Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 4 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Xác định số cặp điểm thỏa mãn yêu cầu

    Cho hàm số y = x^{3} + x^{2} - 4 có đồ thị (C). Hỏi có bao nhiêu cặp điểm A;B \in (C) sao cho ba điểm O;A;B thẳng hàng và OA - 2OB = 0 với O là gốc tọa độ?

    Hướng dẫn:

    Gọi d là đường thẳng đi qua ba điểm O, A, B khi đó d có phương trình y =
k.x

    Khi đó hoành độ của O, A, B là nghiệm của phương trình x^{3} + x^{2} - 4 = kx

    Giả sử A\left( x_{1};kx_{1}
ight),B\left( x_{2};kx_{2} ight) khi đó ta có: \left\{ \begin{matrix}
{x_{1}}^{3} + {x_{1}}^{2} - 4 = kx_{1} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    Do OA - 2OB = 0 nên \overrightarrow{OA} = \pm 2\overrightarrow{OB}
\Rightarrow x_{1} = \pm 2kx_{2}

    TH1: x_{1} = 2kx_{2} \Rightarrow \left\{
\begin{matrix}
8{x_{2}}^{3} + 4{x_{2}}^{2} - 4 = 2kx_{2} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    \Rightarrow 6{x_{2}}^{3} + 2{x_{2}}^{2}
+ 4 = 0 \Rightarrow x_{2} = - 1

    Khi đó A( - 2; - 8),B( - 1; -
4).

    TH2: x_{1} = - 2kx_{2} \Rightarrow
\left\{ \begin{matrix}
- 8{x_{2}}^{3} + 4{x_{2}}^{2} - 4 = - 2kx_{2} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    \Rightarrow - 6{x_{2}}^{3} +
6{x_{2}}^{2} - 12 = 0 \Rightarrow x_{2} = - 1

    Khi đó A(2;8),B( - 1; - 4).

    Vậy có 2 cặp A; B thỏa mãn.

  • Câu 2: Vận dụng cao
    Tính giá trị f(0)

    Cho hàm số bậc ba y = f(x) có đồ thị đi qua điểm A(1;1),B(2;4),C(3;9). Các đường thẳng AB,AC,BC lại cắt đồ thị lần lượt tại các điểm M,N,P (M khác AB, N khác AC, P khác BC. Biết rằng tổng các hoành độ của M,N,P bằng 5, giá trị của f(0)

    Hướng dẫn:

    Từ giả thuyết bài toán ta giả sử

    f(x) = a(x - 1)(x - 2)(x - 3) +
x^{2} (a eq 0)

    Ta có: AB:y = 3x - 2, AC:y = 4x - 3, BC:y = 5x - 6.

    Khi đó:

    Hoành độ của M là nghiệm của phương trình:

    a\left( x_{M} - 1 ight)\left( x_{M} - 2
ight)\left( x_{M} - 3 ight) + {x_{M}}^{2} = 3x_{M} - 2

    \Leftrightarrow a\left( x_{M} - 1
ight)\left( x_{M} - 2 ight)\left( x_{M} - 3 ight) + \left( x_{M} -
1 ight)\left( x_{M} - 2 ight) = 0

    \Leftrightarrow a\left( x_{M} - 3 ight)
+ 1 = 0 \Leftrightarrow x_{M} = 3 - \frac{1}{a}.

    Hoành độ của N là nghiệm của phương trình:

    a\left( x_{N} - 1 ight)\left( x_{N} -
2 ight)\left( x_{N} - 3 ight) + {x_{N}}^{2} = 4x_{N} -
3

    \Leftrightarrow a\left( x_{N} - 1
ight)\left( x_{N} - 2 ight)\left( x_{N} - 3 ight) + \left( x_{N} -
1 ight)\left( x_{N} - 3 ight) = 0

    \Leftrightarrow a\left( x_{N} - 2 ight)
+ 1 = 0 \Leftrightarrow x_{N} = 2 - \frac{1}{a}.

    Hoành độ của P là nghiệm của phương trình:

    a\left( x_{P} - 1 ight)\left( x_{P} - 2
ight)\left( x_{P} - 3 ight) + {x_{P}}^{2} = 5x_{P} - 6

    \Leftrightarrow a\left( x_{P} - 1
ight)\left( x_{P} - 2 ight)\left( x_{P} - 3 ight) + \left( x_{P} -
2 ight)\left( x_{P} - 3 ight) = 0

    \Leftrightarrow a\left( x_{P} - 1 ight)
+ 1 = 0 \Leftrightarrow x_{P} = 1 - \frac{1}{a}.

    Từ giả thuyết ta có; x_{M} + x_{N} +
x_{P} = 5 \Leftrightarrow 6 - \frac{3}{a} = 5 \Leftrightarrow a =
3.

    Do đó: f(x) = 3(x - 1)(x - 2)(x - 3) +
x^{2}

    f(0) = - 18.

  • Câu 3: Vận dụng cao
    Xác định tất cả giá trị nguyên tham số m thỏa mãn điều kiện

    Cho hàm số f(x) = x^{3} + x + 2. Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình f\left( \sqrt[3]{f^{3}(x) + f(x) + m} \right) = -
x^{3} - x + 2 có nghiệm x \in
\lbrack - 1;2\rbrack?

    Hướng dẫn:

    Xét hàm số f(t) = t^{3} + t + 2, ta có f'(t) = 3t^{2} + 1 > 0,\forall
t\mathbb{\in R}.

    Do đó hàm số f đồng biến trên \mathbb{R}.

    Ta có f\left( \sqrt[3]{f^{3}(x) + f(x) +
m} ight) = f( - x)

    \Leftrightarrow - x = \sqrt[3]{f^{3}(x)
+ f(x) + m} \Leftrightarrow f^{3}(x) + f(x) + x^{3} + m = 0\ \ \ \ \ \
(1)

    Xét h(x) = f^{3}(x) + f(x) + x^{3} +
m trên đoạn \lbrack -
1;2brack.

    Ta có h'(x) = 3f'(x) \cdot
f^{2}(x) + f'(x) + 3x^{2}

    = f'(x)\left\lbrack 3f^{2}(x) + 1
ightbrack + 3x^{2}.

    Ta có f'(x) = 3x^{2} + 1 >
0,\forall x \in \lbrack - 1;2brack \Rightarrow h'(x) >
0,\forall x \in \lbrack - 1;2brack.

    Hàm số h(x) đồng biến trên \lbrack - 1;2brack nên \min_{\lbrack - 1;2brack}h(x) = h( - 1) = m -
1,\max_{\lbrack - 1;2brack}h(x) = h(2) = m +1748.

    Phương trình (1) có nghiệm khi và chỉ khi

    \begin{matrix}
  \mathop {\min }\limits_{[ - 1;2]} h\left( x ight) \cdot \mathop {\max }\limits_{[ - 1;2]} h\left( x ight) \leqslant 0 \Leftrightarrow h\left( { - 1} ight) \cdot h\left( 2 ight) \hfill \\
   \Leftrightarrow \left( {m - 1} ight)\left( {1748 + m} ight) \leqslant 0 \hfill \\
   \Leftrightarrow  - 1748 \leqslant m \leqslant 1. \hfill \\ 
\end{matrix}

    Do m nguyên nên tập các giá trị m thỏa mãn là S = \{ - 1748; - 1747;\ldots;0;1\}.

    Vậy có tất cả 1750 giá trị nguyên của m thỏa mãn.

  • Câu 4: Vận dụng
    Tính giá trị tham số m thỏa mãn yêu cầu

    Cho hàm số y = \frac{x + 3}{x +
1} có đồ thị (C) và đường thẳng d:y = x - m, với m là tham số thực. Biết rằng đường thẳng d cắt (C) tại hai điểm phân biệt AB sao cho điểm G(2; - 2) là trọng tâm của tam giác OAB (O là gốc toạ độ). Giá trị của m bằng

    Hướng dẫn:

    Hàm số y = \frac{x + 3}{x + 1}y' = \frac{- 2}{(x + 1)^{2}} <
0, \forall x \in D và đường thẳng d:y = x - m có hệ số a = 1 > 0 nên d luôn cắt (C) tại hai điểm phân biệt A\left( x_{A};\ y_{A} ight)B\left( x_{B};\ y_{B} ight) với mọi giá trị của tham số m.

    Phương trình hoành độ giao điểm của d(C) là: \frac{x + 3}{x + 1} = x - m

    \Leftrightarrow x^{2} - mx - m - 3 = 0\ \
\ \ (x eq - 1).

    Suy ra x_{A}, x_{B} là 2 nghiệm của phương trình x^{2} - mx - m - 3 = 0.

    Theo định lí Viet, ta có x_{A} + x_{B} =
m.

    Mặt khác, G(2; - 2) là trọng tâm của tam giác OAB nên x_{A} + x_{B} + x_{O} = 3x_{G}

    \Leftrightarrow x_{A} + x_{B} =
6 \Leftrightarrow m =
6.

    Vậy m = 6 thoả mãn yêu cầu đề bài.

  • Câu 5: Vận dụng
    Tìm giá trị của tham số a

    Có bao nhiêu giá trị nguyên âm của a để đồ thị hàm số y = x^{3} + (x + 10)x^{2} - x + 1 cắt trục hoành tại đúng một điểm?

    Hướng dẫn:

    Phương trình hoành độ giao điểm của đồ thị và trục hoành là:

    x^{3} + (a + 10)x^{2} - x + 1 =
0(*)

    \Leftrightarrow x^{3} + 10x^{2} - x + 1
= - ax^{2}

    Ta thấy x = 0 không là nghiệm của phương trình nên (*) \Leftrightarrow -
\frac{x^{3} + 10x^{2} - x + 1}{x^{2}} = a

    Xét hàm số f(x) = - \frac{x^{3} + 10x^{2}
- x + 1}{x^{2}};\left( \forall x\mathbb{\in R}\backslash\left\{ 0
ight\} ight)

    Ta có: f'(x) = - \frac{x^{3} + x -
2}{x^{3}} = - \frac{(x - 1)\left( x^{2} + x + 2
ight)}{x^{3}}

    f'(x) = 0 \Leftrightarrow x =
1

    Bảng biến thiên của hàm số f(x) như sau:

    Từ bảng biến thiên ta thấy đồ thị hàm số đã cho cắt trục hoành tại đúng một điểm khi (*) có đúng 1 nghiệm \Leftrightarrow a > - 11

    a nguyên âm nên a \in \left\{ - 10; - 9; - 8;...; - 1
ight\}

    Vậy có 10 giá trị của a thỏa mãn yêu cầu bài toán.

  • Câu 6: Vận dụng cao
    Chọn đáp án chính xác

    Cho hàm số f(x) liên tục trên \lbrack 2;4brack và có bảng biến thiên như hình vẽ bên. Có bao nhiêu giá trị nguyên của m để phương trình x + 2\sqrt{x^{2} - 2x} = m.f(x) có nghiệm thuộc đoạn \lbrack 2;4brack?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có\underset{\lbrack 2;4brack}{Min}f(x) = f(4) =
2\underset{\lbrack
2;4brack}{Max}f(x) = f(2) = 4

    Hàm số g(x) = x + 2\sqrt{x^{2} -
2x} liên tục và đồng biến trên \lbrack 2;4brack

    Suy ra \underset{\lbrack
2;4brack}{Min}g(x) = g(2) = 2\underset{\lbrack 2;4brack}{Max}g(x) = g(4) = 4
+ 4\sqrt{2}

    Ta có x + 2\sqrt{x^{2} - 2x} = m.f(x)
\Leftrightarrow \frac{x + 2\sqrt{x^{2} - 2x}}{f(x)} = m \Leftrightarrow
\frac{g(x)}{f(x)} = m

    Xét hàm số h(x) =
\frac{g(x)}{f(x)} liên tục trên \lbrack 2;4brack

    g(x) nhỏ nhất và f(x) lớn nhất đồng thời xảy ra tại x = 2 nên \underset{\lbrack 2;4brack}{Min}h(x) =
\frac{\underset{\lbrack 2;4brack}{Min}g(x)}{\underset{\lbrack
2;4brack}{Max}f(x)} = \frac{g(2)}{f(2)} = h(2) =
\frac{1}{2}

    g(x) lớn nhất và f(x) nhỏ nhất đồng thời xảy ra tại x = 4 nên \underset{\lbrack 2;4brack}{Max}h(x) =
\frac{\underset{\lbrack 2;4brack}{Max}g(x)}{\underset{\lbrack
2;4brack}{Min}f(x)} = \frac{g(4)}{f(4)} = h(4) = 2 +
2\sqrt{2}

    Từ đó suy ra phương trình h(x) =
m có nghiệm khi và chỉ khi \frac{1}{2} \leq m \leq 2 +
2\sqrt{2}.

    Vậy có 4 giá trị nguyên của m để phương trình có nghiệm.

  • Câu 7: Vận dụng
    Tính giá trị biểu thức

    Một đường thẳng cắt đồ thị hàm số y =
x^{4} - 2x^{2} tại 4 điểm phân biệt có hoành độ là 0,1,m,n. Tính S = m^{2} + n^{2}.

    Hướng dẫn:

    Gọi phương trình đường thẳng là d:y = ax
+ b.

    Theo đề ta có 0,1,m,n là các nghiệm của phương trình: x^{4} - 2x^{2} - ax
- b = 0 (1).

    Vì x=0 ,x=1 là nghiệm của phương trình (1) nên ta có: \left\{ \begin{matrix}
b = 0 \\
a + b = - 1 \\
\end{matrix} ight.

    Khi đó phương trình (1) trở thành: x^{4}
- 2x^{2} + x = 0 \Leftrightarrow x(x - 1)(x^{2} + x - 1) =
0.

    Dễ thấy m,n là nghiệm của phương trình: x^{2} + x - 1 = 0.

    S = m^{2} + n^{2} = (m + n)^{2} - 2mn = (
- 1)^{2} + 2 = 3.

  • Câu 8: Vận dụng
    Chọn đáp án đúng

    Tìm số giao điểm của đồ thị hàm số y =
\sqrt{x^{4} - 4} + 5 và đường thẳng y = x?

    Hướng dẫn:

    Cách 1: Phương trình hoành độ giao điểm \sqrt{x^{4} - 4} + 5 = x \Leftrightarrow
\sqrt{x^{4} - 4} = x - 5

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 5 \\
x^{4} - 4 = (x - 5)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 5 \\
x^{4} - x^{2} + 10x - 29 = 0\ \ \ (*) \\
\end{matrix} ight.

    Do x \geq 5nên x^{4} - x^{2} = x^{2}(x^{2} - 1) > 010x - 29 > 0. Vì vậy (*) vô nghiệm

    Như vậy phương trình \sqrt{x^{4} - 4} + 5
= x vô nghiệm hay đồ thị hàm số y =
\sqrt{x^{4} - 4} + 5 và đường thẳng y = x không có giao điểm nào.

    Cách 2:

    Phương trình hoành độ giao điểm \sqrt{x^{4} - 4} + 5 = x. Ta có điều kiện xác định \left\lbrack \begin{matrix}
x \geq \sqrt{2} \\
x \leq - \sqrt{2} \\
\end{matrix} ight.

    Với điều kiện trên ta có \sqrt{x^{4} - 4}
+ 5 = x \Leftrightarrow \sqrt{x^{4} - 4} + 5 - x = 0

    Xét hàm số h(x) = \sqrt{x^{4} - 4} + 5 -
x. Ta có h'(x) =
\frac{2x^{3}}{\sqrt{x^{4} - 4}} - 1; h'(x) = 0 \Leftrightarrow 2x^{3} = \sqrt{x^{4}
- 4}

    Với x \geq \sqrt{2} ta có 2x^{3} > \sqrt{x^{4} - 4}. Với x \leq - \sqrt{2} ta có 2x^{3} < \sqrt{x^{4} - 4}

    Ta có Bảng biến thiên:

    Số nghiệm của phương trình\sqrt{x^{4} -
4} + 5 = x là số giao điểm của đồ thịy = h(x) = \sqrt{x^{4} - 4} + 5 - x và trục hoànhy = 0.

    Dựa vào BBT ta thấy phương trình \sqrt{x^{4} - 4} + 5 = x vô nghiệm hay đồ thị hàm số y = \sqrt{x^{4} - 4} + 5 và đường thẳng y = x không có giao điểm nào. 

  • Câu 9: Thông hiểu
    Tìm số đường thẳng thõa mãn yêu cầu

    Cho hàm số y = \frac{x + 1}{x -
3} có đồ thị (C) và các đường thẳng d_{1}:y = 2x, d_{2}:y = 2x - 2, d_{3}:y = 3x + 3, d_{4}:y = - x + 3. Hỏi có bao nhiêu đường thẳng trong bốn đường thẳng d_{1},d_{2},d_{3},d_{4} đi qua giao điểm của (C) và trục hoành.

    Hướng dẫn:

    Ta có (C) cắt trục hoành (y - 0) tại điểm M( - 1;0).

    Trong các đường thẳng d_{1},d_{2},d_{3},d_{4}chỉ có M \in d_{3}, có nghĩa là có 1 đường thẳng đi qua M( - 1;0).

  • Câu 10: Vận dụng
    Ghi đáp án vào ô trống

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Vận dụng
    Giá trị của biểu thức

    Cho hình vẽ là đồ thị hàm số có dạng y = a{x^4} + b{x^2} + c

    Giá trị của biểu thức

    Giá trị của biểu thức B = {a^2} + {b^2} + {c^2} có thể nhận giá trị nào trong các giá trị sau?

    Hướng dẫn:

    Đồ thị hàm số đi qua điểm \left( {0; - 1} ight) => c =  - 1

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{y_{CD}} = y\left( {\sqrt {\dfrac{{ - b}}{{2a}}} } ight) = \dfrac{{ - {b^2}}}{{4a}} + c = 3} \\   {y\left( 1 ight) = a + b + c = 2} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  { - {b^2} = 16a} \\   {a + b = 3} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - {b^2} = 16\left( {3 - b} ight)} \\   {a = 3 - b} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {b = 12;a = 9} \\   {b = 4;a =  - 1} \end{array}} ight. \hfill \\   \Rightarrow B = {a^2} + {b^2} + {c^2} = 18 \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Cho hai hàm số y = x^{2} + x - 1y = x^{3} + 2x^{2} + mx - 3. Giá trị của tham số m để đồ thị của hai hàm số có 3 giao điểm phân biệt và 3 giao điểm đó nằm trên đường tròn bán kính bằng 3 thuộc vào khoảng nào dưới đây?

    Hướng dẫn:

    Giả sử m là số thực thỏa mãn bài toán.

    Phương trình hoành độ giao điểm giữa hai đồ thị là

    x^{2} + x - 1 = x^{3} + 2x^{2} + mx - 3
\Leftrightarrow x^{3} + x^{2} + (m - 1)x - 2 = 0\ \ \ \ \
(1).

    Gọi M\left( x_{0};\ y_{0}
ight) là một trong 3 giao điểm. Ta có

    \left\{ \begin{matrix}
y_{0} = x_{0}^{2} + x_{0} - 1 \\
x_{0}^{3} + x_{0}^{2} + (m - 1)x_{0} - 2 = 0 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
y_{0}^{2} = x_{0}^{4} + 2x_{0}^{3} - x_{0}^{2} - 2x_{0} + 1(2) \\
x_{0}^{3} + x_{0}^{2} + (m - 1)x_{0} - 2 = 0(3) \\
\end{matrix} ight..

    Từ (2)(3) suy ra

    y_{0}^{2} = \left( x_{0} + 1
ight)\left\lbrack x_{0}^{3} + x_{0}^{2} + (m - 1)x_{0} - 2
ightbrack + ( - m - 1)x_{0}^{2}
- (m - 1)x_{0} + 3

    = ( - m - 1)x_{0}^{2} - (m - 1)x_{0} +
3

    Hay y_{0}^{2} + x_{0}^{2} = - mx_{0}^{2}
- (m - 1)x_{0} + 3

    = - m\left( y_{0} - x_{0} + 1 ight) -
(m - 1)x_{0} + 3.

    Rút gọn ta được x_{0}^{2} + y_{0}^{2} -
x_{0} + my_{0} + m - 3 = 0(4).

    Đây là phương trình đường tròn khi \left(
- \frac{1}{2} ight)^{2} + \left( \frac{m}{2} ight)^{2} - m + 3 >
0\ \ \ \ \ (*) .

    Với điều kiện (*) thì M\left( x_{0};y_{0} ight) thuộc đường tròn có bán kính R = \sqrt{\left( -
\frac{1}{2} ight)^{2} + \left( \frac{m}{2} ight)^{2} - m +
3}.

    Theo đề bài R = 3 \Leftrightarrow
\frac{m^{2} + 1}{4} - m + 3 = 9 \Leftrightarrow m^{2} - 4m - 23 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 2 + 3\sqrt{3} \\
m = 2 - 3\sqrt{3} \\
\end{matrix} ight..

    Thử lại.

    Với m = 2 + 3\sqrt{3} thì phương trình (1)1 nghiệm. Do đó, m = 2 + 3\sqrt{3} không thỏa mãn.

    Với m = 2 - 3\sqrt{3} thì phương trình (1)3 nghiệm và cũng thỏa mãn (*).

    Vậy giá trị m cần tìm là m = 2 - 3\sqrt{3} \in ( - 4;\  - 2).

  • Câu 13: Vận dụng
    Chọn đồ thị ứng với hàm số đã cho

    Hình vẽ nào dưới đây là đồ thị của hàm số y =  - \left( {a - x} ight){\left( {b - x} ight)^2} biết a > b > 0

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) =  - \left( {a - x} ight){\left( {b - x} ight)^2} = \left( {x - a} ight){\left( {x - b} ight)^2} ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) =  + \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) =  - \infty } \end{array}} ight. => Đồ thị hàm số có dạng chữ N xuôi

    Đồ thị hàm số cắt trục Oy tại điểm có tung độ y\left( 0 ight) =  - a{b^2} mà a > 0 => y\left( 0 ight) < 0

    Mặt khác f'\left( x ight) = {\left( {x - b} ight)^2} + 2\left( {x - a} ight)\left( {a - b} ight) = \left( {x - b} ight)\left( {3x - 2a - b} ight)

    => \left\{ {\begin{array}{*{20}{c}}  {f\left( b ight) = 0} \\   {f'\left( b ight) = 0} \end{array}} ight.

    => Đồ thị hàm số y = f(x) tiếp xúc với Ox tại điểm M\left( {b;0} ight)

  • Câu 14: Vận dụng cao
    Chọn đáp án chính xác

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ.

    Có bao nhiêu giá trị nguyên của tham số m để phương trình f\left( \left| \frac{3sinx - \cos x - 1}{2cosx -
\sin x + 4} \right| + 2 \right) = f\left( \sqrt{(m + 2)^{2} + 4}
\right) có nghiệm?

    Hướng dẫn:

    Ta có: - 1 \leq \sin x \leq 1,\ \  - 1
\leq \cos x \leq 1 nên suy ra 2cosx
- \sin x + 4 > 0,\ \ \forall x\mathbb{\in R}.

    Đặt t = \frac{3sinx - \cos x - 1}{2cosx -
\sin x + 4} \Rightarrow t(2cosx -
\sin x + 4) = 3sinx - \cos x - 1

    \Leftrightarrow (2t + 1)cosx - (t +
3)sinx = - (4t + 1).

    Phương trình trên có nghiệm khi

    (2t + 1)^{2} + (t + 3)^{2} \geq (4t +
1)^{2}

    \Leftrightarrow \frac{- 9}{11} \leq t
\leq 1 \Rightarrow 2 \leq |t| + 2 \leq 3.

    Nhìn vào hình trên ta thấy hàm số f(x) luôn đồng biến trên \lbrack 2\ ;\ 3brack nên phương trình f\left( \left| \frac{3sinx - \cos x -
1}{2cosx - \sin x + 4} ight| + 2 ight) = f\left( \sqrt{(m + 2)^{2} +
4} ight) hay phương trình f\left(
|t| + 2 ight) = f\left( \sqrt{(m + 2)^{2} + 4} ight) có nghiệm khi và chỉ khi phương trình |t| + 2 =
\sqrt{(m + 2)^{2} + 4} có nghiệm t thỏa mãn điều kiện 2 \leq |t| + 2 \leq 3

    \Leftrightarrow 2 \leq \sqrt{(m + 2)^{2}
+ 4} \leq 3 \Rightarrow m^{2} + 4m - 1 \leq 0 \Leftrightarrow - 2 -
\sqrt{5} \leq m \leq - 2 + \sqrt{5}

    m\mathbb{\in Z} nên có tất cả 5 giá trị m thỏa mãn.

  • Câu 15: Vận dụng cao
    Chọn đáp án đúng

    Cho hàm số y = x^{4} - 2x^{2} có đồ thị (C), có bao nhiêu đường thẳng dcó đúng 3 điểm chung với đồ thị (C) và các điểm chung có hoành độ x_{1},x_{2},x_{3} thỏa mãn\ {x_{1}}^{3} + {x_{2}}^{3} + {x_{3}}^{3} = -
1.

    Hướng dẫn:

    Vì đường thẳng d cắt đồ thị hàm số (C) tại 3 điểm phân biệt nên đường thẳng dlà đường thẳng có hệ số góc dạng y = ax + b.

    Phương trình hoành độ giao điểm của d (C) là: x^{4}
- 2x^{2} = ax + b.

    Mà phương trình là phương trình bậc 4 nên phương trình muốn có 3 nghiệm phân biệt thì trong đó sẽ có 1 nghiệm kép gọi là x_{1}, hai nghiệm còn lại là x_{2},x_{3}.

    Suy ra đường thẳng dlà tiếp tuyến của đồ thị (C), không mất tính tổng quát giả sử đường thẳng dtiếp xúc với đồ thị hàm số (C)tại x_{1}.

    Gọi dlà tiếp tuyến của (C)tại điểm có hoành độ x_{1}, d cắt (C) tại 2 điểm phân biệt có hoành độ x_{2},x_{3}( eq x_{1}) thỏa mãn {x_{1}}^{3} + {x_{2}}^{3} + {x_{3}}^{3} = -
1.

    Ta có: d:y = (4{x_{1}}^{3} - 4x_{1})(x -
x_{1}) + {x_{1}}^{4} - 2{x_{1}}^{2}.

    Phương trình hoành độ giao điểm của d(C)là:

    x^{4} - 2x^{2} = (4{x_{1}}^{3} -
4x_{1})(x - x_{1}) + {x_{1}}^{4} - 2{x_{1}}^{2}(1)

    Yêu cầu bài toán \Leftrightarrow
(1) có 3 nghiệm phân biệt thỏa mãn {x_{1}}^{3} + {x_{2}}^{3} + {x_{3}}^{3} = -
1.

    (1) \Leftrightarrow (x -
x_{1})^{2}(x^{2} + 2x_{1}x + 3{x_{1}}^{2} - 2) = 0\Leftrightarrow
\left\{ \begin{matrix}
x = x_{1} \\
f(x) = x^{2} + 2x_{1}x + 3{x_{1}}^{2} - 2 = 0 \\
\end{matrix} ight.

    Để phương trình (1) có 3 nghiệm phân biệt thỏa mãn {x_{1}}^{3} + {x_{2}}^{3}
+ {x_{3}}^{3} = - 1thì phương trình f(x) = 0 phải có 2 nghiệm phân biệt x_{2},x_{3} khác x_{1}và thỏa mãn định lí Vi – ét:

    \left\{ \begin{matrix}
x_{2} + x_{3} = - 2x_{1} \\
x_{2}.x_{3} = 3{x_{1}}^{2} - 2 \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
\Delta' = {x_{1}}^{2} - 3{x_{1}}^{2} + 2 > 0 \\
{x_{1}}^{2} + 2{x_{1}}^{2} + 3{x_{1}}^{2} - 2 eq 0 \\
{x_{1}}^{3} + (x_{2} + x_{3})^{3} - 3x_{2}x_{3}(x_{2} + x_{3}) = - 1 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
- 1 < x_{1} < 1 \\
3{x_{1}}^{2} - 1 eq 0 \\
{x_{1}}^{3} + ( - 2x_{1})^{3} - 3(3{x_{1}}^{2} - 2).( - 2x_{1}) = - 1 \\
\end{matrix} ight.

     

    \Leftrightarrow x_{1} = \frac{- 11 +
\sqrt{165}}{22}.

    Vậy có đúng 1 đường thẳng thỏa mãn yêu cầu bài toán.

  • Câu 16: Vận dụng
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = \frac{x + 1}{x -
1} có đồ thị như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) là đồ thị của hàm số y = \left| \frac{x + 1}{x - 1} ight|. Đúng||Sai

    b) là đồ thị của hàm số y = \frac{|x + 1|}{x - 1}. Đúng||Sai

    c) là đồ thị của hàm số y = \left| \frac{|x + 1|}{x - 1} ight|. Sai|| Đúng

    d) Đồ thị của hàm số y = \left| \frac{x
+ 1}{x - 1} ight|y = \left|
\frac{|x + 1|}{x - 1} ight| là khác nhau. Sai|| Đúng

    Đáp án là:

    Cho hàm số y = \frac{x + 1}{x -
1} có đồ thị như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) là đồ thị của hàm số y = \left| \frac{x + 1}{x - 1} ight|. Đúng||Sai

    b) là đồ thị của hàm số y = \frac{|x + 1|}{x - 1}. Đúng||Sai

    c) là đồ thị của hàm số y = \left| \frac{|x + 1|}{x - 1} ight|. Sai|| Đúng

    d) Đồ thị của hàm số y = \left| \frac{x
+ 1}{x - 1} ight|y = \left|
\frac{|x + 1|}{x - 1} ight| là khác nhau. Sai|| Đúng

    a) Đồ thị hàm số y = \left| \frac{x +
1}{x - 1} ight|

    - Giữ nguyên phần trên trục Ox.

    - Đối xứng với phần bị bỏ của đồ thị y =
\frac{x + 1}{x - 1} qua trục Ox.

    b) Ta có: y = \frac{|x + 1|}{x - 1} =
\left\{ \begin{matrix}
\frac{x + 1}{x - 1};\ \ \ khi\ x \geq - 1;x eq 1 \\
- \frac{x + 1}{x - 1};\ \ \ khi\ x < - 1 \\
\end{matrix} ight.

    Do đó đồ thị hàm số y = \frac{|x + 1|}{x
- 1} gồm hai phần:

    Phần 1: Đồ thị hàm số y = \frac{x + 1}{x
- 1} với x \geq - 1;x eq
1.

    Phần 2: Đối xứng với phần còn lại của đồ thị y = f(x)với x < −1 qua trục Ox.

    c) Đồ thị y = \left| \frac{|x + 1|}{x -
1} ight| gồm hai phần:

    Phần 1: Giữ nguyên phần trên Ox

    Phần 2: Đối xứng với phần bị bỏ của đồ thị y = \frac{|x + 1|}{x - 1} qua trục Ox.

    d) Đồ thị của hàm số y = \left| \frac{x +
1}{x - 1} ight|y = \left|
\frac{|x + 1|}{x - 1} ight| là giống nhau.

  • Câu 17: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    a) Hàm số y = f(x) có hai điểm cực trị là x = 0x = 2. Đúng||Sai

    b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng

    c) Hàm số nghịch biến trên khoảng ( -
2;0). Sai||Đúng

    d) c = 2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    a) Hàm số y = f(x) có hai điểm cực trị là x = 0x = 2. Đúng||Sai

    b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng

    c) Hàm số nghịch biến trên khoảng ( -
2;0). Sai||Đúng

    d) c = 2. Đúng||Sai

     

    Dựa vào đồ thị ta thấy hàm số y =
f(x) có hai điểm cực trị là x =
0x = 2.

    Giá trị lớn nhất của hàm số trên R không tồn tại.

    Dựa vào đồ thị ta thấy hàm số nghịch biến trên khoảng ( - 2;0)

    Dựa vào đồ thị ta có f(0) = 2
\Rightarrow c = 2

  • Câu 18: Vận dụng cao
    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số m để đồ thị hàm sốy = (m + 1)x^{4} - 2(2m - 3)x^{2} + 6m +
5 cắt trục hoành tại 4 điểm phân biệt có các hoành độ  thỏa mãn x_{\ ^{1}} < x_{\
^{2}} < x_{\ ^{3}} < 1 < x_{\ ^{4}}.

    Hướng dẫn:

    C1: Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là

    (m + 1)x^{4} - 2(2m - 3)x^{2} + 6m + 5 =
0(1)

    Đặt t = x^{2} \geq 0 pt trở thành (m + 1)t^{2} - 2(2m - 3)t + 6m + 5 =
0(2)

    g(t) = (m + 1)t^{2} - 2(2m - 3)t + 6m +
5

    Để pt (1) có 4 nghiệm phân biệt thì pt (2) phải có 2 nghiệm dương phân biệt

    Hay \left\{ \begin{matrix}
m + 1 eq 0 \\
\Delta' > 0 \\
t_{1}.t_{2} > 0 \\
t_{1} + t_{2} > 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
m eq - 1 \\
(2m - 3)^{2} - (m + 1)(6m + 5) > 0 \\
\frac{6m + 5}{m + 1} > 0 \\
\frac{2m - 3}{m + 1} > 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
m eq - 1 \\
\frac{- 23 - \sqrt{561}}{4} < m < \frac{- 23 + \sqrt{561}}{4} \\
m < - 1 \vee m > - \frac{5}{6} \\
m < - 1 \vee m > \frac{3}{2} \\
\end{matrix} ight.\ (*)

    Để pt (1) có 4 nghiệm thỏa mãn x_{\ ^{1}}
< x_{\ ^{2}} < x_{\ ^{3}} < 1 < x_{\ ^{4}}

    thì pt (2) phải có 2 nghiệm thỏa 0 <
t_{\ ^{1}} < 1 < t_{\ ^{2}}

    \Leftrightarrow \left\{ \begin{matrix}
t_{1} - 1 < 0 \\
t_{2} - 1 > 0 \\
\end{matrix} ight.\Leftrightarrow \left( t_{1} - 1 ight)\left(
t_{2} - 1 ight) < 0 \Leftrightarrow t_{1}t_{2} - \left( t_{1} +
t_{2} ight) + 1 < 0

    \Leftrightarrow \frac{6m + 5}{m + 1} -
\frac{2(2m - 3)}{m + 1} + 1 < 0\Leftrightarrow \frac{3m + 12}{m + 1}
< 0 \Leftrightarrow - 4 < m < - 1

    Kết hợp với (*) ta có m \in ( - 4; -
1) thỏa yêu cầu bài toán.

    C2:

    Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là

    (m + 1)x^{4} - 2(2m - 3)x^{2} + 6m + 5 =
0(1)

    Đặt t = x^{2} \geq 0pt trở thành (m + 1)t^{2} - 2(2m - 3)t + 6m + 5 =
0(2)

    Để pt (1) có 4 nghiệm thỏa mãn x_{\ ^{1}}
< x_{\ ^{2}} < x_{\ ^{3}} < 1 < x_{\ ^{4}}

    thì pt (2) phải có 2 nghiệm thỏa 0 <
t_{\ ^{1}} < 1 < t_{\ ^{2}}

    Phương trình (2) \Leftrightarrow m =
\frac{- t^{2} - 6t - 5}{t^{2} - 4t + 6} (biểu thức t^{2} - 4t + 6 eq 0,\forall t )

    Xét hàm số f(t) = \frac{- t^{2} - 6t -
5}{t^{2} - 4t + 6}, với t \in (0; +
\infty)

    Ta có f(t) liên tục trên (0; + \infty) và có

    f'(t) = \frac{10t^{2} - 2t -
56}{\left( t^{2} - 4t + 6 ight)^{2}}

    f'(t) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = \frac{1 - \sqrt{561}}{10} < 0 \\
t = \frac{1 + \sqrt{561}}{10} > 1 \\
\end{matrix} ight.

    Bảng biến thiên

    Dựa vào bảng biến thiên ta thấy đường thẳng y = m cắt đồ thị hàm số f(t) = \frac{- t^{2} - 6t - 5}{t^{2} - 4t +
6} tại hai giao điểm có hoàng độ thỏa 0 < t_{\ ^{1}} < 1 < t_{\ ^{2}} khi - 4 < m < - 1.

  • Câu 19: Vận dụng
    Số nghiệm thực phân biệt của phương trình

    Cho hàm số f\left( x ight) = {x^3} - 3x + 1. Số nghiệm thực phân biệt của phương trình f\left( {f\left( x ight)} ight) = f\left( 2 ight) là:

    Hướng dẫn:

    Ta có: f\left( {f\left( x ight)} ight) = f\left( 2 ight) = 3

    Đồ thị của hàm số f\left( x ight) = {x^3} - 3x + 1 được minh họa bằng hình vẽ sau:

    Số nghiệm thực phân biệt của phương trình

    Từ đồ thị ta suy ra

    f\left( {f\left( x ight)} ight) = 3 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 2} \\   {f\left( x ight) =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 2} \\   {{x^3} - 3x + 1 =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 0\left( * ight)} \\   {{x^3} - 3x + 2 = 0\left( {**} ight)} \end{array}} ight.

    Phương trình (*) có 3 nghiệm thực

    Phương trình (**) có 2 nghiệm thực

  • Câu 20: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = x^{3} - 2x^{2} -1 có đồ thị (C), đường thẳng (d):y = mx - 1 và điểm K(4;11). Biết rằng (C);(d) cắt nhau tại ba điểm phân biệt A;B;C trong đó A(0; - 1) còn trọng tâm tam giác KBC nằm trên đường thẳng y = 2x + 1. Tìm giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{3} - 2x^{2} -1 có đồ thị (C), đường thẳng (d):y = mx - 1 và điểm K(4;11). Biết rằng (C);(d) cắt nhau tại ba điểm phân biệt A;B;C trong đó A(0; - 1) còn trọng tâm tam giác KBC nằm trên đường thẳng y = 2x + 1. Tìm giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo