Cho bảng biến thiên như hình vẽ:

Bảng biến thiên trên là của hàm số nào?
Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2
=> Loại đáp án C và D
Quan sát bảng biến thiên
=> Loại đáp án B
Cho bảng biến thiên như hình vẽ:

Bảng biến thiên trên là của hàm số nào?
Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2
=> Loại đáp án C và D
Quan sát bảng biến thiên
=> Loại đáp án B
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
Dựa trên hình dáng đồ thị, ta loại và
Mặt khác từ đồ thị, ta thấy nên loại
Cho hình vẽ:
Đường trong trong hình vẽ là đồ thị của hàm số nào?
Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng với
Vậy hàm số cần tìm là .
Cho hàm số có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Ta có tọa độ giao điểm của đồ thị hàm số và trục hoành là .
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?
Dạng đồ thị hình bên là đồ thị hàm số trùng phương có hệ số
.
Do đó, chỉ có đồ thị ở đáp án là thỏa mãn.
Cho hàm số . Các nhận định dưới đây đúng hay sai?
a) Hàm số đồng biến trên khoảng và
. Đúng||Sai
b) Hàm số có hai điểm cực trị. Đúng||Sai
c) Hàm số đạt cực tiểu tại và giá trị cực tiểu bằng
. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên đoạn bằng
. Sai||Đúng
Cho hàm số . Các nhận định dưới đây đúng hay sai?
a) Hàm số đồng biến trên khoảng và
. Đúng||Sai
b) Hàm số có hai điểm cực trị. Đúng||Sai
c) Hàm số đạt cực tiểu tại và giá trị cực tiểu bằng
. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên đoạn bằng
. Sai||Đúng
Ta có:
Bảng biến thiên:

a) trên các khoảng
và
: nên mệnh đề đúng
b) Từ bảng biến thiên thấy hàm số có hai điểm cực trị: nên mệnh đề đúng
c) Hàm số đạt cực đại tại : nên mệnh đề sai
d) Trong khoảng thì hàm số nghịch biến nên:
: nên mệnh đề sai
Đáp án: a) Đúng, b) Đúng, c) Sai, d) Sai
Cho hàm số bậc ba có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình là
Từ đồ thị hàm số ta có số nghiệm thực của phương trình là
.
Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?
Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Số giao điểm của đồ thị hàm số và đồ thị hàm số
Phương trình hoành độ giao điểm:
.
Vậy số giao điểm của 2 đồ thị là 3.
Tìm hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây?
Dựa vào đồ thị hàm số suy ra đồ thị của hàm số bậc 4 trùng phương và nhánh cuối của đồ thị hàm số đi lên nên hệ số .
Đồ thị hàm số cắt trục tại gốc tọa độ nên
Vậy hàm số tương ứng đồ thị đã cho là .
Đồ thị được cho dưới đây là đồ thị của hàm số nào?

Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng
Cho hình vẽ:
Đồ thị trong hình đã cho là đồ thị của hàm số nào?
Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng với
và đồ thị hàm số đi qua điểm
nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là
.
Có bao nhiêu điểm thuộc đồ thị hàm số
sao cho khoảng cách từ điểm
đến trục tung bằng hai lần khoảng cách từ điểm
đến trục hoành?
Gọi là điểm thuộc đồ thị hàm số
Ta có: . Theo bài ra ta có phương trình:
Vậy có 2 điểm M thỏa mãn yêu cầu bài toán.
Cho hàm số liên tục trên đoạn
và có đồ thị là đường cong như hình vẽ bên. Tìm số nghiệm của phương trình
trên đoạn
.
Ta có số nghiệm của phương trình là số giao điểm của đồ thị hàm số
với đường thẳng
.
Từ hình vẽ ta thấy đường thẳng cắt đồ thị hàm số
tại 6 điểm. Vậy số nghiệm của phương trình
là 6.
Quan sát hình vẽ sau:
Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?
Đồ thị hàm số có tiệm cận ngang và tiệm cận đứng là
nên hàm số tương ứng là
.
Đường cong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Đồ thị hình vẽ là đồ thị hàm số bậc ba có hệ số nên chỉ có hàm số
thỏa mãn điều kiện trên.
Đồ thị của hàm số nào tương ứng với đồ thị trong hình vẽ sau:

Dựa vào đồ thị hàm số ta thấy
Đồ thị hàm số cắt trục tung tại điểm
=> => Loại đáp án
Mặt khác => Hệ số a > 0 => Loại đáp án
Hàm số đạt cực trị tại hai điểm , dựa vào hình vẽ ta thấy
trái dấu
=> Loại đáp án
Vậy đáp án là
Đồ thị của hàm số cắt trục tung tại điểm có tung độ bao nhiêu
Trục tung có phương trình: .
Thay vào
được:
.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?
![]() |
Dựa vào đồ thị hàm số ta thấy
=> Hệ số a > 0
=> Loại đáp án B và đáp án D
Mặt khác hàm số có ba điểm cực trị
=> Loại đáp án C
Đồ thị của hàm số dưới đây có dạng như đường cong bên?
Từ đồ thị hàm số đã cho ta nhận dạng được hàm số là hàm số bậc 3 với a > 0.
Suy ra chọn .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: