Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 4 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn phương án thích hợp

    Số giao điểm của đồ thị hàm số y = -
x^{3} + 5x với trục hoành là:

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm ta có:

    - x^{3} + 5x = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = \sqrt{5} \\
x = - \sqrt{5} \\
x = 0 \\
\end{matrix} ight.

    Vậy số giao điểm của đồ thị hàm số y = -
x^{3} + 5x với trục hoành là 3

  • Câu 2: Nhận biết
    Tìm hàm số theo yêu cầu

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Đây là đồ thị của hàm số bậc ba với hệ số a > 0 nên chọn y = x^{3} - 3x.

  • Câu 3: Thông hiểu
    Tìm khoảng chứa tham số m theo yêu cầu

    Biết đường thẳng y = (3m - 1)x + 6m +
3 cắt đồ thị hàm số y = x^{3} -
3x^{2} + 1 tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại. Khi có m thuộc khoảng nào sau đây?

    Hướng dẫn:

    Phương trình hoành độ giao điểm là

    (2m - 1)x + 6m + 3 = x^{3} - 3x^{2} +
1

    \Leftrightarrow x^{3} - 3x^{2} - (3m -
1)x - 6m - 2 = 0(*)

    Xét hàm số g(x) = x^{3} - 3x^{2} - (3m -
1)x - 6m - 2\left( C_{m} ight)

    g'(x) = 3x^{2} - 6x - 3m + 1
\Rightarrow g''(x) = 6x - 6

    \Rightarrow g''(x) = 0
\Leftrightarrow x = 1

    Đồ thị \left( C_{m} ight) có điểm uốn là I(1; - 9m - 3)

    Để đường thẳng y = (3m - 1)x + 6m +
3 cắt đồ thị hàm số y = x^{3} -
3x^{2} + 1 tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại

    \Leftrightarrow \left\{ \begin{matrix}\Delta' = ( - 3)^{2} - 3( - 3m + 1) > 0 \\I \in Ox \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{2}{3} \\m = \dfrac{1}{3} \\\end{matrix} ight.\  \Leftrightarrow m \in ( - 1;0)

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Cho hàm số bậc bốn y = f(x) có đồ thị như hình vẽ. Số nghiệm của phương trình f(x) = 1

    Hướng dẫn:

    Ta có đường thẳng y = 1 cắt đồ thị hàm số y = f(x) tại 3 điểm phân biệt.

    Suy ra phương trình f(x) = 1 có 3 nghiệm phân biệt.

  • Câu 5: Nhận biết
    Tìm số nghiệm thực của phương trình

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.

    Số nghiệm thực của phương trình f(x) =
1

    Hướng dẫn:

    Từ đồ thị hàm số ta có số nghiệm thực của phương trình f(x) = 13.

  • Câu 6: Thông hiểu
    Chọn phương án thích hợp

    Số giao điểm của đồ thị hàm số y = x^{3}
+ 3x^{2} và đồ thị hàm số y =
3x^{2} + 3x

    Hướng dẫn:

    Phương trình hoành độ giao điểm của hai đồ thị đã cho là:

    x^{3} + 3x^{2} = 3x^{2} + 3x
\Leftrightarrow x^{3} - 3x = 0

    \Leftrightarrow x\left( x^{2} - 3 ight)
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \sqrt{3} \\
x = - \sqrt{3} \\
\end{matrix} ight..

    Hai đồ thị đã cho cắt nhau tại 3 điểm.

  • Câu 7: Nhận biết
    Chọn đáp án chính xác

    Đồ thị sau đây là của hàm số nào?

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là y = 2 và tiệm cận đứng của đồ thị hàm số x = - 1.

    Đồ thị hàm số cắt trục tung tại điểm A(0;1)

    Vậy hàm số cần tìm là y = \frac{2x + 1}{x
+ 1}.

  • Câu 8: Nhận biết
    Chọn hàm số thích hợp với hình vẽ

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

    Hướng dẫn:

    Đồ thị hàm số bậc 4 có hệ số a >0 và có ba điểm cực trị nên ab <0.

    Suy ra hàm số tương ứng với đồ thị đã cho là y = x^{4} - 2x^{2}.

  • Câu 9: Thông hiểu
    Định điều kiện của m

    Tìm điều kiện cần và đủ của tham số thực ủa tham số m để đường thẳng y = 3x + m - 2 cắt đồ thị y = (x - 1)^{3} tại ba điểm phân biệt là:

    Hướng dẫn:

    Phương trình hoành độ giao điểm của hai đồ thị:

    (x - 1)^{3} = 3x + m - 2 \Leftrightarrow
m = x^{3} - 3x^{2} + 1(*)

    (*) là phương trình hoành độ giao điểm của hai đồ thị (d):y = m,(C):y = x^{3} - 3x^{2} + 1

    Xét hàm số f(x) = x^{3} - 3x^{2} +
1

    f'(x) = 3x^{2} - 6x \Rightarrow
f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Bảng biến thiên

    Vậy theo yêu cầu bài toán \Leftrightarrow
- 3 < m < 1

  • Câu 10: Nhận biết
    Tìm hàm số tương ứng với đồ thị

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

    Hướng dẫn:

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0 nên chọn y = - x^{4} + 2x^{2} +
1.

  • Câu 11: Nhận biết
    Tìm m nguyên thỏa mãn yêu cầu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt?

    Hướng dẫn:

    Ta có: 2f(x) + 3m = 0 \Leftrightarrow
f(x) = \frac{- 3m}{2}

    Để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt thì - \frac{3m}{2} =
- 3 \Leftrightarrow m = 2

    Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.

  • Câu 12: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số y = f(x)có đồ thị như hình vẽ bên. Số nghiệm của phương trình f(x)
+ 1 = 0

    Hướng dẫn:

    Xét phương trình:f(x) + 1 =
0

    \Leftrightarrow f(x) = - 1.

    Số nghiệm của phương trình f(x) = -
1bằng số giao điểm của đồ thị hàm số y = f(x)với đường thẳng y = - 1.

    Dựa vào đồ thị hàm số y = f(x)suy ra số nghiệm của phương trình là 1.

  • Câu 13: Nhận biết
    Tìm hàm số tương ứng với đồ thị

    Đường cong trong hình vẽ là đồ thị của hàm số nào sau đây?

    Hướng dẫn:

    Từ hình vẽ suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a > 0

    Đồ thị hàm số đi qua điểm (1; -
4) nên hàm số cần tìm là y = x^{4}
- 2x^{2} - 3.

  • Câu 14: Nhận biết
    Chọn đáp án chính xác

    Hàm số tương ứng với đồ thị trong hình vẽ dưới đây là:

    Hướng dẫn:

    Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng y = ax^{3} + bx^{2} + cx + d với a < 0 nên hàm số tương ứng là y = - x^{3} + 3x.

  • Câu 15: Nhận biết
    Chọn phương án thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Dựa vào đồ thị có dạng đồ thị của hàm số bậc 3 có hệ số a < 0 nên đáp án y = - x^{3} + 3x^{2} - 1 đúng.

  • Câu 16: Nhận biết
    Tìm hàm số thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như trong hình vẽ?

    Hướng dẫn:

    Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng y = ax^{3} + bx^{2} + cx + d với a < 0

    Vậy hàm số cần tìm là y = - x^{3} +
3x^{2} - 1.

  • Câu 17: Nhận biết
    Đồ thị của hàm số

    Đường cong ở hình dưới đây là đồ thị của hàm số nào?

    Đồ thị của hàm số

    Hướng dẫn:

    Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng y = a{x^3} + b{x^2} + cx + d;\left( {a > 0} ight)

  • Câu 18: Nhận biết
    Xác định hàm số

    Tìm hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây?

    Hướng dẫn:

    Dựa vào đồ thị hàm số suy ra đồ thị của hàm số bậc 4 trùng phương và nhánh cuối của đồ thị hàm số đi lên nên hệ số a > 0.

    Đồ thị hàm số cắt trục Oy tại gốc tọa độ nên c = 0

    Vậy hàm số tương ứng đồ thị đã cho là y =x^{4} - 2x^{2}.

  • Câu 19: Nhận biết
    Xét sự đúng sai của các khẳng định

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau.

    a) Hàm số đã cho nghịch biến trên khoảng (0;2). Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số bằng -
3.Đúng||Sai

    c) Hàm số đạt cực đại tại x = 0. Sai||Đúng

    d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau.

    a) Hàm số đã cho nghịch biến trên khoảng (0;2). Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số bằng -
3.Đúng||Sai

    c) Hàm số đạt cực đại tại x = 0. Sai||Đúng

    d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai

    Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.

  • Câu 20: Nhận biết
    Tìm hàm số thỏa mãn đồ thị đã cho trước

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

    Hướng dẫn:

    Quan sát đồ thị ta thấy đây là đồ thị của hàm số y = ax^{4} + bx^{2} + c(a > 0).

    Vậy chọn y = x^{4} - 2x^{2} -
2

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (85%):
    2/3
  • Thông hiểu (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo