Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 4 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm hàm số thỏa mãn đồ thị đã cho trước

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

    Hướng dẫn:

    Quan sát đồ thị ta thấy đây là đồ thị của hàm số y = ax^{4} + bx^{2} + c(a > 0).

    Vậy chọn y = x^{4} - 2x^{2} -
2

  • Câu 2: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    a) Hàm số y = f(x) có hai điểm cực trị là x = 0x = 2. Đúng||Sai

    b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng

    c) Hàm số nghịch biến trên khoảng ( -
2;0). Sai||Đúng

    d) c = 2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    a) Hàm số y = f(x) có hai điểm cực trị là x = 0x = 2. Đúng||Sai

    b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng

    c) Hàm số nghịch biến trên khoảng ( -
2;0). Sai||Đúng

    d) c = 2. Đúng||Sai

     

    Dựa vào đồ thị ta thấy hàm số y =
f(x) có hai điểm cực trị là x =
0x = 2.

    Giá trị lớn nhất của hàm số trên R không tồn tại.

    Dựa vào đồ thị ta thấy hàm số nghịch biến trên khoảng ( - 2;0)

    Dựa vào đồ thị ta có f(0) = 2
\Rightarrow c = 2

  • Câu 3: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = x^{4} - mx^{2} +
m có đồ thị (C). Tìm tham số m để (C) đi qua điểm M(2;16)?

    Hướng dẫn:

    Ta có: M(2;16) \in (C) \Leftrightarrow 16
= 2^{4} - m.2^{2} + m \Leftrightarrow 3m = 0 \Leftrightarrow m =
0

    Vậy m = 0.

  • Câu 4: Nhận biết
    Tìm số nghiệm thực của phương trình

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình vẽ bên.

    Số nghiệm thực của phương trình f(x) =
2 là:

    Hướng dẫn:

    Ta có số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f(x) với đường thẳng y = 2.

    Dựa vào đồ thị ta có phương trình có ba nghiệm phân biệt.

  • Câu 5: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số y = \frac{ax + b}{cx +
d} có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

    Hướng dẫn:

    Ta có tọa độ giao điểm của đồ thị hàm số và trục hoành là ( - 1\ ;\ 0).

  • Câu 6: Nhận biết
    Chọn đáp án chính xác

    Đồ thị sau đây là của hàm số nào?

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là y = 2 và tiệm cận đứng của đồ thị hàm số x = - 1.

    Đồ thị hàm số cắt trục tung tại điểm A(0;1)

    Vậy hàm số cần tìm là y = \frac{2x + 1}{x
+ 1}.

  • Câu 7: Nhận biết
    Xác định hàm số thỏa mãn đồ thị đã cho

    Hàm số nào dưới đây có đồ thị là đường cong trong hình bên?

    Hướng dẫn:

    Quan sát đồ thị của hàm số thấy đồ thị trên là đồ thị của hàm số trùng phương và \lim_{x ightarrow \pm
\infty}f(x) = - \infty suy ra hệ số a < 0.

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số bậc ba có bảng biến thiên như sau:

    Chọn đáp án đúng

    Chọn khẳng định đúng?

    Hướng dẫn:

    Quan sát bảng biến thiên ta suy ra a < 0

    Ta có: có hai nghiệm dương nên \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{ - 2b}}{{3a}} > 0} \\   {{x_1}.{x_2} = \dfrac{c}{{3a}} > 0} \end{array}} ight. \Rightarrow b > 0;c < 0

  • Câu 9: Thông hiểu
    Chọn phương án thích hợp

    Cho đường cong hình vẽ bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi đó là hàm số nào?

    Hướng dẫn:

    Dựa vào đồ thị suy ra tiệm cận đứng x = -
1 loại y = \frac{2x + 3}{x +
1}y = \frac{2x - 2}{x -
1}

    Đồ thị hàm số giao với trục hoành có hoành độ dương nên loại y = \frac{2x + 1}{x - 1}suy ra chọn y = \frac{2x - 1}{x + 1}

  • Câu 10: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình f(x) = - 1 là:

    Hướng dẫn:

    Số nghiệm thực của phương trình f(x) = -
1 chính là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = - 1.

    Từ hình vẽ suy ra 3 nghiệm.

  • Câu 11: Nhận biết
    Tìm số giao điểm của hai đồ thị hàm số

    Số giao điểm của đồ thị hàm số y = x^{3}
- x^{2} và đồ thị hàm số y = -
x^{2} + 5x

    Hướng dẫn:

    Số giao điểm của đồ thị hàm số y = x^{3}
- x^{2} và đồ thị hàm số y = -
x^{2} + 5x chính là số nghiệm thực của phương trình x^{3} - x^{2} = - x^{2} + 5x

    \Leftrightarrow x^{3} - 5x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm \sqrt{5} \\
\end{matrix} ight..

  • Câu 12: Nhận biết
    Chọn phương án thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Dựa vào đồ thị có dạng đồ thị của hàm số bậc 3 có hệ số a < 0 nên đáp án y = - x^{3} + 3x^{2} - 1 đúng.

  • Câu 13: Nhận biết
    Chọn phương án thích hợp

    Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Đồ thị hàm số là đồ thị của hàm số bậc ba nên loại y = x^{4} - 3x^{2} - 1y = - x^{4} + x^{2} - 1

    Đồ thi hàm số bậc ba có hệ số a >
0 nên y = x^{3} - 3x - 1 đúng.

  • Câu 14: Nhận biết
    Xác định số nghiệm thực của phương trình

    Cho hàm số f(x) = ax^{4} + bx^{2} +
c có đồ thị là đường cong trong hình bên.

    Số nghiệm thực của phương trình f(x) =
1

    Hướng dẫn:

    Đường thẳng (d) có phương trình y = 1 cắt đồ thị hàm số y = f(x) tại 2 điểm phân biệt.

    Suy ra phương trình f(x) = 1 có 2 nghiệm thực phân biệt.

  • Câu 15: Nhận biết
    Tìm hàm số thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như trong hình vẽ?

    Hướng dẫn:

    Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng y = ax^{3} + bx^{2} + cx + d với a < 0

    Vậy hàm số cần tìm là y = - x^{3} +
3x^{2} - 1.

  • Câu 16: Nhận biết
    Chọn điểm thuộc đồ thị hàm số

    Cho hàm số y = \frac{3x - 1}{x +
2} có đồ thị kí hiệu là (H). Tìm điểm thuộc (H)?

    Hướng dẫn:

    Ta thấy x = - 1 \Rightarrow y = \frac{3.(
- 1) - 1}{( - 1) + 2} = - 4 \Rightarrow ( - 1; - 4) \in (H)

  • Câu 17: Nhận biết
    Tìm m nguyên thỏa mãn yêu cầu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt?

    Hướng dẫn:

    Ta có: 2f(x) + 3m = 0 \Leftrightarrow
f(x) = \frac{- 3m}{2}

    Để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt thì - \frac{3m}{2} =
- 3 \Leftrightarrow m = 2

    Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.

  • Câu 18: Thông hiểu
    Xác định hàm số

    Đường cong trong hình bên là của đồ thị hàm số nào dưới đây?

    Hướng dẫn:

    Đồ thị hàm số trên là đồ thị hàm trùng phương có 3 cực trị và có a < 0.

    Chọn đáp án y = - x^{4} + 2x^{2} + 2

  • Câu 19: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số y = f(x) có đồ thị là đường cong như hình vẽ:

    Tìm số nghiệm của phương trình 2f(x) - 3
= 0?

    Hướng dẫn:

    Ta có: 2f(x) - 3 = 0 \Leftrightarrow f(x)
= \frac{3}{2}

    Số nghiệm của phương trình bằng số giao điểm của hàm số y = f(x) và đường thẳng y = \frac{3}{2}

    Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.

  • Câu 20: Thông hiểu
    Tìm m để phương trình có ít nhân hai nghiệm

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ:

    Tìm giá trị của tham số thực m để phương trình f(x) = m có ít nhất hai nghiệm thực phân biệt?

    Hướng dẫn:

    Phương trình f(x) = m có ít nhất hai nghiệm thực phân biệt khi và chỉ khi đường thẳng y = m cắt đồ thị hàm số y = f(x) tại ít nhất hai điểm phân biệt

    \Leftrightarrow - 1 \leq m \leq
3

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo