Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 4 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn phương án thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Dựa vào đồ thị có dạng đồ thị của hàm số bậc 3 có hệ số a < 0 nên đáp án y = - x^{3} + 3x^{2} - 1 đúng.

  • Câu 2: Nhận biết
    Xác định hàm số y = f(x)

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?

    Xác định hàm số y = f(x)
    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy

    \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0

    => Loại đáp án B và đáp án D

    Mặt khác hàm số có ba điểm cực trị

    => Loại đáp án C

  • Câu 3: Nhận biết
    Chọn mệnh đề đúng

    Cho hình vẽ sau:

    Đường cong trong hình vẽ là đồ thị của hàm số có dạng y = \frac{ax + b}{cx + d};\left(
a;b;c;d\mathbb{\in R} ight). Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Từ đồ thị hàm số ta thấy hàm số đồng biến trên các khoảng ( - \infty; - 1)( - 1; + \infty) suy ra y' > 0;\forall x eq 1.

  • Câu 4: Thông hiểu
    Tìm điều kiện tham số m để bất phương trình nghiệm đúng

    Cho hàm số y = f(x), hàm số y = f'(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ bên. Bất phương trình f(x) > x^{2} - 2x +
m (m là tham số thực) nghiệm đúng với mọi x \in (1;2) khi và chỉ khi

    Hướng dẫn:

    Minh họa đồ thị như hình vẽ dưới đây:

    Ta có: f(x) > x^{2} - 2x + m\left(
\forall x \in (1;2) ight)

    \Leftrightarrow f(x) - x^{2} + 2x >
m\left( \forall x \in (1;2) ight)(*).

    Gọi g(x) = f(x) - \left( x^{2} - 2x
ight)

    \Rightarrow g'(x) = f'(x) - (2x - 2)

    Theo đồ thị ta thấy f'(x) < (2x -
2)\left( \forall x \in \lbrack 1;2brack ight) \Rightarrow g'(x)
< 0\left( \forall x \in \lbrack 1;2brack ight).

    Vậy hàm số y = g(x) liên tục và nghịch biến trên \lbrack
1;2brack

    Do đó (*) \Leftrightarrow m \leq \min_{\lbrack 1;2brack}g(x) = g(2) =
f(2).

  • Câu 5: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số bậc bốn y = f(x) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực của phương trình f(x) = - \frac{3}{2}

    Hướng dẫn:

    Từ đồ thị ta f(x) = -
\frac{3}{2}4 nghiệm phân biệt

  • Câu 6: Nhận biết
    Chọn kết luận đúng

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?

    Hướng dẫn:

    Đồ thị trong hình vẽ là hàm số có dạng y= \frac{ax + b}{cx + d}

    Đồ thị hàm số có tiệm cận ngang là y =1 và tiệm cận đứng x = 2 nên hàm số cần tìm là y = \frac{x + 3}{x -2}.

  • Câu 7: Nhận biết
    Đồ thị được cho dưới đây là đồ thị của hàm số nào

    Đồ thị được cho dưới đây là đồ thị của hàm số nào?

    Đồ thị được cho dưới đây là đồ thị của hàm số nào

    Hướng dẫn:

     Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng

    y = a{x^3} + b{x^2} + cx + d;\left( {a < 0} ight)

  • Câu 8: Nhận biết
    Chọn hàm số tương ứng với đồ thị đã cho

    Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Nhìn đồ thị khẳng định đồ thị hàm trùng phương loại y = x^{3} - 3x^{2} - 1y = - x^{3} + 3x^{2} - 1

     \lim_{x ightarrow
\pm \infty}y = - \infty nên loại y
= x^{4} - 3x^{2} - 1.

    Vậy đáp án cần tìm là: y = - x^{4} +
3x^{2} - 1

  • Câu 9: Nhận biết
    Đồ thị của hàm số

    Đường cong ở hình dưới đây là đồ thị của hàm số nào?

    Đồ thị của hàm số

    Hướng dẫn:

    Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng y = a{x^3} + b{x^2} + cx + d;\left( {a > 0} ight)

  • Câu 10: Nhận biết
    Tìm hàm số tương ứng bảng biến thiên

    Chọn hàm số tương ứng với bảng biến thiên sau?

    Hướng dẫn:

    Từ bảng biến thiên ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên hàm số cần tìm là y = - x^{4} + 2x^{2} + 1.

  • Câu 11: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số y = f(x)có đồ thị như hình vẽ bên. Số nghiệm của phương trình f(x)
+ 1 = 0

    Hướng dẫn:

    Xét phương trình:f(x) + 1 =
0

    \Leftrightarrow f(x) = - 1.

    Số nghiệm của phương trình f(x) = -
1bằng số giao điểm của đồ thị hàm số y = f(x)với đường thẳng y = - 1.

    Dựa vào đồ thị hàm số y = f(x)suy ra số nghiệm của phương trình là 1.

  • Câu 12: Thông hiểu
    Chọn đáp án thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên dưới?

    Hướng dẫn:

    Dựa vào dáng đồ thị, đây là hàm trùng phương nên loại y = - x^{3} + 3x - 1y = x^{3} - 3x - 1.

    Đồ thị có bề lõm hướng xuống nên chọn y =
- 2x^{4} + 4x^{2} - 1.

  • Câu 13: Nhận biết
    Xác định hàm số

    Đường cong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

    Hướng dẫn:

    Đồ thị hình vẽ là đồ thị hàm số bậc ba có hệ số a > 0 nên chỉ có hàm số \mathbf{y
=}\mathbf{x}^{\mathbf{3}}\mathbf{-}\mathbf{3}\mathbf{x
+}\mathbf{2} thỏa mãn điều kiện trên.

  • Câu 14: Nhận biết
    Xét sự đúng sai của các khẳng định

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau.

    a) Hàm số đã cho nghịch biến trên khoảng (0;2). Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số bằng -
3.Đúng||Sai

    c) Hàm số đạt cực đại tại x = 0. Sai||Đúng

    d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau.

    a) Hàm số đã cho nghịch biến trên khoảng (0;2). Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số bằng -
3.Đúng||Sai

    c) Hàm số đạt cực đại tại x = 0. Sai||Đúng

    d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai

    Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.

  • Câu 15: Nhận biết
    Tìm hàm số tương ứng với đồ thị

    Đường cong trong hình vẽ là đồ thị của hàm số nào sau đây?

    Hướng dẫn:

    Từ hình vẽ suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a > 0

    Đồ thị hàm số đi qua điểm (1; -
4) nên hàm số cần tìm là y = x^{4}
- 2x^{2} - 3.

  • Câu 16: Thông hiểu
    Tìm m để bất phương trình nghiệm đúng với mọi m

    Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Biết f( - 1) = 1;f\left( - \frac{1}{e}
\right) = 2. Tìm tất cả các giá trị của m để bất phương trình f(x) < \ln( - x) + m nghiệm đúng với mọi x \in \left( - 1;\frac{- 1}{e}
\right).

    Hướng dẫn:

    Ta có f(x) < \ln( - x) + m
\Leftrightarrow m > f(x) - \ln( - x).

    Xét hàm số g(x) = f(x) - \ln( -
x) trên \left( - 1; - \frac{1}{e}
ight).

    g'(x) = f'(x) -
\frac{1}{x}.

    Trên \left( - 1; - \frac{1}{e}
ight)f'(x) >
0\frac{1}{x} < 0 nên g'(x) > 0,\forall x \in \left( -
1; - \frac{1}{e} ight)

    \Rightarrow Hàm số g(x) đồng biến trên \left( - 1; - \frac{1}{e} ight).

    Vậy nên f(x) < \ln( - x) + m nghiệm đúng với mọi x \in \left( - 1; -
\frac{1}{e} ight)

    \Leftrightarrow m \geq g(x),\forall x
\in \left( - 1; - \frac{1}{e} ight)

    \Leftrightarrow m \geq g\left( -
\frac{1}{e} ight)

    \Leftrightarrow m \geq 3.

  • Câu 17: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = x^{4} - mx^{2} +
m có đồ thị (C). Tìm tham số m để (C) đi qua điểm M(2;16)?

    Hướng dẫn:

    Ta có: M(2;16) \in (C) \Leftrightarrow 16
= 2^{4} - m.2^{2} + m \Leftrightarrow 3m = 0 \Leftrightarrow m =
0

    Vậy m = 0.

  • Câu 18: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Xác định hàm số y = f(x)?

    Hướng dẫn:

    Từ bảng biến thiên ta suy ra hàm số cần tìm là hàm số bậc ba

    \lim_{x ightarrow + \infty}f(x) = +
\infty nên đáp án là y = x^{3} -
3x^{2} + 1.

  • Câu 19: Nhận biết
    Tìm tung độ của giao điểm

    Đồ thị của hàm số y = - x^{4} - 3x^{2} +
1 cắt trục tung tại điểm có tung độ bao nhiêu

    Hướng dẫn:

    Trục tung có phương trình: x =
0.

    Thay x = 0vào y = - x^{4} - 3x^{2} + 1 được: y = 1.

  • Câu 20: Nhận biết
    Tìm hàm số thỏa mãn đồ thị đã cho trước

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

    Hướng dẫn:

    Quan sát đồ thị ta thấy đây là đồ thị của hàm số y = ax^{4} + bx^{2} + c(a > 0).

    Vậy chọn y = x^{4} - 2x^{2} -
2

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (85%):
    2/3
  • Thông hiểu (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo