Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 4 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định số giao điểm theo yêu cầu

    Số giao điểm của đồ thị hàm số y = -
x^{3} + 3x với trục hoành là

    Hướng dẫn:

    Xét phương trình hoành dộ giao điểm -
x^{3} + 3x = 0

    \Leftrightarrow x( - x^{2} + 3) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm \sqrt{3} \\
\end{matrix} ight..

    Vậy có 3 giao điểm.

  • Câu 2: Vận dụng
    Số nghiệm của phương trình

    Cho hàm số y = a{x^3} + b{x^2} + cx + d;\left( {a e 0} ight) có bảng biến thiên như hình vẽ dưới đây:

    Số nghiệm của phương trình

    Số nghiệm của phương trình f\left( {f\left( x ight)} ight) = 0 là:

    Hướng dẫn:

    Ta có: f\left( {f\left( x ight)} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = a\left( 1 ight)} \\   {f\left( x ight) = b\left( 2 ight)} \\   {f\left( x ight) = c\left( 3 ight)} \end{array}} ight.;\left( {a < b < c} ight)

    Khi đó \left\{ {\begin{array}{*{20}{c}}  {a < 2} \\   {b \in \left( { - 2;2} ight)} \\   {c > 2} \end{array}} ight. suy ra phương trình (1) có 1 nghiệm; phương trình (2) có 3 nghiệm và phương trình (3) có 1 nghiệm.

    => Phương trình f\left( {f\left( x ight)} ight) = 0 có 5 nghiệm

  • Câu 3: Vận dụng cao
    Tính giá trị biểu thức

    Gọi m_{0} là số thực sao cho phương trình \left| x^{3} - 12x \right| =
m_{0} có ba nghiệm dương phân biệt x_{1}; x_{2}; x_{3} thỏa mãn x_{1} + x_{2} + x_{3} = 1 + 4\sqrt{3}. Biết rằng m_{0} có dạng a\sqrt{3} + b với a; b là các số hữu tỷ. Tính 4a^{2} +
8b:

    Hướng dẫn:

    Vẽ đồ thị hàm số y = \left| x^{3} - 12x
ight|

    Do đó với mọi m \in (0\ ;\ 16) thì phương trình đã cho luôn có ba nghiệm dương phân biệt x_{1}; x_{2}; x_{3} \left(
x_{1} < x_{2} < x_{3} ight) thỏa mãn: \left\{ \begin{matrix}
- x_{1}^{3} + 12x_{1} = m_{0} \\
- x_{2}^{3} + 12x_{2} = m_{0} \\
x_{3}^{3} - 12x_{3} = m_{0} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left( - x_{1} ight)^{3} - 12\left( - x_{1} ight) - m_{0} = 0 \\
\left( - x_{2} ight)^{3} - 12\left( - x_{2} ight) - m_{0} = 0 \\
x_{3}^{3} - 12x_{3} - m_{0} = 0 \\
\end{matrix} ight.

    \Rightarrow - x_{1}; - x_{2}; x_{3} là ba nghiệm của phương trình x^{3} - 12x - m_{0} = 0

    \Rightarrow - x_{1} - x_{2} + x_{3} = 0
\Rightarrow x_{3} = x_{1} + x_{2}

    x_{1} + x_{2} + x_{3} = 1 + 4\sqrt{3}
\Rightarrow x_{3} = \frac{1 + 4\sqrt{3}}{2}

    \Rightarrow m_{0} = \left( \frac{1 +
4\sqrt{3}}{2} ight)^{3} - 12\left( \frac{1 + 4\sqrt{3}}{2} ight) =
\frac{3\sqrt{3}}{2} + \frac{97}{8}

    \Rightarrow a = \frac{3}{2}; b = \frac{97}{8} \Rightarrow 4a^{2} + 8b =
106.

  • Câu 4: Vận dụng
    Chọn đáp án đúng:

    Đường thẳng d: y = x + 4 cắt đồ thị hàm số y = x^{3} + 2mx^{2} + (m + 3) x+ 4 tại ba điểm phân biệt A(0;4), B, C sao cho tam giác MBC có diện tích bằng 4, với M(1;3). Các giá trị của m nhận được là:

  • Câu 5: Vận dụng
    Chọn đồ thị ứng với hàm số đã cho

    Hình vẽ nào dưới đây là đồ thị của hàm số y =  - \left( {a - x} ight){\left( {b - x} ight)^2} biết a > b > 0

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) =  - \left( {a - x} ight){\left( {b - x} ight)^2} = \left( {x - a} ight){\left( {x - b} ight)^2} ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) =  + \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) =  - \infty } \end{array}} ight. => Đồ thị hàm số có dạng chữ N xuôi

    Đồ thị hàm số cắt trục Oy tại điểm có tung độ y\left( 0 ight) =  - a{b^2} mà a > 0 => y\left( 0 ight) < 0

    Mặt khác f'\left( x ight) = {\left( {x - b} ight)^2} + 2\left( {x - a} ight)\left( {a - b} ight) = \left( {x - b} ight)\left( {3x - 2a - b} ight)

    => \left\{ {\begin{array}{*{20}{c}}  {f\left( b ight) = 0} \\   {f'\left( b ight) = 0} \end{array}} ight.

    => Đồ thị hàm số y = f(x) tiếp xúc với Ox tại điểm M\left( {b;0} ight)

  • Câu 6: Vận dụng
    Tìm tập hợp tham số m thỏa mãn điều kiện

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình f\left( \sin x \right) = m có nghiệm thuộc khoảng (0;\pi)

    Hướng dẫn:

    Đặt t = \sin x \Rightarrow \forall x \in
(0;\pi) \Rightarrow t \in (0;1brack

    Vậy phương trình trở thành f(t) =
m.

    Dựa và đồ thị hàm số suy ra m \in \lbrack
- 1;1).

  • Câu 7: Vận dụng cao
    Tìm các giá trị nguyên m thỏa mãn yêu cầu

    Cho hàm y = f(x) là hàm đa thức bậc bốn. Biết rằng f(0) = 0, f( - 3) = f\left( \frac{3}{2} \right) = -
\frac{19}{4} và đồ thị hàm số y =
f'(x) có dạng như hình vẽ.

    Xét hàm số g(x) = \left| 4f(x) + 2x^{2}
\right| - 2m^{2} + 1 với m là tham số thực. Có tất cả bao nhiêu giá trị nguyên m \in ( - 50;50) để phương trình g(x) = 1 có đúng hai nghiệm thực?

    Hướng dẫn:

    Ta có \left| 4f(x) + 2x^{2} ight| -
2m^{2} + 1 = 1

    \Leftrightarrow \left| 4f(x) + 2x^{2}
ight| = 2m^{2}(1)

    Xét hàm số h(x) = 4f(x) +
2x^{2}, ta có h'(x) =
4\left\lbrack f'(x) - ( - x) ightbrack.

    Dựa vào đồ thị hàm số f'(x) và đường thẳng y = - x.

    Ta thấy: h'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 3 \\
x = 0 \\
x = \frac{3}{2} \\
\end{matrix} ight.

    h( - 3) = 4f( - 3) + 2( - 3)^{2} = -
1, h(0) = 0, h\left( \frac{3}{2} ight) = 4f\left( \frac{3}{2}
ight) + 2\left( \frac{3}{2} ight)^{2} = - \frac{29}{2}.

    Do đó ta có bảng biến thiên hàm số h(x) như sau

    Từ đó suy ra bảng biến thiên của hàm số \left| h(x) ight|như sau

    Do đó để phương trình (1)có đúng hai nghiệm thực thì 2m^{2} > \frac{29}{2}
\Leftrightarrow \left\lbrack \begin{matrix}
m > \frac{\sqrt{29}}{2} \\
m < - \frac{\sqrt{29}}{2} \\
\end{matrix} ight..

    m là số nguyên thuộc ( - 50;50) nên \left\lbrack \begin{matrix}
3 \leq m \leq 49 \\
- 49 \leq m \leq - 3 \\
\end{matrix} ight..

    Vậy có 94 số nguyên m thỏa mãn.

  • Câu 8: Thông hiểu
    Chọn phương án đúng

    Hình vẽ sau đây là đồ thị của một trong bốn hàm số cho ở các đáp án A,\ B,\ C,\ D. Hỏi đó là hàm số nào?

    Hướng dẫn:

    Dựa vào đồ thị, ta có \lim_{x ightarrow
+ \infty}y = + \infty, loại phương án y = - x^{3} + 2x + 1.

    Xét phương án y = x^{3} + 2x + 1y' = 3x^{2} + 2 > 0,\ \ \forall
x\mathbb{\in R}, hàm số không có cực tri, loại phương án y = x^{3} + 2x + 1.

    Xét phương án y = x^{3} - 2x^{2} +
1y' = 3x^{2} - 6xy' đổi dấu khi đi qua các điểm x = 0,\ \ x = 2 nên hàm số đạt cực tri tại x = 0x = 2, loại phương án y = x^{3} - 2x^{2} + 1.

    Vậy phương án đúng là y = x^{3} - 2x +
1.

  • Câu 9: Vận dụng
    Chọn đáp án đúng

    Có bao nhiêu giá trị của m để đồ thị của hàm số y = \frac{x}{1 - x} cắt đường thẳng y = x - m tại hai điểm phân biệt A,B sao cho góc giữa hai đường thẳng OAOB bằng 60^{0}( với O là gốc tọa độ)?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm

    \frac{x}{1 - x} = x - m \Leftrightarrow
\left\{ \begin{matrix}
x eq 1 \\
x^{2} - mx + m = 0\ \ \ \ \ \ (*) \\
\end{matrix} ight.

    Để có hia điểm phân biệt A,B thì phương trình (*) phải có hai nghiệm phân biệt khác 1

    \left\{ \begin{matrix}
1 - m + m eq 0 \\
m^{2} - 4m > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m > 4 \\
m < 0 \\
\end{matrix} ight.

    Khi đó phương trình (*) có hai nghiệm phân biết x_{1},x_{2} thỏa mãn:

    \left\{ \begin{matrix}
x_{1} + x_{2} = m \\
x_{1}x_{2} = m \\
\end{matrix} ight.

    Giả sử A\left( x_{1};x_{1} - m
ight),B\left( x_{2};x_{2} - m ight), suy ra: \overrightarrow{OA}\left( x_{1};x_{1} - m
ight),\overrightarrow{OB}\left( x_{2};x_{2} - m ight)

    Theo giả thiết góc giữa hai đường thẳng OAOB bằng 60^{0} suy ra:

    \cos\left(
\overrightarrow{OA};\overrightarrow{OB} ight) = cos60^{0}

    \Leftrightarrow \frac{\left| x_{1}x_{2}
+ \left( x_{1} - m ight)\left( x_{2} - m ight)
ight|}{\sqrt{x_{1}^{2} + \left( x_{1} - m ight)^{2}}\sqrt{x_{2}^{2}
+ \left( x_{2} - m ight)^{2}}} = \frac{1}{2}

    \Leftrightarrow \frac{\left| 2x_{1}x_{2}- m\left( x_{1} + x_{2} ight) + m^{2}ight|}{\sqrt{x_{1}^{2}x_{2}^{2} + \left( x_{1}x_{2} - mx_{2}ight)^2 + x_{1}^{2}\left( x_{1}x_{2} - m ight)^{2} + \left\lbrack\left( x_{1} - m ight)\left( x_{2} - m ight) ightbrack^{2}}} =\frac{1}{2}

    \Leftrightarrow \frac{\left| 2m - m^{2}
+ m^{2} ight|}{\sqrt{m^{2} + \left( m - mx_{2} ight)^{2} + \left( m
- mx_{1} ight)^{2} + \left\lbrack x_{1}x_{2} - m\left( x_{1} + x_{2}
ight) + m^{2} ightbrack^{2}}} = \frac{1}{2}

    \Leftrightarrow \frac{|2m|}{\sqrt{m^{2}
+ \left( m - mx_{2} ight)^{2} + \left( m - mx_{1} ight)^{2} +
\left\lbrack m - m^{2} + m^{2} ightbrack^{2}}} =
\frac{1}{2}

    \Leftrightarrow \frac{2}{\sqrt{2 +
\left( 1 - x_{2} ight)^{2} + \left( 1 - x_{1} ight)^{2}}} =
\frac{1}{2}

    \Leftrightarrow 2 + \left( 1 - x_{2}
ight)^{2} + \left( 1 - x_{1} ight)^{2} = 16

    \Leftrightarrow \left( x_{1} + x_{2}
ight)^{2} - 2x_{1}x_{2} - 2\left( x_{1} + x_{2} ight) =
12

    \Leftrightarrow m^{2} - 4m - 12 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 6 \\
m = - 2 \\
\end{matrix} ight.

  • Câu 10: Vận dụng cao
    Tìm số giá trị nguyên của tham số m

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Số giá trị nguyên của tham số m để phương trình f^{2}\left( \cos x \right) +
(m - 2022)f\left( \cos x \right) + m - 2023 = 0 có đúng 6 nghiệm phân biệt thuộc đoạn \lbrack
0;2\pi\rbrack

    Hướng dẫn:

    Ta có f^{2}\left( \cos x ight) + (m -
2022)f\left( \cos x ight) + m - 2023 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
f\left( \cos x ight) = - 1 \\
f\left( \cos x ight) = 2023 - m \\
\end{matrix} ight. (1)

    * Với f\left( \cos x ight) = -
1

    Dựa vào đồ thị ta có f\left( \cos x
ight) = - 1

    \Leftrightarrow \left\lbrack
\begin{matrix}
\cos x = 0 \\
\cos x = x_{1};\left( x_{1} > 1 ight)(VN) \\
\end{matrix} ight.

    \Leftrightarrow x = \frac{\pi}{2} +
k\pi

    x \in \lbrack 0;2\pibrack
\Rightarrow x \in \left\{ \frac{\pi}{2};\frac{3\pi}{2}
ight\}

    * Với f\left( \cos x ight) = 2023 -
m

    Đặt t = \cos x\ \ \left( t \in \lbrack -
1;1brack ight)

    Với t \in ( - 1;1brack thì phương trình t = \cos x có hai nghiệm phân biệt thuộc \lbrack
0;2\pibrack.

    Với t = - 1 thì phương trình t = \cos x có một nghiệm thuộc \lbrack 0;2\pibrack

    Phương trình trở thành f(t) = 2023 -
m

    Để phương trình (1) có tất cả 6 nghiệm phân biệt thì phương trình f\left( \cos x ight) = 2023 - m có 4 nghiệm phân biệt, hay phương trình f(t)
= 2023 - m có hai nghiệm t \in ( -
1;1brack

    Dựa vào đồ thị ta có để phương trình f(t)
= 2023 - m có hai nghiệm t \in ( -
1;1brack thì - 1 < 2023 - m
\leq 1 \Leftrightarrow 2022 \leq m < 2024

    m nguyên nên m \in \left\{ 2022;2023 ight\}

    Vậy có 2 giá trị nguyên của m thỏa mãn.

  • Câu 11: Thông hiểu
    Chọn đáp án đúng:

    Biết rằng đường thẳng y = -2x + 2 cắt đồ thị hàm số y = x^{3} + x^{2} +2 tại điểm duy nhất, kí hiệu (x0; y0) là toạ độ của điểm đó. Tìm y0

  • Câu 12: Vận dụng
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = \frac{x + 1}{x -
1} có đồ thị như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) là đồ thị của hàm số y = \left| \frac{x + 1}{x - 1} ight|. Đúng||Sai

    b) là đồ thị của hàm số y = \frac{|x + 1|}{x - 1}. Đúng||Sai

    c) là đồ thị của hàm số y = \left| \frac{|x + 1|}{x - 1} ight|. Sai|| Đúng

    d) Đồ thị của hàm số y = \left| \frac{x
+ 1}{x - 1} ight|y = \left|
\frac{|x + 1|}{x - 1} ight| là khác nhau. Sai|| Đúng

    Đáp án là:

    Cho hàm số y = \frac{x + 1}{x -
1} có đồ thị như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) là đồ thị của hàm số y = \left| \frac{x + 1}{x - 1} ight|. Đúng||Sai

    b) là đồ thị của hàm số y = \frac{|x + 1|}{x - 1}. Đúng||Sai

    c) là đồ thị của hàm số y = \left| \frac{|x + 1|}{x - 1} ight|. Sai|| Đúng

    d) Đồ thị của hàm số y = \left| \frac{x
+ 1}{x - 1} ight|y = \left|
\frac{|x + 1|}{x - 1} ight| là khác nhau. Sai|| Đúng

    a) Đồ thị hàm số y = \left| \frac{x +
1}{x - 1} ight|

    - Giữ nguyên phần trên trục Ox.

    - Đối xứng với phần bị bỏ của đồ thị y =
\frac{x + 1}{x - 1} qua trục Ox.

    b) Ta có: y = \frac{|x + 1|}{x - 1} =
\left\{ \begin{matrix}
\frac{x + 1}{x - 1};\ \ \ khi\ x \geq - 1;x eq 1 \\
- \frac{x + 1}{x - 1};\ \ \ khi\ x < - 1 \\
\end{matrix} ight.

    Do đó đồ thị hàm số y = \frac{|x + 1|}{x
- 1} gồm hai phần:

    Phần 1: Đồ thị hàm số y = \frac{x + 1}{x
- 1} với x \geq - 1;x eq
1.

    Phần 2: Đối xứng với phần còn lại của đồ thị y = f(x)với x < −1 qua trục Ox.

    c) Đồ thị y = \left| \frac{|x + 1|}{x -
1} ight| gồm hai phần:

    Phần 1: Giữ nguyên phần trên Ox

    Phần 2: Đối xứng với phần bị bỏ của đồ thị y = \frac{|x + 1|}{x - 1} qua trục Ox.

    d) Đồ thị của hàm số y = \left| \frac{x +
1}{x - 1} ight|y = \left|
\frac{|x + 1|}{x - 1} ight| là giống nhau.

  • Câu 13: Vận dụng
    Xác định tính đúng sai của từng phương án

    Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).

    Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).

    Xét tính đúng sai của các khẳng định sau:

    a) Tổng diện tích 5 mặt của bể là S =
2a^{2} + 6ah . Đúng||Sai

    b) Ta có h = \frac{5,5 +
2a^{2}}{6a} . Sai|| Đúng

    c) Thể tích của bể là V = \frac{5,5a}{3}
+ \frac{2a^{3}}{3} . Sai|| Đúng

    d) Bể cá có dung tích lớn nhất bằng \frac{11\sqrt{33}}{54} . Đúng||Sai

    Đáp án là:

    Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).

    Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).

    Xét tính đúng sai của các khẳng định sau:

    a) Tổng diện tích 5 mặt của bể là S =
2a^{2} + 6ah . Đúng||Sai

    b) Ta có h = \frac{5,5 +
2a^{2}}{6a} . Sai|| Đúng

    c) Thể tích của bể là V = \frac{5,5a}{3}
+ \frac{2a^{3}}{3} . Sai|| Đúng

    d) Bể cá có dung tích lớn nhất bằng \frac{11\sqrt{33}}{54} . Đúng||Sai

    a) Đúng. Kích thước đáy của bể lần lượt là 2a, a; chiều cao bể là h (a, h > 0). Tổng diện tích 5 mặt của bể là:

    S = 2a^{2} + 2ah + 4ah = 2a^{2} +
6ah

    b) Sai. Theo đề bài ta có: 2a^{2} + 6ah =
5,5 \Rightarrow h = \frac{5,5 - 2a^{2}}{6a};\left( 0 < a <
\frac{5\sqrt{5}}{2} ight).

    c) Sai. Gọi V là thể tích của bể cá, ta có:

    V = 2a^{2}h = \frac{2a^{2}\left( 5,5 -
2a^{2} ight)}{6a} = \frac{5,5a}{3} - \frac{2a^{3}}{3}

    d) Đúng. Ta có: V' = \frac{5,5}{3} -
\frac{6a^{2}}{3}

    V' = 0 \Leftrightarrow \dfrac{5,5}{3}- \dfrac{6a^{2}}{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{\sqrt{33}}{6}(tm) \\a = - \dfrac{\sqrt{33}}{6}(ktm) \\\end{matrix} ight.

    Bảng biến thiên:

    Vậy dung tích lớn nhất của bể cá bằng \frac{11\sqrt{33}}{54}.

  • Câu 14: Vận dụng
    Xác định tính đúng sai của từng phương án

    Một bể bơi chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.

    a) Sau t phút khối lượng muối trong bể là 750t (gam). Đúng||Sai

    b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t) = \frac{30t}{200 - t} . Sai||Đúng

    c) Xem y = f(t) là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) , tiệm cận ngang của đồ thị hàm số đó có phương trình là y = 30 . Đúng||Sai

    d) Khi t ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). Đúng||Sai

    Đáp án là:

    Một bể bơi chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.

    a) Sau t phút khối lượng muối trong bể là 750t (gam). Đúng||Sai

    b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t) = \frac{30t}{200 - t} . Sai||Đúng

    c) Xem y = f(t) là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) , tiệm cận ngang của đồ thị hàm số đó có phương trình là y = 30 . Đúng||Sai

    d) Khi t ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). Đúng||Sai

    Sau t phút, khối lượng muối trong bể là 25.30.t = 750t (gam)

    Thể tích của lượng nước trong bể là 5000
+ 25t (lít).

    Vậy nồng độ muối sau t phút là: f(t) = \frac{750t}{5000 + 25t} =
\frac{30t}{200 + t} (gam/lít).

    Ta có \lim_{t ightarrow + \infty}f(t) =
\lim_{t ightarrow + \infty}\frac{30t}{200 + t} = \lim_{x ightarrow +
\infty}\left( 30 - \frac{6000}{200 + t} ight) = 30

    Vậy đường thẳng y = 30 là tiệm cận ngang của đồ thị hàm số f(t):

    Ta có đồ thị hàm số y = f(t) nhận đường thẳng y = 30 làm đường tiệm cận ngang, tức là khi t càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít).

    Lúc đó, nồng độ muối trong bể sẽ gần như bằng nồng độ nước muối bơm vào bể.

    a) Đúng. b) Sai. c) Đúng. d) Đúng.

  • Câu 15: Vận dụng cao
    Chọn đáp án đúng

    Cho hàm số y = x^{4} - 2x^{2} có đồ thị (C), có bao nhiêu đường thẳng dcó đúng 3 điểm chung với đồ thị (C) và các điểm chung có hoành độ x_{1},x_{2},x_{3} thỏa mãn\ {x_{1}}^{3} + {x_{2}}^{3} + {x_{3}}^{3} = -
1.

    Hướng dẫn:

    Vì đường thẳng d cắt đồ thị hàm số (C) tại 3 điểm phân biệt nên đường thẳng dlà đường thẳng có hệ số góc dạng y = ax + b.

    Phương trình hoành độ giao điểm của d (C) là: x^{4}
- 2x^{2} = ax + b.

    Mà phương trình là phương trình bậc 4 nên phương trình muốn có 3 nghiệm phân biệt thì trong đó sẽ có 1 nghiệm kép gọi là x_{1}, hai nghiệm còn lại là x_{2},x_{3}.

    Suy ra đường thẳng dlà tiếp tuyến của đồ thị (C), không mất tính tổng quát giả sử đường thẳng dtiếp xúc với đồ thị hàm số (C)tại x_{1}.

    Gọi dlà tiếp tuyến của (C)tại điểm có hoành độ x_{1}, d cắt (C) tại 2 điểm phân biệt có hoành độ x_{2},x_{3}( eq x_{1}) thỏa mãn {x_{1}}^{3} + {x_{2}}^{3} + {x_{3}}^{3} = -
1.

    Ta có: d:y = (4{x_{1}}^{3} - 4x_{1})(x -
x_{1}) + {x_{1}}^{4} - 2{x_{1}}^{2}.

    Phương trình hoành độ giao điểm của d(C)là:

    x^{4} - 2x^{2} = (4{x_{1}}^{3} -
4x_{1})(x - x_{1}) + {x_{1}}^{4} - 2{x_{1}}^{2}(1)

    Yêu cầu bài toán \Leftrightarrow
(1) có 3 nghiệm phân biệt thỏa mãn {x_{1}}^{3} + {x_{2}}^{3} + {x_{3}}^{3} = -
1.

    (1) \Leftrightarrow (x -
x_{1})^{2}(x^{2} + 2x_{1}x + 3{x_{1}}^{2} - 2) = 0\Leftrightarrow
\left\{ \begin{matrix}
x = x_{1} \\
f(x) = x^{2} + 2x_{1}x + 3{x_{1}}^{2} - 2 = 0 \\
\end{matrix} ight.

    Để phương trình (1) có 3 nghiệm phân biệt thỏa mãn {x_{1}}^{3} + {x_{2}}^{3}
+ {x_{3}}^{3} = - 1thì phương trình f(x) = 0 phải có 2 nghiệm phân biệt x_{2},x_{3} khác x_{1}và thỏa mãn định lí Vi – ét:

    \left\{ \begin{matrix}
x_{2} + x_{3} = - 2x_{1} \\
x_{2}.x_{3} = 3{x_{1}}^{2} - 2 \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
\Delta' = {x_{1}}^{2} - 3{x_{1}}^{2} + 2 > 0 \\
{x_{1}}^{2} + 2{x_{1}}^{2} + 3{x_{1}}^{2} - 2 eq 0 \\
{x_{1}}^{3} + (x_{2} + x_{3})^{3} - 3x_{2}x_{3}(x_{2} + x_{3}) = - 1 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
- 1 < x_{1} < 1 \\
3{x_{1}}^{2} - 1 eq 0 \\
{x_{1}}^{3} + ( - 2x_{1})^{3} - 3(3{x_{1}}^{2} - 2).( - 2x_{1}) = - 1 \\
\end{matrix} ight.

     

    \Leftrightarrow x_{1} = \frac{- 11 +
\sqrt{165}}{22}.

    Vậy có đúng 1 đường thẳng thỏa mãn yêu cầu bài toán.

  • Câu 16: Vận dụng
    Số nghiệm thực phân biệt của phương trình

    Cho hàm số f\left( x ight) = {x^3} - 3x + 1. Số nghiệm thực phân biệt của phương trình f\left( {f\left( x ight)} ight) = f\left( 2 ight) là:

    Hướng dẫn:

    Ta có: f\left( {f\left( x ight)} ight) = f\left( 2 ight) = 3

    Đồ thị của hàm số f\left( x ight) = {x^3} - 3x + 1 được minh họa bằng hình vẽ sau:

    Số nghiệm thực phân biệt của phương trình

    Từ đồ thị ta suy ra

    f\left( {f\left( x ight)} ight) = 3 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 2} \\   {f\left( x ight) =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 2} \\   {{x^3} - 3x + 1 =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 0\left( * ight)} \\   {{x^3} - 3x + 2 = 0\left( {**} ight)} \end{array}} ight.

    Phương trình (*) có 3 nghiệm thực

    Phương trình (**) có 2 nghiệm thực

  • Câu 17: Vận dụng cao
    Tính giá trị f(0)

    Cho hàm số bậc ba y = f(x) có đồ thị đi qua điểm A(1;1),B(2;4),C(3;9). Các đường thẳng AB,AC,BC lại cắt đồ thị lần lượt tại các điểm M,N,P (M khác AB, N khác AC, P khác BC. Biết rằng tổng các hoành độ của M,N,P bằng 5, giá trị của f(0)

    Hướng dẫn:

    Từ giả thuyết bài toán ta giả sử

    f(x) = a(x - 1)(x - 2)(x - 3) +
x^{2} (a eq 0)

    Ta có: AB:y = 3x - 2, AC:y = 4x - 3, BC:y = 5x - 6.

    Khi đó:

    Hoành độ của M là nghiệm của phương trình:

    a\left( x_{M} - 1 ight)\left( x_{M} - 2
ight)\left( x_{M} - 3 ight) + {x_{M}}^{2} = 3x_{M} - 2

    \Leftrightarrow a\left( x_{M} - 1
ight)\left( x_{M} - 2 ight)\left( x_{M} - 3 ight) + \left( x_{M} -
1 ight)\left( x_{M} - 2 ight) = 0

    \Leftrightarrow a\left( x_{M} - 3 ight)
+ 1 = 0 \Leftrightarrow x_{M} = 3 - \frac{1}{a}.

    Hoành độ của N là nghiệm của phương trình:

    a\left( x_{N} - 1 ight)\left( x_{N} -
2 ight)\left( x_{N} - 3 ight) + {x_{N}}^{2} = 4x_{N} -
3

    \Leftrightarrow a\left( x_{N} - 1
ight)\left( x_{N} - 2 ight)\left( x_{N} - 3 ight) + \left( x_{N} -
1 ight)\left( x_{N} - 3 ight) = 0

    \Leftrightarrow a\left( x_{N} - 2 ight)
+ 1 = 0 \Leftrightarrow x_{N} = 2 - \frac{1}{a}.

    Hoành độ của P là nghiệm của phương trình:

    a\left( x_{P} - 1 ight)\left( x_{P} - 2
ight)\left( x_{P} - 3 ight) + {x_{P}}^{2} = 5x_{P} - 6

    \Leftrightarrow a\left( x_{P} - 1
ight)\left( x_{P} - 2 ight)\left( x_{P} - 3 ight) + \left( x_{P} -
2 ight)\left( x_{P} - 3 ight) = 0

    \Leftrightarrow a\left( x_{P} - 1 ight)
+ 1 = 0 \Leftrightarrow x_{P} = 1 - \frac{1}{a}.

    Từ giả thuyết ta có; x_{M} + x_{N} +
x_{P} = 5 \Leftrightarrow 6 - \frac{3}{a} = 5 \Leftrightarrow a =
3.

    Do đó: f(x) = 3(x - 1)(x - 2)(x - 3) +
x^{2}

    f(0) = - 18.

  • Câu 18: Vận dụng
    Tính giá trị biểu thức

    Cho hàm số và có bảng biến thiên như hình vẽ.

    Tính giá trị biểu thức

    Tính T = ab + bc + 2ca

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  y' = 4a{x^3} + 2bx \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 0 ight) = 3} \\   {y\left( 1 ight) = 2} \\   {y'\left( 1 ight) = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a + b + c = 2} \\   {4a + 2b = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a = 1} \\   {b =  - 2} \end{array}} ight. \Rightarrow T =  - 2 \hfill \\ \end{matrix}

  • Câu 19: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng
    Tìm giá trị lớn nhất của tham số m

    Giá trị lớn nhất của m để đường thẳng (d):y = x - m + 1 cắt đồ thị hàm số y = x^{3} + 2(m - 2)x^{2} + (8 - 5m)x
+ m - 5 tại 3 điểm phân biệt có hoành độ x_{1},\ x_{2},\ x_{3} thỏa mãn điều kiện x_{1}^{2} + x_{2}^{2} + x_{3}^{2} =
20

    Hướng dẫn:

    Hoành độ giao điểm của đường thẳng (d) và đồ thị hàm số là nghiệm của phương trình

    x^{3} + 2(m - 2)x^{2} + (8 - 5m)x + m -
5 = x - m + 1

    \Leftrightarrow (x - 2)\left\lbrack
x^{2} + (2m - 2)x - m + 3 ightbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{3} = 2 \\
x^{2} + (2m - 2)x - m + 3 = 0(1) \\
\end{matrix} ight..

    Đường thẳng (d) cắt đồ thị hàm số tại 3 điểm phân biệt \Leftrightarrow phương trình (1) có hai nghiệm phân biệt x_{1};x_{2} khác 2 \Leftrightarrow \left\{ \begin{matrix}
\Delta' = (m - 1)^{2} + (m - 3) > 0 \\
4 + (2m - 2).2 - m + 3 eq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m < - 1 \\
m > 2 \\
\end{matrix} ight.\  \\
m eq - 1 \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
m < - 1 \\
m > 2 \\
\end{matrix} ight. (2).

    Khi đó, \left\{ \begin{matrix}
x_{1} + x_{2} = - (2m - 2) \\
x_{1}x_{2} = - m + 3 \\
\end{matrix} ight..

    Theo giả thiết x_{1}^{2} + x_{2}^{2} +
x_{3}^{2} = 20 \Leftrightarrow \left( x_{1} + x_{2} ight)^{2} -
2x_{1}x_{2} + x_{3}^{2} = 20

    \Leftrightarrow (2m - 2)^{2} + 2(m - 3) +
4 = 20

    \Leftrightarrow 2m^{2} - 3m - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 3 \\
m = - \frac{3}{2} \\
\end{matrix} ight.(thỏa mãn (2)).

    Vậy giá trị lớn nhất của m thỏa mãn yêu cầu bài toán là 3.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo