Cho hàm số liên tục trên
. Hàm số
có đồ thị như hình vẽ. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có .
Từ đó suy ra hàm số đồng biến trên khoảng
.
Cho hàm số liên tục trên
. Hàm số
có đồ thị như hình vẽ. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có .
Từ đó suy ra hàm số đồng biến trên khoảng
.
Cho hàm số có đạo hàm
. Hàm số
có bao nhiêu điểm cực đại?
Từ giả thiết ta có bảng biến thiên của hàm số f(x)

Ta có:
g(x) = f(3 – x)
=> g’(x) = -f’(3 – x)
Từ bảng biến thiên của hàm số f(x) ta có:
=> Ta có bảng biến thiên của hàm số g(x) là:

Từ bảng biến thiên ta nhận thấy hàm số g(x) có một điểm cực đại.
Cho hàm số có bảng xét dấu của đạo hàm như sau
Hàm số đồng biến trên khoảng nào dưới đây?
Ta có:
Với , lại có
Vậy hàm số đồng biến trên khoảng
và
Chú ý:
+) Ta xét
Suy ra hàm số nghịch biến trên khoảng nên loại hai phương án
+) Tương tự ta xét
Suy ra hàm số nghịch biến trên khoảng
Cho hàm số có đạo hàm
. Số điểm cực trị của hàm số đã cho là
Ta có
Vì nghiệm là nghiệm bội lẻ và
là nghiệm bội chẵn nên số điểm cực trị của hàm số là 1.
Tìm tất cả các giá trị thực của tham số để hàm số nghịch biến trên khoảng
Điều kiện: .
Ta có:
Vì ,
.
Để hàm số nghịch biến trên khoảng
.
Chú ý : Tập giá trị của hàm số là
.
Cho hàm số đa thức có đạo hàm trên
. Biết
và đồ thị hàm số
như hình sau.
Hàm số đồng biến trên khoảng nào dưới đây?
Xét hàm số trên
.
Vì là hàm số đa thức nên
cũng là hàm số đa thức và
.
Ta có .
Do đó .
Dựa vào sự tương giao của đồ thị hàm số và đường thẳng
, ta có
Suy ra bảng biến thiên của hàm số như sau:
Từ đó ta có bảng biến thiên của hàm số như sau:
Dựa vào bảng biến thiên trên, ta thấy hàm số đồng biến trên khoảng
.
Gọi là hai điểm cực trị của hàm số
. Tìm các giá trị của tham số
để
Ta có .
Do nên hàm số luôn có hai điểm cực trị
.
Theo định lí Viet, ta có .
Yêu cầu bài toán
.
Cho hàm số với
là tham số thực. Tìm tất cả các giá trị của
để hàm số đạt cực tiểu tại điểm
.
Ta có .
Vì là điểm cực tiểu của hàm số
Thử lại ta thấy chỉ có giá trị thỏa mãn
đổi dấu từ
sang
khi qua
.
Tìm các giá trị của tham số m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
Cho hàm số với
là tham số. Gọi
là tập hợp tất cả các giá trị của tham số
để hàm số nghịch biến trên một khoảng có độ dài bằng
. Tính tổng các phần tử của tập hợp
?
Ta có:
Dễ thấy nếu suy ra hàm số đồng biến trên
nên trường hợp này không thỏa mãn
Theo yêu cầu bài toán
Vậy tổng tất cả các phần tử của tập S bằng -2.
Cho hàm số với
là tham số. Gọi
là tập hợp các số nguyên
để hàm số đã cho nghịch biến trên khoảng
. Xác định số phần tử của tập hợp
?
Xét là hàm hằng nên hàm số không nghịch biến. Vậy
không thỏa mãn.
Xét
Tập xác định
Để hàm số nghịch biến trên khoảng khi và chỉ khi
Mà nên
Vậy tập hợp S có tất cả 9 giá trị.
Cho hàm số . Tìm tất cả các giá trị của
để hàm số
có hai điểm cực trị?
Ta có:
Để hàm số có hai cực trị thì phương trình có hai nghiệm phân biệt
.
Vậy đáp án cần tìm là .
Cho hàm số với
là tham số thực. Gọi
lần lượt là hoành độ các điểm cực trị của đồ thị hàm số. Tính
.
Ta có
Vậy .
Nhận xét. Nếu phương trình không ra nghiệm đẹp như trên thì ta dùng công thức tổng quát
Có bao nhiêu giá trị nguyên của tham số để hàm số
đồng biến trên
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Mà
Vậy có tất cả 5 giá trị của tham số m thỏa mãn yêu cầu đề bài đưa ra.
Cho hàm số với
là tham số. Tìm tất cả các giá trị thực của tham số
để hàm số đã cho đồng biến trên
?
Tập xác định
Ta có:
Hàm số đã cho đồng biến trên khi và chỉ khi
Hay
Vậy giá trị tham số m thỏa mãn yêu cầu bài toán là .
Cho hàm số có đồ thị như hình vẽ:
Hàm số nghịch biến trên khoảng nào?
Ta có:
Vậy hàm số nghịch biến trên khoảng
.
Cho hàm số liên tục trên
có đồ thị hàm số
cho như hình vẽ
Hàm số đồng biến trên khoảng nào?
Ta có đường thẳng cắt đồ thị hàm số
tại các điểm
như hình vẽ sau:
Dựa vào đồ thị của hai hàm số trên ta có và
.
+ Trường hợp 1: , khi đó ta có
.
Ta có .
.
Kết hợp điều kiện ta có .
+ Trường hợp 2: , khi đó ta có
.
.
Kết hợp điều kiện ta có .
Vậy hàm số đồng biến trên khoảng
.
Cho hàm số . Biết
là hàm bậc 3, có đồ thị như hình vẽ
Có bao nhiêu giá trị nguyên để hàm số
có đúng 1 cực trị?
Đáp án: 18.
Ta có
Khi
Số nghiệm của là số giao điểm của đồ thị hàm số
và đường
Để hàm số có đúng 1 cực trị thì phương trình (1) phải có đúng 1 nghiệm bội lẻ. Dựa vào đồ thị trên, để có đúng 1 cực trị thì điều kiện là
.
Vậy số giá trị của là 18.
Cho hàm số . Số điểm cực trị của hàm số đã cho là:
Áp dụng công thức khai triển nhị thức Newton ta có:
Ta có bảng biến thiên như sau:

Vậy hàm số đã cho có duy nhất một điểm cực trị x = -1
Cho hàm số với
là tham số thực. Tìm giá trị của
để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng
.
Ta có
.
Để đồ thị hàm số có hai điểm cực trị .
Khi đó gọi và
là hai điểm cực trị của đồ thị hàm số.
Suy ra trung điểm của là điểm
và
.
Đường thẳng có một vectơ chỉ phương là
Ycbt
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: