Trong không gian với hệ trục tọa độ , cho mặt cầu
. Bán kính của mặt cầu
là:
Ta có:
suy ra tâm mặt cầu là:
Bán kính mặt cầu là:
Trong không gian với hệ trục tọa độ , cho mặt cầu
. Bán kính của mặt cầu
là:
Ta có:
suy ra tâm mặt cầu là:
Bán kính mặt cầu là:
Gọi I là tâm mặt cầu . Độ dài
(
là gốc tọa độ) bằng:
Mặt cầu có tâm
Trong hệ tọa độ , cho mặt cầu
có tâm
và có thể tích bằng
. Khi đó phương trình mặt cầu
là:
Thể tích mặt cầu là:
Vậy phương trình mặt cầu tâm có bán kính
là:
Mặt cầu
có bán kính bằng:
Biến đổi có tâm
, bán kính
.
Cho đường thẳng và mặt cầu
:
. Giao điểm của
và
là các điểm có tọa độ:
Tọa độ giao điểm là nghiệm hệ phương trình:
Trong không gian , phương trình nào sau đây là phương trình của mặt cầu có tâm
và bán kính
?
Mặt cầu tâm , bán kính
có phương trình lá:
.
Phương trình mặt cầu có bán kính bằng 3 và tâm là giao điểm của ba trục toạ độ?
Mặt cầu tâm và bán kính R = 3 có phương trình:
Mặt cầu có tâm là:
Phương trình mặt cầu có dạng
với
, có tâm
, bán kính
.
Mặt cầu có tâm là
Trong không gian với hệ trục tọa độ , phương trình nào sau đây không phải là phương trình của một mặt cầu?
Phương trình là phương trình của một mặt cầu nếu
.
Vậy phương trình không phải phương trình mặt cầu là:
Trong không gian với hệ tọa độ , cho các điểm
. Bán kính mặt cầu ngoại tiếp tứ diện
là:
Gọi là mặt cầu ngoại tiếp tứ diện
Phương trình mặt cầu có dạng
Vì nên ta có:
Vậy bán kính mặt cầu là:
Cho mặt cầu có tâm và bán kính
. Khi đó mặt cầu có phương trình là:
Phương trình mặt cầu có tâm và bán kính
là:
Trong không gian , cho mặt cầu
và mặt phẳng
, với
là tham số. Gọi
là tập hợp tất cả các giá trị thực của tham số m để mặt phẳng
cắt mặt cầu
theo một đường tròn có chu vi
. Tổng giá trị của tất cả các phần tử thuộc
bằng:
Mặt cầu có tâm I(2; 1; −1) và bán kính R = 5.
Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi bằng 6π nên bán kính đường tròn bằng r = 3.
Do đó khoảng cách từ tâm I của mặt cầu đến mặt phẳng là:
Vậy tổng giá trị của các phần tử thuộc T bằng −16.
Phương trình nào sau đây là phương trình mặt cầu tâm
và đi qua điểm
?
Vì mặt cầu tâm
và đi qua điểm
nên mặt cầu
nhận độ dài đoạn thẳng
làm bán kính.
Ta có:
Vậy phương trình mặt cầu cần tìm là: .
Phương trình mặt cầu nào dưới đây có tâm và tiếp xúc với mặt phẳng
?
Do mặt cầu tiếp xúc với mặt phẳng
.
:
Mặt phẳng và mặt cầu
.
Ta có:
Tâm
cắt
Trong không gian tọa độ , cho tọa độ hai điểm
. Phương trình mặt cầu đường kính
là:
Gọi I là trung điểm của AB suy ra
Mặt cầu đường kính có tâm
và bán kính
có phương trình là:
Trong không gian tọa độ , mặt cầu tâm
bán kính
có phương trình là
Mặt cầu tâm và bán kính
có phương trình là:
Tìm tập hợp các tâm của mặt cầu
Ta có:
Tâm
là mặt cầu
Vậy tập hợp các điểm I là phân đường thẳng tương ứng với
.
Trong không gian Oxyz cho mặt cầu có phương trình
,
có tọa độ tâm I và bán kính R là:
Phương trình mặt cầu được viết lại :
Và
Trong không gian với hệ tọa độ , phương trình mặt cầu tâm
bán kính
là:
Phương trình mặt cầu tâm bán kính
là:
Tổng quát .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: