Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 1 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn phương án đúng

    Cho hàm số f(x) có đạo hàm f'(x) = x(x - 1)(x + 4)^{3},\ \forall
x\mathbb{\in R}. Số điểm cực tiểu của hàm số đã cho là

    Hướng dẫn:

    Ta có:

    f'(x) = 0 \Leftrightarrow x(x
- 1)(x + 4)^{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 4 \\
\end{matrix} ight..

    Bảng biến thiên:

    Dựa vào bảng biến thiên ta thấy hàm số đã cho có 2 điểm cực tiểu.

  • Câu 2: Vận dụng
    Chọn đáp án đúng

    Tìm các giá trị của tham số m để đồ thị hàm số y = x^{4} +2mx^{2} -1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 4\sqrt{2}

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số thực m để hàm số y
= mx^{3} + mx^{2} + m(m - 1)x + 2 đồng biến trên \mathbb{R}.

    Hướng dẫn:

    TH1: m = 0 \Rightarrow y = 2 là hàm hằng nên loại m = 0.

    TH2: m eq 0. Ta có: y' = 3mx^{2} + 2mx + m(m - 1).

    Hàm số đồng biến trên \mathbb{R
\Leftrightarrow}f'(x) \geq 0\ \forall x\mathbb{\in R
\Leftrightarrow}

    \left\{ \begin{matrix}
\Delta' = m^{2} - 3m^{2}(m - 1) \leq 0 \\
3m > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m^{2}(4 - 3m) \leq 0 \\
m > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \geq \frac{4}{3} \\
m > 0 \\
\end{matrix} ight.\  \Leftrightarrow m \geq \frac{4}{3}

  • Câu 4: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hàm số y =f(x) = - \frac{1}{3}x^{3} + ax^{2} + (3a + 2)x - 5. Tập hợp các giá trị của tham số a để hàm số y = f(x) nghịch biến trên \mathbb{R}\lbrack m;nbrack. Tính giá trị biểu thức T=2m-n?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) = - \frac{1}{3}x^{3} + ax^{2} + (3a + 2)x - 5. Tập hợp các giá trị của tham số a để hàm số y = f(x) nghịch biến trên \mathbb{R}\lbrack m;nbrack. Tính giá trị biểu thức T=2m-n?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Vận dụng
    Tìm khoảng biến của hàm số

    Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau

    Hàm số y = 3f(x + 2) - x^{3} +
3x đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có: y' = 3\left\lbrack f'(x +
2) - \left( x^{2} - 3 ight) ightbrack

    Với x \in ( - 1;0) \Rightarrow x + 2 \in
(1;2) \Rightarrow f'(x + 2) > 0, lại có x^{2} - 3 < 0 \Rightarrow y' > 0;\forall
x \in ( - 1;0)

    Vậy hàm số y = 3f(x + 2) - x^{3} +
3x đồng biến trên khoảng ( -
1;0) (1; + \infty)

    Chú ý:

    +) Ta xét x \in (1;2) \subset (1; +
\infty) \Rightarrow x + 2 \in (3;4) \Rightarrow f'(x + 2) <
0;x^{2} - 3 > 0

    Suy ra hàm số nghịch biến trên khoảng (1;2) nên loại hai phương án ( - \infty; - 1).

    +) Tương tự ta xét

    x \in ( - \infty; - 2)\Rightarrow x + 2 \in ( - \infty;0)

    \Rightarrow f'(x + 2) <0;x^{2} - 3 > 0 \Rightarrow y' < 0;\forall x \in ( - \infty; -
2)

    Suy ra hàm số nghịch biến trên khoảng ( -
\infty; - 2)

  • Câu 6: Thông hiểu
    Chọn đáp án thích hợp

    Cho các hàm số sau: y = x^{2} + 1;y =
\left( 2x^{2} - 1 ight)^{2};y = (2x - 1)\sqrt[3]{x^{2}};y =
\frac{x}{x^{2} + 1}. Có bao nhiêu hàm số có đúng một điểm cực trị?

    Hướng dẫn:

    Ta có:

    y = x^{2} + 1y' = 2x \Rightarrow y' = 0 \Leftrightarrow
x = 0y' đổi dấu khi x qua nghiệm đó nên hàm số có đúng 1 điểm cực trị.

    y = \left( 2x^{2} - 1
ight)^{2}y' = 2\left(
2x^{2} - 1 ight).4x \Rightarrow y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm \frac{1}{\sqrt{2}} \\
\end{matrix} ight.y' đổi dấu khi x qua các nghiệm đó nên hàm số có 3 điểm cực trị.

    y = (2x - 1)\sqrt[3]{x^{2}} \Rightarrow
y' = 2\sqrt[3]{x^{2}} + \frac{2(2x - 1)}{3\sqrt[3]{x}} = \frac{10x -
2}{3\sqrt[3]{x}}

    \Rightarrow y' = 0 \Leftrightarrow x
= \frac{1}{5}; y’ không xác định khi x = 0 và y’ đổi dấu khi x qua 0;\frac{1}{5} nên hàm số có hai điểm cực trị.

    y = \frac{x}{x^{2} + 1} \Rightarrow
y' = \frac{1 - x^{2}}{\left( x^{2} + 1 ight)^{2}} = 0
\Leftrightarrow x = \pm 1 và y’ đổi dấu khi x qua các nghiệm đó nên hàm số có hai điểm cực trị.

    Vậy chỉ có một hàm số có đúng một cực trị.

  • Câu 7: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = \sqrt{2x^{2} +1}. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Ta có D\mathbb{= R}, y' = \frac{2x}{\sqrt{2x^{2} + 1}}; y' > 0 \Leftrightarrow x >
0.

    Vậy hàm số nghịch biến trên khoảng ( -
\infty;\ 0) và đồng biến trên khoảng (0;\  + \infty).

  • Câu 8: Thông hiểu
    Tìm khoảng nghịch biến của hàm số

    Hàm số y = x3 – 3x2 nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' = 3{x^2} - 6x = 3x\left( {x - 2} ight) \hfill \\   \Rightarrow y' < 0 \Rightarrow 0 < x < 2 \hfill \\ \end{matrix}

    Theo dấu hiệu nhận biết tính đơn điệu của hàm số, hàm số nghịch biến trên (0; 2)

  • Câu 9: Thông hiểu
    Tìm điểm cực trị của hàm số

    Biết rằng hàm số y = 3x^{3} - mx^{2} + mx
- 3 có một điểm cực trị x_{1} = -
1. Tìm điểm cực trị còn lại x_{2} của hàm số.

    Hướng dẫn:

    Ta có y' = 9x^{2} - 2mx +
m.

    Để hàm số có hai điểm cực trị \Leftrightarrow y' = 0 có hai nghiệm phân biệt

    \Leftrightarrow \Delta' = m^{2} - 9m
> 0 \Leftrightarrow \left\lbrack \begin{matrix}
m < 0 \\
m > 9 \\
\end{matrix} ight.\ . (*)

    Theo giả thiết: y'( - 1) = 0
\Leftrightarrow 9 + 3m = 0 \Leftrightarrow m = - 3 (thỏa mãn (*)).

    Với m = - 3 thì y' = 9x^{2} + 6x - 3;\ y' = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = \frac{1}{3} \\
\end{matrix} ight.\ .

  • Câu 10: Vận dụng
    Chọn mệnh đề đúng

    Cho hàm số f(x), bảng xét dấu của f'(x) như sau:

    Hàm số y = f(5 - 2x) đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có y' = f'(5 - 2x) = -
2f'(5 - 2x).

    y^{'} = 0 \Leftrightarrow -
2f^{'(5 - 2x)} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
5 - 2x = - 3 \\
5 - 2x = - 1 \\
5 - 2x = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 4 \\
x = 3 \\
x = 2 \\
\end{matrix} ight..

    f'(5 - 2x) < 0 \Leftrightarrow
\left\lbrack \begin{matrix}
5 - 2x < - 3 \\
- 1 < 5 - 2x < 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x > 4 \\
2 < x < 3 \\
\end{matrix} ight.

    f'(5 - 2x) > 0 \Leftrightarrow
\left\lbrack \begin{matrix}
5 - 2x > 1 \\
- 3 < 5 - 2x < - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < 2 \\
3 < x < 4 \\
\end{matrix} ight..

    Bảng biến thiên

    Dựa vào bảng biến thiên hàm số y = f(5 -
2x) đồng biến trên khoảng (4\ ;\
5).

  • Câu 11: Vận dụng
    Tìm các giá trị nguyên tham số m

    Hỏi có bao nhiêu số nguyên m để hàm số y = \left( m^{2} - 1 \right)x^{3} +
(m - 1)x^{2} - x + 4 nghịch biến trên khoảng ( - \infty; + \infty).

    Hướng dẫn:

    TH1: m = 1. Ta có: y = - x + 4 là phương trình của một đường thẳng có hệ số góc âm nên hàm số luôn nghịch biến trên \mathbb{R}.

    Do đó nhận m = 1.

    TH2: m = - 1. Ta có: y = - 2x^{2} - x + 4 là phương trình của một đường Parabol nên hàm số không thể nghịch biến trên \mathbb{R}.

    Do đó loại m = - 1.

    TH3: m eq \pm 1. Khi đó hàm số nghịch biến trên khoảng ( - \infty; +
\infty) \Leftrightarrow y' \leq 0\ \ \forall x\mathbb{\in
R}, dấu “=” chỉ xảy ra ở hữu hạn điểm trên \mathbb{R}.

    \Leftrightarrow 3\left( m^{2} - 1
ight)x^{2} + 2(m - 1)x - 1 \leq 0, \forall x\mathbb{\in R\ \ }

    \Leftrightarrow \left\{ \begin{matrix}
a < 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 1 < 0 \\
(m - 1)^{2} + 3\left( m^{2} - 1 ight) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 1 < 0 \\
(m - 1)(4m + 2) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 1 < m < 1 \\
- \frac{1}{2} \leq m \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow - \frac{1}{2} \leq m <
1

    m\mathbb{\in Z} nên m = 0.

    Vậy có 2 giá trị m nguyên cần tìm là m = 0 hoặc m
= 1.

  • Câu 12: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Đặt g(x) = \left| f(x + 1) + might| với m là tham số. Tìm điều kiện của tham số m để hàm số y = g(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Đặt g(x) = \left| f(x + 1) + might| với m là tham số. Tìm điều kiện của tham số m để hàm số y = g(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Thông hiểu
    Tìm số điểm cực trị của hàm số

    Cho hàm số f(x), bảng xét dấu của f'(x) như sau:

    Số điểm cực trị của hàm số đã cho là

    Hướng dẫn:

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 1 \\
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Từ bảng biến thiên ta thấy f'(x) đổi dấu khi x qua nghiệm - 1 và nghiệm 1; không đổi dấu khi x qua nghiệm 0 nên hàm số có hai điểm cực trị.

  • Câu 14: Vận dụng
    Tính giá trị biểu thức

    Gọi m_{1};m_{2} là giá trị của tham số m để đồ thị hàm số y = 2x^{3} - 3x^{2} + m - 1 có hai điểm cực trị là P;Q sao cho diện tích tam giác OPQ bằng 2 (O là gốc tọa độ). Khi đó giá trị biểu thức m_{1}.m_{2} bằng:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}.

    Ta có: y' = 6x^{2} - 6x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow y = m - 1 \\
x = 1 \Rightarrow y = m - 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Suy ra P(0;m - 1),Q(1;m - 2)

    \Rightarrow \overrightarrow{PQ} = (1; -
1) \Rightarrow \left| \overrightarrow{PQ} ight| =
\sqrt{2}

    Đường thẳng (PQ) đi qua điểm P(0;m -
1) và nhận \overrightarrow{n} =
(1;1) làm một vecto pháp tuyến nên có phương trình

    1(x - 0) + 1(y - m + 1) = 0
\Leftrightarrow x + y - m + 1 = 0

    d(O;PQ) = \frac{|1 -
m|}{\sqrt{2}}

    Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:

    S_{OAB} = \frac{1}{2}.d(O;PQ).PQ =
2

    \Leftrightarrow \frac{1}{2}.\frac{|1 -
m|}{\sqrt{2}}.\sqrt{2} = 2 \Leftrightarrow |1 - m| = 4

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 - m = 4 \\
1 - m = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 3 \\
m = 5 \\
\end{matrix} ight.

    Vậy m_{1}.m_{2} = - 15.

  • Câu 15: Vận dụng
    Tìm giá trị tham số m theo yêu cầu

    Cho hàm số y = \frac{\ln x - 4}{\ln x -2m} với m là tham số. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số đồng biến trên khoảng (1;e). Tìm số phần tử của S.

    Hướng dẫn:

    Ta có: y = f(x) = \frac{\ln x - 4}{\ln x
- 2m}

    Đặt t = \ln x, điều kiện t \in (0;1)

    g(t) = \frac{t - 4}{t - 2m}; g'(t) = \frac{- 2m + 4}{(t -
2m)^{2}}

    Để hàm số f(x) đồng biến trên (1;e) thì hàm số g(t) đồng biến trên (0;1) \Leftrightarrow g'(t) > 0,\ \ t \in
(0;1)

    \Leftrightarrow \frac{- 2m +
4}{(t - 2m)^{2}} > 0,t \in (0;1)

    \Leftrightarrow \left\{ \begin{matrix}
- 2m + 4 > 0 \\
2m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\frac{1}{2} < m < 2 \\
m < 0 \\
\end{matrix} ight.

    S là tập hợp các giá trị nguyên dương \Rightarrow S = \left\{ 1
ight\}.

    Vậy số phần tử của tập S1.\Leftrightarrow \left\{ \begin{matrix}
- 2m + 4 > 0 \\
2m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\dfrac{1}{2} < m < 2 \\
m < 0 \\
\end{matrix} ight.

  • Câu 16: Vận dụng
    Xác định số cực trị của hàm số

    Hàm số f\left( x ight) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + C_{2019}^3{x^3} + ... + C_{2019}^{2019}{x^{2019}} có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f\left( x ight) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + C_{2019}^3{x^3} + ... + C_{2019}^{2019}{x^{2019}} = {\left( {1 + x} ight)^{2019}} \hfill \\   \Rightarrow f'\left( x ight) = 2019.{\left( {1 + x} ight)^{2018}} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow x =  - 1 \hfill \\ \end{matrix}

    Vì x = -1 là nghiệm bội chẵn nên x = -1 không phải là điểm cực trị của hàm số.

  • Câu 17: Vận dụng
    Định tham số m thỏa mãn điều kiện

    Tìm tất cả các giá trị thực của tham số m để khoảng cách từ điểm M(0;3) đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x^{3} + 3mx +
1 bằng \frac{2}{\sqrt{5}}.

    Hướng dẫn:

    Ta có y' = 3x^{2} + 3m;\ y' = 0
\Leftrightarrow x^{2} = - m.

    Để hàm số có hai điểm cực trị \Leftrightarrow y' = 0 có hai nghiệm phân biệt \Leftrightarrow m < 0. (*)

    Thực hiện phép chia y cho y' ta được phần dư 2mx + 1, nên đường thẳng \Delta:y = 2mx + 1 chính là đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.

    Yêu cầu bài toán

    \Leftrightarrow d\lbrack
M,\Deltabrack = \frac{2}{\sqrt{4m^{2} + 1}} =
\frac{2}{\sqrt{5}}

    \Leftrightarrow m^{2} = 1 \Leftrightarrow
m = \pm 1.

    Đối chiếu điều kiện (*), ta chọn m = - 1.

  • Câu 18: Vận dụng
    Ghi đáp án đúng vào ô trống

    Cho hàm số y = f(x) có đạo hàm trên R và số y = f'(x) có đồ thị như hình vẽ sau. Tìm số điểm cực tiểu của hàm số g(x) = f(x)
+ \frac{1}{2}x^{2} - 2x.

    Đáp án: 2

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên R và số y = f'(x) có đồ thị như hình vẽ sau. Tìm số điểm cực tiểu của hàm số g(x) = f(x)
+ \frac{1}{2}x^{2} - 2x.

    Đáp án: 2

    Ta có g'(x) = f'(x) + x - 2 =
0 \Leftrightarrow f'(x) = - x +
2 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Từ bảng biến thiên ta có hàm số g(x) đạt cực tiểu tại x = 0x =
2. Do đó hàm số g(x)2 điểm cực tiểu.

  • Câu 19: Vận dụng cao
    Tìm m để hàm số đồng biến trên khoảng

    Cho hàm số y = \frac{\sqrt{1 - \ln x} +
1}{\sqrt{1 - \ln x} + m}. Có bao nhiêu giá trị nguyên của tham số m thuộc \lbrack - 5;5\rbrack để hàm số đã cho đồng biến trên khoảng \left(
\frac{1}{e^{3}};1 \right).

    Hướng dẫn:

    Ta có đạo hàm của y = \frac{\sqrt{1 - \ln
x} + 1}{\sqrt{1 - \ln x} + m}y' = \frac{1 - m}{2x\sqrt{1 - \ln x}(\sqrt{1 -
\ln x} + m)^{2}}.

    Hàm số đã cho đồng biến trên khoảng \left( \frac{1}{e^{3}};1 ight) khi và chỉ khi y' > 0,\forall x \in \left(
\frac{1}{e^{3}};1 ight)

    \Leftrightarrow \left\{ \begin{matrix}
1 - m > 0 \\
\sqrt{1 - \ln x} + m eq 0,\forall x \in \left( \frac{1}{e^{3}};1
ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m < 1 \\
\sqrt{1 - \ln x} + m eq 0,\forall x \in \left( \frac{1}{e^{3}};1
ight) \\
\end{matrix} ight. (*)

    Xét hàm số g(x) = \sqrt{1 - \ln x},x \in
\left( \frac{1}{e^{3}};1 ight)

    ta có g'(x) = \frac{- 1}{2x\sqrt{1 -
\ln x}} < 0,\forall x \in \left( \frac{1}{e^{3}};1 ight) do đó ta có bảng biến thiên của hàm số g(x) như sau

    Qua bảng biến thiên ta có (*)
\Leftrightarrow \left\{ \begin{matrix}
m < 1 \\
m otin ( - 2; - 1) \\
\end{matrix} ight., kết hợp với m \in \lbrack - 5;5brack ta có 6 giá trị nguyên của mm \in \left\{ - 5; - 4; - 3; - 2; - 1;0
ight\}.

  • Câu 20: Vận dụng cao
    Tìm khoảng đồng biến của hàm số

    Cho hàm số đa thức f(x) có đạo hàm trên \mathbb{R}. Biết f(0) = 0 và đồ thị hàm số y = f'(x) như hình sau.

    Hàm số g(x) = \left| 4f(x) + x^{2}
\right| đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Xét hàm số h(x) = 4f(x) + x^{2} trên \mathbb{R}.

    f(x) là hàm số đa thức nên h(x) cũng là hàm số đa thức và h(0) = 4f(0) = 0.

    Ta có h'(x) = 4f'(x) +
2x.

    Do đó h'(x) = 0 \Leftrightarrow
f'(x) = - \frac{1}{2}x.

    Dựa vào sự tương giao của đồ thị hàm số y
= f'(x) và đường thẳng y = -
\frac{1}{2}x, ta có h'(x) = 0
\Leftrightarrow x \in \left\{ - 2;0;4 ight\}

    Suy ra bảng biến thiên của hàm số h(x) như sau:

    Từ đó ta có bảng biến thiên của hàm số g(x) = \left| h(x) ight| như sau:

    Dựa vào bảng biến thiên trên, ta thấy hàm số g(x) đồng biến trên khoảng (0;4).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo