Cho hàm số liên tục trên
và có bảng biến thiên như hình vẽ sau:

Hỏi hàm số đồng biến trên khoảng nào dưới đây?
Ta có:
Từ đó hàm số đồng biến trên khoảng
Cho hàm số liên tục trên
và có bảng biến thiên như hình vẽ sau:

Hỏi hàm số đồng biến trên khoảng nào dưới đây?
Ta có:
Từ đó hàm số đồng biến trên khoảng
Cho hàm số . Có tất cả bao nhiêu giá trị nguyên của tham số
để phương trình
có nghiệm
?
Xét hàm số , ta có
.
Do đó hàm số đồng biến trên
.
Ta có
Xét trên đoạn
.
Ta có
Ta có .
Hàm số đồng biến trên
nên
Phương trình có nghiệm khi và chỉ khi
Do nguyên nên tập các giá trị
thỏa mãn là
.
Vậy có tất cả 1750 giá trị nguyên của thỏa mãn.
Cho hàm số có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình
là
Số nghiệm thực của phương trình bằng số giao điểm của đường thẳng
và có đồ thị hàm số
.
Ta thấy đường thẳng cắt đồ thị hàm số tại
điểm nên phương trình
có
nghiệm.
Có bao nhiêu giá trị của để đồ thị của hàm số
cắt đường thẳng
tại hai điểm phân biệt
sao cho góc giữa hai đường thẳng
và
bằng
( với
là gốc tọa độ)?
Xét phương trình hoành độ giao điểm
Để có hia điểm phân biệt thì phương trình (*) phải có hai nghiệm phân biệt khác
Khi đó phương trình (*) có hai nghiệm phân biết ,
thỏa mãn:
Giả sử , suy ra:
Theo giả thiết góc giữa hai đường thẳng và
bằng
suy ra:
Đồ thị hàm số là hình nào trong 4 hình dưới đây?
Ta có:
Khi đó .
Do đó, chọn đáp án là: Hình 2
Đường cong trong hình bên là của đồ thị hàm số nào dưới đây?
Đồ thị hàm số trên là đồ thị hàm trùng phương có 3 cực trị và có .
Chọn đáp án
Cho hàm số có đồ thị
, có bao nhiêu đường thẳng
có đúng 3 điểm chung với đồ thị
và các điểm chung có hoành độ
thỏa mãn
.
Vì đường thẳng cắt đồ thị hàm số
tại 3 điểm phân biệt nên đường thẳng
là đường thẳng có hệ số góc dạng
.
Phương trình hoành độ giao điểm của và
là:
.
Mà phương trình là phương trình bậc 4 nên phương trình muốn có 3 nghiệm phân biệt thì trong đó sẽ có 1 nghiệm kép gọi là , hai nghiệm còn lại là
.
Suy ra đường thẳng là tiếp tuyến của đồ thị
, không mất tính tổng quát giả sử đường thẳng
tiếp xúc với đồ thị hàm số
tại
.
Gọi là tiếp tuyến của
tại điểm có hoành độ
,
cắt
tại 2 điểm phân biệt có hoành độ
thỏa mãn
.
Ta có: .
Phương trình hoành độ giao điểm của và
là:
Yêu cầu bài toán có 3 nghiệm phân biệt thỏa mãn
.
Để phương trình có 3 nghiệm phân biệt thỏa mãn
thì phương trình
phải có 2 nghiệm phân biệt
khác
và thỏa mãn định lí Vi – ét:
Ta có:
.
Vậy có đúng 1 đường thẳng thỏa mãn yêu cầu bài toán.
Cho hàm số y = f(x). Biết rằng hàm số y = f’(x) liên tục trên tập số thực và có đồ thị như hình vẽ:

Bất phương trình (với m là tham số thực) nghiệm đúng với mọi
khi và chỉ khi:
Đặt
Vì
=>
Xét hàm số
Ta có:
Dựa vào đồ thị hàm số ta thấy: thì
=> g(u) nghịch biến trên (0; 2)
Vậy để nghiệm đúng với mọi
thì
Gọi M và N là giao điểm của đường cong và đường thẳng y = x + 2. Khi đó hoành độ trung điểm I của đoạn MN bằng:
Cho hàm số có đồ thị như hình vẽ:

Hỏi phương trình có tất cả bao nhiêu nghiệm phân biệt thuộc khoảng
?
Đặt
Phương trình tương đương
Dựa vào đồ thị ta thấy phương trình có 6 nghiệm phân biệt
=> Phương trình đã cho có 6 nghiệm phân biệt thuộc khoảng
Biết hàm số cắt trục hoành tại 4 điểm phân biệt có hoành độ là
. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để
?
Biết hàm số cắt trục hoành tại 4 điểm phân biệt có hoành độ là
. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để
?
Cho hàm số có đồ thị
, đường thẳng
và điểm
. Biết rằng
cắt nhau tại ba điểm phân biệt
trong đó
còn trọng tâm tam giác
nằm trên đường thẳng
. Tìm giá trị của tham số
thỏa mãn yêu cầu đề bài?
Cho hàm số có đồ thị
, đường thẳng
và điểm
. Biết rằng
cắt nhau tại ba điểm phân biệt
trong đó
còn trọng tâm tam giác
nằm trên đường thẳng
. Tìm giá trị của tham số
thỏa mãn yêu cầu đề bài?
Cho hàm số liên tục trên
và có đồ thị như hình vẽ. Số giá trị nguyên của tham số
để phương trình
có đúng 6 nghiệm phân biệt thuộc đoạn
là
Ta có
(1)
* Với
Dựa vào đồ thị ta có
Vì
* Với
Đặt
Với thì phương trình
có hai nghiệm phân biệt thuộc
.
Với thì phương trình
có một nghiệm thuộc
Phương trình trở thành
Để phương trình (1) có tất cả 6 nghiệm phân biệt thì phương trình có 4 nghiệm phân biệt, hay phương trình
có hai nghiệm
Dựa vào đồ thị ta có để phương trình có hai nghiệm
thì
Vì nguyên nên
Vậy có 2 giá trị nguyên của thỏa mãn.
Cho hàm số (với
là tham số thực). Tập tất cả các giá trị của tham số
để đồ thị hàm số đã cho cắt đường thẳng
tại bốn điểm phân biệt, trong đó có một điểm có hoành độ lớn hơn
còn ba điểm kia có hoành độ nhỏ hơn
, là khoảng
(với
,
,
là phân số tối giản). Khi đó,
nhận giá trị nào sau đây?
Xét phương trình hoành độ giao điểm .
Đặt ,
. Khi đó phương trình trở thành
và đặt .
Để đồ thị hàm số cắt đường thẳng tại
điểm phân biệt thì phương trình
có hai nghiệm thỏa mãn
và khi đó hoành độ bốn giao điểm là
.
Do đó, từ điều kiện của bài toán suy ra hay
.
Điều này xảy ra khi và chỉ khi
.
Vậy ,
nên
.
Cho hàm số có đồ thị
và đường thẳng
, với
là tham số thực. Biết rằng đường thẳng
cắt
tại hai điểm phân biệt
và
sao cho điểm
là trọng tâm của tam giác
(
là gốc toạ độ). Giá trị của
bằng
Hàm số có
,
và đường thẳng
có hệ số
nên
luôn cắt
tại hai điểm phân biệt
và
với mọi giá trị của tham số
.
Phương trình hoành độ giao điểm của và
là:
.
Suy ra ,
là 2 nghiệm của phương trình
.
Theo định lí Viet, ta có .
Mặt khác, là trọng tâm của tam giác
nên
.
Vậy thoả mãn yêu cầu đề bài.
Gọi và
là hai điểm thuộc hai nhánh khác nhau của đồ thị hàm số
. Khi đó độ dài đoạn
ngắn nhất bằng
Hàm số có đồ thị
như hình vẽ.
Gọi và
là hai điểm thuộc hai nhánh của
.
Ta có: .
Áp dụng BĐT Côsi ta có: .
Suy ra:
. Dấu bằng xảy ra khi và chỉ khi
và
.
Vậy .
Cho hàm số bậc ba có đồ thị đi qua điểm
. Các đường thẳng
lại cắt đồ thị lần lượt tại các điểm
(
khác
và
,
khác
và
,
khác
và
. Biết rằng tổng các hoành độ của
bằng 5, giá trị của
là
Từ giả thuyết bài toán ta giả sử
(
)
Ta có: ,
,
.
Khi đó:
Hoành độ của là nghiệm của phương trình:
.
Hoành độ của là nghiệm của phương trình:
.
Hoành độ của là nghiệm của phương trình:
.
Từ giả thuyết ta có; .
Do đó:
.
Cho hàm số liên tục trên
và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số
để phương trình
có nghiệm thuộc khoảng
là
Đặt
Vậy phương trình trở thành .
Dựa và đồ thị hàm số suy ra
Trong hệ trục toạ độ , cho đồ thị hàm số
với
mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm
, biết hoành độ điểm
thuộc đồ thị
mà tại đó thuyền thu được sóng tốt nhất là
(loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức
?
Trong hệ trục toạ độ , cho đồ thị hàm số
với
mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm
, biết hoành độ điểm
thuộc đồ thị
mà tại đó thuyền thu được sóng tốt nhất là
(loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức
?
Tìm để đường thẳng
cắt đồ thị hàm số
tại hai điểm
sao cho độ dài
là nhỏ nhất.
Gọi hàm số có đồ thị là
và đường thẳng
có đồ thị là
Xét phương trình hoành độ giao điểm của và
:
Để cắt
tại hai điểm
Phương trình
có hai nghiệm phân biệt khác
với
Giả sử hoành độ giao điểm của và
là
.
Khi đó .
Theo hệ thức Vi-ét ta có
Ta có
Dấu xảy ra khi và chỉ khi
Vậy thì độ dài
đạt giá trị nhỏ nhất bằng
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: