Cho hàm số có đạo hàm
. Số điểm cực tiểu của hàm số đã cho là
Ta có:
.
Bảng biến thiên:
Dựa vào bảng biến thiên ta thấy hàm số đã cho có điểm cực tiểu.
Cho hàm số có đạo hàm
. Số điểm cực tiểu của hàm số đã cho là
Ta có:
.
Bảng biến thiên:
Dựa vào bảng biến thiên ta thấy hàm số đã cho có điểm cực tiểu.
Tìm các giá trị của tham số m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
Tìm tất cả các giá trị của tham số thực để hàm số
đồng biến trên
.
TH1: là hàm hằng nên loại
.
TH2: . Ta có:
.
Hàm số đồng biến trên
Cho hàm số . Tập hợp các giá trị của tham số
để hàm số
nghịch biến trên
là
. Tính giá trị biểu thức
?
Cho hàm số . Tập hợp các giá trị của tham số
để hàm số
nghịch biến trên
là
. Tính giá trị biểu thức
?
Cho hàm số có bảng xét dấu của đạo hàm như sau
Hàm số đồng biến trên khoảng nào dưới đây?
Ta có:
Với , lại có
Vậy hàm số đồng biến trên khoảng
và
Chú ý:
+) Ta xét
Suy ra hàm số nghịch biến trên khoảng nên loại hai phương án
+) Tương tự ta xét
Suy ra hàm số nghịch biến trên khoảng
Cho các hàm số sau: . Có bao nhiêu hàm số có đúng một điểm cực trị?
Ta có:
có
và
đổi dấu khi
qua nghiệm đó nên hàm số có đúng 1 điểm cực trị.
có
và
đổi dấu khi
qua các nghiệm đó nên hàm số có 3 điểm cực trị.
; y’ không xác định khi
và y’ đổi dấu khi
qua
nên hàm số có hai điểm cực trị.
và y’ đổi dấu khi x qua các nghiệm đó nên hàm số có hai điểm cực trị.
Vậy chỉ có một hàm số có đúng một cực trị.
Cho hàm số . Mệnh đề nào dưới đây đúng?
Ta có ,
;
.
Vậy hàm số nghịch biến trên khoảng và đồng biến trên khoảng
.
Hàm số y = x3 – 3x2 nghịch biến trên khoảng nào dưới đây?
Ta có:
Theo dấu hiệu nhận biết tính đơn điệu của hàm số, hàm số nghịch biến trên (0; 2)
Biết rằng hàm số có một điểm cực trị
. Tìm điểm cực trị còn lại
của hàm số.
Ta có .
Để hàm số có hai điểm cực trị có hai nghiệm phân biệt
Theo giả thiết: (thỏa mãn
).
Với thì
Cho hàm số , bảng xét dấu của
như sau:
Hàm số đồng biến trên khoảng nào dưới đây?
Ta có .
.
.
Bảng biến thiên
Dựa vào bảng biến thiên hàm số đồng biến trên khoảng
.
Hỏi có bao nhiêu số nguyên để hàm số
nghịch biến trên khoảng
.
TH1: . Ta có:
là phương trình của một đường thẳng có hệ số góc âm nên hàm số luôn nghịch biến trên
.
Do đó nhận .
TH2: . Ta có:
là phương trình của một đường Parabol nên hàm số không thể nghịch biến trên
.
Do đó loại .
TH3: . Khi đó hàm số nghịch biến trên khoảng
, dấu “=” chỉ xảy ra ở hữu hạn điểm trên
.
,
Vì nên
.
Vậy có giá trị
nguyên cần tìm là
hoặc
.
Cho hàm số liên tục trên tập số thực và có bảng biến thiên như sau:
Đặt với
là tham số. Tìm điều kiện của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số liên tục trên tập số thực và có bảng biến thiên như sau:
Đặt với
là tham số. Tìm điều kiện của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số , bảng xét dấu của
như sau:
Số điểm cực trị của hàm số đã cho là
Từ bảng biến thiên ta thấy đổi dấu khi
qua nghiệm
và nghiệm
; không đổi dấu khi
qua nghiệm
nên hàm số có hai điểm cực trị.
Gọi là giá trị của tham số
để đồ thị hàm số
có hai điểm cực trị là
sao cho diện tích tam giác
bằng
(
là gốc tọa độ). Khi đó giá trị biểu thức
bằng:
Tập xác định .
Ta có:
Ta có bảng biến thiên như sau:
Suy ra
Đường thẳng (PQ) đi qua điểm và nhận
làm một vecto pháp tuyến nên có phương trình
Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:
Vậy .
Cho hàm số với
là tham số. Gọi
là tập hợp các giá trị nguyên dương của
để hàm số đồng biến trên khoảng
. Tìm số phần tử của
.
Ta có:
Đặt , điều kiện
;
Để hàm số đồng biến trên
thì hàm số
đồng biến trên
là tập hợp các giá trị nguyên dương
.
Vậy số phần tử của tập là
.
Hàm số có bao nhiêu điểm cực trị?
Ta có:
Vì x = -1 là nghiệm bội chẵn nên x = -1 không phải là điểm cực trị của hàm số.
Tìm tất cả các giá trị thực của tham số để khoảng cách từ điểm
đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số
bằng
Ta có
Để hàm số có hai điểm cực trị có hai nghiệm phân biệt
.
Thực hiện phép chia cho
ta được phần dư
, nên đường thẳng
chính là đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.
Yêu cầu bài toán
.
Đối chiếu điều kiện , ta chọn
.
Cho hàm số có đạo hàm trên
và số
có đồ thị như hình vẽ sau. Tìm số điểm cực tiểu của hàm số
.
Đáp án: 2
Cho hàm số có đạo hàm trên
và số
có đồ thị như hình vẽ sau. Tìm số điểm cực tiểu của hàm số
.
Đáp án: 2
Ta có
Ta có bảng biến thiên:
Từ bảng biến thiên ta có hàm số đạt cực tiểu tại
và
. Do đó hàm số
có
điểm cực tiểu.
Cho hàm số . Có bao nhiêu giá trị nguyên của tham số
thuộc
để hàm số đã cho đồng biến trên khoảng
.
Ta có đạo hàm của là
.
Hàm số đã cho đồng biến trên khoảng khi và chỉ khi
(*)
Xét hàm số
ta có do đó ta có bảng biến thiên của hàm số
như sau
Qua bảng biến thiên ta có , kết hợp với
ta có 6 giá trị nguyên của
là
.
Cho hàm số đa thức có đạo hàm trên
. Biết
và đồ thị hàm số
như hình sau.
Hàm số đồng biến trên khoảng nào dưới đây?
Xét hàm số trên
.
Vì là hàm số đa thức nên
cũng là hàm số đa thức và
.
Ta có .
Do đó .
Dựa vào sự tương giao của đồ thị hàm số và đường thẳng
, ta có
Suy ra bảng biến thiên của hàm số như sau:
Từ đó ta có bảng biến thiên của hàm số như sau:
Dựa vào bảng biến thiên trên, ta thấy hàm số đồng biến trên khoảng
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: