Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu CTST (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính bán kính mặt cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0. Bán kính của mặt cầu (S) là:

    Hướng dẫn:

    Ta có:

    x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2.0.x - 2.1y - 2.( - 1)z - 7 = 0

    \Leftrightarrow \left\{ \begin{matrix}
a = 0 \\
b = 1 \\
c = - 1 \\
d = - 7 \\
\end{matrix} ight. suy ra tâm mặt cầu là: I(0;1; - 1)

    Bán kính mặt cầu là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{0^{2} + 1^{2} + ( - 1)^{2} - 7} = 3

  • Câu 2: Nhận biết
    Tính độ dài vecto

    Gọi I là tâm mặt cầu (S):x^{2} +
y^{2} + (z - 2)^{2} = 4. Độ dài \left| \overrightarrow{OI} \right| (O là gốc tọa độ) bằng:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(0;0;2) \Rightarrow \overrightarrow{OI} = (0;0;2)
\Rightarrow \left| \overrightarrow{OI} \right| = 2.

  • Câu 3: Nhận biết
    Chọn kết luận đúng

    Trong hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I( - 1;4;2) và có thể tích bằng \frac{256\pi}{3}. Khi đó phương trình mặt cầu (S) là:

    Hướng dẫn:

    Thể tích mặt cầu là: V = \frac{4\pi
R^{3}}{3} = \frac{256\pi}{3} \Rightarrow R = 4

    Vậy phương trình mặt cầu tâm I có bán kính R = 4 là: (x + 1)^{2} + (y - 4)^{2} + (z - 2)^{2} =
16

  • Câu 4: Nhận biết
    Tính bán kính mặt cầu

    Mặt cầu (S): 3x^{2} + 3y^{2} + 3z^{2} - 6x + 12y + 2 =
0 có bán kính bằng:

    Hướng dẫn:

    Biến đổi 3x^{2} + 3y^{2} + 3z^{2} - 6x +
12y + 2 = 0 \Leftrightarrow x^{2} + y^{2} + z^{2} - 2x + 4y +
\frac{2}{3} = 0 có tâm I(1; -
2;0), bán kính R =
\sqrt{\frac{13}{3}}.

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Cho đường thẳng (\Delta):\left\{
\begin{matrix}
x = 1 + t \\
y = 2 \\
z = - 4 + 7t \\
\end{matrix} \right.và mặt cầu (S): x^{2} +y^{2} + z^{2} - 2x - 4y + 6z - 67 = 0. Giao điểm của (\Delta)(S) là các điểm có tọa độ:

    Hướng dẫn:

    Tọa độ giao điểm là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
x = 1 + t \\
y = 2 \\
z = - 4 + 7t \\
x^{2} + y^{2} + z^{2} - 2x - 4y + 6z - 67 = 0 \\
\end{matrix} \right.

    \Rightarrow \left\lbrack \begin{matrix}
t = 0 \Rightarrow A(1;2; - 4) \\
t = 1 \Rightarrow B(2;2;3) \\
\end{matrix} \right.

  • Câu 6: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian Oxyz, phương trình nào sau đây là phương trình của mặt cầu có tâm I(7;6; - 5) và bán kính 9?

    Hướng dẫn:

    Mặt cầu tâm I(7;6; - 5), bán kính R = 9 có phương trình lá:

    (x - 7)^{2} + (y - 6)^{2} + (z - 5)^{2} =
81.

  • Câu 7: Nhận biết
    Chọn đáp án thích hợp

    Phương trình mặt cầu có bán kính bằng 3 và tâm là giao điểm của ba trục toạ độ?

    Hướng dẫn:

    Mặt cầu tâm O(0;0;0) và bán kính R = 3 có phương trình: (S):x^{2} +
y^{2} + z^{2} = 9.

  • Câu 8: Nhận biết
    Tìm tâm mặt cầu

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x +
2y + 1 = 0 có tâm là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0 với a^{2} + b^{2} + c^{2} - d
> 0, có tâm I(a;b;c), bán kính R = \sqrt{a^{2} + b^{2} + c^{2} -
d}.

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x +
2y + 1 = 0 có tâm là I(4; -
1;0).

  • Câu 9: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz, phương trình nào sau đây không phải là phương trình của một mặt cầu?

    Hướng dẫn:

    Phương trình (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0 là phương trình của một mặt cầu nếu a^{2} + b^{2} + c^{2} - d >
0.

    Vậy phương trình không phải phương trình mặt cầu là:

    x^{2} + y^{2} + z^{2} - 2x + 4y - 4z +
10 = 0

  • Câu 10: Thông hiểu
    Xác định bán cầu mặt cầu ngoại tiếp tứ giác

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A( - 1;0;0),B(0;0;2),C(0; - 3;0). Bán kính mặt cầu ngoại tiếp tứ diện OABC là:

    Hướng dẫn:

    Gọi (S) là mặt cầu ngoại tiếp tứ diện OABC

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0

    O;A;B;C \in (S) nên ta có: \left\{ \begin{matrix}
d = 0 \\
1 + 2a + d = 0 \\
4 - 4c + d = 0 \\
9 + 6b + d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
d = 0 \\
a = - \frac{1}{2} \\
b = - \frac{3}{2} \\
c = 1 \\
\end{matrix} ight.

    Vậy bán kính mặt cầu (S) là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{\frac{1}{4} + \frac{9}{4} + 1} = \frac{\sqrt{14}}{2}

  • Câu 11: Nhận biết
    Viết phương trình mặt cầu

    Cho mặt cầu có tâm I(1;2;4) và bán kính R = 5. Khi đó mặt cầu có phương trình là:

    Hướng dẫn:

    Phương trình mặt cầu có tâm I(1;2;4) và bán kính R = 5 là:

    \Leftrightarrow (x - 1)^{2} + (y -
2)^{2} + (z - 4)^{2} = 5^{2}

    \Leftrightarrow (x - 1)^{2} + (y -
2)^{2} + (z - 4)^{2} = 25

  • Câu 12: Thông hiểu
    Tính tổng tất cả các tham số m

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x - 2y + 2z
- 19 = 0 và mặt phẳng (P):2x - y -
2z + m + 3 = 0, với m là tham số. Gọi T là tập hợp tất cả các giá trị thực của tham số m để mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi 6\pi. Tổng giá trị của tất cả các phần tử thuộc T bằng:

    Hướng dẫn:

    Mặt cầu (S):(x - 2)^{2} + (y - 1)^{2} +
(z + 1)^{2} = 25 có tâm I(2; 1; −1) và bán kính R = 5.

    Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi bằng 6π nên bán kính đường tròn bằng r = 3.

    Do đó khoảng cách từ tâm I của mặt cầu đến mặt phẳng là:

    d\left( I;(P) ight) = \sqrt{R^{2} -
r^{2}} = 4

    \Leftrightarrow \frac{|4 - 1 + 2 + m +
3|}{3} = 4

    \Leftrightarrow |m + 8| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
m = 4 \\
m = - 20 \\
\end{matrix} ight.

    Vậy tổng giá trị của các phần tử thuộc T bằng −16.

  • Câu 13: Nhận biết
    Chọn đáp án đúng

    Phương trình nào sau đây là phương trình mặt cầu (S) tâm A(2;1;0) và đi qua điểm B(0;1;2)?

    Hướng dẫn:

    Vì mặt cầu (S) tâm A(2;1;0) và đi qua điểm B(0;1;2) nên mặt cầu (S) nhận độ dài đoạn thẳng AB làm bán kính.

    Ta có: \overrightarrow{AB} = ( - 2;0;2)
\Rightarrow AB = 2\sqrt{2}

    \Rightarrow R = 2\sqrt{2}

    Vậy phương trình mặt cầu cần tìm là: (x -
2)^{2} + (y - 1)^{2} + z^{2} = 8.

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Phương trình mặt cầu nào dưới đây có tâm I(2;1;3) và tiếp xúc với mặt phẳng (P):x + 2y + 2z + 2 = 0?

    Hướng dẫn:

    Do mặt cầu S(I;R) tiếp xúc với mặt phẳng (P) \Leftrightarrow d\left( I;(P)
\right) = R \Leftrightarrow R = 4 .

    \Rightarrow (S) : (x - 2)^{2} + (y - 1)^{2} + (z - 3)^{2} =
16.

  • Câu 15: Thông hiểu
    Xác định vị trí tương đối của hai đối tượng

    Mặt phẳng (P):2x - 4y + 4z + 5 =
0 và mặt cầu (S):x^{2} + y^{2} +
z^{2} - 2x + 4y + 2z - 3 = 0.

    Hướng dẫn:

    Ta có:

    a = 1;b = - 2;c = - 1;d = - 3 \Rightarrow
R = 3. Tâm I = (1, - 2, -
1)

    d(I,P) = \frac{11}{6} < R = 3
\Rightarrow (P) cắt (S)

  • Câu 16: Nhận biết
    Viết phương trình mặt cầu (S)

    Trong không gian tọa độ Oxyz, cho tọa độ hai điểm A(1;2;3),B(5;4; -
1). Phương trình mặt cầu đường kính AB là:

    Hướng dẫn:

    Gọi I là trung điểm của AB suy ra I(3;3;1)

    \overrightarrow{AB} = (4;2; - 4)
\Rightarrow AB = \sqrt{16 + 4 + 16} = 6

    Mặt cầu đường kính AB có tâm I(3;3;1) và bán kính R = \frac{AB}{2} = 3 có phương trình là: (x - 3)^{2} + (y - 3)^{2} + (z - 1)^{2} =
9

  • Câu 17: Nhận biết
    Chọn đáp án đúng

    Trong không gian tọa độ Oxyz, mặt cầu tâm I\left( x_{0};y_{0} ; z_{0} ight) bán kính R có phương trình là

    Hướng dẫn:

    Mặt cầu tâm I\left( x_{0};y_{0} ; z_{0} ight) và bán kính R có phương trình là:

    \left( x - x_{0}
ight)^{2} + \left( y - y_{0} ight)^{2} + \left( z - z_{0}
ight)^{2} = R^{2}

  • Câu 18: Thông hiểu
    Chọn phương án đúng

    Tìm tập hợp các tâm I của mặt cầu

    (S):x^{2} + y^{2} + z^{2} + 2(1 - m)x +2(3 - 2m)y + 2(m - 2)z + 5m^{2} - 9m + 6 = 0

    Hướng dẫn:

    Ta có: a = m - 1;\ \ b = 2m - 3;\ \ c = 2
- m;\ \ d = 5m^{2} - 9m + 6

    Tâm I(x = m - 1;y = 2m - 3;z = 2 -
m)

    \Rightarrow x + 1 = \frac{y + 3}{2} = 2 -
z

    (S) là mặt cầu \Leftrightarrow (m - 1)^{2} + (2m - 3)^{2} + (2 -
m)^{2} - 5m^{2} + 9m - 6 > 0

    \Leftrightarrow m^{2} - 9m + 8 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m < 1 \\
m > 8 \\
\end{matrix} \right.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m - 1 < 0 \\
m - 1 > 7 \\
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < 0 \\
x > 7 \\
\end{matrix} \right.

    Vậy tập hợp các điểm I là phân đường thẳng x + 1 = \frac{y + 3}{2} = 2 - z tương ứng với \left\lbrack \begin{matrix}
x < 0 \\
x > 7 \\
\end{matrix} \right..

  • Câu 19: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz cho mặt cầu (S) có phương trình x^{2} + y^{2} + z^{2} - x + y - 3z + \frac{7}{4} =
0, (S) có tọa độ tâm I và bán kính R là:

    Hướng dẫn:

    Phương trình mặt cầu (S) được viết lại :

    \left( x - \frac{1}{2} \right)^{2} +
\left( y + \frac{1}{2} \right)^{2} + \left( z - \frac{3}{2} \right)^{2}
= 1 \Rightarrow I\left(
\frac{1}{2},\frac{- 1}{2},\frac{3}{2} \right)

    R = 1

  • Câu 20: Nhận biết
    Tìm phương trình mặt cầu

    Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu tâm I(2;1; - 2) bán kính R = 2 là:

    Hướng dẫn:

    Phương trình mặt cầu tâm I(2;1; -
2) bán kính R = 2 là:

    (x - 2)^{2} + (y - 1)^{2} + (z + 2)^{2}
= 2^{2}

    Tổng quát x^{2} + y^{2} + z^{2} - 4x - 2y
+ 4z + 5 = 0.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo