Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 4 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng:

    Cho hàm số bậc ba y = ax^{3} + bx^{2} + cx + d (aeq 0) có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

    Trắc nghiệm Toán 12 bài 4 

  • Câu 2: Thông hiểu
    Mệnh đề nào dưới đây đúng

    Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

    Mệnh đề nào dưới đây đúng
    Hướng dẫn:

     Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty } \end{array}} ight. \Rightarrow a > 0

    Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0

    Ta có: y' = 3a{x^2} + 2bx + c, nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có

    \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{ - b}}{a} > 0 \Rightarrow b < 0} \\   {{x_1}.{x_2} = \dfrac{c}{a} = 0 \Rightarrow c = 0} \end{array}} ight.

  • Câu 3: Nhận biết
    Tìm điểm thuộc đồ thị hàm số

    Điểm nào sau đây thuộc đồ thị hàm số y =
x^{3} - 3x?

    Hướng dẫn:

    Thay (1; - 2) vào y = x^{3} - 3x ta được:

    - 2 = 1^{3} - 3.1

    Vậy (1; - 2) thuộc đồ thị hàm số y = x^{3} - 3x.

  • Câu 4: Nhận biết
    Tìm hàm số

    Cho bảng biến thiên như hình vẽ:

    Tìm hàm số

    Bảng biến thiên trên là của hàm số nào?

    Hướng dẫn:

    Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2

    => Loại đáp án C và D

    Quan sát bảng biến thiên

    => Loại đáp án B

  • Câu 5: Thông hiểu
    Chọn đáp án thích hợp

    Đồ thị hàm số y = x^{3} - 3x + 2 là hình nào trong 4 hình dưới đây?

    Hướng dẫn:

    Ta có: y = x^{3} - 3x + 2 \Rightarrow
y' = 3x^{2} - 3

    Khi đó \mathbf{y'
=}\mathbf{0}\mathbf{\Leftrightarrow}\left\lbrack \begin{matrix}
\mathbf{x = -}\mathbf{1} \\
\mathbf{x =}\mathbf{1} \\
\end{matrix} ight.\ \mathbf{\Rightarrow}\left\lbrack \begin{matrix}
\mathbf{y}\mathbf{(}\mathbf{-}\mathbf{1)}\mathbf{=}\mathbf{4} \\
\mathbf{y}\mathbf{(1)}\mathbf{=}\mathbf{0} \\
\end{matrix} ight..

    Do đó, chọn đáp án là: Hình 2

  • Câu 6: Nhận biết
    Tìm hàm số tương ứng bảng biến thiên

    Chọn hàm số tương ứng với bảng biến thiên sau?

    Hướng dẫn:

    Từ bảng biến thiên ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên hàm số cần tìm là y = - x^{4} + 2x^{2} + 1.

  • Câu 7: Nhận biết
    Tìm hàm số thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như trong hình vẽ?

    Hướng dẫn:

    Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng y = ax^{3} + bx^{2} + cx + d với a < 0

    Vậy hàm số cần tìm là y = - x^{3} +
3x^{2} - 1.

  • Câu 8: Nhận biết
    Tìm số giao điểm

    Số điểm giao điểm của đồ thị hàm số y =
x^{2} + 2x và trục hoành là:

    Hướng dẫn:

    Xét phương trình:

    x^{2} + 2x = 0 \Leftrightarrow x(x + 2)
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 2 \\
\end{matrix} ight.

    Số điểm giao điểm của đồ thị hàm số và trục hoành là 2.

  • Câu 9: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số y = f(x) có đồ thị là đường cong như hình vẽ:

    Tìm số nghiệm của phương trình 2f(x) - 3
= 0?

    Hướng dẫn:

    Ta có: 2f(x) - 3 = 0 \Leftrightarrow f(x)
= \frac{3}{2}

    Số nghiệm của phương trình bằng số giao điểm của hàm số y = f(x) và đường thẳng y = \frac{3}{2}

    Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.

  • Câu 10: Nhận biết
    Đồ thị hàm số tương ứng với hàm số nào

    Cho hình vẽ:

    Đồ thị hàm số tương ứng với hàm số nào

    Đồ thị hàm số tương ứng với hàm số nào sau đây?

    Hướng dẫn:

    Đồ thị hàm số đi qua điểm (1; 3) chỉ có hàm số y = \frac{1}{2}{x^3} - 3{x^2} + \frac{9}{2}x + 1 thỏa mãn.

  • Câu 11: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = (x - 2)\left( x^{2} + 1
\right) có đồ thị (C). Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Dễ thấy phương trình (x - 2)\left( x^{2}
+ 1 ight) = 0 có 1 nghiệm x = 2
\Rightarrow (C) cắt trục hoành tại một điểm.

  • Câu 12: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số bậc bốn y = f(x) có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình f(x) = \frac{1}{2}

    Hướng dẫn:

    Số nghiệm thực của phương trình f(x) =
\frac{1}{2} chính là số giao điểm của đồ thị hàm số f(x) với đường thẳng y = \frac{1}{2}

    Dựa vào hình trên ta thấy đồ thị hàm số f(x) với đường thẳng y = \frac{1}{2} có 2 giao điểm.

    Vậy phương trình f(x) =
\frac{1}{2} có hai nghiệm.

  • Câu 13: Thông hiểu
    Xác định hàm số

    Hình dưới đây là đồ thị của hàm số nào?

    Hướng dẫn:

    Từ đồ thị, ta thấy hàm số có tiệm cận đứng x = 1.

    Khi đó loại các hàm số y = \frac{- 2 +
x}{x + 1}y = \frac{1 - 2x}{x +
1}

    Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 1 và cắt trục hoành tại điểm có hoành độ bằng 2 nên đáp án cần tìm là: y = \frac{x - 2}{x - 1}.

  • Câu 14: Thông hiểu
    Tìm hàm số thỏa mãn đồ thị đã cho

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong dưới đây?

    Hướng dẫn:

    Từ hình dạng của đồ thị ta loại phương án y = x^{3} - 3x^{2}y = - x^{3} + 3x^{2}

    Nhận thấy\lim_{x ightarrow \pm
\infty}f(x) = - \infty suy ra hệ số của x^{4} âm nên chọn phương ány = - x^{4} +
2x^{2}.

  • Câu 15: Nhận biết
    Đồ thị của hàm số

    Đường cong ở hình dưới đây là đồ thị của hàm số nào?

    Đồ thị của hàm số

    Hướng dẫn:

    Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng y = a{x^3} + b{x^2} + cx + d;\left( {a > 0} ight)

  • Câu 16: Thông hiểu
    Hàm số đã cho là hàm số nào

    Cho hàm số y = \frac{{ax + b}}{{cx + d}} có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho là hàm số nào?

    Hàm số đã cho là hàm số nào

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy:

    Đồ thị hàm số nhận các đường thẳng x = 2 và tiệm cận ngang y = 1

    => Loại đáp án C và D

    Hàm số đã cho nghịch biến trên mỗi khoảng xác định

    Xét hàm số y = \frac{{x - 3}}{{x - 2}} \Rightarrow y' = \frac{1}{{{{\left( {x - 2} ight)}^2}}}

    => Hàm số đồng biến trên mỗi khoảng xác định nên ta loại đáp án A

  • Câu 17: Nhận biết
    Chọn phương án thích hợp

    Biết rằng đường thẳng y = 4x + 5 cắt đồ thị hàm số y = x^{3} + 2x +
1 tại điểm duy nhất; kí hiệu (x_0;y_0) là tọa độ của điểm đó. Tìm y_0.

    Hướng dẫn:

    Phương trình hoành độ giao điểm là x^{3}
+ 2x + 1 = 4x + 5

    \Leftrightarrow x^{3} - 2x - 4 = 0 \Leftrightarrow x = 2

    Với x = 2 \Rightarrow y =
13.

    Vậy y_{0} = 13

  • Câu 18: Nhận biết
    Tìm tung độ của giao điểm

    Đồ thị của hàm số y = - x^{4} - 3x^{2} +
1 cắt trục tung tại điểm có tung độ bao nhiêu

    Hướng dẫn:

    Trục tung có phương trình: x =
0.

    Thay x = 0vào y = - x^{4} - 3x^{2} + 1 được: y = 1.

  • Câu 19: Nhận biết
    Xét sự đúng sai của các khẳng định

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau.

    a) Hàm số đã cho nghịch biến trên khoảng (0;2). Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số bằng -
3.Đúng||Sai

    c) Hàm số đạt cực đại tại x = 0. Sai||Đúng

    d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau.

    a) Hàm số đã cho nghịch biến trên khoảng (0;2). Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số bằng -
3.Đúng||Sai

    c) Hàm số đạt cực đại tại x = 0. Sai||Đúng

    d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai

    Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.

  • Câu 20: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số y = f(x) có đồ thị như hình vẽ.

    Số nghiệm thực của phương trình 4f(x) - 7
= 0 là:

    Hướng dẫn:

    Ta có: 4f(x) - 7 = 0 \Leftrightarrow f(x)
= \frac{7}{4}.

    Do đường thẳng y = \frac{7}{4} cắt đồ thị hàm số y = f(x) tại 3 điểm phân biệt nên suy ra phương trình đã cho có 3 nghiệm.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo