Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 3 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định tiệm cận đứng của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Tiệm cận đứng của đồ thị hàm số đã cho có phương trình là

    Hướng dẫn:

    Quan sát bảng biến thiên ta thấy \lim_{x
ightarrow 1^{+}}f(x) = - \infty; \lim_{x ightarrow 1^{-}}f(x) = +
\infty.

    Do đó đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số y =
f(x).

  • Câu 2: Nhận biết
    Xác định số đường tiệm cận đứng

    Đồ thị hàm số y = \frac{\sqrt{x -
7}}{x^{2} + 3x - 4} có bao nhiêu đường tiệm cận đứng?

    Hướng dẫn:

    Tập xác định D = \lbrack 7; +
\infty)

    Phương trình x^{2} + 3x - 4 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 4 \\
\end{matrix} ight.

    Do đó không tồn tại các giới hạn \lim_{x
ightarrow - 4^{-}}y;\lim_{x ightarrow - 4^{+}}y;\lim_{x ightarrow
1^{-}}y;\lim_{x ightarrow 1^{+}}y. Vì vậy đồ thị hàm số không có đường tiệm cận đứng.

  • Câu 3: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x) có \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  - \infty\mathop {\lim }\limits_{x \to {2^ + }} f\left( x ight) =  - \infty. Khẳng định nào sau đây là khẳng định đúng?

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Hướng dẫn:

    Ta có: \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  - \infty => Đồ thị hàm số đã cho có TCĐ là x = 0

    \mathop {\lim }\limits_{x \to {2^ + }} f\left( x ight) =  - \infty => Đồ thị hàm số đã cho có TCĐ là x = 2

  • Câu 4: Nhận biết
    Xác định đồ thị hàm số thích hợp

    Đường thẳng y = - 2 là đường tiệm cận của đồ thị hàm số nào sau đây?

    Hướng dẫn:

    y = \frac{2}{3x + 2}\lim_{x ightarrow \infty}y = 0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số. (Loại)

    y = \frac{2x^{3} - 3}{x + 2}\lim_{x ightarrow \infty}y =
\infty nên đồ thị hàm số không có tiệm cận ngang (loại)

    y = \frac{2x^{2} + x - 1}{(x + 1)(3 - x)}
= \frac{2x^{2} + x - 1}{- x^{2} + 2x + 3}\lim_{x ightarrow \infty}y = - 2 suy ra y = - 2 là tiệm cận ngang (Thỏa mãn).

    Vậy đường thẳng y = - 2 là đường tiệm cận của đồ thị hàm số y = \frac{2x^{2}
+ x - 1}{(x + 1)(3 - x)}.

  • Câu 5: Thông hiểu
    Tìm tất cả các đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x +
1}{\sqrt{4x^{2} + 2x + 1}} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Ta có 4x^{2} + 2x + 1 > 0,\ \ \forall
x\mathbb{\in R\ \ }\overset{}{ightarrow} TXĐ của hàm số D\mathbb{= R}.

    Do đó đồ thị hàm số không có tiệm cận đứng.

    Xét \lim_{x ightarrow + \infty}\frac{x
+ 1}{\sqrt{4x^{2} + 2x + 1}} = \frac{1}{2}\ \ \overset{}{ightarrow}\ \
y = \frac{1}{2} là TCN;

    \lim_{x ightarrow - \infty}\frac{x +
1}{\sqrt{4x^{2} + 2x + 1}} = - \frac{1}{2}\ \ \overset{}{ightarrow}\ \
y = - \frac{1}{2} là TCN.

    Vậy đồ thị hàm số có đúng hai đường tiệm cận.

  • Câu 6: Nhận biết
    Chọn kết luận đúng

    Cho hàm số f(x) có tập xác định là D = ( - 3;3)\backslash\left\{ - 1;1
\right\} , liên tục trên các khoảng của tập D và có

    \begin{matrix}
\begin{matrix}
\lim_{x \rightarrow ( - 3)^{+}}f(x) = - \infty; \\
\lim_{x \rightarrow 1^{-}}f(x) = + \infty; \\
\end{matrix} & \begin{matrix}
\lim_{x \rightarrow ( - 1)^{-}}f(x) = - \infty; \\
\lim_{x \rightarrow 1^{+}}f(x) = + \infty; \\
\end{matrix} & \begin{matrix}
\lim_{x \rightarrow ( - 1)^{+}}f(x) = - \infty; \\
\lim_{x \rightarrow 3^{-}}f(x) = + \infty. \\
\end{matrix} \\
\end{matrix}

    Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Câu đúng cần tìm là:

    Đồ thị hàm số có đúng bốn TCĐ là các đường thẳng x = \pm 1x
= \pm 3

  • Câu 7: Nhận biết
    Tìm số đường tiệm cận ngang

    Cho hàm số y = f(x) có bảng biến thiên:

    Số đường tiệm cận ngang của đồ thị hàm số y = f(x) là:

    Hướng dẫn:

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = 5 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y =  - 3 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang y = - 3;y = 5.

  • Câu 8: Nhận biết
    Chọn đáp án đúng

    Tìm tiệm cận ngang của đồ thị hàm số y =
\frac{3x - 1}{- x - 1}?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow +
\infty}\frac{3x - 1}{- x - 1} = \lim_{x ightarrow - \infty}\frac{3x -
1}{- x - 1} = - 3

    Vậy tiệm cận ngang của đồ thị hàm số y =
\frac{3x - 1}{- x - 1} là đường thẳng y = - 3.

  • Câu 9: Nhận biết
    Xác định tất cả các khẳng định sai

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Có bao nhiêu khẳng định sai trong các khẳng định dưới đây?

    (i) Đồ thị hàm số có ba đường tiệm cận.

    (ii) Hàm số có cực tiểu tại x =
2.

    (iii) Hàm số nghịch biến trên mỗi khoảng ( - \infty; - 1);(1; + \infty).

    (iv) Hàm số xác định trên \mathbb{R}.

    Hướng dẫn:

    Do \lim_{x ightarrow - \infty}f(x) = -
1;\lim_{x ightarrow + \infty}f(x) = 2 nên đồ thị hàm số có hai đường tiệm cận ngang; \lim_{x
ightarrow 1^{\pm}}f(x) = \pm \infty nên đồ thị hàm số có một tiệm cận đứng. Do đó đồ thị hàm số có ba đường tiệm cận nên (i) đúng.

    Hàm số có cực tiểu tại x = 2 đúng nên (ii) đúng.

    Hàm số nghịch biến trên ( - \infty; -
1);(1;2) nên (iii) sai.

    Hàm số không xác định tại x = 1 nên (iv) sai.

    Vậy có 2 khẳng định sai.

  • Câu 10: Thông hiểu
    Tính tổng các đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Nhìn bảng biến thiên ta thấy x = 0 hàm số không xác định nên x = 0 là TCĐ của đồ thị hàm số

    \lim_{x ightarrow + \infty}f(x) = 3\Rightarrow y = 3 là TCN của đồ thị hàm số

    \lim_{x ightarrow - \infty}f(x) = 1
\Rightarrow y = 1là TCN của đồ thị hàm số

    Vậy hàm số có 3 tiệm cận

  • Câu 11: Nhận biết
    Xác định đường tiệm cận ngang

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có: \lim_{x
ightarrow \pm \infty}f(x) = 2 nên đồ thị hàm số có đường tiệm cận ngang là y = - 2.

  • Câu 12: Nhận biết
    Chọn đáp án đúng

    Tiệm cận đứng của đồ thị hàm số y =
\frac{x + 1}{x + 3}

    Hướng dẫn:

    Ta có \lim_{x ightarrow - 3^{+}}y = -\infty\lim_{x ightarrow -3^{-}}y = + \infty nên đồ thị hàm số nhận đường thẳng x = - 3 làm tiệm cận đứng.

  • Câu 13: Nhận biết
    Xác định các tiệm cận ngang

    Đồ thị hàm số y = \frac{\sqrt{10000 -
x^{2}}}{x - 2} có bao nhiêu đường tiệm cận ngang?

    Hướng dẫn:

    Điều kiện xác định \left\{ \begin{matrix}
10000 - x^{2} \geq 0 \\
x - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 100 \leq x \leq 100 \\
x eq 2 \\
\end{matrix} ight.

    Tập xác định \lbrack -
100;100brack\backslash\left\{ 2 ight\}

    Vì hàm số không tồn tại khi x ightarrow
- \inftyx ightarrow +
\infty nên đồ thị hàm số không có tiệm cận ngang.

  • Câu 14: Nhận biết
    Chọn đáp án chính xác

    Tìm tất cả các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{\sqrt{9x^{2} + 6x + 4}}{x +
2}?

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow - 2^{+}}y = +
\infty suy ra x = - 2 là tiệm cận ngang của hàm số.

    \lim_{x ightarrow + \infty}y =
3;\lim_{x ightarrow - \infty}y = - 3 suy ra y = 3;y = - 3 là hai tiệm cận ngang của hàm số.

  • Câu 15: Nhận biết
    Tìm tiệm cận đứng đường thẳng

    Tiệm cận đứng của đồ thị hàm số y =
\frac{2x - 1}{- x + 2} là  đường thẳng

    Hướng dẫn:

    Ta có \lim_{x ightarrow 2^{+}}\frac{2x
- 1}{- x + 2} = - \ \infty nên đồ thị hàm số có tiệm cận đứng là x = 2.

  • Câu 16: Thông hiểu
    Chọn hàm số thích hợp với yêu cầu

    Đồ thị hàm số nào trong các hàm số dưới đây có tiệm cận đứng?

    Hướng dẫn:

    Nhận thấy các đáp án y = \frac{1}{x^{4} +
1}.y = \frac{1}{x^{2} +
1}.;y = \frac{1}{x^{2} + x +
1}. là các hàm số có TXĐ: D\mathbb{= R} nên không có TCĐ.

    Dùng phương pháp loại trừ thì y =
\frac{1}{\sqrt{x}}. đúng.

    (Thật vậy; hàm số y =
\frac{1}{\sqrt{x}}\lim_{x
ightarrow 0^{+}}y = \lim_{x ightarrow 0^{+}}\frac{1}{\sqrt{x}} = +
\infty\ \ \overset{}{ightarrow}\ \ x = 0 là TCĐ)

  • Câu 17: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) xác định và liên tục trên các khoảng ( -
\infty;0)(0; + \infty) có bảng biến thiên như hình vẽ:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    \lim_{x ightarrow - \infty}y =
2 nên y = 2 là tiệm cận ngang của đồ thị hàm số.

    {\left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) =  - \infty  \hfill \\ 
\end{gathered}  ight.} nên x = 0 là tiệm cận đứng của đồ thị hàm số.

  • Câu 18: Nhận biết
    Chọn đáp án đúng

    Đồ thị hàm số nào có đường tiệm cận đứng đi qua điểm M( - 4;5)?

    Hướng dẫn:

    Xét hàm số y = \frac{5x + 1}{x +
4}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 4} ight)}^ + }} \frac{{5x + 1}}{{x + 4}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{\left( { - 4} ight)}^ - }} \frac{{5x + 1}}{{x + 4}} =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x = -
4 là tiệm cận đứng của đồ thị hàm số.

    Tiệm cận đứng đi qua điểm M( -
4;5).

  • Câu 19: Thông hiểu
    Chọn khẳng định đúng

    Gọi m,n lần lượt là số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{\sqrt{2 - x}}{(x - 1)\sqrt{x}}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D =
(0;2brack\backslash\left\{ 1 ight\}

    Đồ thị hàm số không có tiệm cận ngang.

    \lim_{x ightarrow 1^{+}}\frac{\sqrt{2 -
x}}{(x - 1)\sqrt{x}} = + \infty;\lim_{x ightarrow 1^{-}}\frac{\sqrt{2
- x}}{(x - 1)\sqrt{x}} = - \infty ta có x = 1 là tiệm cận đứng.

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{2 -
x}}{(x - 1)\sqrt{x}} = - \infty ta có: x = 0 là tiệm cận đứng.

    Vậy m = 0;n = 2.

  • Câu 20: Nhận biết
    Chọn đáp án đúng

    Đường thẳng nào sau đây là tiệm cận ngang của đồ thị hàm số y = \frac{2}{- x + 3}?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{2}{- x + 3} = 0

    Vậy tiệm cận ngang của đồ thị hàm số y =
\frac{2}{- x + 3} là đường thẳng có phương trình y = 0.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo