Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?
Quan sát đồ thị ta thấy đây là đồ thị của hàm số .
Vậy chọn
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?
Quan sát đồ thị ta thấy đây là đồ thị của hàm số .
Vậy chọn
Cho hàm số có đồ thị như Hình 2.

a) Hàm số có hai điểm cực trị là
và
. Đúng||Sai
b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng
c) Hàm số nghịch biến trên khoảng . Sai||Đúng
d) . Đúng||Sai
Cho hàm số có đồ thị như Hình 2.

a) Hàm số có hai điểm cực trị là
và
. Đúng||Sai
b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng
c) Hàm số nghịch biến trên khoảng . Sai||Đúng
d) . Đúng||Sai
Dựa vào đồ thị ta thấy hàm số có hai điểm cực trị là
và
.
Giá trị lớn nhất của hàm số trên R không tồn tại.
Dựa vào đồ thị ta thấy hàm số nghịch biến trên khoảng
Dựa vào đồ thị ta có
Cho hàm số có đồ thị
. Tìm tham số
để
đi qua điểm
?
Ta có:
Vậy .
Cho hàm số bậc ba có đồ thị là đường cong trong hình vẽ bên.
Số nghiệm thực của phương trình là:
Ta có số nghiệm của phương trình là số giao điểm của đồ thị hàm số với đường thẳng
Dựa vào đồ thị ta có phương trình có ba nghiệm phân biệt.
Cho hàm số có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Ta có tọa độ giao điểm của đồ thị hàm số và trục hoành là .
Đồ thị sau đây là của hàm số nào?
Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là và tiệm cận đứng của đồ thị hàm số
.
Đồ thị hàm số cắt trục tung tại điểm
Vậy hàm số cần tìm là .
Hàm số nào dưới đây có đồ thị là đường cong trong hình bên?
Quan sát đồ thị của hàm số thấy đồ thị trên là đồ thị của hàm số trùng phương và suy ra hệ số
.
Cho hàm số bậc ba có bảng biến thiên như sau:

Chọn khẳng định đúng?
Quan sát bảng biến thiên ta suy ra a < 0
Ta có: có hai nghiệm dương nên
Cho đường cong hình vẽ bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi đó là hàm số nào?
Dựa vào đồ thị suy ra tiệm cận đứng loại
và
Đồ thị hàm số giao với trục hoành có hoành độ dương nên loại suy ra chọn
Cho hàm số bậc ba có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình
là:
Số nghiệm thực của phương trình chính là số giao điểm của đồ thị hàm số
và đường thẳng
.
Từ hình vẽ suy ra nghiệm.
Số giao điểm của đồ thị hàm số và đồ thị hàm số
là
Số giao điểm của đồ thị hàm số và đồ thị hàm số
chính là số nghiệm thực của phương trình
.
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Dựa vào đồ thị có dạng đồ thị của hàm số bậc 3 có hệ số nên đáp án
đúng.
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
Đồ thị hàm số là đồ thị của hàm số bậc ba nên loại và
Đồ thi hàm số bậc ba có hệ số nên
đúng.
Cho hàm số có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình là
Đường thẳng có phương trình
cắt đồ thị hàm số
tại 2 điểm phân biệt.
Suy ra phương trình có 2 nghiệm thực phân biệt.
Đồ thị của hàm số nào dưới đây có dạng như trong hình vẽ?
Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng với
Vậy hàm số cần tìm là .
Cho hàm số có đồ thị kí hiệu là
. Tìm điểm thuộc
?
Ta thấy
Cho hàm số có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của tham số để phương trình
có ba nghiệm phân biệt?
Ta có:
Để phương trình có ba nghiệm phân biệt thì
Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.
Đường cong trong hình bên là của đồ thị hàm số nào dưới đây?
Đồ thị hàm số trên là đồ thị hàm trùng phương có 3 cực trị và có .
Chọn đáp án
Cho hàm số có đồ thị là đường cong như hình vẽ:
Tìm số nghiệm của phương trình ?
Ta có:
Số nghiệm của phương trình bằng số giao điểm của hàm số và đường thẳng
Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.
Cho hàm số xác định và liên tục trên
và có bảng biến thiên như hình vẽ:
Tìm giá trị của tham số thực để phương trình
có ít nhất hai nghiệm thực phân biệt?
Phương trình có ít nhất hai nghiệm thực phân biệt khi và chỉ khi đường thẳng
cắt đồ thị hàm số
tại ít nhất hai điểm phân biệt
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: