Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Bài 1 Nguyên hàm KNTT (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Tìm họ các nguyên hàm của hàm số f(x) =\sin5x.\cos x?

    Hướng dẫn:

    Ta có:

    \int_{}^{}{(\sin5x.\cos x)dx} =\frac{1}{2}\int_{}^{}{(\sin6x + \sin4x)dx}

    = - \frac{\cos4x}{8} - \frac{\cos6x}{12} +C

  • Câu 2: Nhận biết
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm F(x) = \int_{}^{}{\left( x
+ \sin x \right)dx} biết F(0) =
19 .

    Hướng dẫn:

    Ta có:

    F(x) = \int_{}^{}{\left( x + \sin x
ight)dx = \frac{x^{2}}{2} - \cos x + C}

    F(0) = 19 \Rightarrow C = 20\Rightarrow F(x) = \frac{x^{2}}{2} - \cos x + 20

  • Câu 3: Thông hiểu
    Tính giá trị của biểu thức

    Gọi F(x) là một nguyên hàm của hàm số f(x), với f(x) = 3sinx + \frac{4}{cos^{2}x}, biết F(0) = 2. Tính F\left( \frac{\pi}{3} \right).

    Hướng dẫn:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
3sinx + \frac{4}{cos^{2}x} \right)dx}

    = 3\int_{}^{}{\sin xdx} +
4\int_{}^{}{\frac{1}{cos^{2}x}dx}

    = - 3cosx + 4tanx + C.

    Do đó F(x) = - 3cosx + 4tanx +
C.

    F(0) = 2 \Leftrightarrow - 3 + C = 2
\Leftrightarrow C = 5.

    Suy ra F(x) = - 3cosx + 4tanx +
5.

    Vậy F\left( \frac{\pi}{3} \right) = -
3cos\frac{\pi}{3} + 4tan\frac{\pi}{3} + 5 = \frac{7}{2} +
4\sqrt{3}.

  • Câu 4: Nhận biết
    Tìm một nguyên hàm của hàm số f(x)

    Nguyên hàm F(x) của hàm số f(x) = 2x^{2} + x^{3} - 4 thỏa mãn điều kiện F(0) = 0

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} =
\frac{2}{3}x^{3} + \frac{1}{4}x^{4} - 4x + C = F(x)

    Theo bài ra ta có: F(0) = 0

    \Leftrightarrow \frac{2}{3}.0^{3} +
\frac{1}{4}.0^{4} - 4.0 + C = 0 \Leftrightarrow C = 0

    Vậy đáp án cần tìm là: F(x) =
\frac{2}{3}x^{3} + \frac{x^{4}}{4} - 4x

  • Câu 5: Nhận biết
    Tìm nguyên hàm của hàm số

    Xác định nguyên hàm của hàm số f(x) =
3x^{2} + \frac{x}{2}?

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}\left( 3x^{2} + \frac{x}{2} ight)dx = x^{3} +
\frac{x^{2}}{4} + C.

  • Câu 6: Nhận biết
    Chọn kết luận đúng

    Giả sử F(x) là một nguyên hàm của hàm số f(x) trên khoảng (a;b). Giả sử G(x) cũng là một nguyên hàm của f(x) trên khoảng (a;b). Khi đó:

    Hướng dẫn:

    Giả sử F(x) là một nguyên hàm của hàm số f(x) trên khoảng (a;b). Giả sử G(x) cũng là một nguyên hàm của f(x) trên khoảng (a;b). Khi đó G(x) = F(x) - C trên khoảng (a;b), với C là hằng số.

  • Câu 7: Nhận biết
    Chọn đáp án đúng

    Cho \int_{}^{}{f(x)dx = F(x) +
C.} Khi đó với a ≠ 0, ta có \int_{}^{}{f(ax + b)dx}bằng:

    Hướng dẫn:

    Ta có:\int_{}^{}{f(ax + b)dx} =
\frac{1}{a}F(ax + b) + C

  • Câu 8: Thông hiểu
    Xác định họ nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = \left( -
\frac{1}{x^{2}} - \frac{1}{x} \right)e^{- x}

    Hướng dẫn:

    Ta có f(x) = \left( - \frac{1}{x^{2}} -
\frac{1}{x} ight)e^{- x} = \left\lbrack \left( \frac{1}{x}
ight)' - \frac{1}{x} ightbrack e^{- x}

    \Rightarrow F(x) = \frac{e^{- x}}{x} +
C là nguyên hàm của hàm số đã cho.

  • Câu 9: Nhận biết
    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =\sin^{4}x\cos x??

    Hướng dẫn:

    Đặt t = \sin x \Rightarrow dt = \cos
xdx

    \int_{}^{}{\left( \sin^{4}x\cos xight)dx} = \int_{}^{}{t^{4}dt} = \frac{t^{5}}{5} + C =\frac{1}{5}\sin^{5}x + C

  • Câu 10: Nhận biết
    Tìm nguyên hàm của hàm số f(x) = cos3x

    Tìm nguyên hàm của hàm số f\left( x ight) = \cos 3x

    Gợi ý:

     Công thức áp dụng giải bài toán:

    \int {\cos udu = \sin u + C}

    Hướng dẫn:

     Ta có: \int {\cos 3xdx}  = \frac{{\sin 3x}}{3} + C

  • Câu 11: Nhận biết
    Tìm nguyên hàm của hàm số f(x) = 7^x

    Tìm nguyên hàm của hàm số f\left( x ight) = {7^x} là 

    Gợi ý:

     Công thức áp dụng:

    \int {{a^u}du}  = \frac{{{a^u}}}{{\ln a}} + C

    Hướng dẫn:

     Ta có:

    \int {{7^x}dx}  = \frac{{7x}}{{\ln 7}} + C

  • Câu 12: Nhận biết
    Tìm họ nguyên hàm cuả hàm số

    Tìm họ nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{2x + 1}}

    Gợi ý:

     \int {\left[ {f\left( x ight) + g\left( x ight)} ight]dx}  = \int {f\left( x ight)dx}  + \int {g\left( x ight)dx}

    Hướng dẫn:

     \int {\frac{1}{{2x + 1}}dx}  = \frac{1}{2}\ln \left| {2x + 1} ight| + C

  • Câu 13: Nhận biết
    Chọn phương án đúng

    Nguyên hàm của hàm số f = e^{-
2017x} là:

    Hướng dẫn:

    Ta có \int_{}^{}{e^{- 2017x}dx =
\frac{1}{- 2017}e^{- 2017x} + C}

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Một nguyên hàm F(x)của f(x) = 3x^{2} + 1 thỏa F(1) = 0 là:

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} = x^{3} + x + C
= F(x)F(1) = 0 khi đó:

    1^{3} + 1 + C = 0 \Rightarrow C = -
2

    Vậy đáp án cần tìm là: F(x) = x^{3} + x -
2

  • Câu 15: Thông hiểu
    Xác định nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = \left(
5x^{2} + 13x + 9 \right)e^{x}

    Hướng dẫn:

    Ta có f(x) = \left( 10x + 3 + 5x^{2} + 3x
+ 6 ight)e^{x}= \left\lbrack \left( 5x^{2} + 3x + 6 ight)' +
5x^{2} + 3x + 6 ightbrack e^{x}

    Từ bảng nhận dạng nguyên hàm phía trên \Rightarrow F(x) = \left( 5x^{2} + 3x + 6
ight)e^{x} + C là nguyên hàm của hàm số đã cho.

  • Câu 16: Thông hiểu
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)?

    Hướng dẫn:

    Ta có: f(x) = (x + 1)(x + 2) = x^{2} + 3x
+ 2

    Xét từng đáp án ta thấy:

    \left( \frac{x^{3}}{3} + \frac{3}{2}x^{2}
+ 2x \right)' = x^{2} + 3x + 2.

    Vậy nguyên hàm của hàm số f(x) = (x +
1)(x + 2) là: F(x) =
\frac{x^{3}}{3} + \frac{3}{2}x^{2} + 2x + C

  • Câu 17: Nhận biết
    Tìm câu sai

    Cho f(x),g(x) là các hàm số liên tục trên \mathbb{R} . Tìm khẳng định sai trong các khẳng định sau?

    Hướng dẫn:

    Đáp án sai là: \int_{}^{}{\left\lbrack
f(x).g(x) ightbrack dx =
\int_{}^{}{f(x)dx.}\int_{}^{}{g(x)dx}}.

  • Câu 18: Nhận biết
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =
7^{x}.

    Hướng dẫn:

    Ta có \int_{}^{}{7^{x}dx =
\int_{}^{}{7^{x}.\frac{d\left( 7^{x} ight)}{7^{x}.\ln7} =
\int_{}^{}{\frac{d\left( 7^{x} ight)}{\ln7} = \frac{7^{x}}{\ln7} +
C}}}.

  • Câu 19: Thông hiểu
    Tính giá trị biểu thức

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f(x) = \left\{ \begin{matrix}
\sin x + \cos x\ \ \ khi\ x \geq 0 \\
2(x + 1)\ \ \ khi\ x < 0 \\
\end{matrix} ight.F(\pi) +
F( - 1) = 1. Giá trị biểu thức T =
F(2\pi) + F( - 5) bằng:

    Hướng dẫn:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x\sin x + C_{1}\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + C_{2}\ \ khi\ x < 0 \\
\end{matrix} ight.

    F(\pi) + F( - 1) = 1 \Rightarrow \left(
\pi\sin\pi + C_{1} ight) + \left( 1 - 2 + C_{2} ight) = 1
\Rightarrow C_{1} + C_{2} = 2(*)

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 0 tức là

    \lim_{x ightarrow 0^{+}}F(x) = \lim_{x
ightarrow 0^{-}}F(x) = F(0)

    \Leftrightarrow C_{1} =
C_{2}(**). Từ (*) và (**) suy ra C_{1} = C_{2} = 1

    Do đó F(x) = \left\{ \begin{matrix}
x\sin x + 1\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + 1\ \ khi\ x < 0 \\
\end{matrix} ight.

    T = F(2\pi) + F( - 5) = 17

  • Câu 20: Nhận biết
    Tìm khẳng định đúng.

    Chọn khẳng định đúng.

    Hướng dẫn:

    Ta có \int {\sin x.{\text{d}}x}  =  - \cos x + C.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo