Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 1 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Chọn đáp án thích hợp

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= \frac{\sqrt{x^{2} - 8x} - 4}{\sqrt{x^{2} - 8x} + m} nghịch biến trên ( - 1;0) là:

    Hướng dẫn:

    Đặt t = \sqrt{x^{2} - 8x}

    Điều kiện xác định x^{2} - 8x \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \leq 0 \\
x \geq 8 \\
\end{matrix} ight.

    Xét hàm t = \sqrt{x^{2} - 8x};x \in ( -
1;0) ta có:

    t' = \frac{2x - 8}{2\sqrt{x^{2} -
8x}} = \frac{x - 4}{\sqrt{x^{2} - 8x}} < 0;\forall x \in ( -
1;0)

    Ta có bảng biến thiên

    Từ bảng biến thiên ta thấy hàm số t =
\sqrt{x^{2} - 8x} nghịch biến trên khoảng ( - 1;0)t
\in (0;3)

    Khi đó yêu cầu bài toán \Leftrightarrow y
= \frac{t - 4}{t + m} đồng biến trên (0;3)

    Điều kiện xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Ta có: y' = \frac{m + 4}{(t +
m)^{2}};\forall x \in D

    Để hàm số đồng biến trên (0;3) thì

    \left\{ \begin{matrix}
y' > 0 \\
- m otin (0;3) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m + 4 > 0 \\
\left\lbrack \begin{matrix}
- m \leq 0 \\
- m \geq 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 4 \\
\left\lbrack \begin{matrix}
m \geq 0 \\
m \leq - 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
- 4 < m \leq - 3 \\
m \geq 0 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là m \in ( - 4; -
3brack \cup \lbrack 0; + \infty)

  • Câu 2: Vận dụng
    Tìm giá trị tham số m theo yêu cầu

    Cho hàm số y = \frac{\ln x - 4}{\ln x -2m} với m là tham số. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số đồng biến trên khoảng (1;e). Tìm số phần tử của S.

    Hướng dẫn:

    Ta có: y = f(x) = \frac{\ln x - 4}{\ln x
- 2m}

    Đặt t = \ln x, điều kiện t \in (0;1)

    g(t) = \frac{t - 4}{t - 2m}; g'(t) = \frac{- 2m + 4}{(t -
2m)^{2}}

    Để hàm số f(x) đồng biến trên (1;e) thì hàm số g(t) đồng biến trên (0;1) \Leftrightarrow g'(t) > 0,\ \ t \in
(0;1)

    \Leftrightarrow \frac{- 2m +
4}{(t - 2m)^{2}} > 0,t \in (0;1)

    \Leftrightarrow \left\{ \begin{matrix}
- 2m + 4 > 0 \\
2m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\frac{1}{2} < m < 2 \\
m < 0 \\
\end{matrix} ight.

    S là tập hợp các giá trị nguyên dương \Rightarrow S = \left\{ 1
ight\}.

    Vậy số phần tử của tập S1.\Leftrightarrow \left\{ \begin{matrix}
- 2m + 4 > 0 \\
2m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\dfrac{1}{2} < m < 2 \\
m < 0 \\
\end{matrix} ight.

  • Câu 3: Vận dụng
    Chọn phương án thích hợp

    Cho hàm số y = \frac{1}{3}x^{3} - (m +
1)x^{2} + (2m + 1)x - \frac{4}{3} với m > 0 là tham số thực. Tìm giá trị của m để đồ thị hàm số có điểm cực đại thuộc trục hoành.

    Hướng dẫn:

    Đạo hàm y' = x^{2} - 2(m + 1)x + (2m
+ 1)

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 2m + 1 \\
\end{matrix} ight.

    Do m > 0\overset{}{ightarrow}2m + 1
eq 1 nên đồ thị hàm số luôn có hai điểm cực trị.

    Do m > 0\overset{}{ightarrow}2m + 1
> 1\overset{}{ightarrow} hoành độ điểm cực đại là x = 1 nên y_{CD} = y(1) = m - 1.

    Yêu cầu bài toán \Leftrightarrow y_{CD} =0 \Leftrightarrow m - 1 = 0 \Leftrightarrow m = 1: thỏa mãn.

  • Câu 4: Thông hiểu
    Xác định khoảng nghịch biến của hàm số

    Cho hàm số f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f(2x + 1) nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có:

    y' = \left\lbrack f(2x + 1)
ightbrack' = 2f'(2x + 1) < 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x + 1 < - 3 \\
- 1 < 2x + 1 < 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
- 1 < x < 0 \\
\end{matrix} ight.

    Vậy khoảng nghịch biến của hàm số y =
f(2x + 1) là: ( - 1;0)

  • Câu 5: Vận dụng
    Chọn đáp án đúng

    Có bao nhiêu giá trị nguyên của m để đồ thị hàm số y = -x^{3} +3mx^{2} -3m-1 có điểm cực đại và điểm cực tiểu đối xứng với nhau qua đường thẳng d: x + 8y - 74.

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y = (x - 2)^{2}(x + 1)

    Gợi ý:

    - Tìm hai điểm cực trị.

    - Áp dụng công thức khoảng cách giữa hai điểm A\left( x_{A};y_{A} ight);B\left( x_{B};y_{B}
ight):

    AB = \sqrt{\left( x_{A} - x_{B}
ight)^{2} + \left( y_{A} - y_{B} ight)^{2}}

    - Tìm cực trị của hàm số.

    Hướng dẫn:

    Ta có:

    f'(x) = 2(x - 2)(x + 1) + (x -
2)^{2}

    = 2x^{2} - 2x - 4 + x^{2} - 4x + 4 =
3x^{2} - 6x

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \Rightarrow y = 4 \\
x = 2 \Rightarrow y = 0 \\
\end{matrix} ight.

    ⇒ Khoảng cách giữa hai điểm cực trị là \sqrt{(0 - 2)^{2} + (4 - 0)^{2}} =
2\sqrt{5}.

  • Câu 7: Vận dụng
    Xác định khoảng chứa các giá trị tham số m

    Cho hàm số y = f(x) = x^{4} - 2(m +
1)x^{2} + m^{2} - 8 (với mlà tham số) có đồ thị (C). Giả sử các điểm A;B;C là các điểm cực trị của (C). Để tam giác ABC đều thì giá trị của tham số m nằm trong khoảng nào sau đây?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4(m +
1)x

    y' = 0 \Leftrightarrow 4x^{3} - 4(m
+ 1)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = m + 1 \\
\end{matrix} ight.

    Hàm số có ba điểm cực trị khi và chỉ khi phương trình y' = 0 có ba nghiệm phân biệt hay x^{2} = m + 1 có hai nghiệm khác 0

    \Leftrightarrow m + 1 > 0
\Leftrightarrow m > - 1

    Khi đó y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \sqrt{m + 1} \\
x = - \sqrt{m + 1} \\
\end{matrix} ight.

    Đồ thị (C) có ba điểm cực trị là A\left( 0;m^{2} + 8 ight);B\left( \sqrt{m + 1}; - (m + 1)^{2} + m^{2} + 8
ight);C\left( - \sqrt{m + 1}; -
(m + 1)^{2} + m^{2} + 8 ight).

    Ta có: AB = AC = \sqrt{m + 1 + (m +
1)^{4}}

    Do đó tam giác ABC đều \Leftrightarrow AB = BC

    \Leftrightarrow \sqrt{m + 1 + (m +
1)^{4}} = \sqrt{4(m + 1)}

    \Leftrightarrow m + 1 + (m + 1)^{4} =
4(m + 1)

    \Leftrightarrow (m + 1)^{4} - 3(m + 1) =
0

    \Leftrightarrow (m + 1)\left\lbrack (m +
1)^{3} - 3 ightbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m + 1 = 0 \\
(m + 1)^{3} - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = - 1 + \sqrt[3]{3} \\
\end{matrix} ight.

    Kết hợp với điều kiện m > - 1
\Rightarrow m = - 1 + \sqrt[3]{3}.

    Vậy đáp án cần tìm là m \in \left(
\frac{1}{4};\frac{1}{2} ight).

  • Câu 8: Vận dụng
    Xét tính đúng sai của các khẳng định

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    a) Sai

    Ta có f'(x) = (x - 1)^{2}\left( x^{2}
- 3x + 2 ight) = (x - 1)^{3}(x - 2).

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight..

    Vậy phương trình f'(x) = 0 có hai nghiệm.

    b) Đúng

    Bảng biến thiên y = f(x)

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số đồng biến trên các khoảng ( - \infty;1),(2; + \infty).

    Ta có ( - 3;0) \subset ( -
\infty;1) nên hàm số f(x) đồng biến trên khoảng ( - 3;0).

    c) Đúng

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số có hai điểm cực trị.

    d) Sai

    Ta có:

    y = f\left( x^{2} - 6x + 1
ight)

    \Rightarrow y^{'} = \left( x^{2} - 6x
+ 1 ight)^{'}f^{'\left( x^{2} - 6x + 1 ight)} = (2x -
6)f'\left( x^{2} - 6x + 1 ight).

    y' = 0 \Leftrightarrow (2x -
6)f'\left( x^{2} - 6x + 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x - 6 = 0 \\
x^{2} - 6x + 1 = 1 \\
x^{2} - 6x + 1 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \\
x = 0 \\
x = 6 \\
x = - 3 + \sqrt{10} \\
x = - 3 - \sqrt{10} \\
\end{matrix} ight..

    Bảng biến thiên y = f\left( x^{2} - 6x +
1 ight)

    Dựa vào bảng biến thiên của hàm số y =
f\left( x^{2} - 6x + 1 ight) ta thấy hàm số có hai điểm cực đại.

  • Câu 9: Vận dụng
    Xác định số điểm cực trị của hàm số

    Cho hàm số f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}}. Số điểm cực trị của hàm số đã cho là:

    Hướng dẫn:

    Áp dụng công thức khai triển nhị thức Newton ta có:

    \begin{matrix}  f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}} = {\left( {1 + x} ight)^{10}} \hfill \\   \Rightarrow f'\left( x ight) = 10{\left( {1 + x} ight)^9} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Xác định số điểm cực trị của hàm số

    Vậy hàm số đã cho có duy nhất một điểm cực trị x = -1

  • Câu 10: Thông hiểu
    Tìm khoảng nghịch biến của hàm số

    Hàm số y = -
x^{4} + 8x^{2} - 1 nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có:

    y' = - 4x^{2} + 16x \Rightarrow
y' = 0 \Leftrightarrow - 4x^{2} + 16x = 0

    \Leftrightarrow 4x\left( - x^{2} + 4
ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
x = - 2 \\
\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Suy ra hàm số nghịch biến trên khoảng ( -
2;0)(2; + \infty).

  • Câu 11: Vận dụng
    Chọn kết quả đúng nhất

    Tìm tất cả các giá trị thực của tham số để hàm số y = \frac{\cos\ x - 3}{cos\ x - m} nghịch biến trên khoảng \left( \frac{\pi}{2};\pi
\right)

    Hướng dẫn:

    Điều kiện: cos\ x eq m.

    Ta có: y' = \frac{( - m + 3)}{(cos\ x
- m)^{2}}.( - sin\ x) = \frac{(m - 3)}{(cos\ x -
m)^{2}}.sinx

    x \in \left( \frac{\pi}{2};\pi ight)
\Rightarrow sin\ x > 0, (cos\ x
- m)^{2} > 0,\ \ \forall x \in \left( \frac{\pi}{2};\pi ight):cos\
x eq m.

    Để hàm số nghịch biến trên khoảng \left(
\frac{\pi}{2};\pi ight)

    \Leftrightarrow y' < 0\ \ \forall x \in
\left( \frac{\pi}{2};\pi ight)

    \Leftrightarrow \left\{ \begin{matrix}
m - 3 < 0 \\
cos\ x eq m\ \ \forall x \in \left( \frac{\pi}{2};\pi ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m - 3 < 0 \\
m otin ( - 1;0) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m < 3 \\
\left\lbrack \begin{matrix}
m \leq - 1 \\
m \geq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
0 \leq m < 3 \\
m \leq - 1 \\
\end{matrix} ight..

    Chú ý : Tập giá trị của hàm số y = \cos
x,\ \ \forall x \in \left( \frac{\pi}{2};\pi ight)( - 1;0).

  • Câu 12: Vận dụng
    Tìm các giá trị nguyên tham số m

    Hỏi có bao nhiêu số nguyên m để hàm số y = \left( m^{2} - 1 \right)x^{3} +
(m - 1)x^{2} - x + 4 nghịch biến trên khoảng ( - \infty; + \infty).

    Hướng dẫn:

    TH1: m = 1. Ta có: y = - x + 4 là phương trình của một đường thẳng có hệ số góc âm nên hàm số luôn nghịch biến trên \mathbb{R}.

    Do đó nhận m = 1.

    TH2: m = - 1. Ta có: y = - 2x^{2} - x + 4 là phương trình của một đường Parabol nên hàm số không thể nghịch biến trên \mathbb{R}.

    Do đó loại m = - 1.

    TH3: m eq \pm 1. Khi đó hàm số nghịch biến trên khoảng ( - \infty; +
\infty) \Leftrightarrow y' \leq 0\ \ \forall x\mathbb{\in
R}, dấu “=” chỉ xảy ra ở hữu hạn điểm trên \mathbb{R}.

    \Leftrightarrow 3\left( m^{2} - 1
ight)x^{2} + 2(m - 1)x - 1 \leq 0, \forall x\mathbb{\in R\ \ }

    \Leftrightarrow \left\{ \begin{matrix}
a < 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 1 < 0 \\
(m - 1)^{2} + 3\left( m^{2} - 1 ight) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 1 < 0 \\
(m - 1)(4m + 2) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 1 < m < 1 \\
- \frac{1}{2} \leq m \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow - \frac{1}{2} \leq m <
1

    m\mathbb{\in Z} nên m = 0.

    Vậy có 2 giá trị m nguyên cần tìm là m = 0 hoặc m
= 1.

  • Câu 13: Vận dụng cao
    Xét khoảng đồng biến của hàm số

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = x\left( {x - 1} ight)\left( {x - 2} ight),\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {\frac{{5x}}{{{x^2} + 4}}} ight) đồng biến trên khoảng nào trong các khoảng sau?

    Hướng dẫn:

    Ta có: f'\left( x ight) = 0 \Leftrightarrow x{\left( {x - 1} ight)^2}\left( {x - 2} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \\   {x = 2} \end{array}} ight.

    Ta có: g'\left( x ight) = \frac{{ - 5{x^2} + 20}}{{{{\left( {{x^2} + 4} ight)}^2}}}.f'\left( {\frac{{5x}}{{{x^2} + 4}}} ight)

    Cho g’(x) = 0 => \frac{{ - 5{x^2} + 20}}{{{{\left( {{x^2} + 4} ight)}^2}}}.f'\left( {\frac{{5x}}{{{x^2} + 4}}} ight) = 0

    Dựa vào f’(x) ta có:

    \left[ {\begin{array}{*{20}{c}}  { - 5{x^2} + 20 = 0} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 0} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 1} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 2} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm 2} \\   {x = 0} \\   {x = 1} \\   {x = 4} \end{array}} ight.

    Lập bảng xét dấu như sau:

    Xét khoảng đồng biến của hàm số

    Quan sát bảng xét dấy ta suy ra hàm số đồng biến trên khoảng (2; 4)

  • Câu 14: Thông hiểu
    Tìm tham số m thỏa mãn đề bài

    Tìm các giá trị của tham số m để hàm số y = x^{4} - 2mx^{2} + 1 có ba điểm cực trị A(0;1); B;C thỏa mãn BC = 4?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4mx = 4x\left(
x^{2} - m ight)

    Để hàm số có ba cực trị thì m >
0

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow y(0) = 1 \\
x = \pm \sqrt{m} \Rightarrow y\left( \pm \sqrt{m} ight) = 1 - m^{2} \\
\end{matrix} ight.

    Suy ra A(0;1); B\left( \sqrt{m};1 - m^{2} ight);C\left( -
\sqrt{m};1 - m^{2} ight)

    BC = 4 \Rightarrow \sqrt{4m} = 4
\Leftrightarrow m = 4

    Vậy đáp án đúng là m = 4

  • Câu 15: Thông hiểu
    Ghi đáp án vào ô trống

    Xác định tổng S tất cả các giá trị nguyên của tham số m để hàm số y = \frac{mx + 4m - 3}{x + m} nghịch biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định tổng S tất cả các giá trị nguyên của tham số m để hàm số y = \frac{mx + 4m - 3}{x + m} nghịch biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Thông hiểu
    Chọn phương án đúng

    Cho hàm số f(x) có đạo hàm f'(x) = x(x - 1)(x + 4)^{3},\ \forall
x\mathbb{\in R}. Số điểm cực tiểu của hàm số đã cho là

    Hướng dẫn:

    Ta có:

    f'(x) = 0 \Leftrightarrow x(x
- 1)(x + 4)^{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 4 \\
\end{matrix} ight..

    Bảng biến thiên:

    Dựa vào bảng biến thiên ta thấy hàm số đã cho có 2 điểm cực tiểu.

  • Câu 17: Vận dụng
    Chọn kết luận đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Tìm số điểm cực trị của hàm số g(x) =
f\left( x^{2} - 2x ight) trên khoảng (0; + \infty)?

    Hướng dẫn:

    Đặt g(x) = f\left( x^{2} - 2x ight)
\Rightarrow g'(x) = (2x - 2)f'\left( x^{2} - 2x
ight)

    Từ bảng xét dấu của hàm số f'(x)

    g'(x) = 0 \Leftrightarrow g(x) =
f\left( x^{2} - 2x ight) \Rightarrow \left\lbrack \begin{matrix}
2x - 2 = 0 \\
f'\left( x^{2} - 2x ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 2x = - 1\  \\
x^{2} - 2x = 2\ \  \\
2x - 2 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 1 \pm \sqrt{3} \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Từ bảng biến thiên suy ra hàm số g(x) =
f\left( x^{2} - 2x ight) có hai cực trị trên khoảng (0; + \infty).

  • Câu 18: Vận dụng
    Tìm m để hàm số đồng biến trên R

    Tìm giá trị của tham số m để hàm số y = \sin 2x + mx + c đồng biến trên \mathbb{R}

    Hướng dẫn:

    Ta có: y' = 2\cos 2x + m

    Hàm số đồng biến trên \mathbb{R}

    \begin{matrix}   \Leftrightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \mathop {\min }\limits_\mathbb{R} y' =  - 2 + m \geqslant 0 \Leftrightarrow m \geqslant 2 \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu
    Xác định điều kiện của m thỏa mãn yêu cầu

    Hàm số y = \frac{x - 2}{x - m} nghịch biến trên khoảng ( -
\infty;3) khi:

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Ta có: y' = \frac{- m + 2}{(x -
m)^{2}}

    Hàm số nghịch biến trên khoảng ( -
\infty;3) khi \left\{ \begin{matrix}
m otin ( - \infty;3) \\
- m + 2 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 3 \\
m > 2 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 3

    Vậy đáp án cần tìm là m \geq
3.

  • Câu 20: Thông hiểu
    Tìm m để hàm số có cực trị theo yêu cầu

    Cho hàm số y = \frac{x^{3}}{3} - (m +
1)x^{2} + \left( m^{2} - 3 \right)x + 1 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số đạt cực trị tại x = - 1.

    Hướng dẫn:

    Ta có y' = x^{2} - 2(m + 1)x + m^{2}
- 3.

    Yêu cầu bài toán \Leftrightarrow y' = 0 có hai nghiệm phân biệt x_{1}
eq x_{2} = - 1

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' = (m + 1)^{2} - \left( m^{2} - 3 ight) > 0 \\
y'( - 1) = m^{2} + 2m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2m + 4 > 0 \\
m^{2} + 2m = 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 0

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo