Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu CTST (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án thích hợp

    Phương trình mặt cầu có bán kính bằng 3 và tâm là giao điểm của ba trục toạ độ?

    Hướng dẫn:

    Mặt cầu tâm O(0;0;0) và bán kính R = 3 có phương trình: (S):x^{2} +
y^{2} + z^{2} = 9.

  • Câu 2: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian Oxyz, phương trình nào sau đây là phương trình của mặt cầu có tâm I(7;6; - 5) và bán kính 9?

    Hướng dẫn:

    Mặt cầu tâm I(7;6; - 5), bán kính R = 9 có phương trình lá:

    (x - 7)^{2} + (y - 6)^{2} + (z - 5)^{2} =
81.

  • Câu 3: Thông hiểu
    Xác định tâm mặt cầu

    Nếu mặt cầu (S) đi qua bốn điểm M(2;2;2),\ N(4;0;2),\ P(4;2;0)Q(4;2;2) thì tâm I của (S) có toạ độ là:

    Hướng dẫn:

    Gọi phương trình mặt cầu (S) x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d =
0, \left( a^{2} + b^{2} + c^{2} - d
> 0 \right).

    Do M(2;2;2) \in (S)
\Leftrightarrow - 4a - 4b - 4c + d
= - 12 (1)

    N(4;0;2) \in (S) \Leftrightarrow - 8a -
4c + d = - 20 (2)

    P(4;2;0) \in (S) \Leftrightarrow - 8a -
4b + d = - 20 (3)

    Q(4;2;2) \in (S) \Leftrightarrow - 8a -
4b - 4c + d = - 24 (4)

    Giải hệ (1), (2), (3), (4) ta có a = 1,\
b = 2,\ c = 1,\ d = - 8, suy ra mặt cầu (S) có tâm I(1;2;1)

  • Câu 4: Nhận biết
    Xác định tọa độ tâm mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 2)^{2} + (y + 1)^{2} + (z - 3)^{2} =
4. Tâm mặt cầu (S) có tọa độ là:

    Hướng dẫn:

    Mặt cầu (S):(x - a)^{2} + (y - b)^{2} +
(z - c)^{2} = R^{2} có tâm là I(a;b;c)

    Mặt cầu (S):(x - 2)^{2} + (y + 1)^{2} +
(z - 3)^{2} = 4 có tâm I(2; -
1;3).

  • Câu 5: Thông hiểu
    Định phương trình mặt cầu (S)

    Cho điểm I(1;1; - 2) đường thẳng d:\frac{x + 1}{1} = \frac{y - 3}{2} =
\frac{z - 2}{1}. Phương trình mặt cầu (S)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:

    Hướng dẫn:

    Đường thẳng d đi qua M( - 1;\ 3;2)và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;\ 1).

    Gọi H là hình chiếu của I trên d.

    Ta có : IH = d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{18}.

    \Rightarrow IH = R.\frac{\sqrt{3}}{2}
\Rightarrow R = \frac{2IH}{\sqrt{3}} = 2\sqrt{6}.

    Vậy phương trình mặt cầu là : (x - 1)^{2}
+ (y - 1)^{2} + (z + 2)^{2} = 24.

  • Câu 6: Thông hiểu
    Vị trí tương đối của 2 mặt cầu

    Cho hai mặt cầu sau:

    \left( S ight):{x^2} + {y^2} + {z^2} - 4x + 6y - 10z - 11 = 0;

    \left( {S'} ight):{x^2} + {y^2} + {z^2} - 2x + 2y - 6z - 5 = 0

    Xét vị trí tương đối của 2 mặt cầu?

    Tiếp xúc trong || tiếp xúc trong

    Đáp án là:

    Cho hai mặt cầu sau:

    \left( S ight):{x^2} + {y^2} + {z^2} - 4x + 6y - 10z - 11 = 0;

    \left( {S'} ight):{x^2} + {y^2} + {z^2} - 2x + 2y - 6z - 5 = 0

    Xét vị trí tương đối của 2 mặt cầu?

    Tiếp xúc trong || tiếp xúc trong

     Theo đề bài, ta suy ra các hệ số, tâm và bán kính của (S):

    \left( S ight):a = 2;\,\,b =  - 3;\,\,c = 5;\,\,d =  - 11 \Rightarrow Tâm I\left( {2, - 3,5} ight); bán kính R=7

    \left( {S'} ight) = a' = 1;\,\,b' =  - 1;\,c' = 3;\,\,d' =  - 5 \Rightarrow Tâm J\left( {1, - 1,3} ight); bán kính R'=4

    I{J^2} = {\left( {1 - 2} ight)^2} + {\left( { - 1 + 3} ight)^2} + {\left( {3 - 5} ight)^2} = 9 \Rightarrow IJ = 3 = R - R'

    (S) và (S') tiếp xúc trong.

  • Câu 7: Nhận biết
    Viết phương trình mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(0;0; - 3) và đi qua điểm M(4;0;0). Phương trình mặt cầu (S) là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có tâm I(0;0; - 3) và bán kính R là:

    x^{2} + y^{2} + (z + 3)^{2} =
R^{2}

    Ta có: M \in (S) \Rightarrow 4^{2} +
0^{2} + (0 + 3)^{2} = R^{2}

    \Leftrightarrow R^{2} = 25

    Vậy phương trình cần tìm là: x^{2} +
y^{2} + (z + 3)^{2} = 25.

  • Câu 8: Nhận biết
    Tìm khoảng cách

    Một hình cầu có bán kính là 2m, một mặt phẳng cắt hình cầu theo một hình tròn có độ dài là 2,4\pi {m{m}} . Khoảng cách từ tâm mặt cầu đến mặt phẳng là:

    Hướng dẫn:

    Gọi khoảng cách từ tâm cầu đến mặt phẳng là d, ta có {d^2} = {R^2} - {r^2} .

    Theo giả thiết R = 2m và 2\pi r = 2,4\pi m \Rightarrow r = \frac{{2,4\pi }}{{2\pi }} = 1,2{m{m}}.

    Vậy 2\pi r = 2,4\pi m \Rightarrow r = \frac{{2,4\pi }}{{2\pi }} = 1,2{m{m}}.

  • Câu 9: Thông hiểu
    Chọn đáp án đúng

    Cho điểm I(0;0;3) và đường thẳng d:\left\{ \begin{matrix}
x = - 1 + t \\
y = 2t \\
z = 2 + t \\
\end{matrix} \right.\ . Phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A,\ B sao cho tam giác IAB vuông là:

    Hướng dẫn:

    Gọi H( - 1 + t;2t;2 + t) \in d là hình chiếu vuông góc của I lên đường thẳng d \Rightarrow \overrightarrow{IH} = ( - 1 + t;2t; -
1 + t)

    Ta có vectơ chỉ phương của d: \overrightarrow{a_{d}} = (1;2;1)IH\bot d

    \Rightarrow
\overrightarrow{IH}.\overrightarrow{a_{d}} = 0 \Leftrightarrow - 1 + t +
4t - 1 + t = 0 \Leftrightarrow - 2 + 6t = 0 \Leftrightarrow t =
\frac{1}{3} \Rightarrow H\left( - \frac{2}{3};\frac{2}{3};\frac{7}{3}
\right)

    \Rightarrow IH = \sqrt{\left( \frac{2}{3}
\right)^{2} + \left( \frac{2}{3} \right)^{2} + \left( \frac{2}{3}
\right)^{2}} = \frac{2\sqrt{3}}{3}

    Vì tam giác IAB vuông tại IIA = IB =
R. Suy ra tam giác IAB vuông cân tại I, do đó bán kính:

    R = IA = ABcos45^{0} =
2IH.\frac{\sqrt{2}}{2} = \sqrt{2}IH = \sqrt{2}.\frac{2\sqrt{3}}{3} =
\frac{2\sqrt{6}}{3}

    Vậy phương trình mặt cầu (S):x^{2} +
y^{2} + (z - 3)^{2} = \frac{8}{3}.

  • Câu 10: Nhận biết
    Tìm phương trình mặt cầu

    Phương trình mặt trình mặt cầu có đường kính AB với A(1;3;2),\ B(3;5;0) là:

    Hướng dẫn:

    Trung điểm của đoạn thẳng ABI(2;4;1), AB = \sqrt{2^{2} + 2^{2} + ( - 2)^{2}} = 2\sqrt{3}

    Mặt cầu đường kính AB có tâm I(2;4;1), bán kính R = \frac{AB}{2} = \sqrt{3}

    Vậy ph­ương trình của mặt cầu là: (x -2)^{2} + (y - 4)^{2} + (z - 1)^{2} = 3.

  • Câu 11: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm I(2;3;4)A(1;2;3). Phương trình mặt cầu tâm I và đi qua A có phương trình là:

    Hướng dẫn:

    Bán kính mặt cầu là R = IA =
\sqrt{3}

    Phương trình mặt cầu tâm I(2;3;4)R
= IA = \sqrt{3} là:

    (x - 2)^{2} + (y - 3)^{2} + (z - 4)^{2}
= 3

  • Câu 12: Nhận biết
    Tính đường kính mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + (y - 2)^{2} + (z + 1)^{2} =
6. Đường kính (S) bằng:

    Hướng dẫn:

    Đường kính của mặt cầu (S) bằng: 2R = 2\sqrt{6}.

  • Câu 13: Nhận biết
    Viết phương trình mặt cầu (S)

    Trong không gian tọa độ Oxyz, cho tọa độ hai điểm A(1;2;3),B(5;4; -
1). Phương trình mặt cầu đường kính AB là:

    Hướng dẫn:

    Gọi I là trung điểm của AB suy ra I(3;3;1)

    \overrightarrow{AB} = (4;2; - 4)
\Rightarrow AB = \sqrt{16 + 4 + 16} = 6

    Mặt cầu đường kính AB có tâm I(3;3;1) và bán kính R = \frac{AB}{2} = 3 có phương trình là: (x - 3)^{2} + (y - 3)^{2} + (z - 1)^{2} =
9

  • Câu 14: Thông hiểu
    Tìm phương trình mặt cầu (S)

    Cho đường thẳng d: \frac{x -
1}{3} = \frac{y + 1}{1} = \frac{z}{1} và mặt phẳng (P):2x + y - 2z + 2 = 0. Phương trình mặt cầu (S) có tâm nằm trên đường thẳng d có bán kính nhỏ nhất tiếp xúc với (P) và đi qua điểm A(1; - 1;1) là:

    Hướng dẫn:

    Gọi I là tâm của (S).

    I \in d \Rightarrow I(1 + 3t; - 1 +
t;t). Bán kính R = IA =
\sqrt{11t^{2} - 2t + 1}.

    Mặt phẳng (P) tiếp xúc với (S) nên d(I,(P)) = \frac{|5t + 3|}{3} = R .

    37t^{2} - 24t = 0\left\lbrack \begin{matrix}
t = 0 \Rightarrow R = 1 \\
t = \dfrac{24}{37} \Rightarrow R = \dfrac{77}{37} \\
\end{matrix} \right..

    (S) có bán kính nhỏ nhất nên chọn t = 0, R = 1.

    Suy ra I(1;-1;0).

    Vậy phương trình mặt cầu (S): (x- 1)^{2} + (y + 1)^{2} + z^{2} = 1.

  • Câu 15: Nhận biết
    Độ dài AB

    Cho mặt cầu S\left( {O;R} ight) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

    Hướng dẫn:

    Vì AB tiếp xúc với (S) tại B nên AB \bot OB.

    Suy ra AB = \sqrt {O{A^2} - O{B^2}}  = \sqrt {4{R^2} - {R^2}}  = R\sqrt 3 .

  • Câu 16: Nhận biết
    Chọn đáp án thích hợp

    Phương trình nào sau đây không phải là phương trình mặt cầu?

    Gợi ý:

    Phương trình mặt cầu (S) có hai dạng là:

    (1) (x - a)^{2} + (y - b)^{2} + (z -
c)^{2} = R^{2};

    (2) x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0.

    Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

    Hướng dẫn:

    Ở các đáp án 2x^{2} + 2y^{2} = (x +
y)^{2} - z^{2} + 2x - 1, x^{2} +
y^{2} + z^{2} + 2x - 2y + 1 = 0, (x
+ y)^{2} = 2xy - z^{2} + 1 - 4x đều thỏa mãn điều kiện phương trình mặt cầu. Tuy nhiên ở đáp án x^{2} +
y^{2} + z^{2} - 2x = 0. thì phương trình: 2x^{2} + 2y^{2} = (x + y)^{2} - z^{2} + 2x - 1
\Leftrightarrow x^{2} + y^{2} + z^{2} - 2xy - 2x + 1 = 0 không đúng dạng phương trình mặt cầu.

  • Câu 17: Nhận biết
    Tìm điểm không nằm trên mặt cầu

    Cho mặt cầu (S):\ x^{2} + y^{2} + z^{2} -
4 = 0 và 4 điểm M(1;2;0),\
N(0;1;0),\ P(1;1;1), Q(1; -
1;2). Trong bốn điểm đó, có bao nhiêu điểm không nằm trên mặt cầu (S) ?

    Hướng dẫn:

    Lần lượt thay tọa độ các điểm M, N, P, Q vào phương trình mặt cầu (S), ta thấy chỉ có tọa độ điểm Q thỏa mãn.

  • Câu 18: Nhận biết
    Xác định phương trình mặt cầu

    Phương trình nào sau đây là phương trình mặt cầu?

    Hướng dẫn:

    Phương trình mặt cầu (S) có hai dạng là:

    (1) (x - a)^{2} + (y - b)^{2} + (z -
c)^{2} = R^{2};

    (2) x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0.

    Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

    Từ đó ta xác định được phương trình mặt cầu cần tìm là: {x^2} + {y^2} + {z^2} - 2x = 0.

  • Câu 19: Nhận biết
    Tính độ dài vecto

    Gọi I là tâm mặt cầu (S):x^{2} +
y^{2} + (z - 2)^{2} = 4. Độ dài \left| \overrightarrow{OI} \right| (O là gốc tọa độ) bằng:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(0;0;2) \Rightarrow \overrightarrow{OI} = (0;0;2)
\Rightarrow \left| \overrightarrow{OI} \right| = 2.

  • Câu 20: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz cho mặt cầu (S) có phương trình x^{2} + y^{2} + z^{2} - x + y - 3z + \frac{7}{4} =
0, (S) có tọa độ tâm I và bán kính R là:

    Hướng dẫn:

    Phương trình mặt cầu (S) được viết lại :

    \left( x - \frac{1}{2} \right)^{2} +
\left( y + \frac{1}{2} \right)^{2} + \left( z - \frac{3}{2} \right)^{2}
= 1 \Rightarrow I\left(
\frac{1}{2},\frac{- 1}{2},\frac{3}{2} \right)

    R = 1

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo