Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 4 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng:

    Giả sử hàm số y = ax^{4} + bx^{2} + c. Có đồ thị là hình bên. Khẳng định nào sau đây là khẳng định đúng?

    Trắc nghiệm Toán 12 bài 4

  • Câu 2: Thông hiểu
    Chọn đáp án thích hợp

    Cho hàm số bậc bốn \mathbf{y = f}\left(
\mathbf{x} \right) có đồ thị là đường cong trong hình bên.

    Số nghiệm của phương trình f(x)=-\dfrac{1}{2} là

    Hướng dẫn:

    Số nghiệm của phương trình f\left( x ight) =  - \frac{1}{2} bằng số giao điểm của đồ thị hàm số y = f\left( x ight) và đường thẳng y =  - \frac{1}{2} .

    Dựa vào đồ thị ta thấy: đồ thị hàm số y = f\left( x ight) và đường thẳng y =  - \frac{1}{2} cắt nhau tại 2 điểm.

    Nên phương trình f\left( x ight) =  - \frac{1}{2} có 2 nghiệm.

  • Câu 3: Nhận biết
    Tìm số nghiệm thực của phương trình

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.

    Số nghiệm thực của phương trình f(x) =
1

    Hướng dẫn:

    Từ đồ thị hàm số ta có số nghiệm thực của phương trình f(x) = 13.

  • Câu 4: Nhận biết
    Chọn phương án thích hợp

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

    Hướng dẫn:

    Dạng đồ thị hình bên là đồ thị hàm số trùng phương y = ax^{4} + bx^{2} + c có hệ số a < 0.

    Do đó, chỉ có đồ thị ở đáp án y = -
2x^{4} + 4x^{2} + 1 là thỏa mãn.

  • Câu 5: Nhận biết
    Chọn phương án thích hợp

    Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

    Hướng dẫn:

    Đây là hình dáng của đồ thị hàm bậc bốn trùng phương có hệ số a > 0

  • Câu 6: Thông hiểu
    Xác định số giao điểm

    Cho hàm số y = x^{4} - 3x^{2} có đồ thị (C). Số giao điểm của đồ thị (C) và đường thẳng y = 2

    Hướng dẫn:

    Số giao điểm của đồ thị (C) và đường thẳng y = 2 là số nghiệm của phương trình sau:

    x^{4} - 3x^{2} = 2 \Leftrightarrow x^{4}
- 3x^{2} - 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} = \frac{3 + \sqrt{17}}{2} \\
x^{2} = \frac{3 - \sqrt{17}}{2} < 0 \\
\end{matrix} ight.\  \Leftrightarrow x = \pm \sqrt{\frac{3 +
\sqrt{17}}{2}}.

    Phương trình hoành độ giao điểm có 2 nghiệm nên số giao điểm của đồ thị (C) và đường thẳng là 2.

  • Câu 7: Nhận biết
    Chọn hàm số thích hợp

    Đồ thị hàm số nào sau đây nhận điểm A(1;3) làm tâm đối xứng?

    Hướng dẫn:

    Đồ thị hàm số y = \frac{3x + 4}{x -
1} có tiệm cận đứng là đường thẳng x = 1 và tiệm cận ngang là y = 3 suy ra giao điểm của hai đường tiệm cận là (1;3)

    Vậy điểm A(1;3) là tâm đối xứng của đồ thị hàm số y = \frac{3x + 4}{x -
1}.

  • Câu 8: Nhận biết
    Chọn đáp án chính xác

    Đồ thị sau đây là của hàm số nào?

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là y = 2 và tiệm cận đứng của đồ thị hàm số x = - 1.

    Đồ thị hàm số cắt trục tung tại điểm A(0;1)

    Vậy hàm số cần tìm là y = \frac{2x + 1}{x
+ 1}.

  • Câu 9: Nhận biết
    Chọn đáp án đúng

    Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A,B,C,D dưới đây. Hỏi hàm số đó là hàm số nào?

    Hướng dẫn:

    Từ đồ thị :\lim_{x ightarrow +
\infty}y = + \infty và đây là đồ thị hàm bậc ba nên ta chọn phương án y = x^{3} - 3x + 1.

  • Câu 10: Nhận biết
    Chọn phương án thích hợp

    Số giao điểm của đồ thị hàm số y = -
x^{3} + 5x với trục hoành là:

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm ta có:

    - x^{3} + 5x = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = \sqrt{5} \\
x = - \sqrt{5} \\
x = 0 \\
\end{matrix} ight.

    Vậy số giao điểm của đồ thị hàm số y = -
x^{3} + 5x với trục hoành là 3

  • Câu 11: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = x^{4} - mx^{2} +
m có đồ thị (C). Tìm tham số m để (C) đi qua điểm M(2;16)?

    Hướng dẫn:

    Ta có: M(2;16) \in (C) \Leftrightarrow 16
= 2^{4} - m.2^{2} + m \Leftrightarrow 3m = 0 \Leftrightarrow m =
0

    Vậy m = 0.

  • Câu 12: Nhận biết
    Xác định hàm số tương ứng với hình vẽ

    Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

    Hướng dẫn:

    Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên hàm số cần tìm là y = - 2x^{4} + 4x^{2} + 1.

  • Câu 13: Nhận biết
    Tìm tọa độ giao điểm

    Cho hàm số y = \frac{ax + b}{cx +
d} có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục tung là

    Hướng dẫn:

    Từ đồ thị ta thấy đồ thị hàm số cắt trục tung tại điểm có tọa độ (0\ ;\  - 2).

  • Câu 14: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số y = f(x) có đồ thị là đường cong như hình vẽ:

    Tìm số nghiệm của phương trình 2f(x) - 3
= 0?

    Hướng dẫn:

    Ta có: 2f(x) - 3 = 0 \Leftrightarrow f(x)
= \frac{3}{2}

    Số nghiệm của phương trình bằng số giao điểm của hàm số y = f(x) và đường thẳng y = \frac{3}{2}

    Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.

  • Câu 15: Nhận biết
    Tìm số giao điểm của (C) với trục hoành

    Cho hàm số y = - 2x^{3} + 5x có đồ thị (C) Tìm số giao điểm của (C) và trục hoành.

    Hướng dẫn:

    Pthd của (C) và trục hoành là:

    - 2x^{3} + 5x = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm \sqrt{\frac{5}{2}} \\
\end{matrix} ight.3 giao điểm.

    Chú ý: Ở bài toán này hoàn toàn có thể giải trực tiếp bằng Casio với phương trình - 2x^{3} + 5x = 0, nhưng chắc chắn thao tác bấm máy sẽ chậm hơn việc tính tay (thậm chí bài này không cần nháp khi mà kết quả đã hiện ra luôn khi ta đọc đề xong). Vì vậy, Casio là điều không cần thiết với câu hỏi này.

  • Câu 16: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) = \frac{1}{3}x^{3} -
mx^{2} + \left( m^{2} - 4 ight)x + 3 với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng

    b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng

    c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai

    d) y' = x^{2} - 2mx + m^{2} -
4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{1}{3}x^{3} -
mx^{2} + \left( m^{2} - 4 ight)x + 3 với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng

    b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng

    c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai

    d) y' = x^{2} - 2mx + m^{2} -
4. Đúng||Sai

    Ta có:

    y' = x^{2} - 2mx + m^{2} - 4;\forall
x\mathbb{\in R}

    Do hàm số đạt cực đại tại x = 3 nên y'(3) = 0 \Leftrightarrow m^{2} - 6m + 5 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 5 \\
\end{matrix} ight.

    Với m = 1;y' = x^{2} - 2x - 3;y'
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight..

    Bảng xét dấu y’ như sau:

    Với m = 5;y' = x^{2} - 10x +
21;y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \\
x = 7 \\
\end{matrix} ight.

    Bảng xét dấu y’ như sau:

    Từ bảng xét dấu, ta có hàm số đạt cực đại tại x = 3

    Vậy hàm số đã cho đạt cực đại tại x = 3 khi và chỉ khi m = 5.

  • Câu 17: Nhận biết
    Xác định hàm số tương ứng với đồ thị hàm số

    Đường cong trong hình vẽ dưới đây là của hàm số nào?

    Xác định hàm số tương ứng với đồ thị hàm số

    Hướng dẫn:

    Đường tiệm cận ngang: y = \frac{1}{2}

    Đường tiệm cận đứng: x = 1

     

  • Câu 18: Nhận biết
    Chọn hàm số thích hợp với hình vẽ

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

    Hướng dẫn:

    Đồ thị hàm số bậc 4 có hệ số a >
0 cắt trục tung tại điểm có tung độ lớn hơn 0 nên hàm số cần tìm là y = x^{4} - 2x^{2} - 1.

  • Câu 19: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.

    Số nghiệm thực của phương trình f(x) =
1

    Hướng dẫn:

    Từ đồ thị hàm số ta có số nghiệm thực của phương trình f(x) = 13.

  • Câu 20: Nhận biết
    Tìm số giao điểm của đồ thị hàm số với trục hoành

    Số giao điểm của đồ thị hàm số y = -
x^{3} + 7xvới trục hoành là

    Hướng dẫn:

    Phương trình hoành độ giao điểm của đồ thị và trục hoành là: - x^{3} + 7x = 0

    \Leftrightarrow x\left( x^{2} - 7 ight)
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm \sqrt{7} \\
\end{matrix} ight..

    Số giao điểm của đồ thị hàm số y = -
x^{3} + 7xvới trục hoành bằng 3.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (85%):
    2/3
  • Thông hiểu (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo