Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 4 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án thích hợp

    Đồ thị hàm số nào dưới đây có dạng như đường cong hình bên

    Hướng dẫn:

    Qua đồ thị là hàm bậc 3 nên loại y =
x^{4} - 2x^{2} - 2, y = - x^{4} + 2x^{2} - 2

    Bên phải ngoài cùng của đồ thị đi xuống nên hệ số a < 0

    \Rightarrow Loại đáp án y = x^{3} - 3x^{2} - 2

  • Câu 2: Nhận biết
    Tìm số giao điểm của hai đồ thị hàm số

    Số giao điểm của đồ thị hàm số y = x^{3}
- x^{2} và đồ thị hàm số y = -
x^{2} + 5x

    Hướng dẫn:

    Số giao điểm của đồ thị hàm số y = x^{3}
- x^{2} và đồ thị hàm số y = -
x^{2} + 5x chính là số nghiệm thực của phương trình x^{3} - x^{2} = - x^{2} + 5x

    \Leftrightarrow x^{3} - 5x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm \sqrt{5} \\
\end{matrix} ight..

  • Câu 3: Nhận biết
    Xác định hàm số

    Tìm hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây?

    Hướng dẫn:

    Dựa vào đồ thị hàm số suy ra đồ thị của hàm số bậc 4 trùng phương và nhánh cuối của đồ thị hàm số đi lên nên hệ số a > 0.

    Đồ thị hàm số cắt trục Oy tại gốc tọa độ nên c = 0

    Vậy hàm số tương ứng đồ thị đã cho là y =x^{4} - 2x^{2}.

  • Câu 4: Thông hiểu
    Chọn dáp án đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn f( - 1) = 5,f( - 3) = 0 và có bảng xét dấu đạo hàm như sau:

    Số giá trị nguyên dương của tham số m để phương trình 3f(2 - x) + \sqrt{x^{2} + 4} - x = m có nghiệm trong khoảng (3;5)

    Hướng dẫn:

    Đặt g(x) = 3f(2 - x) + \sqrt{x^{2} + 4} -
x với x \in (3;5).

    Ta có: g'(x) = - 3f'(2 - x) +
\frac{x}{\sqrt{x^{2} + 4}} - 1.

    Với x \in (3;5):

    Ta có: 2 - x \in ( - 3; - 1) nên f'(2 - x) > 0 suy ra - 3f'(2 - x) < 0.

    Ta có: \frac{x}{\sqrt{x^{2} + 4}} <
\frac{x}{x} = 1

    Suy ra g'(x) = - 3f'(2 - x) +
\frac{x}{\sqrt{x^{2} + 4}} - 1 < 0,\forall x \in (3;5) nên hàm số nghịch biến trên (3;5).

    Suy ra \min_{(3;5)}g(x) = g(5) = 3f( - 3)
+ \sqrt{5^{2} + 4} - 5 = \sqrt{29} - 5;

    \max_{(3;5)}g(x) = g(3) = 3f( - 1) +
\sqrt{3^{2} + 4} - 3 = 12 + \sqrt{13}.

    Để phương trình 3f(2 - x) + \sqrt{x^{2} +
4} - x = m có nghiệm thì \sqrt{29}
- 5 \leq m \leq 12 + \sqrt{13}m nguyên dương nên m \in \left\{ 1,2,...,15 ight\} tức là có 15 giá trị.

  • Câu 5: Nhận biết
    Tìm P

    Gọi P là số giao điểm của hai đồ thị y = x^{3} - x^{2} + 1y = x^{2} + 1. Tìm P.

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm của hai đồ thị y = x^{3} - x^{2} + 1y = x^{2} + 1:

    x^{3} - x^{2} + 1 = x^{2} +
1

    \Leftrightarrow x^{3} - 2x^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Với x = 0 \Rightarrow y = 1.

    Với x = 2 \Rightarrow y = 5.

    Nên hai đồ thị trên có hai giao điểm là (0;1)(2;5).

    Vậy P = 2.

  • Câu 6: Nhận biết
    Xác định hàm số y = f(x)

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?

    Xác định hàm số y = f(x)
    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy

    \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0

    => Loại đáp án B và đáp án D

    Mặt khác hàm số có ba điểm cực trị

    => Loại đáp án C

  • Câu 7: Nhận biết
    Tìm hàm số theo yêu cầu

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Đây là đồ thị của hàm số bậc ba với hệ số a > 0 nên chọn y = x^{3} - 3x.

  • Câu 8: Nhận biết
    Chọn đáp án chính xác

    Đồ thị sau đây là của hàm số nào?

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là y = 2 và tiệm cận đứng của đồ thị hàm số x = - 1.

    Đồ thị hàm số cắt trục tung tại điểm A(0;1)

    Vậy hàm số cần tìm là y = \frac{2x + 1}{x
+ 1}.

  • Câu 9: Nhận biết
    Chọn phương án thích hợp

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

    Hướng dẫn:

    Dạng đồ thị hình bên là đồ thị hàm số trùng phương y = ax^{4} + bx^{2} + c có hệ số a < 0.

    Do đó, chỉ có đồ thị ở đáp án y = -
2x^{4} + 4x^{2} + 1 là thỏa mãn.

  • Câu 10: Nhận biết
    Chọn hàm số tương ứng với đồ thị hàm số

    Chọn hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây:

    Chọn hàm số tương ứng với đồ thị hàm số

    Hướng dẫn:

    Quan sát đồ thị hàm số ta thấy:

    Hàm số có dạng hàm số bậc bốn trùng phương: y = a{x^4} + b{x^2} + c

    => Loại đáp án B

    Đồ thị có nhánh cuối của đồ thị đi lên

    => Hệ số a > 0

    => Loại đáp án A

    Đồ thị hàm số cắt trục tung tại điểm O

    => c = 0

    => Loại đáp án C

  • Câu 11: Thông hiểu
    Tìm tung độ của điểm

    Biết rằng đường thẳng y = - 2x +
2 cắt đồ thị hàm số y = x^{3} + x +
2 tại điểm duy nhất; kí hiệu \left(
x_{0};y_{0} \right) là tọa độ của điểm đó. Tìm y_{0}

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm:

    - 2x + 2 = x^{3} + x + 2

    \Leftrightarrow x^{3} + 3x = 0
\Leftrightarrow x = 0

    Với x_{0} = 0 \Rightarrow y_{0} =
2.

    Vậy đáp án cần tìm là: y_{0} =
2

  • Câu 12: Thông hiểu
    Tìm tất cả đường thẳng thỏa mãn yêu cầu

    Cho hàm số y = \frac{3x - 2}{x} có đồ thị (C). Có tất cả bao nhiêu đường thẳng cắt (C) tại hai điểm phân biệt mà hoành độ và tung độ của giao điểm này đều là các số nguyên?

    Hướng dẫn:

    Ta có:y = 3 - \frac{2}{x}. Vì M \in (C) có tọa độ nguyên khi x \in U(2) \Rightarrow x \in \left\{ - 2; -
1;1;2 ight\}

    Các điểm thuộc (C) có tọa độ nguyên thuộc tập B = \left\{ ( -
1;5),(1;1),(2;2),( - 2;4) ight\}

    Mỗi cặp hai điểm thuộc tập B xác định một đường thẳng cắt (C) tại hai điểm có tọa độ nguyên do đó số đường thẳng cần tìm là C_{4}^{2} =
6 (đường thẳng)

  • Câu 13: Nhận biết
    Tìm số nghiệm của phương trình

    Cho hàm số y = f(x) có đồ thị như sau:

    Hỏi số nghiệm của phương trình 2f(x) - 1
= 0 bằng bao nhiêu?

    Hướng dẫn:

    Ta có: 2f(x) - 1 = 0 \Leftrightarrow f(x)
= \frac{1}{2}

    Lại có đường thẳng y =
\frac{1}{2} nằm phía trên gốc tọa độ; song song với trục Ox và cắt đồ thị hàm số y = f(x) tại 4 điểm nên phương trình 2f(x) - 1 = 0 có hai nghiệm.

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Cho hình vẽ:

    Hàm số nào sau đây có đồ thị như hình vẽ bên?

    Hướng dẫn:

    Nhận thấy dạng đồ thị của hàm số bậc ba y
= ax^{3} + bx^{2} + cx + d;(a eq 0)

    Mặt khác đồ thị cắt trục tung tại điểm có tung độ âm nên hàm số tương ứng với đồ thị là y = - x^{3} + 2x -
2.

  • Câu 15: Nhận biết
    Chọn phương án thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên

    Hướng dẫn:

    Trong bốn hàm số đã cho thì chỉ có hàm số y = - x^{3} + 3x + 1 (hàm số đa thức bậc ba với hệ số a < 0) có dạng đồ thị như đường cong trong hình.

  • Câu 16: Nhận biết
    Tìm hàm số tương ứng với đồ thị đã cho

    Cho đồ thị hàm số sau:

    Xác định hàm số tương ứng với đồ thị đã cho?

    Hướng dẫn:

    Dựa vào đồ thị hàm số đã cho, ta thấy đồ thị này là đồ thị hàm số bậc 4 có hệ số a < 0 nên hàm số tương ứng là y = - x^{4} + 2x^{2} + 2.

  • Câu 17: Nhận biết
    Xác định hàm số tương ứng với hình vẽ

    Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

    Hướng dẫn:

    Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên hàm số cần tìm là y = - 2x^{4} + 4x^{2} + 1.

  • Câu 18: Nhận biết
    Đường cong trong hình bên là đồ thị của hàm số nào?

    Trắc nghiệm Toán 12 bài 4

  • Câu 19: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số y = f(x) có đồ thị là đường cong như hình vẽ:

    Tìm số nghiệm của phương trình 2f(x) - 3
= 0?

    Hướng dẫn:

    Ta có: 2f(x) - 3 = 0 \Leftrightarrow f(x)
= \frac{3}{2}

    Số nghiệm của phương trình bằng số giao điểm của hàm số y = f(x) và đường thẳng y = \frac{3}{2}

    Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.

  • Câu 20: Nhận biết
    Chọn điểm thuộc đồ thị hàm số

    Cho hàm số y = \frac{3x - 1}{x +
2} có đồ thị kí hiệu là (H). Tìm điểm thuộc (H)?

    Hướng dẫn:

    Ta thấy x = - 1 \Rightarrow y = \frac{3.(
- 1) - 1}{( - 1) + 2} = - 4 \Rightarrow ( - 1; - 4) \in (H)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (85%):
    2/3
  • Thông hiểu (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo