Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 3 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm các tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{\sqrt{x^{2} - 3x
- 10}}{x - 2} có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Điều kiện xác định \left\{ \begin{matrix}
x^{2} - 3x - 10 \geq 0 \\
x - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 5 \\
\end{matrix} ight.\  \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 5 \\
\end{matrix} ight.

    Vậy D = ( - \infty; - 2brack \cup
\lbrack 5; + \infty)

    Xét \lim_{x ightarrow +\infty}\dfrac{\sqrt{x^{2} - 3x - 10}}{x - 2} = \lim_{x ightarrow +\infty}\dfrac{x\sqrt{1 - \dfrac{3}{x} - \dfrac{10}{x^{2}}}}{x - 2}=\lim_{x ightarrow + \infty}\dfrac{\sqrt{1 - \dfrac{3}{x} -\dfrac{10}{x^{2}}}}{1 - \dfrac{2}{x}} = 1

    Vậy y = 1 là tiệm cận ngang của đồ thị hàm số.

    Xét \lim_{x ightarrow -\infty}\dfrac{\sqrt{x^{2} - 3x - 10}}{x - 2} = \lim_{x ightarrow -\infty}\dfrac{- x\sqrt{1 - \dfrac{3}{x} - \dfrac{10}{x^{2}}}}{x - 2}=\lim_{x ightarrow + \infty}\dfrac{- \sqrt{1 - \dfrac{3}{x} -\dfrac{10}{x^{2}}}}{1 - \dfrac{2}{x}} = - 1

    Vậy y = - 1 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow
2^{+}}\frac{\sqrt{x^{2} - 3x - 10}}{x - 2};\lim_{x ightarrow
2^{-}}\frac{\sqrt{x^{2} - 3x - 10}}{x - 2} không tồn tại nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số có 2 tiệm cận.

  • Câu 2: Nhận biết
    Tìm tiệm cận ngang của đồ thị hàm số

    Cho hàm số y = f(x) có đồ thị như hình vẽ.

    Đồ thị hàm số đã cho có đường tiệm cận ngang bằng:

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta có: \lim_{x
ightarrow \pm \infty}f(x) = - 1.

    Do đó, đồ thị hàm số y = f(x) có đường tiệm cận ngang là y = -
1.

  • Câu 3: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}\backslash\left\{ -
1 \right\}, có bảng biến thiên như sau:

    Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Từ bảng biến thiên, ta có:

    \left\{ \begin{matrix}
\lim_{x ightarrow ( - 1)^{-}}f(x) = + \infty \\
\lim_{x ightarrow ( - 1)^{+}}f(x) = - \infty \\
\end{matrix} ight.\  ightarrow x = - 1 là TCĐ.

    \left\{ \begin{matrix}
\lim_{x ightarrow - \infty}y = - 2 \\
\lim_{x ightarrow + \infty}y = - 2 \\
\end{matrix} ight.\  ightarrow y = - 2 là TCN.

    Vậy đồ thị hàm số có tiệm cận đứng x = -
1 và tiệm cận ngang y = -
2..

  • Câu 4: Nhận biết
    Đồ thị hàm số sau có tiệm cận ngang là đường thẳng nào sau đây?

    Toán 12 Kết nối tri thức bài 3

  • Câu 5: Thông hiểu
    Xác định số tiệm cận của hàm số

    Số tiệm cận của hàm số y = \frac{{\sqrt {{x^2} + 1}  - x}}{{\sqrt {{x^2} - 9}  - 4}} là:

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Tập xác định: \left\{ {\begin{array}{*{20}{c}}  {{x^2} - 9 \geqslant 0} \\   {\sqrt {{x^2} - 9}  e 4} \end{array}} ight. \Rightarrow x \in \left( { - \infty ; - 3} ight] \cup \left[ {3; + \infty } ight)\backslash \left\{ { \pm 5} ight\}

    Khi đó \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = 0;\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = 2

    => Đồ thị hàm số có hai tiệm cận ngang

    Mặt khác \mathop {\lim }\limits_{x \to  \pm {5^ + }} f\left( x ight) =  \mp \infty ;\mathop {\lim }\limits_{x \to  \pm {5^ - }} f\left( x ight) =  \pm \infty

    => Đồ thị hàm số có hai tiệm cận đứng

    Vậy đồ thị hàm số đã cho có 4 đường tiệm cận.

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = \frac{\sqrt{4 -
x}}{\sqrt{x + 1}}. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Tập xác định D = ( - 1;4brack suy ra đồ thị hàm số không có đường tiệm cận ngang và đường tiệm cận xiên

    \lim_{x ightarrow ( - 1)^{+}}y = +
\infty suy ra đồ thị nhận đường thẳng x = - 1 làm tiệm cận đứng.

    Vậy đồ thị hàm số có một đường tiệm cận.

  • Câu 7: Nhận biết
    Chọn kết luận đúng

    Cho hàm số f(x) có tập xác định là D = ( - 3;3)\backslash\left\{ - 1;1
\right\} , liên tục trên các khoảng của tập D và có

    \begin{matrix}
\begin{matrix}
\lim_{x \rightarrow ( - 3)^{+}}f(x) = - \infty; \\
\lim_{x \rightarrow 1^{-}}f(x) = + \infty; \\
\end{matrix} & \begin{matrix}
\lim_{x \rightarrow ( - 1)^{-}}f(x) = - \infty; \\
\lim_{x \rightarrow 1^{+}}f(x) = + \infty; \\
\end{matrix} & \begin{matrix}
\lim_{x \rightarrow ( - 1)^{+}}f(x) = - \infty; \\
\lim_{x \rightarrow 3^{-}}f(x) = + \infty. \\
\end{matrix} \\
\end{matrix}

    Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Câu đúng cần tìm là:

    Đồ thị hàm số có đúng bốn TCĐ là các đường thẳng x = \pm 1x
= \pm 3

  • Câu 8: Nhận biết
    Chọn câu đúng

    Cho hàm số y = f(x)\lim_{x ightarrow \pm \infty}f(x) = 1\lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{+}}f(x) = 10. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Theo định nghĩa về tiệm cận, ta có:

    \lim_{x ightarrow \pm \infty}f(x) = 1\
\ \overset{}{ightarrow}\ \ y = 1 là TCN.

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{-}}f(x) = 10\ \ \overset{}{ightarrow}\ \ x = 0 không phải là TCĐ.

  • Câu 9: Nhận biết
    Chọn đáp án đúng

    Tìm tiệm cận ngang của đồ thị hàm số y =
\frac{3x - 1}{- x - 1}?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow +
\infty}\frac{3x - 1}{- x - 1} = \lim_{x ightarrow - \infty}\frac{3x -
1}{- x - 1} = - 3

    Vậy tiệm cận ngang của đồ thị hàm số y =
\frac{3x - 1}{- x - 1} là đường thẳng y = - 3.

  • Câu 10: Nhận biết
    Xác định tiệm cận đứng của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Tiệm cận đứng của đồ thị hàm số đã cho có phương trình là

    Hướng dẫn:

    Quan sát bảng biến thiên ta thấy \lim_{x
ightarrow 1^{+}}f(x) = - \infty; \lim_{x ightarrow 1^{-}}f(x) = +
\infty.

    Do đó đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số y =
f(x).

  • Câu 11: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận ngang của đồ thị hàm số đã cho?

    Hướng dẫn:

    Từ đồ thị suy ra đồ thị hàm số đã cho có đường tiệm cận ngang là y = 1.

  • Câu 12: Nhận biết
    Tìm tiệm cận đứng của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Kết luận nào sau đây đầy đủ về đường tiệm cận của đồ thị hàm số y = f(x)?

    Hướng dẫn:

    Ta có \lim_{x ightarrow - 1}f(x) =
\sqrt{2} eq \pm \infty nên đồ thị hàm số không có TCĐ.

    Ta có \lim_{x ightarrow - \infty}f(x) =
- 1 ightarrow y = - 1 là TCN; \lim_{x ightarrow + \infty}f(x) = 1 ightarrow
y = 1 là TCN.

    Vậy câu đúng là: “Đồ thị hàm số có đường tiệm cận ngang y = \pm 1”.

  • Câu 13: Nhận biết
    Tìm số tiệm cận đứng của đồ thị hàm số

    Đồ thị của hàm số y = \frac{x^{2} - 1}{3
- 2x - 5x^{2}} có bao nhiêu đường tiệm cận đứng?

    Hướng dẫn:

    Ta có: 5x^{2} - 2x + 3 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = \dfrac{3}{5} \\\end{matrix} ight.

    Với x = - 1 thì x^{2} - 1 = 0 nên đồ thị hàm số có một tiệm cận đứng là x =
\frac{3}{5}.

  • Câu 14: Nhận biết
    Tìm số đường tiệm cận ngang

    Cho hàm số y = f(x) có bảng biến thiên:

    Số đường tiệm cận ngang của đồ thị hàm số y = f(x) là:

    Hướng dẫn:

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = 5 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y =  - 3 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang y = - 3;y = 5.

  • Câu 15: Nhận biết
    Số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = \frac{{\sqrt {{x^2} - 4} }}{{x - 1}}. Đồ thị hàm số có mấy đường tiệm cận?

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Tập xác định: D = \left( { - \infty ;2} ight] \cup \left[ {2; + \infty } ight)

    Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.

    \begin{matrix}  \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt {{x^2} - 4} }}{{x - 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|\sqrt {1 - \dfrac{4}{{{x^2}}}} }}{{x\left( {1 - \dfrac{1}{x}} ight)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|}}{x} \hfill \\   = \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y = 1} \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.

  • Câu 16: Nhận biết
    Tìm tiệm cận đứng đường thẳng

    Tiệm cận đứng của đồ thị hàm số y =
\frac{2x - 1}{- x + 2} là  đường thẳng

    Hướng dẫn:

    Ta có \lim_{x ightarrow 2^{+}}\frac{2x
- 1}{- x + 2} = - \ \infty nên đồ thị hàm số có tiệm cận đứng là x = 2.

  • Câu 17: Nhận biết
    Tìm tiệm cận ngang của đồ thị hàm số

    Cho hàm số y = \frac{ax + b}{cx + d}(c
eq 0,ad - bc eq 0) có đồ thị như hình vẽ bên. Tiệm cận ngang của đồ thị hàm số là:

    Hướng dẫn:

    Dựa vào đồ thị ta thấy đồ thị có tiệm cận ngang là y = \frac{1}{2}

  • Câu 18: Nhận biết
    Chọn khẳng định đúng

    Cho đồ thị hàm số y = f(x) như hình bên. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Khẳng định đúng: “Đồ thị hàm số có tiệm cận đứng x = 0, tiệm cận ngang y = 1”.

  • Câu 19: Nhận biết
    Xác định số đường tiệm cận đứng

    Đồ thị hàm số y = \frac{\sqrt{x -
7}}{x^{2} + 3x - 4} có bao nhiêu đường tiệm cận đứng?

    Hướng dẫn:

    Tập xác định D = \lbrack 7; +
\infty)

    Phương trình x^{2} + 3x - 4 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 4 \\
\end{matrix} ight.

    Do đó không tồn tại các giới hạn \lim_{x
ightarrow - 4^{-}}y;\lim_{x ightarrow - 4^{+}}y;\lim_{x ightarrow
1^{-}}y;\lim_{x ightarrow 1^{+}}y. Vì vậy đồ thị hàm số không có đường tiệm cận đứng.

  • Câu 20: Nhận biết
    Xác định tiệm cận ngang của đồ thị hàm số

    Tiệm cận ngang của đồ thị hàm số y =
\frac{2x + 1}{x - 1} là:

    Hướng dẫn:

    Ta có \lim_{x ightarrow \pm
\infty}\frac{2x + 1}{x - 1} = \lim_{x ightarrow \pm \infty}\frac{2 +
\frac{1}{x}}{1 - \frac{1}{x}} = 2.

    Suy ra đồ thị hàm số có tiệmcận ngang là \mathbf{y =}\mathbf{2}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo