Cho hàm số bậc ba có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?
Cho hàm số bậc ba có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?
Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?
![]() |
Ta có:
Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0
Ta có: , nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có
Điểm nào sau đây thuộc đồ thị hàm số ?
Thay vào
ta được:
Vậy thuộc đồ thị hàm số
.
Cho bảng biến thiên như hình vẽ:

Bảng biến thiên trên là của hàm số nào?
Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2
=> Loại đáp án C và D
Quan sát bảng biến thiên
=> Loại đáp án B
Đồ thị hàm số là hình nào trong 4 hình dưới đây?
Ta có:
Khi đó .
Do đó, chọn đáp án là: Hình 2
Chọn hàm số tương ứng với bảng biến thiên sau?
Từ bảng biến thiên ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Đồ thị của hàm số nào dưới đây có dạng như trong hình vẽ?
Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng với
Vậy hàm số cần tìm là .
Số điểm giao điểm của đồ thị hàm số và trục hoành là:
Xét phương trình:
Số điểm giao điểm của đồ thị hàm số và trục hoành là 2.
Cho hàm số có đồ thị là đường cong như hình vẽ:
Tìm số nghiệm của phương trình ?
Ta có:
Số nghiệm của phương trình bằng số giao điểm của hàm số và đường thẳng
Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.
Cho hình vẽ:

Đồ thị hàm số tương ứng với hàm số nào sau đây?
Đồ thị hàm số đi qua điểm (1; 3) chỉ có hàm số thỏa mãn.
Cho hàm số có đồ thị
. Mệnh đề nào dưới đây đúng?
Dễ thấy phương trình có 1 nghiệm
cắt trục hoành tại một điểm.
Cho hàm số bậc bốn có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình
là
Số nghiệm thực của phương trình chính là số giao điểm của đồ thị hàm số
với đường thẳng
Dựa vào hình trên ta thấy đồ thị hàm số với đường thẳng
có 2 giao điểm.
Vậy phương trình có hai nghiệm.
Hình dưới đây là đồ thị của hàm số nào?
Từ đồ thị, ta thấy hàm số có tiệm cận đứng x = 1.
Khi đó loại các hàm số và
Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 1 và cắt trục hoành tại điểm có hoành độ bằng 2 nên đáp án cần tìm là: .
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong dưới đây?
Từ hình dạng của đồ thị ta loại phương án và
Nhận thấy suy ra hệ số của
âm nên chọn phương án
.
Đường cong ở hình dưới đây là đồ thị của hàm số nào?

Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng
Cho hàm số có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho là hàm số nào?

Dựa vào bảng biến thiên ta thấy:
Đồ thị hàm số nhận các đường thẳng x = 2 và tiệm cận ngang y = 1
=> Loại đáp án C và D
Hàm số đã cho nghịch biến trên mỗi khoảng xác định
Xét hàm số
=> Hàm số đồng biến trên mỗi khoảng xác định nên ta loại đáp án A
Biết rằng đường thẳng cắt đồ thị hàm số
tại điểm duy nhất; kí hiệu
là tọa độ của điểm đó. Tìm
.
Phương trình hoành độ giao điểm là
Với .
Vậy
Đồ thị của hàm số cắt trục tung tại điểm có tung độ bao nhiêu
Trục tung có phương trình: .
Thay vào
được:
.
Cho hàm số liên tục trên
và có bảng biến thiên như sau.

a) Hàm số đã cho nghịch biến trên khoảng Sai||Đúng
b) Giá trị nhỏ nhất của hàm số bằng .Đúng||Sai
c) Hàm số đạt cực đại tại Sai||Đúng
d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai
Cho hàm số liên tục trên
và có bảng biến thiên như sau.

a) Hàm số đã cho nghịch biến trên khoảng Sai||Đúng
b) Giá trị nhỏ nhất của hàm số bằng .Đúng||Sai
c) Hàm số đạt cực đại tại Sai||Đúng
d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai
Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.
Cho hàm số có đồ thị như hình vẽ.
Số nghiệm thực của phương trình là:
Ta có: .
Do đường thẳng cắt đồ thị hàm số
tại 3 điểm phân biệt nên suy ra phương trình đã cho có 3 nghiệm.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: