Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 3 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm số tiệm cận đứng của đồ thị hàm số

    Đồ thị của hàm số y = \frac{x^{2} - 1}{3
- 2x - 5x^{2}} có bao nhiêu đường tiệm cận đứng?

    Hướng dẫn:

    Ta có: 5x^{2} - 2x + 3 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = \dfrac{3}{5} \\\end{matrix} ight.

    Với x = - 1 thì x^{2} - 1 = 0 nên đồ thị hàm số có một tiệm cận đứng là x =
\frac{3}{5}.

  • Câu 2: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có: \lim_{x
ightarrow \pm \infty}f(x) = 2 nên đồ thị hàm số có đường tiệm cận ngang là y =  2.

  • Câu 3: Nhận biết
    Tìm tiệm cận ngang của đồ thị hàm số

    Đồ thị hàm số nào sau đây không có tiệm cận ngang?

    Gợi ý:

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Ta có:

    \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^2} + 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{x + \dfrac{1}{x}}}{{1 - \dfrac{1}{x}}} = \mathop {\lim }\limits_{x \to \infty } x = \infty

    Vậy đồ thị hàm số y = \frac{{{x^2} + 1}}{{x - 1}} không có tiệm cận ngang.

  • Câu 4: Thông hiểu
    Xác định số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{\sqrt{1 -
x^{2}}}{x^{2} + 2x} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    TXĐ: D = \lbrack - 1\ ;\ 0) \cup (0\ ;\
1brack\ \ \overset{}{ightarrow} không tồn tại \lim_{x ightarrow - \infty}y\lim_{x ightarrow + \infty}y. Suy ra đồ thị hàm số không có tiệm cận ngang.

    Ta có \left\{ \begin{matrix}
\lim_{x ightarrow \ 0^{+}}\frac{\sqrt{1 - x^{2}}}{x^{2} + 2x} = +
\infty \\
\lim_{x ightarrow \ 0^{-}}\frac{\sqrt{1 - x^{2}}}{x^{2} + 2x} = -
\infty \\
\end{matrix} ight.\ \overset{}{ightarrow}\ \ x = 0 là TCĐ.

    Vậy đồ thị hàm số có đúng một tiệm cận.

  • Câu 5: Nhận biết
    Tìm tổng số tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x - 1}{x^{2} +
1} có bao nhiêu đường tiệm cận ngang và tiệm cận đứng?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Đồ thị hàm số không có đường tiệm cận đứng.

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x - 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\dfrac{1}{x} - \dfrac{1}{{{x^2}}}}}{{1 + \dfrac{1}{{{x^2}}}}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{x - 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\dfrac{1}{x} - \dfrac{1}{{{x^2}}}}}{{1 + \dfrac{1}{{{x^2}}}}} = 0 \hfill \\ 
\end{gathered}  ight. suy ra y =
0 là tiệm cận ngang của đồ thị hàm số.

  • Câu 6: Nhận biết
    Tìm tiệm cận đứng của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có tiệm cận đứng là:

    Hướng dẫn:

    Từ bảng biến thiên ta có đồ thị hàm số có đường tiệm cận đứng là x = - 1.

  • Câu 7: Nhận biết
    Tiệm cận đứng của đồ thị hàm số sau là đường thẳng nào?

    Trắc nghiệm Toán 12

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Đồ thị hàm số y = \frac{\sqrt{x -
7}}{x^{2} + 3x - 4} có bao nhiêu đường tiệm cận đứng?

    Hướng dẫn:

    TXĐ D = \lbrack 7\ ; + \infty)\
.

    x^{2} + 3x - 4 eq 0,\ \ \forall x
\in D.

    Do đó đồ thị hàm số không có tiệm cận đứng.

  • Câu 9: Nhận biết
    Chọn đáp án sai

    Cho hàm số y = \frac{{2{x^2} - 3x + 2}}{{{x^2} - 2x - 3}}. Khẳng định nào sau đây sai?

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Ta có:

    \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - 3x + 2}}{{{x^2} - 2x - 3}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2 - \dfrac{3}{x} + \dfrac{2}{{{x^2}}}}}{{1 - \dfrac{2}{x} - \dfrac{3}{{{x^2}}}}} = 2

    => y = 2 là tiệm cận ngang của đồ thị hàm số

    Ta cũng có: \mathop {\lim }\limits_{x \to \left( { - 1} ight)} y = \infty ;\mathop {\lim }\limits_{x \to 3} y = \infty => x = 1; x = 32 là tiệm cận đứng của đồ thị hàm số

  • Câu 10: Nhận biết
    Tìm tiệm cận đứng của hàm số

    Tiệm cận đứng của đồ thị hàm số y =
\frac{2x + 3}{x - 1} là đường thẳng có phương trình

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow 1^{+}}y = \lim_{x
ightarrow 1^{+}}\frac{2x + 3}{x - 1} = + \infty \Rightarrow x =
1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow 1^{-}}y = \lim_{xightarrow 1^{-}}\frac{2x + 3}{x - 1} = - \infty \Rightarrow x =1 là tiệm cận đứng của đồ thị hàm số.

  • Câu 11: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x) có \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  - \infty\mathop {\lim }\limits_{x \to {2^ + }} f\left( x ight) =  - \infty. Khẳng định nào sau đây là khẳng định đúng?

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Hướng dẫn:

    Ta có: \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  - \infty => Đồ thị hàm số đã cho có TCĐ là x = 0

    \mathop {\lim }\limits_{x \to {2^ + }} f\left( x ight) =  - \infty => Đồ thị hàm số đã cho có TCĐ là x = 2

  • Câu 12: Nhận biết
    Cho bảng biến thiên sau:

    Toán 12 Kết nối tri thức bài 3

    Tiệm cận đứng của hàm số là:

  • Câu 13: Nhận biết
    Số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây

    Số đường tiệm cận của đồ thị hàm số

    Số đường tiệm cận của đồ thị hàm số y = f(x) là

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy

    \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} y =  + \infty => x = -2 là tiệm cận đúng của đồ thị hàm số

    Ta cũng có \mathop {\lim }\limits_{x \to \infty } y = 5 = > y = 5 là tiệm cận ngang của đồ thị hàm số

    Do đó đồ thị hàm số có 2 đường tiệm cận

  • Câu 14: Nhận biết
    Tìm tổng các đường tiệm cận

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow - \infty}f(x) =
2;\lim_{x ightarrow 0^{+}}f(x) = + \infty nên hàm số có tiệm cận ngang là y = 2 và tiệm cận đứng là x = 0.

  • Câu 15: Thông hiểu
    Chọn hàm số thích hợp với yêu cầu

    Đồ thị hàm số nào trong các hàm số dưới đây có tiệm cận đứng?

    Hướng dẫn:

    Nhận thấy các đáp án y = \frac{1}{x^{4} +
1}.y = \frac{1}{x^{2} +
1}.;y = \frac{1}{x^{2} + x +
1}. là các hàm số có TXĐ: D\mathbb{= R} nên không có TCĐ.

    Dùng phương pháp loại trừ thì y =
\frac{1}{\sqrt{x}}. đúng.

    (Thật vậy; hàm số y =
\frac{1}{\sqrt{x}}\lim_{x
ightarrow 0^{+}}y = \lim_{x ightarrow 0^{+}}\frac{1}{\sqrt{x}} = +
\infty\ \ \overset{}{ightarrow}\ \ x = 0 là TCĐ)

  • Câu 16: Nhận biết
    Chọn đáp án đúng

    Tiệm cận đứng của đồ thị hàm số y =
\frac{x + 1}{x + 3}

    Hướng dẫn:

    Ta có \lim_{x ightarrow - 3^{+}}y = -\infty\lim_{x ightarrow -3^{-}}y = + \infty nên đồ thị hàm số nhận đường thẳng x = - 3 làm tiệm cận đứng.

  • Câu 17: Thông hiểu
    Tìm các tiệm cận của đồ thị hàm số

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x} có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 0;3 ight\}

    f(x) = \frac{x^{2} - 3x + 1}{x^{2} -
3}

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = -
\infty

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = +
\infty

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x}có tiệm cận đứng là đường thẳng x = 0

    \lim_{x ightarrow 3^{+}}f(x) = \lim_{x
ightarrow 3^{+}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = +
\infty

    \lim_{x ightarrow 3^{-}}f(x) = \lim_{x
ightarrow 3^{-}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = -
\infty

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x}có tiệm cận đứng là đường thẳng x = 3

    \lim_{x ightarrow \pm \infty}f(x) =
\lim_{x ightarrow \pm \infty}\frac{x^{2} - 3x + 1}{x^{2} - 3x} =
1

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x}có tiệm cận ngang là đường thẳng y = 1.

  • Câu 18: Nhận biết
    Xác định tiệm cận đứng của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Tiệm cận đứng của đồ thị hàm số đã cho có phương trình là

    Hướng dẫn:

    Quan sát bảng biến thiên ta thấy \lim_{x
ightarrow 1^{+}}f(x) = - \infty; \lim_{x ightarrow 1^{-}}f(x) = +
\infty.

    Do đó đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số y =
f(x).

  • Câu 19: Nhận biết
    Chọn hàm số thích hợp

    Trong các hàm số sau, đồ thị hàm số nào có đường tiệm cận ngang?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow \pm\infty}\dfrac{- 4x + 1}{x^{2} - 2} = \lim_{x ightarrow \pm\infty}\left( \dfrac{1}{x} ight).\lim_{x ightarrow \pm \infty}\left(\dfrac{- 4 + \dfrac{1}{x}}{1 - \dfrac{2}{x^{2}}} ight) = 0 nên tiệm cận ngang của đồ thị hàm số y = \frac{-
4x + 1}{x^{2} - 2} là đường thẳng có phương trình y = 0.

  • Câu 20: Nhận biết
    Xác định số đường tiệm cận đứng

    Đồ thị hàm số y = \frac{\sqrt{x -
7}}{x^{2} + 3x - 4} có bao nhiêu đường tiệm cận đứng?

    Hướng dẫn:

    Tập xác định D = \lbrack 7; +
\infty)

    Phương trình x^{2} + 3x - 4 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 4 \\
\end{matrix} ight.

    Do đó không tồn tại các giới hạn \lim_{x
ightarrow - 4^{-}}y;\lim_{x ightarrow - 4^{+}}y;\lim_{x ightarrow
1^{-}}y;\lim_{x ightarrow 1^{+}}y. Vì vậy đồ thị hàm số không có đường tiệm cận đứng.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo