Phương trình mặt cầu có tâm , bán kính
là:
Mặt cầu có tâm , bán kính
có phương trình:
Phương trình mặt cầu có tâm , bán kính
là:
Mặt cầu có tâm , bán kính
có phương trình:
Mặt cầu tâm
và tiếp xúc với mặt phẳng
có phương trình:
Mặt cầu tâm I, tiếp xúc với mặt phẳng
:
Cho mặt cầu và một điểm A, biết
. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:
Vì AB tiếp xúc với (S) tại B nên .
Suy ra
Cho các điểm và
. Mặt cầu đi qua hai điểm A, B và tâm thuộc trục Oz có đường kính là:
Gọi trên Oz vì
đường kính là:
.
Cho mặt phẳng và mặt cầu
có phương trình lần lượt là
. Giá trị của
để
tiếp xúc
là:
Ta có:
có tâm
và bán kính
.
tiếp xúc
Trong không gian với hệ tọa độ , cho hai điểm
. Mặt cầu đường kính
có phương trình là:
Gọi là trung điểm của
khi đó
là tâm mặt cầu
.
Bán kính
Vậy phương trình mặt cầu cần tìm là: .
Trong không gian , phương trình nào sau đây là phương trình của mặt cầu có tâm
và bán kính
?
Mặt cầu tâm , bán kính
có phương trình lá:
.
Trong không gian với hệ toạ độ , cho điểm
. Gọi
là hình chiếu vuông góc của
trên trục
. Phương trình nào dưới đây là phương trình mặt cầu tâm
bán kính
?
Hình chiếu vuông góc của trên
là:
Suy ra phương trình mặt cầu tâm bán kính
là:
.
Phương trình nào sau đây không phải là phương trình mặt cầu?
Phương trình mặt cầu có hai dạng là:
(1) ;
(2) với
.
Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.
Ở các đáp án ,
,
đều thỏa mãn điều kiện phương trình mặt cầu. Tuy nhiên ở đáp án
thì phương trình:
không đúng dạng phương trình mặt cầu.
Phương trình nào sau đây là phương trình mặt cầu tâm
và đi qua điểm
?
Vì mặt cầu tâm
và đi qua điểm
nên mặt cầu
nhận độ dài đoạn thẳng
làm bán kính.
Ta có:
Vậy phương trình mặt cầu cần tìm là: .
Trong không gian , tìm tất cả các giá trị của
để phương trình
là phương trình của một mặt cầu?
Phương trình là một mặt cầu
.
Trong không gian , cho hai điểm
và
. Phương trình mặt cầu có tâm
và đi qua
là:
Ta có:
Vậy phương trình mặt cầu tâm và đi qua điểm
có phương trình là:
.
Cho hai mặt cầu và
Gọi
là giao tuyến của
và
. Viết phương trình của
(Có thể chọn nhiều đáp án).
là điểm chung của hai mặt cầu
hay
Mặt cầu tâm và tiếp xúc với mặt phẳng (Oxz) có phương trình:
Mặt cầu tâm , bán kính R và tiếp xúc với mặt phẳng (Oxz):
.
Vậy
Cho mặt cầu S(O;R) , A là một điểm ở trên mặt cầu (S) và (P) là mặt phẳng qua A sao cho góc giữa OA và (P) bằng . Diện tích của đường tròn giao tuyến bằng:

Gọi H là hình chiếu vuông góc của (O) trên (P) thì
● H là tâm của đường tròn giao tuyến của (P) và (S).
●
Bán kính của đường tròn giao tuyến: .
Suy ra diện tích đường tròn giao tuyến: .
Trong không gian với hệ tọa độ , cho mặt cầu
. Tìm tọa độ tâm
và tính bán kính
của
Mặt cầu có tâm
và bán kính
.
Cho mặt cầu và mặt phẳng
. Biết khoảng cách từ O đến
bằng
. Khi đó thiết diện tạo bởi mặt phẳng
với
là một đường tròn có đường kính bằng:

Gọi H là hình chiếu của O xuống .
Ta có nên
cắt
theo đường tròn
.
Bán kính đường tròn là
Suy ra đường kính bằng .
Mặt cầu (S) có tâm A(1; -2; 2) và bán kính R = 8. Tìm phương trình mặt cầu (S).
Phương trình mặt cầu tâm bán kính R có dạng:
Mặt cầu có tâm là:
Biến đổi .
Vậy mặt cầu có tâm
Trong không gian với hệ tọa độ , phương trình mặt cầu tâm
bán kính
là:
Phương trình mặt cầu tâm bán kính
là:
Tổng quát .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: