Giả sử hàm số . Có đồ thị là hình bên. Khẳng định nào sau đây là khẳng định đúng?

Giả sử hàm số . Có đồ thị là hình bên. Khẳng định nào sau đây là khẳng định đúng?

Cho hàm số bậc bốn có đồ thị là đường cong trong hình bên.
Số nghiệm của phương trình là
Số nghiệm của phương trình bằng số giao điểm của đồ thị hàm số
và đường thẳng
.
Dựa vào đồ thị ta thấy: đồ thị hàm số và đường thẳng
cắt nhau tại 2 điểm.
Nên phương trình có 2 nghiệm.
Cho hàm số bậc ba có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình là
Từ đồ thị hàm số ta có số nghiệm thực của phương trình là
.
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?
Dạng đồ thị hình bên là đồ thị hàm số trùng phương có hệ số
.
Do đó, chỉ có đồ thị ở đáp án là thỏa mãn.
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Đây là hình dáng của đồ thị hàm bậc bốn trùng phương có hệ số
Cho hàm số có đồ thị
. Số giao điểm của đồ thị
và đường thẳng
là
Số giao điểm của đồ thị và đường thẳng
là số nghiệm của phương trình sau:
.
Phương trình hoành độ giao điểm có 2 nghiệm nên số giao điểm của đồ thị và đường thẳng là 2.
Đồ thị hàm số nào sau đây nhận điểm làm tâm đối xứng?
Đồ thị hàm số có tiệm cận đứng là đường thẳng
và tiệm cận ngang là
suy ra giao điểm của hai đường tiệm cận là
Vậy điểm là tâm đối xứng của đồ thị hàm số
.
Đồ thị sau đây là của hàm số nào?
Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là và tiệm cận đứng của đồ thị hàm số
.
Đồ thị hàm số cắt trục tung tại điểm
Vậy hàm số cần tìm là .
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án dưới đây. Hỏi hàm số đó là hàm số nào?
Từ đồ thị : và đây là đồ thị hàm bậc ba nên ta chọn phương án
Số giao điểm của đồ thị hàm số với trục hoành là:
Xét phương trình hoành độ giao điểm ta có:
Vậy số giao điểm của đồ thị hàm số với trục hoành là
Cho hàm số có đồ thị
. Tìm tham số
để
đi qua điểm
?
Ta có:
Vậy .
Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?
Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Cho hàm số có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục tung là
Từ đồ thị ta thấy đồ thị hàm số cắt trục tung tại điểm có tọa độ .
Cho hàm số có đồ thị là đường cong như hình vẽ:
Tìm số nghiệm của phương trình ?
Ta có:
Số nghiệm của phương trình bằng số giao điểm của hàm số và đường thẳng
Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.
Cho hàm số có đồ thị
Tìm số giao điểm của
và trục hoành.
Pthd của và trục hoành là:
có
giao điểm.
Chú ý: Ở bài toán này hoàn toàn có thể giải trực tiếp bằng Casio với phương trình , nhưng chắc chắn thao tác bấm máy sẽ chậm hơn việc tính tay (thậm chí bài này không cần nháp khi mà kết quả đã hiện ra luôn khi ta đọc đề xong). Vì vậy, Casio là điều không cần thiết với câu hỏi này.
Cho hàm số với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng
b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng
c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai
d) . Đúng||Sai
Cho hàm số với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng
b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng
c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai
d) . Đúng||Sai
Ta có:
Do hàm số đạt cực đại tại x = 3 nên
Với .
Bảng xét dấu y’ như sau:
Với
Bảng xét dấu y’ như sau:
Từ bảng xét dấu, ta có hàm số đạt cực đại tại x = 3
Vậy hàm số đã cho đạt cực đại tại x = 3 khi và chỉ khi m = 5.
Đường cong trong hình vẽ dưới đây là của hàm số nào?

Đường tiệm cận ngang:
Đường tiệm cận đứng:
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:
Đồ thị hàm số bậc 4 có hệ số cắt trục tung tại điểm có tung độ lớn hơn
nên hàm số cần tìm là
.
Cho hàm số bậc ba có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình là
Từ đồ thị hàm số ta có số nghiệm thực của phương trình là
.
Số giao điểm của đồ thị hàm số với trục hoành là
Phương trình hoành độ giao điểm của đồ thị và trục hoành là:
.
Số giao điểm của đồ thị hàm số với trục hoành bằng
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: