thường xuyên bị stress, là 0,8. Đúng||Sai

    c) Xác suất chọn được bệnh nhân vừa thường xuyên bị stress vừa bị đau dạ dày là 0,24. Đúng||Sai

    d) Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày, là 0,6. Đúng||Sai

    Đáp án là:

    Khi kiểm tra sức khoẻ tổng quát của bệnh nhân ở một bệnh viện, người ta được kết quả như sau:

    - Có 40\% bệnh nhân bị đau dạ dày.

    - Có 30\% bệnh nhân thường xuyên bị stress.s

    - Trong số các bệnh nhân bị stress có 80\% bệnh nhân bị đau dạ dày.

    Chọn ngẫu nhiên 1 bệnh nhân.

    a) Xác suất chọn được bệnh nhân thường xuyên bị stress là 0,3 Đúng||Sai

    b) Xác suất chọn được bệnh nhân bị đau dạ dày, biết bệnh nhân đó thường xuyên bị stress, là 0,8. Đúng||Sai

    c) Xác suất chọn được bệnh nhân vừa thường xuyên bị stress vừa bị đau dạ dày là 0,24. Đúng||Sai

    d) Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày, là 0,6. Đúng||Sai

    Xét các biến cố: A: “Chọn được bệnh nhân thường xuyên bị stress”;

    B: “Chọn được bệnh nhân bị đau dạ dày”

    Khi đó, P(A) = 0,3;P(B) = 0,4;P(B \mid A)
= 0,8.

    Suy ra xác suất chọn được bệnh nhân thường xuyên bị stress vừa bị đau dạ dày là

    P(A \cap B) = P(A) \cdot P(B \mid A) =
0,3 \cdot 0,8 = 0,24;

    Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày, là P\left( A|B \right) =
\frac{P(A \cap B)}{P(B)} = \frac{0,24}{0,4} = 0,6.

    Đáp án: a) Đ, b) Đ, c) Đ, d) Đ.

  • Câu 6: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Một chiếc hộp có 100 viên bi, trong đó có 70 viên bi có tô màu và 30 viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.

    a) Xác suất để bạn Nam lấy ra viên bi có tô màu là \frac{3}{7}. Đúng||Sai

    b) Sơ đồ cây biểu thị tình huống trên là. Đúng||Sai

    c) Xác suất để bạn Việt lấy ra viên bi có tô màu là: \frac{191}{330}Đúng||Sai

    d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là: \frac{139}{330}. Đúng||Sai

    Đáp án là:

    Một chiếc hộp có 100 viên bi, trong đó có 70 viên bi có tô màu và 30 viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.

    a) Xác suất để bạn Nam lấy ra viên bi có tô màu là \frac{3}{7}. Đúng||Sai

    b) Sơ đồ cây biểu thị tình huống trên là. Đúng||Sai

    c) Xác suất để bạn Việt lấy ra viên bi có tô màu là: \frac{191}{330}Đúng||Sai

    d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là: \frac{139}{330}. Đúng||Sai

    Gọi A là biến cố “bạn Việt lấy ra viên bi có tô màu”

    Gọi B là biến cố “bạn Nam lấy ra viên bi có tô màu”, suy ra B là biến cố “bạn Việt lấy ra viên bi không có tô màu”.

    a) Xác suất để bạn Nam lấy ra viên bi có tô màu là P(B) = \frac{70}{100} = \frac{7}{10}.

    b) Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 0,3

    P\left( A|B ight) = \frac{P(A \cap
B)}{P(B)} = \frac{n(A \cap B)}{n(B)} = \frac{70.69}{70.99} =
\frac{23}{33}

    P\left( A|\overline{B} ight) = 1 -
P\left( A|B ight) = 1 - \frac{23}{33} = \frac{10}{33}

    Sơ đồ cây cần tìm là:

    c) Xác suất để bạn Việt lấy ra viên bi có tô màu là:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) =
\frac{7}{10}.\frac{23}{33} + \frac{3}{10}.\frac{10}{33} =
\frac{191}{330}

    d) A là biến cố “bạn Việt lấy ra viên bi có tô màu” suy ra A là biến cố “bạn Việt lấy ra viên bi không có tô màu”

    \Rightarrow P\left( \overline{A} ight)
= 1 - P(A) = 1 - \frac{191}{330} = \frac{139}{330}

  • Câu 7: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60\% số viên bi màu đỏ đánh số và 50\% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.

    a) Số viên bi màu đỏ có đánh số là 30. Đúng||Sai

    b) Số viên bi màu vàng không đánh số là 15. Đúng||Sai

    c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là: \frac{3}{5} Sai|| Đúng

    d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là: \frac{7}{16}. Đúng||Sai

    Đáp án là:

    Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60\% số viên bi màu đỏ đánh số và 50\% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.

    a) Số viên bi màu đỏ có đánh số là 30. Đúng||Sai

    b) Số viên bi màu vàng không đánh số là 15. Đúng||Sai

    c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là: \frac{3}{5} Sai|| Đúng

    d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là: \frac{7}{16}. Đúng||Sai

    a) Số viên bi màu đỏ có đánh số là 60\%.50 = 30

    b) Số viên bi màu vàng không đánh số là 50\%.30 = 15

    c) Gọi A là biến cố “viên bi được lấy ra có đánh số”

    Gọi B là biến cố “viên bi được lấy ra có màu đỏ”, suy ra B là biến cố “viên bi được lấy ra có màu vàng”

    Lúc này ta đi tính P(A) theo công thức: P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    Ta có: \left\{ \begin{matrix}
  P\left( B ight) = \dfrac{{50}}{{80}} = \dfrac{5}{8} \Rightarrow P\left( {\overline B } ight) = 1 - \dfrac{5}{8} = \dfrac{3}{8} \hfill \\
  P\left( {A|B} ight) = 60\%  = \dfrac{3}{5} \hfill \\
  P\left( {A|\overline B } ight) = 100\%  - 50\%  = \dfrac{1}{2} \hfill \\ 
\end{matrix}  ight.

    \Rightarrow P(A) =
\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} =
\frac{9}{16}.

    d) A là biến cố “viên bi được lấy ra có đánh số” suy ra A là biến cố “viên bi được lấy ra không có đánh số”. Khi đó ta có:

    \Rightarrow P\left( \overline{A} ight)
= 1 - P(A) = 1 - \frac{9}{16} = \frac{7}{16}

  • Câu 8: Vận dụng cao
    Tính xác suất P

    Ba khẩu pháo cùng bắn vào một mục tiêu với xác suất trúng đích của mỗi khẩu là 0,4;0,7;0,8. Biết rằng xác suất để mục tiêu bị tiêu diệt khi trúng một phát đạn là 30\%, khi trúng 2 phát đạn là 70\%, còn trúng 3 phát đạn thì chắc chắn mục tiêu bị tiêu diệt. Giả sử mỗi khẩu pháo bắn 1 phát. Tính xác suất để khẩu thứ 3 có đóng góp vào thành công đó?

    Hướng dẫn:

    Gọi \ A_{i} : "Khẫu pháo thứ i bắn trúng" (i = 1,2,3)

    B_{k} : "Mục tiêu trúng k phát đạn" (k = 0,1,2,3)

    B : "Mục tiêu bị tiêu diệt".

    Ta có: \left\{ B_{k},k = 0,1,2,3
ight\} là một hệ đầy đủ các biến cố và

    B_{0} =
\overline{A_{1}}\overline{A_{2}}\overline{A_{3}},\ B_{1} =
A_{1}\overline{A_{2}}\overline{A_{3}} +
\overline{A_{1}}A_{2}\overline{A_{3}} +
\overline{A_{1}}\overline{A_{2}}A_{3}

    B_{2} = A_{1}A_{2}\overline{A_{3}} +
A_{1}\overline{A_{2}}A_{3} + \overline{A_{1}}A_{2}A_{3},\ B_{3} =
A_{1}A_{2}A_{3}

    Ta có các giả thiết sau:

    P\left( A_{1} ight) = 0,4;P\left(
A_{2} ight) = 0,7;P\left( A_{3} ight) = 0,8

    P\left( B \mid B_{0} ight) = 0,P\left(
B \mid B_{1} ight) = 0,3;P\left( B \mid B_{2} ight) = 0,7;P\left( B
\mid B_{3} ight) = 1

    Từ đó, ta tính được:

    P\left( B_{0} ight) = P\left(
\overline{A_{1}} ight)P\left( \overline{A_{2}} ight)P\left(
\overline{A_{3}} ight)

    = (0,6)(0,3)(0,2)

    = 0,036

    P\left( B_{1} ight) = P\left( A_{1}
ight)P\left( \overline{A_{2}} ight)P\left( \overline{A_{3}} ight)
+ P\left( \overline{A_{1}} ight)P\left( A_{2} ight)P\left(
\overline{A_{3}} ight) + P\left( \overline{A_{1}} ight)P\left(
\overline{A_{2}} ight)P\left( A_{3} ight)

    = (0,4)(0,3)(0,2) + (0,6)(0,7)(0,2) +
(0,6)(0,3)(0,8)

    = 0,252

    P\left( B_{2} ight) = P\left( A_{1}
ight)P\left( A_{2} ight)P\left( \overline{A_{3}} ight) + P\left(
A_{1} ight)P\left( \overline{A_{2}} ight)P\left( A_{3} ight) +
P\left( \overline{A_{1}} ight)P\left( A_{2} ight)P\left( A_{3}
ight)

    = (0,4)(0,7)(0,2) + (0,4)(0,3)(0,8) +
(0,6)(0,7)(0,8)

    = 0,488

    P\left( B_{3} ight) = P\left( A_{1}
ight)P\left( A_{2} ight)P\left( A_{3} ight)

    = (0,4)(0,7)(0,8)

    = 0,224

    Theo công thức xác suất đầy đủ ta có:

    P(B) = P\left( B \mid B_{0}
ight)P\left( B_{0} ight) + P\left( B \mid B_{1} ight)P\left( B_{1}
ight) + P\left( B \mid B_{2} ight)P\left( B_{2} ight) + P\left( B
\mid B_{3} ight)P\left( B_{3} ight)

    = 0.(0,036) + (0,3)(0,252) +
(0,7)(0,488) + 1.(0,224)

    = 0,6412

    Khi đó ta có:

    P\left( BA_{3} ight) = P\left\lbrack
BA_{3}\left( A_{1}A_{2} + \overline{A_{1}}A_{2} + A_{1}\overline{A_{2}}
+ \overline{A_{1}}\overline{A_{2}} ight) ightbrack

    = P\left( A_{1}A_{2}A_{3}B ight) +
P\left( \overline{A_{1}}A_{2}A_{3}B ight) + P\left(
A_{1}\overline{A_{2}}A_{3}B ight) + P\left(
\overline{A_{1}}\overline{A_{2}}A_{3}B ight)

    = P\left( B \mid A_{1}A_{2}A_{3}
ight)P\left( A_{1}A_{2}A_{3} ight) + P\left( B \mid
\overline{A_{1}}A_{2}A_{3} ight)P\left( \overline{A_{1}}A_{2}A_{3}
ight)

    + P\left( B \mid
A_{1}\overline{A_{2}}A_{3} ight)P\left( A_{1}\overline{A_{2}}A_{3}
ight) + P\left( B \mid \overline{A_{1}}\overline{A_{2}}A_{3}
ight)P\left( \overline{A_{1}}\overline{A_{2}}A_{3}
ight)

    = 1.(0,224) +
(0,7)\lbrack(0,6)(0,7)(0,8)brack +
(0,7)\lbrack(0,4)(0,3)(0,8)brack

    +
(0,3)\lbrack(0,6)(0,3)(0,8)brack

    = 0,5696

    Do đó

    P\left( A_{3} \mid B ight) =
\frac{P\left( BA_{3} ight)}{P(B)} = \frac{0,5696}{0,6412} =
0,8883

  • Câu 9: Vận dụng
    Chọn phương án đúng

    Tỷ lệ người nghiện thuốc là ở một vùng là 30\%. Biết rằng tỷ lệ người bị viêm họng trong số những người nghiện thuốc là 60\%, còn tỷ lệ người bị viêm họng trong số những người không nghiện là 40\%. Lấy ngẫu nhiên một người thấy người ấy bị viêm họng. Nếu người đó không bị viêm họng, tính xác suất người đó nghiện thuốc lá.

    Hướng dẫn:

    Gọi A là "người nghiện thuốc" và B là "người viêm họng" thì từ đề bài ta có:

    P(A) = 0,3;P\left( B|A ight) =
0,6;P\left( B|\overline{A} ight) = 0,4

    Cần tính xác suất là C = A|B.

    Sử dụng công thức Baye ta có:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight)P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,3.0,6}{0,3.0,6 + 0,7.0,4} = \frac{9}{23}

    Gọi D = A|\overline{B} ta có:

    P(D) = \frac{P\left( A\overline{B}
ight)}{P\left( \overline{B} ight)} = \frac{P(A) - P(AB)}{1 -
P(B)}

    = \frac{P(A) - P(A)P\left( B|A
ight)}{1 - P(B)} \approx 0,2222

  • Câu 10: Vận dụng
    Tính xác suất người được chọn mắc bệnh A

    Tỉ lệ người dân đã tiêm vắc xin phòng bệnh A ở một địa phương là 65\%. Trong số những người đã tiêm phòng, tỉ lệ mắc bệnh A5\%; trong số những người chưa tiêm, tỉ lệ mắc bệnh A17\%. Chọn ngẫu nhiên một người ở địa phương đó. Tính xác suất người được chọn mắc bệnh A.

    Hướng dẫn:

    Gọi X là biến cố “Người dân được tiêm phòng bệnh A

    Y là biến cố “Người dân mắc bệnh A”.

    Ta có P(X) = 0,65 \Rightarrow P\left( \overline{X}
\right) = 0,35.

    Tỉ lệ mắc bệnh khi tiêm phòng là: P\left(
Y|X \right) = 0,05.

    Tỉ lệ mắc bệnh khi chưa tiêm phòng là P\left( Y|\overline{X} \right) =
0,17.

    Xác suất người này mắc bệnh A là:

    P(Y) = P(X).P\left( Y|X \right) +
P\left( \overline{X} \right).P\left( Y|\overline{X} \right)

    = 0,65.0,05 + 0,35.0,17 =
0,092

  • Câu 11: Vận dụng
    Xét tính đúng sai của các nhận định

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M, N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A: “Cây phát triển bình thường trên lô đất M”;

    B: “Cây phát triển bình thường trên lô đất N”.

    a) Các cặp biến cố \overline{A}và B, A và \overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A}\  \cap B D = \ A \cap
\overline{B} không là hai biến cố xung khắc. Sai||Đúng

    c) P(\overline{A}) = 0,56; P(\overline{B}) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    Đáp án là:

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M, N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A: “Cây phát triển bình thường trên lô đất M”;

    B: “Cây phát triển bình thường trên lô đất N”.

    a) Các cặp biến cố \overline{A}và B, A và \overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A}\  \cap B D = \ A \cap
\overline{B} không là hai biến cố xung khắc. Sai||Đúng

    c) P(\overline{A}) = 0,56; P(\overline{B}) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    a) Do hai lô đất khác nhau. Nên các cặp biến cố \overline{A}và B, A và \overline{B} là độc lập. Suy ra đúng.

    b) Do C \cap D = \overline{A}\  \cap
A\  \cap B \cap \overline{B} = \varnothing nên hai biến cố C, D xung khắc. Suy ra sai.

    c) Tacó: P(\overline{A}) = 1 – P(A) = 1 – 0,56 = 0,44;

    P(\overline{B}) = 1 – P(B) = l – 0,62 = 0,38. Suy ra sai.

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là:

    P(C \cup D) = P(C) + P(D) = P\left(
\overline{A}\  \right).P(B) + P(A).P\left( \overline{B} \right)

    = 0,44. 0,62 + 0,56.0,38 = 0,4856. Suy ra đúng.

  • Câu 12: Vận dụng
    Tính xác suất lấy được viên bi đánh số

    Một hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60% số viên bi màu đỏ đánh số và 50% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số. Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số bằng

    Hướng dẫn:

    Gọi A là biến cố “viên bi được lấy ra có đánh số”.

    Gọi B là biến cố “viên bi được lấy ra có màu đỏ”, suy ra \overline{B} là biến cố “viên bi được lấy ra có màu vàng”.

    Lúc này ta đi tính P(A) theo công thức:

    P(A) = P(B).P\left( A|B \right) + P\left(
\overline{B} \right).P\left( A|\overline{B} \right).

    Ta có:P(B) = \frac{50}{80} =
\frac{5}{8}.

    P\left( \overline{B} \right) =
\frac{30}{80} = \frac{3}{8}.

    P\left( A|B \right) = 60\% =
\frac{3}{5}.

    P\left( A|\overline{B} \right) = 100\% -
50\% = \frac{1}{2}.

    Vậy P(A) = P(B).P\left( A|B \right) +P\left( \overline{B} \right).P\left( A|\overline{B} \right)=\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} =\frac{9}{16}.

  • Câu 13: Vận dụng cao
    Chọn đáp án đúng

    Giả sử có một loại bệnh S mà tỉ lệ người mắc bệnh là 0,1\%. Giả sử có một loại xét nghiệm, mà ai mắc bệnh S khi xét nghiệm cũng có phản ứng dương tính, nhưng tỉ lệ phản ứng dương tính giả là 5\% (tức là trong số những người không bị bệnh S có 5\% số người xét nghiệm lại có phản ứng dương tính). Khi một người xét nghiệm có phản ứng dương tính thì khả năng mắc bệnh S của người đó là bao nhiêu phần trăm (làm tròn kết quả đến hàng phần trăm)?

    Hướng dẫn:

    Gọi A là biến cố: “Người đó mắc bệnh S”

    B là biến cố: “Người đó xét nghiệm có phản ứng dương tính”.

    Ta cần tính P\left( A|B
\right).

    Ta có: P(A) = 0,001; P\left( \overline{A} \right) = 1 - P(A) = 1 -
0,001 = 0,999;

    P\left( B|A \right)
= 1; P\left( B|\overline{A} \right)
= 0,05.

    Thay vào công thức Bayes ta được:

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(A).P\left( B|A \right) + P\left( \overline{A}
\right).P\left( B|\overline{A} \right)}

    = \frac{0,001.1}{0,001.1 + 0,999.0,05} =
\frac{20}{1019} \approx 1,96\%.

  • Câu 14: Vận dụng cao
    Xét tính đúng sai của các khẳng định

    Một nhóm học sinh gồm 12 nam và 13 nữ đi tham quan Công viên nước Hạ Long, tới lúc tham gia trò chơi mỗi học sinh chọn một trong hai trò chơi là Sóng thần hoặc Đảo hải tặc. Xác suất chọn trò chơi Sóng thần của mỗi học sinh nam là 0,6 và của mỗi học sinh nữ là 0,3. Chọn ngẫu nhiên một bạn của nhóm. Xét tính đúng, sai của mỗi khẳng định sau?

    a) Xác suất để bạn được chọn là nam là 0,48. Đúng||Sai

    b) Xác suất để bạn được chọn là nữ là 0,5.Sai|||Đúng

    c) Xác suất để bạn được chọn là nam và tham gia trò chơi Đảo hải tặc là 0,195.Sai||Đúng

    d) Xác suất để bạn được chọn là nữ và tham gia trò chơi Sóng thần là 0,156. Đúng||Sai

    Đáp án là:

    Một nhóm học sinh gồm 12 nam và 13 nữ đi tham quan Công viên nước Hạ Long, tới lúc tham gia trò chơi mỗi học sinh chọn một trong hai trò chơi là Sóng thần hoặc Đảo hải tặc. Xác suất chọn trò chơi Sóng thần của mỗi học sinh nam là 0,6 và của mỗi học sinh nữ là 0,3. Chọn ngẫu nhiên một bạn của nhóm. Xét tính đúng, sai của mỗi khẳng định sau?

    a) Xác suất để bạn được chọn là nam là 0,48. Đúng||Sai

    b) Xác suất để bạn được chọn là nữ là 0,5.Sai|||Đúng

    c) Xác suất để bạn được chọn là nam và tham gia trò chơi Đảo hải tặc là 0,195.Sai||Đúng

    d) Xác suất để bạn được chọn là nữ và tham gia trò chơi Sóng thần là 0,156. Đúng||Sai

    a) Đúng   b) Sai    c) Sai    d) Đúng

    Gọi A là biến cố “chọn được bạn nam” và B là biến cố “chọn được bạn tham gia trò chơi Sóng thần”.

    Nhóm có 12 nam và 13 nữ nên xác suất để chọn được một bạn nam là \frac{12}{25} = 0,48.

    Nhóm có 12 nam và 13 nữ nên xác suất để chọn được một bạn nữ là \frac{13}{25} = 0,52.

    Ta có P(A) = \frac{12}{25} =
0,48P\left( B|A \right) =
0,6P\left( B|\overline{A}
\right) = 0,3.

    Ta có sơ đồ hình cây như sau:

    A diagram of a number of different languagesDescription automatically generated with medium confidence

    Xác suất để bạn được chọn là nam và tham gia trò chơi Đảo hải tặc là P\left( A\overline{B} \right) =
0,192.

    Xác suất để bạn được chọn là nữ và tham gia trò chơi Sóng thần P\left( \overline{A}B \right) =
0,156.

  • Câu 15: Vận dụng
    Chọn đáp án đúng

    Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên ra 2 phiếu từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó cho học sinh A rút ngẫu nhiên ra 2 phiếu từ hộp thứ hai.

    Hướng dẫn:

    Gọi E1 là biến cố thầy giáo rút 2 câu thuộc từ hộp 1 bỏ sang hộp 2

    Gọi E2 là biến cố thầy giáo rút 1 câu thuộc và 1 câu không thuộc từ hộp 1 bỏ sang hộp 2

    Gọi E3 là biến cố thầy giáo rút 2 câu không thuộc từ hộp 1 bỏ sang hộp 2

    Gọi C là biến cố sinh viên rút ra 2 câu thuộc từ hộp 2

    P(C) = P\left( E_{1} ight)P\left(
C|E_{1} ight) + P\left( E_{2} ight)P\left( C|E_{2} ight) + P\left(
E_{3} ight)P\left( C|E_{3} ight)

    Ta xác định được:

    P\left( E_{1} ight) =
\frac{C_{10}^{2}}{C_{15}^{2}} = \frac{3}{7};P\left( E_{2} ight) =
\frac{C_{10}^{1}.C_{5}^{1}}{C_{15}^{2}} = \frac{10}{21}

    P\left( E_{3} ight) =
\frac{C_{5}^{2}}{C_{15}^{2}} = \frac{2}{21};P\left( C|E_{1} ight) =
\frac{C_{10}^{2}}{C_{11}^{2}} = \frac{9}{11}

    P\left( C|E_{2} ight) =
\frac{C_{9}^{2}}{C_{11}^{2}} = \frac{12}{35};P\left( C|E_{3} ight) =
\frac{C_{8}^{2}}{C_{11}^{2}} = \frac{3}{35}

    Thay vào công thức ta suy ra kết quả P(C)
\approx 0,522

  • Câu 16: Thông hiểu
    Xét tính đúng sai của các kết luận

    Một cuộc thi khoa học có 36 bộ câu hỏi, trong đó có 20 bộ câu hỏi về chủ đề tự nhiên và 16 bộ câu hỏi về chủ đề xã hội. Bạn An lấy ngẫu nhiên 1 bộ câu hỏi (lấy không hoàn lại), sau đó bạn Bình lấy ngẫu nhiên 1 bộ câu hỏi. Các khẳng định sau đúng hay sai?

    a) Xác suất bạn An chọn được bộ câu hỏi chủ đề tự nhiên là \frac{5}{9}Đúng||Sai

    b) Xác suất bạn Bình chọn câu hỏi chủ đề xã hội biết bạn An chọn được chủ đề tự nhiên là \frac{16}{27}Sai||Đúng

    c) Xác suất bạn Bình chọn câu hỏi chủ đề xã hội biết bạn An chọn được chủ đề xã hội là là \frac{15}{27}. Sai||Đúng

    d) Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội bằng \frac{4}{9}. Đúng||Sai

    Đáp án là:

    Một cuộc thi khoa học có 36 bộ câu hỏi, trong đó có 20 bộ câu hỏi về chủ đề tự nhiên và 16 bộ câu hỏi về chủ đề xã hội. Bạn An lấy ngẫu nhiên 1 bộ câu hỏi (lấy không hoàn lại), sau đó bạn Bình lấy ngẫu nhiên 1 bộ câu hỏi. Các khẳng định sau đúng hay sai?

    a) Xác suất bạn An chọn được bộ câu hỏi chủ đề tự nhiên là \frac{5}{9}Đúng||Sai

    b) Xác suất bạn Bình chọn câu hỏi chủ đề xã hội biết bạn An chọn được chủ đề tự nhiên là \frac{16}{27}Sai||Đúng

    c) Xác suất bạn Bình chọn câu hỏi chủ đề xã hội biết bạn An chọn được chủ đề xã hội là là \frac{15}{27}. Sai||Đúng

    d) Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội bằng \frac{4}{9}. Đúng||Sai

    Xét các biến cố:

    A: "Bạn An lấy được bộ câu hỏi về chủ đề tự nhiên";

    B: "Bạn Bình lấy được bộ câu hỏi về chủ đề xã hội".

    Khi đó P(A) = \frac{20}{36} =
\frac{5}{9},\ \ P\left( \overline{A} \right) = 1 - P(A) =
\frac{4}{9}

    Nếu bạn An chọn được một bộ câu hỏi về chủ đề tự nhiên thì sau đó còn 35 bộ câu hỏi, trong đó có 16 bộ câu hỏi về chủ đề xã hội, suy ra P\left( B|A \right) = \frac{16}{35}

    Nếu bạn An chọn được một bộ câu hỏi về chủ đề xã hội thì sau đó còn 35 bộ câu hỏi, trong đó có 15 bộ câu hỏi về chủ đề xã hội, suy raP\left( B|\overline{A} \right) =
\frac{15}{35}

    Theo công thức xác suất toàn phần, xác suất bạn Bình lấy được bộ câu hỏi về chủ đề

    xã hội là: P(B) = P(A).P\left( B|A
\right) + P\left( \overline{A} \right).P\left( B|\overline{A} \right) =
\frac{5}{9}.\frac{16}{35} + \frac{4}{9}.\frac{15}{35} =
\frac{4}{9}

  • Câu 17: Thông hiểu
    Chọn kết quả đúng

    Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra một xạ thủ và xạ thủ đó bắn một viên đạn. Tìm xác suất để viên đạn đó trúng đích.

    Hướng dẫn:

    Gọi A là biến cố "Viên đạn trúng đích".

    B_{1} là biến cố "Chọn xạ thủ loại I bắn".

    B_{2} là biến cố "Chọn xạ thủ loại II bắn".

    P\left( {B}_{2} ight) =\frac{8}{10} = 0,8,P\left( A \mid B_{2} ight) =0,7

    P\left( {B}_{1} ight) =\frac{2}{10} = 0,2,P\left( A \mid B_{1} ight) =0,9

    Ta có B_{1},{B}_{2} tạo thành họ đầy đủ các biến cố.

    Áp dụng công thức ta có:

    P\left( \text{ }A ight) = P\left({\text{ }B}_{1} ight)P\left( \text{ }A \mid B_{1} ight) + P\left({\text{ }B}_{2} ight)P\left( \text{ }A \mid B_{2}ight)

    = 0,2 \cdot 0,9 + 0,8 \cdot 0,7 =
0,74

  • Câu 18: Vận dụng cao
    Tính xác suất theo yêu cầu

    Một loại linh kiện do hai nhà máy số I và số II cùng sản xuất. Tỉ lệ phế phẩm của các nhà máy I và II lần lượt là 4\%3\%. Trong một lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó. Giả sử linh kiện được lấy ra là linh kiện phế phẩm. Xác suất linh kiện đó do nhà máy nào sản xuất là cao hơn?

    Hướng dẫn:

    Xét hai biến cố sau: A: ‘‘Linh kiện lấy ra do nhà máy I sản xuất”,

    B: ‘‘Linh kiện lấy ra là phế phẩm”

    Trong lô linh kiện có tổng cộng 80 + 120
= 200 linh kiện nên P(A) =
\frac{80}{200} = 0,4;P\left(
\overline{A} \right) = 0,6.

    Vì tỉ lệ phế phẩm của các nhà máy I và II lần lượt là 4\%3\% nên P\left( B|A \right) = 4\% = 0,04

    Khi đó: P\left( B|\overline{A} \right) =
3\% = 0,03.

    Ta có sơ đồ cây:

    A diagram of a triangle with Great Pyramid of Giza in the backgroundDescription automatically generated

    Khi linh kiện lấy ra là phế phẩm thì xác suất linh kiện đó do nhà máy I sản xuất là P\left( A|B \right) và xác suất linh kiện đó do nhà máy II sản xuất là P\left( \overline{A}|B \right).

    Áp dụng công thức Bayes, ta có:

    P\left( A|B \right) = \frac{P(A).P\left(B|A \right)}{P(A).P\left( B|A \right) + P\left( \overline{A}\right).P\left( B|\overline{A} \right)}= \frac{0,4.0,04}{0,4.0,04 +0,6.0,03} \approx 47\%.

    Suy ra P\left( \overline{A}|B \right) = 1
- P\left( A|B \right) \approx 53\%.

    Vậy xác suất linh kiện đó do nhà máy II sản xuất là cao hơn.

  • Câu 19: Vận dụng
    Tính xác suất bi màu đỏ

    Có 3 hộp đựng bi: hộp thứ nhất có 3 bi đỏ, 2 bi trắng; hộp thứ hai có 2 bi đỏ, 2 bi trắng; hộp thứ ba không có viên nào. Lấy ngẫu nhiên 1 viên bi từ hộp thứ nhất và 1 viên bi từ hộp thứ hai bỏ vào hộp thứ ba. Sau đó từ hộp thứ ba lấy ngẫu nhiên ra 1 viên bi. Tính xác suất để viên bi đó màu đỏ?

    Hướng dẫn:

    Gọi A1, A2 lần lượt là "lấy bi đỏ từ hợp thứ 1 (thứ 2) bỏ vào hộp thứ ba" thì A_{1}A_{2};\overline{A_{1}}A_{2};A_{1}\overline{A_{2}};\overline{A_{1}}\overline{A_{2}} tạo thành một hệ đầy đủ.

    Ta có: \left\{ \begin{matrix}
P\left( A_{1}A_{2} ight) = 0,3;P\left( \overline{A_{1}}A_{2} ight) =
0,2 \\
P\left( A_{1}\overline{A_{2}} ight) = 0,3;P\left(
\overline{A_{1}}\overline{A_{2}} ight) = 0,2 \\
\end{matrix} ight.

    Gọi A "lấy ra từ hộp 3 một viên bi màu đỏ". Ta có:

    P\left( A|A_{1}A_{2} ight) = 1;P\left(
A|\overline{A_{1}}A_{2} ight) = 0,5

    P\left( A|A_{1}\overline{A_{2}} ight)
= 0,5;P\left( A|\overline{A_{1}}\overline{A_{2}} ight) =
0

    Áp dụng công thức xác suất đầy đủ ta có:

    P(A) = P\left( A_{1}A_{2} ight)P\left(
A|A_{1}A_{2} ight) + P\left( \overline{A_{1}}A_{2} ight)P\left(
A|\overline{A_{1}}A_{2} ight)

    + P\left(
\overline{A_{1}}\overline{A_{2}} ight)P\left(
A|\overline{A_{1}}\overline{A_{2}} ight) + P\left(
A_{1}\overline{A_{2}} ight)P\left( A_{1}\overline{A_{2}}
ight)

    = 0,3.1 + 0,3.0,5 + 0,2.0,5 + 0,2.0 =
0,55

  • Câu 20: Thông hiểu
    Tính xác suất P

    Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên từ mỗi hộp ra một phiếu thi, sau đó cho học sinh A rút ngẫu nhiên ra 1 phiếu từ 2 phiếu mà giáo viên đã rút. Tính xác suất để học sinh A trả lời được câu hỏi trong phiếu.

    Hướng dẫn:

    Gọi E1 là biến cố sinh viên rút ra từ hộp 1

    E2 là biến cố sinh viên rút ra từ hộp 2

    E1, E2 tạo thành một nhóm biến cố đầy đủ

    Gọi B là biến cố rút ra 1 câu thuộc B=(E_1∩B)∪(E_2∩B)

    => P(B) = P(E_1).P(B|E_1) + P(E_2).P(B|E_2)

    Ta có: \left\{ \begin{gathered}
  P\left( {{E_1}} ight) = \frac{{C_1^1}}{{C_2^1}} = \frac{1}{2};P\left( {{E_2}} ight) = \frac{{C_1^1}}{{C_2^1}} = \frac{1}{2} \hfill \\
  P\left( {B|{E_1}} ight) = \frac{{C_{10}^1}}{{C_{15}^1}} = \frac{2}{3} \hfill \\
  P\left( {B|{E_2}} ight) = \frac{{C_8^1}}{{C_9^1}} = \frac{8}{9} \hfill \\ 
\end{gathered}  ight.

    Thay vào công thức ta tính được P(B) =
\frac{7}{9}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo