Đồ thị của hàm số cắt trục tung tại điểm có tung độ bao nhiêu
Trục tung có phương trình: .
Thay vào
được:
.
Đồ thị của hàm số cắt trục tung tại điểm có tung độ bao nhiêu
Trục tung có phương trình: .
Thay vào
được:
.
Cho hàm số có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục tung là
Từ đồ thị ta thấy đồ thị hàm số cắt trục tung tại điểm có tọa độ .
Cho hàm số bậc bốn có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình
là
Số nghiệm thực của phương trình chính là số giao điểm của đồ thị hàm số
với đường thẳng
Dựa vào hình trên ta thấy đồ thị hàm số với đường thẳng
có 2 giao điểm.
Vậy phương trình có hai nghiệm.
Cho hàm số có đồ thị như hình vẽ.
Số nghiệm thực của phương trình là:
Ta có: .
Do đường thẳng cắt đồ thị hàm số
tại 3 điểm phân biệt nên suy ra phương trình đã cho có 3 nghiệm.
Cho hàm số có đồ thị
. Mệnh đề nào dưới đây là đúng?
Xét phương trình
Số giao điểm của đồ thịvới trục hoành bằng số nghiệm của phương trình.
Vậycắt trục hoành tại ba điểm.
Cho hàm số bậc ba có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình là
Từ đồ thị hàm số ta có số nghiệm thực của phương trình là
.
Cho hàm số bậc ba có đồ thị như hình vẽ:

Số nghiệm thực của phương trình là:
Ta có:
Quan sát đồ thị ta thấy cắt đồ thị hàm số
tại ba điểm phân biệt
=> Phương trình có ba nghiệm thực phân biệt.
Quan sát hình vẽ sau:
Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?
Đồ thị hàm số có tiệm cận ngang và tiệm cận đứng là
nên hàm số tương ứng là
.
Cho hàm số bậc ba có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình
là:
Số nghiệm thực của phương trình chính là số giao điểm của đồ thị hàm số
và đường thẳng
.
Từ hình vẽ suy ra nghiệm.
Cho hàm số bậc ba có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình
là
Ta thấy đường thẳng cắt đồ thị hàm số
tại 3 điểm phân biệt nên phương trình
có 3 nghiệm.
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:
Đồ thị hàm số bậc 4 có hệ số và có ba điểm cực trị nên
.
Suy ra hàm số tương ứng với đồ thị đã cho là .
Cho hàm số với
là tham số. Tổng tất cả các giá trị nguyên của tham số
để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt bằng:
Phương trình hoành độ giao điểm của đồ thị và trục hoành là:
Xét hàm số
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên ta thấy để đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt khi và chỉ khi
Mà
Vậy tổng tất cả các giá trị nguyên của tham số thỏa mãn yêu cầu bằng
.
Cho hàm số có bảng biến thiên như hình vẽ:
a) Phương trình có 3 nghiệm. Đúng||Sai
b) Phương trình có 1 nghiệm. Đúng||Sai
c) Phương trình vô nghiệm. Sai||Đúng
d) Phương trình có 2 nghiệm. Đúng||Sai
Cho hàm số có bảng biến thiên như hình vẽ:
a) Phương trình có 3 nghiệm. Đúng||Sai
b) Phương trình có 1 nghiệm. Đúng||Sai
c) Phương trình vô nghiệm. Sai||Đúng
d) Phương trình có 2 nghiệm. Đúng||Sai
a) Ta có .
Dựa vào bảng biến thiên, ta có phương trình f(x) = 0 có 3 nghiệm.
b) Ta có
Dựa vào bảng biến thiên, ta có phương trình f(x) = 2 có 1 nghiệm.
c) Ta có .
Dựa vào bảng biến thiên, ta có phương trình f(x) = −4 có 1 nghiệm.
d) Ta có.
Dựa vào bảng biến thiên, ta có phương trình f(x) = −3 có 2 nghiệm.
Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ dưới đây

Hàm số y = f(x) là hàm số nào trong các hàm số sau:
Dựa vào bảng biến thiên ta thấy:
=> Hệ số a > 0
=> Loại đáp án B và C
Mặt khác hàm số đạt cực trị tại x = 0 và x = 2
=> Loại đáp án D
Cho bảng biến thiên như hình vẽ:

Bảng biến thiên trên là của hàm số nào?
Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2
=> Loại đáp án C và D
Quan sát bảng biến thiên
=> Loại đáp án B
Cho hàm số liên tục trên
và có bảng biến thiên như sau.

a) Hàm số đã cho nghịch biến trên khoảng Sai||Đúng
b) Giá trị nhỏ nhất của hàm số bằng .Đúng||Sai
c) Hàm số đạt cực đại tại Sai||Đúng
d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai
Cho hàm số liên tục trên
và có bảng biến thiên như sau.

a) Hàm số đã cho nghịch biến trên khoảng Sai||Đúng
b) Giá trị nhỏ nhất của hàm số bằng .Đúng||Sai
c) Hàm số đạt cực đại tại Sai||Đúng
d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai
Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.
Tọa độ tâm đối xứng của đồ thị hàm số là:
Ta có:
Tọa độ tâm đối xứng của đồ thị hàm số là
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?
Quan sát đồ thị ta thấy đây là đồ thị của hàm số .
Vậy chọn
Với giá trị nào của tham số để đồ thị hàm số
đi qua điểm
?
Thay tọa độ điểm vào
ta được:
Vậy giá trị m cần tìm là .
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án dưới đây. Hỏi hàm số đó là hàm số nào?
Từ đồ thị : và đây là đồ thị hàm bậc ba nên ta chọn phương án
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: