Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 4 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng:

    Giả sử hàm số y = ax^{4} + bx^{2} + c. Có đồ thị là hình bên. Khẳng định nào sau đây là khẳng định đúng?

    Trắc nghiệm Toán 12 bài 4

  • Câu 2: Nhận biết
    Tìm hàm số thỏa mãn đồ thị đã cho

    Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Dựa trên hình dáng đồ thị, ta loại y = {x^3} - 3{x^2} - 2 và y = x^{4} - x^{2} -
2

    Mặt khác từ đồ thị, ta thấy \lim_{x
ightarrow + \infty}y = - \infty nên loại y = - x^{4} + x^{2} -
2

  • Câu 3: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.

    Số nghiệm thực của phương trình f(x) =
1

    Hướng dẫn:

    Từ đồ thị hàm số ta có số nghiệm thực của phương trình f(x) = 13.

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?

    Hướng dẫn:

    Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số a > 0.

    Vậy hàm số cần tìm là y = x^{4} - x^{2} -
1.

  • Câu 5: Nhận biết
    Đồ thị của hàm số

    Đường cong ở hình dưới đây là đồ thị của hàm số nào?

    Đồ thị của hàm số

    Hướng dẫn:

    Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng y = a{x^3} + b{x^2} + cx + d;\left( {a > 0} ight)

  • Câu 6: Thông hiểu
    Xác định khoảng chứa giá trị k theo yêu cầu

    Giá trị k thỏa mãn đường thẳng d:y = kx + k cắt đồ thị (H):y = \frac{x - 4}{2x - 2} tại hai điểm phân biệt A\ ,\ B cùng cách đều đường thẳng y = 0. Khi đó k thuộc khoảng nào trong các khoảng sau đây?

    Hướng dẫn:

    Xét phương trình hoành độ các giao điểm: kx + k = \frac{x - 4}{2x - 2} (điều kiện: x eq 1).

    \Rightarrow 2kx^{2} - x - 2k + 4 = 0\ \ \
(1).

    Đường thẳng d cắt đồ thị (H) tại hai điểm phân biệt A\ ,\ B khi và chỉ khi phương trình (1) có hai nghiệm phân biệt khác 1 \Leftrightarrow \left\{ \begin{matrix}
k eq 0 \\
2k - 1 - 2k + 4 eq 0 \\
1 - 4.2k.(4 - 2k) > 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
k eq 0 \\
16k^{2} - 32k + 1 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
k eq 0 \\
\left\lbrack \begin{matrix}
k > \frac{4 + \sqrt{15}}{4} \\
k < \frac{4 - \sqrt{5}}{4} \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Gọi x_{1}\ ,\ x_{2} là 2 nghiệm của phương trình (1), ta có: A\left( x_{1}\ ;\ kx_{1} + k ight)\ ,\ B\left(
x_{2}\ ;\ kx_{2} + k ight).

    Do A\ ,\ B cách đều đường thẳng y = 0 nên \left| kx_{1} + k ight| = \left| kx_{2} + k
ight| \Leftrightarrow kx_{1} + k = - kx_{2} - k(vì A\ ,\ B là hai điểm phân biệt)

    \Leftrightarrow x_{1} + x_{2} = - 2
\Rightarrow \frac{1}{2k} = - 2( áp dụng Viet) \Leftrightarrow k = - \frac{1}{4}( thỏa mãn điều kiện).

  • Câu 7: Nhận biết
    Xác định hàm số

    Tìm hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây?

    Hướng dẫn:

    Dựa vào đồ thị hàm số suy ra đồ thị của hàm số bậc 4 trùng phương và nhánh cuối của đồ thị hàm số đi lên nên hệ số a > 0.

    Đồ thị hàm số cắt trục Oy tại gốc tọa độ nên c = 0

    Vậy hàm số tương ứng đồ thị đã cho là y =x^{4} - 2x^{2}.

  • Câu 8: Nhận biết
    Xác định hàm số

    Đường cong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

    Hướng dẫn:

    Đồ thị hình vẽ là đồ thị hàm số bậc ba có hệ số a > 0 nên chỉ có hàm số \mathbf{y
=}\mathbf{x}^{\mathbf{3}}\mathbf{-}\mathbf{3}\mathbf{x
+}\mathbf{2} thỏa mãn điều kiện trên.

  • Câu 9: Thông hiểu
    Tìm tập hợp tham số m thỏa mãn yêu cầu

    Cho hàm số f(x) xác định và liên tục trên mỗi khoảng ( - \infty; -
2brack\lbrack 2; +
\infty) và có bảng biến thiên như sau:

    Tập hợp tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm phân biệt?

    Hướng dẫn:

    Số nghiệm của phương trình f(x) =
m là số giao điểm của đường thẳng y
= m và đồ thị hàm số y =
f(x)

    Để phương trình có hai nghiệm phân biệt, dựa vào bảng biến thiên ta thấy \left\lbrack \begin{matrix}
\frac{7}{4} < m \leq 2 \\
m \geq 22 \\
\end{matrix} ight.

    Vậy tập hợp các giá trị tham số m thỏa mãn yêu cầu bài toán là \left( \frac{7}{4};2 ightbrack \cup \lbrack
22; + \infty).

  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Tìm giá trị của tham số m để đồ thị hàm số y = x^{4} - (3 - m)x^{2} -
7 đi qua điểm A( -
2;1)?

    Hướng dẫn:

    Đồ thị hàm số đi qua điểm A( -
2;1) nên ta có:

    1 = ( - 2)^{4} - (3 - m)( - 2)^{2} - 7
\Leftrightarrow m = 1

  • Câu 11: Nhận biết
    Chọn đáp án đúng

    Số giao điểm của đồ thị hàm số y = -
x^{3} + 6x với trục hoành là

    Hướng dẫn:

    Ta có hoành độ giao điểm của đồ thị hàm số y = - x^{3} + 6x với trục hoành là nghiệm của phương trình - x^{3} + 6x = 0 (*)

    \Leftrightarrow - x\left( x^{2} - 6
ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = \pm \sqrt{6} \\
\end{matrix} ight..

    Phương trình (*) có ba nghiệm phân biệt, do đó đồ thị hàm số y = - x^{3} + 6x cắt trục hoành tại ba điểm phân biệt.

  • Câu 12: Nhận biết
    Xác định hàm số tương ứng với hình vẽ

    Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

    Hướng dẫn:

    Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên hàm số cần tìm là y = - 2x^{4} + 4x^{2} + 1.

  • Câu 13: Nhận biết
    Tìm m nguyên thỏa mãn yêu cầu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt?

    Hướng dẫn:

    Ta có: 2f(x) + 3m = 0 \Leftrightarrow
f(x) = \frac{- 3m}{2}

    Để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt thì - \frac{3m}{2} =
- 3 \Leftrightarrow m = 2

    Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.

  • Câu 14: Nhận biết
    Tìm số nghiệm của phương trình

    Cho hàm số f\left( x \right) = a{x^3} + b{x^2} + cx + d;\left( {a;b;c;d \in \mathbb{R}} \right). Đồ thị của hàm số y=f(x) như hình vẽ bên. Số nghiệm thực của phương trình 3f(x)+4=0 là

    Hướng dẫn:

    Ta có: 3f(x) + 4 = 0 \Leftrightarrow f\left( x ight) =  - \frac{4}{3}{\text{   }}\left( * ight)

    (*) là phương trình hoành độ giao điểm của đồ thị hàm số y=f(x) và đường thẳng y =  - \frac{4}{3}.

    Dựa vào đồ thị hàm số, ta thấy (*) có 3 nghiệm.

  • Câu 15: Nhận biết
    Tính số nghiệm của phương trình

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau đây:

    Tính số nghiệm của phương trình

    Số nghiệm của phương trình 2f\left( x ight) - 5 = 0 là:

    Hướng dẫn:

    Ta có: 2f\left( x ight) - 5 = 0 \Rightarrow f\left( x ight) = \frac{5}{2} có hai nghiệm

  • Câu 16: Thông hiểu
    Xác định số nghiệm của phương trình

    Hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Phương trình \left| f\left( 2x^{2} + 3
ight) - 2 ight| = 5 có bao nhiêu nghiệm?

    Hướng dẫn:

    Gọi g(x) = f\left( 2x^{2} + 3 ight) -
2 ta có: g'(x) =
4x.f'\left( 2x^{2} + 3 ight)

    Suy ra g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
2x^{2} + 3 = - 1 \\
2x^{2} + 3 = 3 \\
\end{matrix} ight.\  \Leftrightarrow x = 0

    Ta có bảng biến thiên

    \left| g(x) ight| = 5
\Leftrightarrow \left\lbrack \begin{matrix}
g(x) = 5 \\
g(x) = - 5 \\
\end{matrix} ight. từ bảng biến thiên ta thấy phương trình có ba nghiệm.

  • Câu 17: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = x^{4} - mx^{2} +
m có đồ thị (C). Tìm tham số m để (C) đi qua điểm M(2;16)?

    Hướng dẫn:

    Ta có: M(2;16) \in (C) \Leftrightarrow 16
= 2^{4} - m.2^{2} + m \Leftrightarrow 3m = 0 \Leftrightarrow m =
0

    Vậy m = 0.

  • Câu 18: Nhận biết
    Chọn hàm số thích hợp với hình vẽ

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

    Hướng dẫn:

    Đồ thị hàm số bậc 4 có hệ số a >0 và có ba điểm cực trị nên ab <0.

    Suy ra hàm số tương ứng với đồ thị đã cho là y = x^{4} - 2x^{2}.

  • Câu 19: Nhận biết
    Tìm tọa độ tâm đối xứng

    Tọa độ tâm đối xứng của đồ thị hàm số y =
x^{3} - 3x + 2 là:

    Hướng dẫn:

    Ta có: y = x^{3} - 3x + 2 \Rightarrow
\left\{ \begin{matrix}
y' = 3x^{2} - 3 \\
y'' = 6x \\
\end{matrix} ight.

    y'' = 0 \Leftrightarrow x = 0
\Rightarrow y = 2

    Tọa độ tâm đối xứng của đồ thị hàm số là (0;2)

  • Câu 20: Nhận biết
    Đường cong trong hình bên là đồ thị của hàm số nào?

    Trắc nghiệm Toán 12 bài 4

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (85%):
    2/3
  • Thông hiểu (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo