Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu CTST (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm điểm không nằm trên mặt cầu

    Cho mặt cầu (S):\ x^{2} + y^{2} + z^{2} -
4 = 0 và 4 điểm M(1;2;0),\
N(0;1;0),\ P(1;1;1), Q(1; -
1;2). Trong bốn điểm đó, có bao nhiêu điểm không nằm trên mặt cầu (S) ?

    Hướng dẫn:

    Lần lượt thay tọa độ các điểm M, N, P, Q vào phương trình mặt cầu (S), ta thấy chỉ có tọa độ điểm Q thỏa mãn.

  • Câu 2: Thông hiểu
    Chọn phương án thích hợp

    Phương trình mặt cầu có tâm I\left(
\sqrt{3}; - \sqrt{3};0 \right) và cắt trục Oz tại hai điểm A, B sao cho tam giác IAB đều là:

    Hướng dẫn:

    Gọi H là hình chiếu của I\left(
\sqrt{3}; - \sqrt{3};0 \right) trên Oz

    \Rightarrow H(0;0;0) \Rightarrow IH =
d(I;Ox) = \sqrt{6}

    \Rightarrow IH = R.\frac{\sqrt{3}}{2}
\Rightarrow R = \frac{2IH}{\sqrt{3}} = 2\sqrt{2}

    Vậy phương trình mặt cầu là: \left( x -
\sqrt{3} \right)^{2} + \left( y + \sqrt{3} \right)^{2} + z^{2} =
8.

  • Câu 3: Nhận biết
    Mệnh đề đúng

    Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. Hình chiếu của O trên (P) là I. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

     Mệnh đề đúng

    Vì I là hình chiếu của O trên (P) nên  d\left[ {O,\left( P ight)} ight] = OId\left[ {O,\left( P ight)} ight] = R nên I là tiếp điểm của (P)(S).

    Đường thẳng OM cắt (P) tại N nên IN vuông góc với OI tại I.

    Suy ra IN tiếp xúc với (S).

    Tam giác OIN vuông tại I nên ON = R\sqrt 2  \Leftrightarrow IN = R.

  • Câu 4: Nhận biết
    Xác định tọa độ tâm mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 2)^{2} + (y + 1)^{2} + (z - 3)^{2} =
4. Tâm mặt cầu (S) có tọa độ là:

    Hướng dẫn:

    Mặt cầu (S):(x - a)^{2} + (y - b)^{2} +
(z - c)^{2} = R^{2} có tâm là I(a;b;c)

    Mặt cầu (S):(x - 2)^{2} + (y + 1)^{2} +
(z - 3)^{2} = 4 có tâm I(2; -
1;3).

  • Câu 5: Nhận biết
    Tính bán kính mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x + 10y - 6z + 49 =
0. Tính bán kính của mặt cầu (S)?

    Hướng dẫn:

    Phương trình mặt cầu:

    (S):x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0 có tâm I(a;b;c) và bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d}

    Ta có: a = 4;b = - 5;c = 3;d =
49

    Khi đó R = \sqrt{a^{2} + b^{2} + c^{2} -
d} = 1

  • Câu 6: Nhận biết
    Tìm phương trình mặt cầu

    Phương trình mặt trình mặt cầu có đường kính AB với A(1;3;2),\ B(3;5;0) là:

    Hướng dẫn:

    Trung điểm của đoạn thẳng ABI(2;4;1), AB = \sqrt{2^{2} + 2^{2} + ( - 2)^{2}} = 2\sqrt{3}

    Mặt cầu đường kính AB có tâm I(2;4;1), bán kính R = \frac{AB}{2} = \sqrt{3}

    Vậy ph­ương trình của mặt cầu là: (x -2)^{2} + (y - 4)^{2} + (z - 1)^{2} = 3.

  • Câu 7: Nhận biết
    Chọn đáp án thích hợp

    Phương trình nào sau đây không phải là phương trình mặt cầu?

    Gợi ý:

    Phương trình mặt cầu (S) có hai dạng là:

    (1) (x - a)^{2} + (y - b)^{2} + (z -
c)^{2} = R^{2};

    (2) x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0.

    Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

    Hướng dẫn:

    Ở các đáp án 2x^{2} + 2y^{2} = (x +
y)^{2} - z^{2} + 2x - 1, x^{2} +
y^{2} + z^{2} + 2x - 2y + 1 = 0, (x
+ y)^{2} = 2xy - z^{2} + 1 - 4x đều thỏa mãn điều kiện phương trình mặt cầu. Tuy nhiên ở đáp án x^{2} +
y^{2} + z^{2} - 2x = 0. thì phương trình: 2x^{2} + 2y^{2} = (x + y)^{2} - z^{2} + 2x - 1
\Leftrightarrow x^{2} + y^{2} + z^{2} - 2xy - 2x + 1 = 0 không đúng dạng phương trình mặt cầu.

  • Câu 8: Thông hiểu
    Tính đường kính của mặt cầu

    Cho các điểm A(2;4; - 1)B(0; - 2;1) và đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 - t \\
z = 1 + t \\
\end{matrix} \right.. Gọi (S) là mặt cầu đi qua A, B và có tâm thuộc đường thẳng d. Đường kính mặt cầu (S) bằng:

    Hướng dẫn:

    Gọi I(1 + 2t;2 - t;1 + t) trên dIA = IB \Rightarrow t = 1
\Rightarrow R = IA = \sqrt{19} đường kính là 2\sqrt{19}.

  • Câu 9: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Hệ thống định vị toàn cầu (tên tiếng Anh là: Global Positioning System, viết tắt là GPS) là một hệ thống cho phép xác định chính xác vị trí của một vật thể trong không gian. Ta có thể mô phỏng cơ chế hoạt động của hệ thoogns GPS trong không gian như sau: Trong cùng một thời điểm, tọa độ của một điểm M trong không gian sẽ được xác định bởi bốn vệ tinh, trên mỗi vệ tinh có một máy thu tín hiệu. Bằng cách so sánh sự sai lệch về thời gian từ lúc tín hiệu được phát đi với thời gian nhận phản hồi tín hiệu đó, mỗi máy thu tín hiệu xác định được khoảng cách từ vệ tinh đến vị trí M cần tìm tọa độ. Như vậy điểm M là giao điểm của bốn mặt cầu với tâm lần lượt là bốn vệ tinh đã cho.

    Trong không gian với hệ tọa độ Oxyz cho bốn vệ tinh A(3;\  - 1;\ 6), B(1;\ 4;\ 8), C(7;\ 9;\ 6), D(7;\  - 15;\ 18). Các khẳng định dưới đây đúng hay sai?

    a) Phương trình mặt cầu tâm A bán kính bằng 6 có phương trình là:

    (x - 3)^{2} + (y + 1)^{2} + (z - 6)^{2} =
36.Đúng||Sai

    b) Nếu điểm M(x;\ y;\ z) thuộc mặt cầu tâm B bán kính bằng 7 thì tọa độ điểm Mthỏa mãn phương trình: (x - 1)^{2} + (y - 4)^{2} + (z - 8)^{2} =
7.Sai||Đúng

    c) Khoảng cách từ điểm N(2;\  - 3;\
5) đến vệ tinh D là lớn nhất. Đúng||Sai

    d) Biết khoảng cách từ điểm M(x;\ y;\
z) đến các vệ tinh lần lượt là MA =
6, MB = 7, MC = 12, MD =
24. Khi đó x + y + z =
4.Sai||Đúng

    Đáp án là:

    Hệ thống định vị toàn cầu (tên tiếng Anh là: Global Positioning System, viết tắt là GPS) là một hệ thống cho phép xác định chính xác vị trí của một vật thể trong không gian. Ta có thể mô phỏng cơ chế hoạt động của hệ thoogns GPS trong không gian như sau: Trong cùng một thời điểm, tọa độ của một điểm M trong không gian sẽ được xác định bởi bốn vệ tinh, trên mỗi vệ tinh có một máy thu tín hiệu. Bằng cách so sánh sự sai lệch về thời gian từ lúc tín hiệu được phát đi với thời gian nhận phản hồi tín hiệu đó, mỗi máy thu tín hiệu xác định được khoảng cách từ vệ tinh đến vị trí M cần tìm tọa độ. Như vậy điểm M là giao điểm của bốn mặt cầu với tâm lần lượt là bốn vệ tinh đã cho.

    Trong không gian với hệ tọa độ Oxyz cho bốn vệ tinh A(3;\  - 1;\ 6), B(1;\ 4;\ 8), C(7;\ 9;\ 6), D(7;\  - 15;\ 18). Các khẳng định dưới đây đúng hay sai?

    a) Phương trình mặt cầu tâm A bán kính bằng 6 có phương trình là:

    (x - 3)^{2} + (y + 1)^{2} + (z - 6)^{2} =
36.Đúng||Sai

    b) Nếu điểm M(x;\ y;\ z) thuộc mặt cầu tâm B bán kính bằng 7 thì tọa độ điểm Mthỏa mãn phương trình: (x - 1)^{2} + (y - 4)^{2} + (z - 8)^{2} =
7.Sai||Đúng

    c) Khoảng cách từ điểm N(2;\  - 3;\
5) đến vệ tinh D là lớn nhất. Đúng||Sai

    d) Biết khoảng cách từ điểm M(x;\ y;\
z) đến các vệ tinh lần lượt là MA =
6, MB = 7, MC = 12, MD =
24. Khi đó x + y + z =
4.Sai||Đúng

    a) Đúng

    Mặt cầu tâm A(3;\  - 1;\ 6) bán kính bằng 6 có phương trình là: (x - 3)^{2}
+ (y + 1)^{2} + (z - 6)^{2} = 36

    b) Sai

    Mặt cầu tâm B bán kính bằng 7 có phương trình là: (x - 1)^{2} + (y - 4)^{2} +
(z - 8)^{2} = 49.

    Do đó, nếu điểm M(x;\ y;\ z) thuộc mặt cầu tâm B bán kính bằng 7 thì tọa độ điểm Mthỏa mãn phương trình: (x - 1)^{2} + (y - 4)^{2} + (z -
8)^{2} = 49.

    c) Đúng

    Với bốn vệ tinh A(3;\  - 1;\ 6), B(1;\ 4;\ 8), C(7;\ 9;\ 6), D(7;\  - 15;\ 18) và một điểm N(2;\  - 3;\ 5), ta có:

    \begin{matrix}NA = \sqrt{( - 1)^{2} + ( - 2)^{2} + ( - 1)^{2}} = \sqrt{6}\hfill  \\NB = \sqrt{1^{2} + ( - 7)^{2} + ( - 3)^{2}} = \sqrt{59} \hfill\\NC = \sqrt{( - 5)^{2} + ( - 12)^{2} + ( - 1)^{2}} = \sqrt{170}\hfill \\ND = \sqrt{( - 5)^{2} + 12^{2} + ( - 13)^2} = \sqrt{338}\end{matrix}

    Vậy khoảng cách từ điểm N(2;\  - 3;\
5) đến vệ tinh D là lớn nhất.

    d) Sai

    Khoảng cách từ điểm M(x;\ y;\ z) đến các vệ tinh lần lượt là MA = 6, MB = 7, MC = 12, MD =
24 nên ta có hệ phương trình:

    \left\{ \begin{matrix}(x - 3)^{2} + (y + 1)^{2} + (z - 6)^{2} = 36 \\(x - 1)^{2} + (y - 4)^{2} + (z - 8)^{2} = 49 \\(x - 7)^{2} + (y - 9)^{2} + (z - 6)^{2} = 144 \\(x - 7)^{2} + (y + 15)^{2} + (z - 18)^{2} = 576\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}- 4x + 10y + 4z = 22 \\8x + 20y = 12 \\8x - 28y + 24z = 12\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}x = - 1 \\y = 1 \\z = 2\end{matrix} \right.\  \Rightarrow M( - 1; 1; 2)

    Do đó, x + y + z = 2.

  • Câu 10: Nhận biết
    Chọn đáp án thích hợp

    Phương trình mặt câu tâm I(a,b,c) có bán kính R là:

    Hướng dẫn:

    Đáp án cần tìm là:

    x^{2} + y^{2} + z^{2}
- 2ax - 2by - 2cz + d = 0,a^{2} + b^{2} + c^{2} - d >
0.

  • Câu 11: Nhận biết
    Xác định tọa độ điểm thuộc mặt cầu

    Mặt cầu (S):\ x^{2} + y^{2} + z^{2} - 2x
+ 10y + 3z + 1 = 0 đi qua điểm có tọa độ nào sau đây?

    Hướng dẫn:

    Lần lượt thay tọa độ các điểm vào phương trình mặt cầu. Tọa độ điểm nào thỏa mãn phương trình thì điểm đó thuộc mặt cầu.

    Kiểm tra đáp án thu được kết quả là: điểm (4; - 1;0). thuộc mặt cầu đã cho.

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} + 4x - 2y + 6z - 2 =
0 và mặt phẳng (P):3x + 2y + 6z + 1
= 0. Gọi (C) là đường tròn giao tuyến của (P)(S). Viết phương trình mặt cầu cầu (S') chứa (C) và điểm M(1, - 2,1).

    Hướng dẫn:

    Phương trình của (S'):(S) + m(P) =
0,\ \ m \neq 0

    (S'):x^{2} + y^{2} + z^{2} + 4x - 2y
+ 6z - 2 + m(3x + 2y + 6z + 1) = 0

    (S') qua M(1, - 2,1) \Rightarrow 6m + 18 = 0
\Leftrightarrow m = - 3

    \Rightarrow (S'):x^{2} + y^{2} +
z^{2} - 5x - 8y - 12z - 5 = 0

  • Câu 13: Thông hiểu
    Ghi đáp án vào ô trống

    Khi đặt hệ tọa độ Oxyz vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu (S) (tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu (S) có phương trình x^{2} + y^{2} + z^{2} + 14x + 12y - 10z + 29 =
0. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.

    Đáp án : 18km

    Đáp án là:

    Khi đặt hệ tọa độ Oxyz vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu (S) (tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu (S) có phương trình x^{2} + y^{2} + z^{2} + 14x + 12y - 10z + 29 =
0. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.

    Đáp án : 18km

    Ta có x^{2} + y^{2} + z^{2} + 14x + 12y -
10z + 29 = 0

    \Leftrightarrow (x + 7)^{2} + (y + 6)^{2}
+ (z - 5)^{2} = 9^{2}.

    Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là đường kính của mặt cầu, tức là 18km.

    Đáp số: 18km.

  • Câu 14: Nhận biết
    Chọn đáp án thích hợp

    Phương trình nào sau đây không phải là phương trình mặt cầu?

    Gợi ý:

    Phương trình mặt cầu (S) có hai dạng là:

    (1) (x - a)^{2} + (y - b)^{2} + (z -
c)^{2} = R^{2};

    (2) x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0.

    Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

    Hướng dẫn:

    Phương trình ở các đáp án (x - 1)^{2} +
(y - 1)^{2} + (z - 1)^{2} = 6, (2x
- 1)^{2} + (2y - 1)^{2} + (2z + 1)^{2} = 6, (x + y)^{2} = 2xy - z^{2} + 3 - 6x đều thỏa mãn điều kiện phương trình mặt cầu. Ví dụ:

    (2x - 1)^{2} + (2y - 1)^{2} + (2z +
1)^{2} = 6

    \Leftrightarrow \left( x - \frac{1}{2}
\right)^{2} + \left( y - \frac{1}{2} \right)^{2} + \left( z +
\frac{1}{2} \right)^{2} = \frac{3}{2}.

    (x + y)^{2} = 2xy - z^{2} + 3 -
6x\Leftrightarrow x^{2} + y^{2} + z^{2} +
6x - 3 = 0.

  • Câu 15: Nhận biết
    Viết phương trình mặt cầu

    Phương trình mặt cầu có tâm I( - 1;2; -
3), bán kính R = 3 là:

    Hướng dẫn:

    Mặt cầu có tâm I( - 1;2; - 3), bán kính R = 3 có phương trình: (x + 1)^{2} + (y - 2)^{2} + (z + 3)^{2} =
9.

  • Câu 16: Nhận biết
    Chọn kết luận đúng

    Trong không gian với hệ tọa độ Oxyz, tìm tọa độ tâm I và bán kính R của mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} + (z - 4)^{2} =
20

    Hướng dẫn:

    Tâm của (S) có tọa độ là I(1; - 2;4)

    Bán kính mặt cầu (S) là: R = \sqrt{20} = 2\sqrt{5}.

  • Câu 17: Nhận biết
    Tìm tọa độ tâm mặt cầu

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + (y - 2)^{2} + (z + 1)^{2} =
6. Đường kính của (S) bằng

    Hướng dẫn:

    Ta có bán kính của (S)\sqrt{6} nên đường kính của (S) bằng 2\sqrt{6}.

  • Câu 18: Nhận biết
    Xác định tâm và bán kính mặt cầu

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x +1 = 0 có tọa độ tâm và bán kính R là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0 với a^{2} + b^{2} + c^{2} - d
> 0, có tâm I(a;b;c), bán kính R = \sqrt{a^{2} + b^{2} + c^{2} -
d}.

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x +1 = 0 có tọa độ tâm và bán kính R là: I(2;0;0),\ R =
\sqrt{3}.

  • Câu 19: Nhận biết
    Tính đường kính mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;2;1)B(0 ;1 ; 1). Mặt cầu đi qua hai điểm A, B và tâm thuộc trục hoành có đường kính là:

    Hướng dẫn:

    Gọi I(t;0;0) trên Ox.IA = IB \Rightarrow t = 2 \Rightarrow
I(2;0;0)

    \Rightarrow R = IA = \sqrt{6}
\Rightarrow đường kính bằng 2\sqrt{6}

  • Câu 20: Nhận biết
    Tính bán kính mặt cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0. Bán kính của mặt cầu (S) là:

    Hướng dẫn:

    Ta có:

    x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2.0.x - 2.1y - 2.( - 1)z - 7 = 0

    \Leftrightarrow \left\{ \begin{matrix}
a = 0 \\
b = 1 \\
c = - 1 \\
d = - 7 \\
\end{matrix} ight. suy ra tâm mặt cầu là: I(0;1; - 1)

    Bán kính mặt cầu là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{0^{2} + 1^{2} + ( - 1)^{2} - 7} = 3

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo