Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 4 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định hàm số

    Đường cong trong hình bên là của đồ thị hàm số nào dưới đây?

    Hướng dẫn:

    Đồ thị hàm số trên là đồ thị hàm trùng phương có 3 cực trị và có a < 0.

    Chọn đáp án y = - x^{4} + 2x^{2} + 2

  • Câu 2: Vận dụng
    Tính giá trị của biểu thức

    Cho đồ thị hàm số f(x) = x^{3} + bx^{2} +
cx + d cắt trục hoành tại 3 điểm phân biệt có hoành độ x_{1}\ ,\ x_{2}\ ,\ x_{3}. Tính giá trị của biểu thức P = \frac{1}{f'\left(
x_{1} \right)} + \frac{1}{f'\left( x_{2} \right)} +
\frac{1}{f'\left( x_{3} \right)}.

    Hướng dẫn:

    x_{1}\ ,\ x_{2}\ ,\ x_{3} là ba nghiệm của phương trình bậc ba f(x) =
0

    \Rightarrow f(x) = \left( x - x_{1}
ight)\left( x - x_{2} ight)\left( x - x_{3} ight)

    Ta có f'(x) = \left( x - x_{1}
ight)\left( x - x_{2} ight) + \left( x - x_{2} ight)\left( x -
x_{3} ight) + \left( x - x_{1} ight)\left( x - x_{3}
ight).

    Khi đó: \left\{ \begin{matrix}
f'\left( x_{1} ight) = \left( x_{1} - x_{2} ight)\left( x_{1} -
x_{3} ight) \\
f'\left( x_{2} ight) = \left( x_{2} - x_{3} ight)\left( x_{2} -
x_{1} ight) \\
f'\left( x_{3} ight) = \left( x_{3} - x_{1} ight)\left( x_{3} -
x_{2} ight) \\
\end{matrix} ight.

    Suy ra P = \frac{1}{\left( x_{1} - x_{2}
ight)\left( x_{1} - x_{3} ight)} + \frac{1}{\left( x_{2} - x_{3}
ight)\left( x_{2} - x_{1} ight)} + \frac{1}{\left( x_{3} - x_{1}
ight)\left( x_{3} - x_{2} ight)}.

    = \frac{\left( x_{2} - x_{3} ight) -
\left( x_{1} - x_{3} ight) + \left( x_{1} - x_{2} ight)}{\left(
x_{1} - x_{2} ight)\left( x_{1} - x_{3} ight)\left( x_{2} - x_{3}
ight)} = 0.

  • Câu 3: Vận dụng cao
    Tính giá trị biểu thức

    Gọi m_{0} là số thực sao cho phương trình \left| x^{3} - 12x \right| =
m_{0} có ba nghiệm dương phân biệt x_{1}; x_{2}; x_{3} thỏa mãn x_{1} + x_{2} + x_{3} = 1 + 4\sqrt{3}. Biết rằng m_{0} có dạng a\sqrt{3} + b với a; b là các số hữu tỷ. Tính 4a^{2} +
8b:

    Hướng dẫn:

    Vẽ đồ thị hàm số y = \left| x^{3} - 12x
ight|

    Do đó với mọi m \in (0\ ;\ 16) thì phương trình đã cho luôn có ba nghiệm dương phân biệt x_{1}; x_{2}; x_{3} \left(
x_{1} < x_{2} < x_{3} ight) thỏa mãn: \left\{ \begin{matrix}
- x_{1}^{3} + 12x_{1} = m_{0} \\
- x_{2}^{3} + 12x_{2} = m_{0} \\
x_{3}^{3} - 12x_{3} = m_{0} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left( - x_{1} ight)^{3} - 12\left( - x_{1} ight) - m_{0} = 0 \\
\left( - x_{2} ight)^{3} - 12\left( - x_{2} ight) - m_{0} = 0 \\
x_{3}^{3} - 12x_{3} - m_{0} = 0 \\
\end{matrix} ight.

    \Rightarrow - x_{1}; - x_{2}; x_{3} là ba nghiệm của phương trình x^{3} - 12x - m_{0} = 0

    \Rightarrow - x_{1} - x_{2} + x_{3} = 0
\Rightarrow x_{3} = x_{1} + x_{2}

    x_{1} + x_{2} + x_{3} = 1 + 4\sqrt{3}
\Rightarrow x_{3} = \frac{1 + 4\sqrt{3}}{2}

    \Rightarrow m_{0} = \left( \frac{1 +
4\sqrt{3}}{2} ight)^{3} - 12\left( \frac{1 + 4\sqrt{3}}{2} ight) =
\frac{3\sqrt{3}}{2} + \frac{97}{8}

    \Rightarrow a = \frac{3}{2}; b = \frac{97}{8} \Rightarrow 4a^{2} + 8b =
106.

  • Câu 4: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ:

    Tìm tập hợp tất cả các giá trị của tham số m để phương trình f\left( \cos x ight) = - 2m + 1 có nghiệm thuộc khoảng \left( 0;\frac{\pi}{2}ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ:

    Tìm tập hợp tất cả các giá trị của tham số m để phương trình f\left( \cos x ight) = - 2m + 1 có nghiệm thuộc khoảng \left( 0;\frac{\pi}{2}ight)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Thông hiểu
    Xét sự đúng sai của các nhận đính

    Cho hàm số y = x^{3} - 6x^{2} + 9x -
1 . Các nhận định dưới đây đúng hay sai?

    a) Hàm số đồng biến trên khoảng ( -
\infty;1)(3; + \infty). Đúng||Sai

    b) Hàm số có hai điểm cực trị. Đúng||Sai

    c) Hàm số đạt cực tiểu tại x = 1 và giá trị cực tiểu bằng 3. Sai||Đúng

    d) Giá trị nhỏ nhất của hàm số trên đoạn \lbrack 1;2\rbrack bằng 2. Sai||Đúng

    Đáp án là:

    Cho hàm số y = x^{3} - 6x^{2} + 9x -
1 . Các nhận định dưới đây đúng hay sai?

    a) Hàm số đồng biến trên khoảng ( -
\infty;1)(3; + \infty). Đúng||Sai

    b) Hàm số có hai điểm cực trị. Đúng||Sai

    c) Hàm số đạt cực tiểu tại x = 1 và giá trị cực tiểu bằng 3. Sai||Đúng

    d) Giá trị nhỏ nhất của hàm số trên đoạn \lbrack 1;2\rbrack bằng 2. Sai||Đúng

    Ta có: y' = 3x^{2} - 12x +
9

    y' = 0 \Rightarrow x = 1,x =
3

    Bảng biến thiên:

    A line with numbers and arrowsDescription automatically generated

    a) y' > 0 trên các khoảng ( - \infty;1)(3; + \infty): nên mệnh đề đúng

    b) Từ bảng biến thiên thấy hàm số có hai điểm cực trị: nên mệnh đề đúng

    c) Hàm số đạt cực đại tại x = 1: nên mệnh đề sai

    d) Trong khoảng \lbrack
1;2\rbrack thì hàm số nghịch biến nên: \min_{\lbrack 1;2\rbrack}f(x) = 1: nên mệnh đề sai

    Đáp án: a) Đúng, b) Đúng, c) Sai, d) Sai

  • Câu 6: Vận dụng
    Xác định khoảng đồng biến của hàm số

    Cho hàm số y =f(x) có đồ thị của hàm số y =f'(x) như hình vẽ:

    Xác định khoảng đồng biến của hàm số y =f\left( |3 - x| ight)?

    Hướng dẫn:

    Ta có: y = f\left( |3 - x| ight) =\left\{ \begin{matrix}f(3 - x)\ \ khi\ x \leq 3 \\f(x - 3)\ \ khi\ x > 3 \\\end{matrix} ight.

    y' = \left\{ \begin{matrix}- f'(3 - x)\ \ khi\ x \leq 3 \\f'(x - 3)\ \ khi\ x > 3 \\\end{matrix} ight.

    Với x < 3 \Rightarrow y' = -f'(3 - x) > 0

    \Leftrightarrow f'(3 - x) < 0\Leftrightarrow \left\lbrack \begin{matrix}3 - x < - 1 \\1 < 3 - x < 4 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x > 4 \\- 1 < x < 2 \\\end{matrix} ight.

    Kết hợp với điều kiện x < 3 ta có: - 1 < x < 2

    Với x > 3 \Rightarrow y' =f'(x - 3) > 0

    \Leftrightarrow f'(3 - x) > 0\Leftrightarrow \left\lbrack \begin{matrix}3 - x > 4 \\- 1 < 3 - x < 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x > 7 \\2 < x < 4 \\\end{matrix} ight.

    Kết hợp với điều kiện x > 3 ta có: \left\lbrack \begin{matrix}x > 7 \\3 < x < 4 \\\end{matrix} ight.

    Vậy hàm số y = f\left( |3 - x|ight) đồng biến trên mỗi khoảng (- 1;2),(3;4),(7; + \infty)

  • Câu 7: Vận dụng cao
    Tìm điều kiện cần và đủ của tham số m theo yêu cầu

    Cho hàm số y = f(x). Đồ thị hàm số y = f'(x) như hình vẽ. Cho bất phương trình 3f(x) \geq x^{3} - 3x +
m (m là tham số thực). Điều kiện cần và đủ để bất phương trình 3f(x) \geq x^{3} - 3x + m đúng với mọi x \in \left\lbrack - \sqrt{3};\sqrt{3}
\right\rbrack

    Hướng dẫn:

    Ta có 3f(x) \geq x^{3} - 3x + m
\Leftrightarrow 3f(x) - x^{3} + 3x \geq m

    Đặt g(x) = 3f(x) - x^{3} + 3x. Tính g'(x) = 3f'(x) - 3x^{2} +
3

    g'(x) = 0 \Leftrightarrow
f'(x) = x^{2} - 1

    Nghiệm của phương trình g'(x) =
0 là hoành độ giao điểm của đồ thị hàm số y = f'(x) và parabol y = x^{2} - 1

    Dựa vào đồ thị hàm số ta có: f'(x) =
x^{2} - 1 \Leftrightarrow \left\lbrack \begin{matrix}
x = - \sqrt{3} \\
x = 0 \\
x = \sqrt{3} \\
\end{matrix} ight.

    BBT

    Để bất phương trình nghiệm đúng với mọi x
\in \left\lbrack - \sqrt{3};\sqrt{3} ightbrack thì m \leq \min_{\left\lbrack - \sqrt{3};\sqrt{3}
ightbrack}g(x) = g\left( \sqrt{3} ight) = 3f\left( \sqrt{3}
ight).

  • Câu 8: Vận dụng cao
    Chọn đáp án chính xác

    Cho hàm số f(x) liên tục trên \lbrack 2;4brack và có bảng biến thiên như hình vẽ bên. Có bao nhiêu giá trị nguyên của m để phương trình x + 2\sqrt{x^{2} - 2x} = m.f(x) có nghiệm thuộc đoạn \lbrack 2;4brack?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có\underset{\lbrack 2;4brack}{Min}f(x) = f(4) =
2\underset{\lbrack
2;4brack}{Max}f(x) = f(2) = 4

    Hàm số g(x) = x + 2\sqrt{x^{2} -
2x} liên tục và đồng biến trên \lbrack 2;4brack

    Suy ra \underset{\lbrack
2;4brack}{Min}g(x) = g(2) = 2\underset{\lbrack 2;4brack}{Max}g(x) = g(4) = 4
+ 4\sqrt{2}

    Ta có x + 2\sqrt{x^{2} - 2x} = m.f(x)
\Leftrightarrow \frac{x + 2\sqrt{x^{2} - 2x}}{f(x)} = m \Leftrightarrow
\frac{g(x)}{f(x)} = m

    Xét hàm số h(x) =
\frac{g(x)}{f(x)} liên tục trên \lbrack 2;4brack

    g(x) nhỏ nhất và f(x) lớn nhất đồng thời xảy ra tại x = 2 nên \underset{\lbrack 2;4brack}{Min}h(x) =
\frac{\underset{\lbrack 2;4brack}{Min}g(x)}{\underset{\lbrack
2;4brack}{Max}f(x)} = \frac{g(2)}{f(2)} = h(2) =
\frac{1}{2}

    g(x) lớn nhất và f(x) nhỏ nhất đồng thời xảy ra tại x = 4 nên \underset{\lbrack 2;4brack}{Max}h(x) =
\frac{\underset{\lbrack 2;4brack}{Max}g(x)}{\underset{\lbrack
2;4brack}{Min}f(x)} = \frac{g(4)}{f(4)} = h(4) = 2 +
2\sqrt{2}

    Từ đó suy ra phương trình h(x) =
m có nghiệm khi và chỉ khi \frac{1}{2} \leq m \leq 2 +
2\sqrt{2}.

    Vậy có 4 giá trị nguyên của m để phương trình có nghiệm.

  • Câu 9: Vận dụng
    Tìm các số thực dương m theo yêu cầu bài toán

    Cho hàm số y = x^{4} - 3x^{2} -
2. Tìm số thực dương m để đường thẳng y = m cắt đồ thị hàm số tại 2 điểm phân biệt A, B sao cho tam giác OAB vuông tại O, trong đó O là gốc tọa độ.

    Hướng dẫn:

    Hoành độ giao điểm của hai đồ thị hàm số là nghiệm của phương trình:

    x^{4} - 3x^{2} - 2 = m \Leftrightarrow
x^{4} - 3x^{2} - 2 - m = 0\ \ \ \ \ \ \ \ \ (1).

    m > 0 \Leftrightarrow - 2 - m <
0 hay phương trình (1) luôn có hai nghiệm phân biệt thỏa mãn:

    x^{2} = \frac{3 + \sqrt{4m + 17}}{2}
\Rightarrow x_{1} = \sqrt{\frac{3 + \sqrt{4m + 17}}{2}}x_{2} = - \sqrt{\frac{3 + \sqrt{4m +
17}}{2}}.

    Khi đó: A\left( x_{1};m ight), B\left( x_{2};m ight).

    Ta có tam giác OAB vuông tại O, trong đó O là gốc tọa độ \Leftrightarrow
\overrightarrow{OA}.\overrightarrow{OB} = 0 \Leftrightarrow x_{1}.x_{2}
+ m^{2} = 0.

    \Leftrightarrow \frac{3 + \sqrt{4m +
17}}{2} = m^{2}

    \Leftrightarrow \left\{ \begin{matrix}
2m^{2} - 3 \geq 0 \\
4m^{4} - 12m^{2} - 4m - 8 = 0 \\
\end{matrix} ight.\ \overset{m > 0}{\leftrightarrow}m =
2.

    Vậy m = 2 là giá trị cần tìm.

  • Câu 10: Vận dụng
    Xác định tính đúng sai của từng phương án

    Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).

    Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).

    Xét tính đúng sai của các khẳng định sau:

    a) Tổng diện tích 5 mặt của bể là S =
2a^{2} + 6ah . Đúng||Sai

    b) Ta có h = \frac{5,5 +
2a^{2}}{6a} . Sai|| Đúng

    c) Thể tích của bể là V = \frac{5,5a}{3}
+ \frac{2a^{3}}{3} . Sai|| Đúng

    d) Bể cá có dung tích lớn nhất bằng \frac{11\sqrt{33}}{54} . Đúng||Sai

    Đáp án là:

    Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).

    Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).

    Xét tính đúng sai của các khẳng định sau:

    a) Tổng diện tích 5 mặt của bể là S =
2a^{2} + 6ah . Đúng||Sai

    b) Ta có h = \frac{5,5 +
2a^{2}}{6a} . Sai|| Đúng

    c) Thể tích của bể là V = \frac{5,5a}{3}
+ \frac{2a^{3}}{3} . Sai|| Đúng

    d) Bể cá có dung tích lớn nhất bằng \frac{11\sqrt{33}}{54} . Đúng||Sai

    a) Đúng. Kích thước đáy của bể lần lượt là 2a, a; chiều cao bể là h (a, h > 0). Tổng diện tích 5 mặt của bể là:

    S = 2a^{2} + 2ah + 4ah = 2a^{2} +
6ah

    b) Sai. Theo đề bài ta có: 2a^{2} + 6ah =
5,5 \Rightarrow h = \frac{5,5 - 2a^{2}}{6a};\left( 0 < a <
\frac{5\sqrt{5}}{2} ight).

    c) Sai. Gọi V là thể tích của bể cá, ta có:

    V = 2a^{2}h = \frac{2a^{2}\left( 5,5 -
2a^{2} ight)}{6a} = \frac{5,5a}{3} - \frac{2a^{3}}{3}

    d) Đúng. Ta có: V' = \frac{5,5}{3} -
\frac{6a^{2}}{3}

    V' = 0 \Leftrightarrow \dfrac{5,5}{3}- \dfrac{6a^{2}}{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{\sqrt{33}}{6}(tm) \\a = - \dfrac{\sqrt{33}}{6}(ktm) \\\end{matrix} ight.

    Bảng biến thiên:

    Vậy dung tích lớn nhất của bể cá bằng \frac{11\sqrt{33}}{54}.

  • Câu 11: Vận dụng cao
    Tìm m để phương trình có 3 nghiệm thực phân biệt

    Cho hàm số f(x) = log_{3}x + 3^{x} -
3^{\frac{1}{x}}. Tổng bình phương các giá trị của tham số m để phương trình f\left( \frac{1}{4|x - m| + 3} \right) + f\left(
x^{2} - 4x + 7 \right) = 0 có đúng 3 nghiệm thực phân biệt bằng

    Hướng dẫn:

    Ta có f'(x) = \frac{1}{xln3} + 3^{x}
\cdot ln3 + \frac{1}{x^{2}} \cdot 3^{\frac{1}{x}} \cdot ln3 >
0,\forall x > 0

    \Rightarrow Hàm số y = f(x) đồng biến trên (0; + \infty)(1).

    Mặt khác f\left( \frac{1}{x} ight) =
log_{3}\frac{1}{x} + 3^{\frac{1}{x}} - 3^{x} = - \left( log_{3}x -
3^{\frac{1}{x}} + 3^{x} ight) = - f(x), khi đó

    f\left( \frac{1}{4|x - m| + 3} ight) +
f\left( x^{2} - 4x + 7 ight) = 0

    \Leftrightarrow - f(4|x - m| + 3) +
f\left( x^{2} - 4x + 7 ight) = 0

    \Leftrightarrow f\left( 4|x - m| + 3
ight) = f\left( x^{2} - 4x + 7 ight)\ \ (2).

    Từ (1),(2) \Rightarrow 4|x - m| + 3 =
x^{2} - 4x + 7

    \Leftrightarrow \left\lbrack
\begin{matrix}
4m = - x^{2} + 8x - 4 \\
4m = x^{2} + 4 \\
\end{matrix} ight..

    Ta có đồ thị sau:

    Theo yêu cầu bài toán tương đương \left\lbrack \begin{matrix}
4m = 4 \\
4m = 8 \\
4m = 12 \\
\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 2 \\
m = 3 \\
\end{matrix} ight.\  ight.. Vậy 1^{2} + 2^{2} + 3^{2} = 14.

  • Câu 12: Vận dụng
    Ghi đáp án vào ô trống

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Vận dụng cao
    Xác định các giá trị nguyên của tham số m

    Cho hai hàm số y = \frac{x}{x - 1} +
\frac{x + 1}{x} + \frac{x + 2}{x + 1}y = e^{x} + 2023 + 3m (m là tham số thực) có đồ thị lần lượt là (C_{1})(C_{2}). Có bao nhiêu số nguyên m thuộc ( -
2022;2023) để (C_{1})(C_{2}) cắt nhau tại 3 điểm phân biệt?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm \frac{x}{x - 1} + \frac{x + 1}{x} + \frac{x + 2}{x
+ 1} = e^{x} + 2023 + 3m

    \Leftrightarrow \frac{x}{x - 1} + \frac{x
+ 1}{x} + \frac{x + 2}{x + 1} - e^{x} - 2023 = 3m (1).

    Đặt g(x) = \frac{x}{x - 1} + \frac{x +
1}{x} + \frac{x + 2}{x + 1} - e^{x} - 2023.

    Ta có g'(x) = - \frac{1}{(x - 1)^{2}}
- \frac{1}{x^{2}} - \frac{1}{(x + 1)^{2}} - e^{x} < 0 với mọi x thuộc các khoảng sau ( - \infty; - 1), ( - 1;0), (0;1)(1;
+ \infty) nên hàm số y =
g(x) nghịch biến trên mỗi khoảng đó.

    Mặt khác ta có \lim_{x ightarrow -
\infty}g(x) = - 2020\lim_{x
ightarrow + \infty}g(x) = - \infty.

    Bảng biến thiên hàm sốy =
g(x)

    Do đó để (C_{1})(C_{2}) cắt nhau tại đúng ba điểm phân biệt thì phương trình (1) phải có ba nghiệm phân biệt.

    Điều này xảy ra khi và chỉ khi đường thẳng y = 3m cắt đồ thị hàm số y = g(x) tại ba điểm phân biệt khi và chỉ khi 3m \geq - 2020
\Leftrightarrow m \geq - \frac{2020}{3} \approx - 673,3.

    Do m nguyên thuộc( - 2022;2023) nên m \in \left\{ - 673; - 672;...;2022
ight\}. Vậy có tất cả 2696 giá trịm thỏa mãn.

  • Câu 14: Thông hiểu
    Xác định hàm phân thức

    Tìm hàm số tương ứng với đồ thị được cho trong hình vẽ sau?

    Hướng dẫn:

    Dựa vào đồ thị đã cho trong hình vẽ ta thấy đường tiệm cận ngang của đồ thị là y = - 1 và đường tiệm cận đứng của đồ thị là x = - 1.

    Đồ thị hàm số đi qua điểm (1;1) nên hàm số cần tìm là y = \frac{- x + 1}{x +
1}.

  • Câu 15: Vận dụng
    Tính giá trị biểu thức

    Cho hàm số và có bảng biến thiên như hình vẽ.

    Tính giá trị biểu thức

    Tính T = ab + bc + 2ca

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  y' = 4a{x^3} + 2bx \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 0 ight) = 3} \\   {y\left( 1 ight) = 2} \\   {y'\left( 1 ight) = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a + b + c = 2} \\   {4a + 2b = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a = 1} \\   {b =  - 2} \end{array}} ight. \Rightarrow T =  - 2 \hfill \\ \end{matrix}

  • Câu 16: Vận dụng
    Tìm tập hợp tham số m thỏa mãn điều kiện

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình f\left( \sin x \right) = m có nghiệm thuộc khoảng (0;\pi)

    Hướng dẫn:

    Đặt t = \sin x \Rightarrow \forall x \in
(0;\pi) \Rightarrow t \in (0;1brack

    Vậy phương trình trở thành f(t) =
m.

    Dựa và đồ thị hàm số suy ra m \in \lbrack
- 1;1).

  • Câu 17: Vận dụng
    Xác định các giá trị tham số m

    Cho đồ thị hàm số \left( C_{m} ight):y
= x^{3} - 2x^{2} + (1 - m)x + m. Tìm tất cả các giá trị của tham số m để \left( C_{m} ight) cắt trục hoành tại ba điểm phân biệt cách hoành độ x_{1};x_{2};x_{3} thỏa mãn {x_{1}}^{2} + {x_{2}}^{2} + {x_{3}}^{2} =
4?

    Hướng dẫn:

    Để hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì phương trình hoành độ giao điểm phải có ba nghiệm phân biệt:

    x^{3} - 2x^{2} + (1 - m)x + m =
0

    \Leftrightarrow (x - 1)\left( x^{2} - x
- m ight) = 0

    Ta đặt x_{1} = 1. Khi đó để phương trình có 3 nghiệm phân biệt thì phương trình sau phải có 2 nghiệm phân biệt khác 1.

    x^{2} - x + m = 0

    Do có nghiệm khác 1 nên 1 - 1 - m eq
0 hay m eq 0

    Ta có: \Delta = 1 + 4m

    Để có hai nghiệm phân biệt thì \Delta
> 0 hay m > -
\frac{1}{4}

    Theo bài ra ta có:

    {x_{1}}^{2} + {x_{2}}^{2} + {x_{3}}^{2}
= 4

    \Leftrightarrow 1 + \left( x_{2} + x_{3}
ight)^{2} - 2x_{2}x_{3} = 4 \Leftrightarrow \left( x_{2} + x_{3}
ight)^{2} - 2x_{2}x_{3} = 3 với x_{2};x_{3} là nghiệm của phương trình bậc hai trên.

    Áp dụng hệ thức Vi – et ra có:

    1^{2} - 2.( - m) = 3 \Leftrightarrow m =
1

    Kết hợp các điều kiện ta có: m =
1.

    Vậy đáp án đúng là m = 1.

  • Câu 18: Vận dụng
    Ghi đáp án vào ô trống

    Trong hệ trục toạ độ (Oxy), cho đồ thị hàm số (C):y = \frac{x^{2} + x + 1}{x
+ 1} với x > - 1 mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm I( - 1; - 1), biết hoành độ điểm M thuộc đồ thị (C) mà tại đó thuyền thu được sóng tốt nhất là x_{0} = \frac{1}{\sqrt[n]{a}} -
b (loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức P = a.n + b ?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong hệ trục toạ độ (Oxy), cho đồ thị hàm số (C):y = \frac{x^{2} + x + 1}{x
+ 1} với x > - 1 mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm I( - 1; - 1), biết hoành độ điểm M thuộc đồ thị (C) mà tại đó thuyền thu được sóng tốt nhất là x_{0} = \frac{1}{\sqrt[n]{a}} -
b (loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức P = a.n + b ?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Vận dụng cao
    Xác định số nghiệm thực của phương trình

    Cho hàm số f(x) có đồ thị là đường cong như hình vẽ bên dưới.

    Số nghiệm thực phân biệt của phương trình f\left( x^{3}f(x) \right) + 1 = 0

    Hướng dẫn:

    Dựa vào đồ thị, ta thấy f\left( x^{3}f(x)
ight) + 1 = 0

    \Leftrightarrow f\left( x^{3}f(x)
ight) = - 1

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{3}f(x) = a \in ( - 6; - 5)(1) \\
x^{3}f(x) = b \in ( - 3; - 2)(2) \\
x^{3}f(x) = 0(3) \\
\end{matrix} ight.

    + Phương trình (3) tương đương \left\lbrack \begin{matrix}
x = 0 \\
f(x) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = x_{1},\left( - 6 < x_{1} < a < - 5 ight) \\
\end{matrix} ight.

    + Các hàm số g(x) =
\frac{a}{x^{3}}h(x) =
\frac{b}{x^{3}} đồng biến trên các khoảng ( - \infty;0)(0; + \infty), và nhận xét rằng x = 0 không phải là nghiệm của phương trình (1) nên: (1) \Leftrightarrow \left\lbrack \begin{matrix}
f(x) = g(x) \\
f(x) = h(x) \\
\end{matrix} ight..

    + Trên khoảng ( - \infty;0), ta có \left\{ \begin{matrix}
\lim_{x ightarrow - \infty}f(x) = + \infty;\lim_{x ightarrow
0^{-}}f(x) = - 1 \\
\lim_{x ightarrow - \infty}g(x) = \lim_{x ightarrow - \infty}h(x) =
0 \\
\lim_{x ightarrow 0^{-}}g(x) = \lim_{x ightarrow 0^{-}}h(x) = +
\infty \\
\end{matrix} ight.

    nên các phương trình f(x) = g(x)f(x) = h(x) có nghiệm duy nhất.

    + Trên khoảng (0; + \infty), ta có \left\{ \begin{matrix}
\lim_{x ightarrow + \infty}f(x) = - \infty;\lim_{x ightarrow
0^{+}}f(x) = - 1 \\
\lim_{x ightarrow + \infty}g(x) = \lim_{x ightarrow + \infty}h(x) =
0 \\
\lim_{x ightarrow 0^{+}}g(x) = \lim_{x ightarrow 0^{+}}h(x) = -
\infty \\
\end{matrix} ight.

    nên các phương trình f(x) = g(x)f(x) = h(x) có nghiệm duy nhất.

    Do đó, phương trình f\left( x^{3}f(x)
ight) + 1 = 06 nghiệm phân biệt.

  • Câu 20: Vận dụng
    Chọn đồ thị ứng với hàm số đã cho

    Hình vẽ nào dưới đây là đồ thị của hàm số y =  - \left( {a - x} ight){\left( {b - x} ight)^2} biết a > b > 0

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) =  - \left( {a - x} ight){\left( {b - x} ight)^2} = \left( {x - a} ight){\left( {x - b} ight)^2} ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) =  + \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) =  - \infty } \end{array}} ight. => Đồ thị hàm số có dạng chữ N xuôi

    Đồ thị hàm số cắt trục Oy tại điểm có tung độ y\left( 0 ight) =  - a{b^2} mà a > 0 => y\left( 0 ight) < 0

    Mặt khác f'\left( x ight) = {\left( {x - b} ight)^2} + 2\left( {x - a} ight)\left( {a - b} ight) = \left( {x - b} ight)\left( {3x - 2a - b} ight)

    => \left\{ {\begin{array}{*{20}{c}}  {f\left( b ight) = 0} \\   {f'\left( b ight) = 0} \end{array}} ight.

    => Đồ thị hàm số y = f(x) tiếp xúc với Ox tại điểm M\left( {b;0} ight)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo