Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 4 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Đường cong trong hình bên là đồ thị của hàm số nào?

    Trắc nghiệm Toán 12 bài 4

  • Câu 2: Nhận biết
    Xét sự đúng sai của các khẳng định

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau.

    a) Hàm số đã cho nghịch biến trên khoảng (0;2). Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số bằng -
3.Đúng||Sai

    c) Hàm số đạt cực đại tại x = 0. Sai||Đúng

    d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau.

    a) Hàm số đã cho nghịch biến trên khoảng (0;2). Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số bằng -
3.Đúng||Sai

    c) Hàm số đạt cực đại tại x = 0. Sai||Đúng

    d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai

    Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.

  • Câu 3: Nhận biết
    Chọn đáp án đúng

    Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?

    Hướng dẫn:

    Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số a > 0.

    Vậy hàm số cần tìm là y = x^{4} - x^{2} -
1.

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Số giao điểm của đồ thị hàm số y = -
x^{3} + 6x với trục hoành là

    Hướng dẫn:

    Ta có hoành độ giao điểm của đồ thị hàm số y = - x^{3} + 6x với trục hoành là nghiệm của phương trình - x^{3} + 6x = 0 (*)

    \Leftrightarrow - x\left( x^{2} - 6
ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = \pm \sqrt{6} \\
\end{matrix} ight..

    Phương trình (*) có ba nghiệm phân biệt, do đó đồ thị hàm số y = - x^{3} + 6x cắt trục hoành tại ba điểm phân biệt.

  • Câu 5: Nhận biết
    Tìm tọa độ tâm đối xứng

    Tọa độ tâm đối xứng của đồ thị hàm số y =
x^{3} - 3x + 2 là:

    Hướng dẫn:

    Ta có: y = x^{3} - 3x + 2 \Rightarrow
\left\{ \begin{matrix}
y' = 3x^{2} - 3 \\
y'' = 6x \\
\end{matrix} ight.

    y'' = 0 \Leftrightarrow x = 0
\Rightarrow y = 2

    Tọa độ tâm đối xứng của đồ thị hàm số là (0;2)

  • Câu 6: Thông hiểu
    Xác định số tọa độ nguyên thuộc đồ thị

    Đồ thị hàm số y = \frac{2x - 1}{3x +
4} có bao nhiêu điểm có tọa độ nguyên?

    Hướng dẫn:

    Ta có: y\mathbb{\in Z\Rightarrow}3y\in\mathbb{ Z }\Rightarrow\frac{6x - 3}{3x + 4} = 2 -\frac{11}{3x + 4}\mathbb{\in Z}

    \Rightarrow \frac{11}{3x + 4}\mathbb{\in
Z \Rightarrow}3x + 4 \in U(11)

    \Rightarrow \left\lbrack \begin{matrix}3x + 4 = 1 \\3x + 4 = - 1 \\3x + 4 = 11 \\3x + 4 = - 11 \\\end{matrix} ight.\  \Rightarrow \left\lbrack \begin{matrix}x = - 1 \Rightarrow y = \dfrac{1}{7}(L) \\x = - \dfrac{5}{3}(L) \\x = \dfrac{7}{3}(L) \\x = - 5 \Rightarrow y = 1(TM) \\\end{matrix} ight.

    Với đồ thị hàm số đã cho có đúng 1 điểm có tọa độ nguyên.

  • Câu 7: Nhận biết
    Chọn hàm số tương ứng với đồ thị hàm số

    Chọn hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây:

    Chọn hàm số tương ứng với đồ thị hàm số

    Hướng dẫn:

    Quan sát đồ thị hàm số ta thấy:

    Hàm số có dạng hàm số bậc bốn trùng phương: y = a{x^4} + b{x^2} + c

    => Loại đáp án B

    Đồ thị có nhánh cuối của đồ thị đi lên

    => Hệ số a > 0

    => Loại đáp án A

    Đồ thị hàm số cắt trục tung tại điểm O

    => c = 0

    => Loại đáp án C

  • Câu 8: Nhận biết
    Đồ thị hàm số tương ứng với hàm số nào

    Cho hình vẽ:

    Đồ thị hàm số tương ứng với hàm số nào

    Đồ thị hàm số tương ứng với hàm số nào sau đây?

    Hướng dẫn:

    Đồ thị hàm số đi qua điểm (1; 3) chỉ có hàm số y = \frac{1}{2}{x^3} - 3{x^2} + \frac{9}{2}x + 1 thỏa mãn.

  • Câu 9: Thông hiểu
    Chọn phương án đúng

    Tập tất cả các giá trị của tham số m để phương trình x^{4} - 2mx^{2} + (2m - 1) = 0 có 4 nghiệm thực phân biệt là

    Hướng dẫn:

    Xét phương trình: x^{4} - 2mx^{2} + (2m -
1) = 0.

    Đặt x^{2} = t(t \geq 0).

    Phương trình đã cho trở thành t^{2} - 2mt
+ (2m - 1) = 0(*).

    Để phương trình ban đầu có bốn nghiệm thực phân biệt thì phương trình (*) có hai nghiệm phân biệt dương

    \Leftrightarrow \left\{ \begin{matrix}
\Delta^{'} > 0 \\
S > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 2m + 1 > 0 \\
2m > 0 \\
2m - 1 > 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
\forall m eq 1 \\
m > 0 \\
m > \frac{1}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > \frac{1}{2} \\
m eq 1 \\
\end{matrix} ight.

    hay m \in \left( \frac{1}{2}; + \infty
ight)\backslash\left\{ 1 ight\}.

  • Câu 10: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    a) Hàm số y = f(x) có hai điểm cực trị là x = 0x = 2. Đúng||Sai

    b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng

    c) Hàm số nghịch biến trên khoảng ( -
2;0). Sai||Đúng

    d) c = 2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    a) Hàm số y = f(x) có hai điểm cực trị là x = 0x = 2. Đúng||Sai

    b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng

    c) Hàm số nghịch biến trên khoảng ( -
2;0). Sai||Đúng

    d) c = 2. Đúng||Sai

     

    Dựa vào đồ thị ta thấy hàm số y =
f(x) có hai điểm cực trị là x =
0x = 2.

    Giá trị lớn nhất của hàm số trên R không tồn tại.

    Dựa vào đồ thị ta thấy hàm số nghịch biến trên khoảng ( - 2;0)

    Dựa vào đồ thị ta có f(0) = 2
\Rightarrow c = 2

  • Câu 11: Nhận biết
    Số nghiệm thực của phương trình

    Cho hàm số bậc ba có đồ thị như hình vẽ:

    Số nghiệm thực của phương trình

    Số nghiệm thực của phương trình 2f\left( x ight) - 5 = 0 là:

    Hướng dẫn:

    Ta có: 2f\left( x ight) - 5 = 0 \Rightarrow f\left( x ight) = \frac{5}{2}

    Quan sát đồ thị ta thấy y = \frac{5}{2} cắt đồ thị hàm số y = f\left( x ight) tại ba điểm phân biệt

    => Phương trình 2f\left( x ight) - 5 = 0 có ba nghiệm thực phân biệt.

  • Câu 12: Nhận biết
    Chọn điểm thuộc đồ thị hàm số

    Cho hàm số y = \frac{3x - 1}{x +
2} có đồ thị kí hiệu là (H). Tìm điểm thuộc (H)?

    Hướng dẫn:

    Ta thấy x = - 1 \Rightarrow y = \frac{3.(
- 1) - 1}{( - 1) + 2} = - 4 \Rightarrow ( - 1; - 4) \in (H)

  • Câu 13: Nhận biết
    Xác định nghiệm của phương trình

    Cho hàm số y=f(x) liên tục trên \lbrack - 2;2brack và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình 3f(x)-4=0 trên đoạn \lbrack - 2;2brack

    Hướng dẫn:

    Ta có 3f(x) - 4 = 0 \Leftrightarrow f\left( x ight) = \frac{4}{3}.

    Dựa vào đồ thị, ta thấy đường thẳng y = \frac{4}{3} cắt y=f(x) tại 3 điểm phân biệt nên phương trình đã cho có 3 nghiệm phân biệt.

  • Câu 14: Nhận biết
    Chọn kết luận đúng

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?

    Hướng dẫn:

    Đồ thị trong hình vẽ là hàm số có dạng y= \frac{ax + b}{cx + d}

    Đồ thị hàm số có tiệm cận ngang là y =1 và tiệm cận đứng x = 2 nên hàm số cần tìm là y = \frac{x + 3}{x -2}.

  • Câu 15: Thông hiểu
    Chọn đáp án đúng:

    Cho hàm số y = x^{3} + 3^{2} -4 có đồ thị có đồ thị (C1) và hàm số y = -x^{3} +3x^{2} -4 có đồ thị có đồ thị (C2). Khẳng định nào sau đấy đúng?

  • Câu 16: Nhận biết
    Chọn phương án thích hợp

    Biết rằng đường thẳng y = 4x + 5 cắt đồ thị hàm số y = x^{3} + 2x +
1 tại điểm duy nhất; kí hiệu (x_0;y_0) là tọa độ của điểm đó. Tìm y_0.

    Hướng dẫn:

    Phương trình hoành độ giao điểm là x^{3}
+ 2x + 1 = 4x + 5

    \Leftrightarrow x^{3} - 2x - 4 = 0 \Leftrightarrow x = 2

    Với x = 2 \Rightarrow y =
13.

    Vậy y_{0} = 13

  • Câu 17: Nhận biết
    Chọn hàm số tương ứng với đồ thị

    Quan sát hình vẽ sau:

    Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?

    Hướng dẫn:

    Đồ thị hàm số có tiệm cận ngang y =\frac{1}{2} và tiệm cận đứng là x =1 nên hàm số tương ứng là y =\frac{x + 1}{2x - 2}.

  • Câu 18: Thông hiểu
    Chọn đáp án thích hợp

    Có bao nhiêu giá trị nguyên của tham số m để phương trình x^{3} - 3x^{2} - m^{2} + 5m = 0 có ba nghiệm thực phân biệt?

    Hướng dẫn:

    Đặt f(x) = x^{3} - 3x^{2} - m^{2} +
5m

    Để x^{3} - 3x^{2} - m^{2} + 5m =
0 có ba nghiệm thực phân biệt thì f'(x) = 0 có ba nghiệm thực phân biệt x_{1};x_{2} thỏa mãn f\left( x_{1} ight).f\left( x_{2} ight) <
0

    Ta có: f'(x) = 3x^{2} - 6x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
f(0) = - m^{2} + 5m \\
f(2) = - m^{2} + 5m - 4 \\
\end{matrix} ight..

    Khi đó f(0).f(2) = \left( - m^{2} + 5m
ight)\left( - m^{2} + 5m - 4 ight) < 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
0 < m < 1 \\
4 < m < 5 \\
\end{matrix} ight.

    Vậy không có giá trị nguyên của tham số m thỏa mãn.

  • Câu 19: Nhận biết
    Chọn đáp án đúng

    Cho hình vẽ:

    Hàm số nào sau đây có đồ thị như hình vẽ bên?

    Hướng dẫn:

    Nhận thấy dạng đồ thị của hàm số bậc ba y
= ax^{3} + bx^{2} + cx + d;(a eq 0)

    Mặt khác đồ thị cắt trục tung tại điểm có tung độ âm nên hàm số tương ứng với đồ thị là y = - x^{3} + 2x -
2.

  • Câu 20: Nhận biết
    Xác định hàm số

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:

    Hướng dẫn:

    Đồ thị của hàm số y = - x^{3} + 3x +
1 thỏa mãn bài toán.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo