Giả sử hàm số . Có đồ thị là hình bên. Khẳng định nào sau đây là khẳng định đúng?

Giả sử hàm số . Có đồ thị là hình bên. Khẳng định nào sau đây là khẳng định đúng?

Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
Dựa trên hình dáng đồ thị, ta loại và
Mặt khác từ đồ thị, ta thấy nên loại
Cho hàm số bậc ba có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình là
Từ đồ thị hàm số ta có số nghiệm thực của phương trình là
.
Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?
Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số .
Vậy hàm số cần tìm là .
Đường cong ở hình dưới đây là đồ thị của hàm số nào?

Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng
Giá trị thỏa mãn đường thẳng
cắt đồ thị
tại hai điểm phân biệt
cùng cách đều đường thẳng
. Khi đó
thuộc khoảng nào trong các khoảng sau đây?
Xét phương trình hoành độ các giao điểm: (điều kiện:
).
.
Đường thẳng cắt đồ thị
tại hai điểm phân biệt
khi và chỉ khi phương trình
có hai nghiệm phân biệt khác
Gọi là 2 nghiệm của phương trình
, ta có:
.
Do cách đều đường thẳng
nên
(vì
là hai điểm phân biệt)
( áp dụng Viet)
( thỏa mãn điều kiện).
Tìm hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây?
Dựa vào đồ thị hàm số suy ra đồ thị của hàm số bậc 4 trùng phương và nhánh cuối của đồ thị hàm số đi lên nên hệ số .
Đồ thị hàm số cắt trục tại gốc tọa độ nên
Vậy hàm số tương ứng đồ thị đã cho là .
Đường cong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Đồ thị hình vẽ là đồ thị hàm số bậc ba có hệ số nên chỉ có hàm số
thỏa mãn điều kiện trên.
Cho hàm số xác định và liên tục trên mỗi khoảng
và
và có bảng biến thiên như sau:
Tập hợp tất cả các giá trị thực của tham số để phương trình
có hai nghiệm phân biệt?
Số nghiệm của phương trình là số giao điểm của đường thẳng
và đồ thị hàm số
Để phương trình có hai nghiệm phân biệt, dựa vào bảng biến thiên ta thấy
Vậy tập hợp các giá trị tham số m thỏa mãn yêu cầu bài toán là .
Tìm giá trị của tham số để đồ thị hàm số
đi qua điểm
?
Đồ thị hàm số đi qua điểm nên ta có:
Số giao điểm của đồ thị hàm số với trục hoành là
Ta có hoành độ giao điểm của đồ thị hàm số với trục hoành là nghiệm của phương trình
(*)
.
Phương trình (*) có ba nghiệm phân biệt, do đó đồ thị hàm số cắt trục hoành tại ba điểm phân biệt.
Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?
Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Cho hàm số có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của tham số để phương trình
có ba nghiệm phân biệt?
Ta có:
Để phương trình có ba nghiệm phân biệt thì
Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.
Cho hàm số . Đồ thị của hàm số
như hình vẽ bên. Số nghiệm thực của phương trình
là
Ta có:
(*) là phương trình hoành độ giao điểm của đồ thị hàm số và đường thẳng
.
Dựa vào đồ thị hàm số, ta thấy (*) có 3 nghiệm.
Cho hàm số y = f(x) có đồ thị như hình vẽ sau đây:

Số nghiệm của phương trình là:
Ta có: có hai nghiệm
Hàm số liên tục trên tập số thực và có bảng biến thiên như sau:
Phương trình có bao nhiêu nghiệm?
Gọi ta có:
Suy ra
Ta có bảng biến thiên
Mà từ bảng biến thiên ta thấy phương trình có ba nghiệm.
Cho hàm số có đồ thị
. Tìm tham số
để
đi qua điểm
?
Ta có:
Vậy .
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:
Đồ thị hàm số bậc 4 có hệ số và có ba điểm cực trị nên
.
Suy ra hàm số tương ứng với đồ thị đã cho là .
Tọa độ tâm đối xứng của đồ thị hàm số là:
Ta có:
Tọa độ tâm đối xứng của đồ thị hàm số là

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: