Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 3 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm đồ thị hàm số có tiệm cận đứng

    Trong các hàm số sau, đồ thị của hàm số nào có tiệm cận đứng?

    Hướng dẫn:

    Xét hàm số y =
\frac{1}{\sqrt{x}}

    Tập xác định D = (0; +
\infty)

    \lim_{x ightarrow
0^{+}}\frac{1}{\sqrt{x}} = + \infty suy ra x = 0 là tiệm cận đứng của hàm số.

  • Câu 2: Nhận biết
    Tìm tiệm cận đứng của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có tiệm cận đứng là:

    Hướng dẫn:

    Từ bảng biến thiên ta có đồ thị hàm số có đường tiệm cận đứng là x = - 1.

  • Câu 3: Nhận biết
    Tìm tọa độ điểm A

    Hai đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{2x - 5}{4 - x} cắt nhau tại điểm M. Xác định tọa độ điểm M?

    Hướng dẫn:

    Đồ thị hàm số y = \frac{2x - 5}{4 -
x} có đường tiệm cận đứng x =
4 và đường tiệm cận ngang y = -
2. Do đó giao điểm của hai đường tiệm cận là M(4; - 2).

  • Câu 4: Nhận biết
    Tìm số đường tiệm cận ngang

    Cho hàm số y = f(x) có bảng biến thiên:

    Số đường tiệm cận ngang của đồ thị hàm số y = f(x) là:

    Hướng dẫn:

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = 5 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y =  - 3 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang y = - 3;y = 5.

  • Câu 5: Thông hiểu
    Tìm số tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x + 3}{\sqrt{9 -
x^{2}}} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    TXĐ: D = ( -
3;3)\overset{}{ightarrow}không tồn tại \ \lim_{x\  ightarrow \  - \ \infty}y\lim_{x\  ightarrow \  + \ \infty}y\
.

    Do đó đồ thị hàm số không có tiệm cận ngang.

    Ta có:

    \lim_{x ightarrow - 3^{+}}\frac{x +
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow - 3^{+}}\frac{x + 3}{\sqrt{3
- x}.\sqrt{3 + x}}= \lim_{x ightarrow - 3^{+}}\frac{\sqrt{x +3}}{\sqrt{3 - x}} = 0 ightarrow x = - 3 không là TCĐ;

    \lim_{x ightarrow 3^{-}}\frac{x +
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow 3^{-}}\frac{x + 3}{\sqrt{3 -
x}.\sqrt{3 + x}}= \lim_{x ightarrow 3^{-}}\frac{\sqrt{x + 3}}{\sqrt{3
- x}} = + \infty ightarrow x = 3 là TCĐ.

    Vậy đồ thị hàm số đã cho có đúng một tiệm cận.

  • Câu 6: Nhận biết
    Tìm tiệm cận ngang của đồ thị hàm số

    Đồ thị hàm số nào sau đây không có tiệm cận ngang?

    Gợi ý:

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Ta có:

    \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^2} + 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{x + \dfrac{1}{x}}}{{1 - \dfrac{1}{x}}} = \mathop {\lim }\limits_{x \to \infty } x = \infty

    Vậy đồ thị hàm số y = \frac{{{x^2} + 1}}{{x - 1}} không có tiệm cận ngang.

  • Câu 7: Nhận biết
    Xác định các đường tiệm cận của hàm số

    Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây. Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số theo thứ tự là

    Hướng dẫn:

    Từ đồ thị của hàm số suy ra tiệm cận đứng và tiệm cận ngang là : x = 1 ; y = 1

  • Câu 8: Nhận biết
    Tìm tiệm cận đứng đường thẳng

    Tiệm cận đứng của đồ thị hàm số y =
\frac{2x - 1}{- x + 2} là  đường thẳng

    Hướng dẫn:

    Ta có \lim_{x ightarrow 2^{+}}\frac{2x
- 1}{- x + 2} = - \ \infty nên đồ thị hàm số có tiệm cận đứng là x = 2.

  • Câu 9: Nhận biết
    Tìm khẳng định đúng

    Cho hàm số y = f(x)\lim_{x ightarrow - \infty}f(x) = - 1\lim_{x ightarrow 1^{+}}f(x) = +
\infty. Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Theo định nghĩa về tiệm cận, ta có:

    \lim_{x ightarrow - \infty}f(x) = - 1\
\ \overset{}{ightarrow}\ \ y = - 1 là TCN.

    \lim_{x ightarrow \ 1^{+}}f(x) = +
\infty\ \ \overset{}{ightarrow}\ \ x = 1 là TCĐ.

  • Câu 10: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) xác định và liên tục trên các khoảng ( -
\infty;0)(0; + \infty) có bảng biến thiên như hình vẽ:

    Chọn khẳng định đúng trong các khẳng định sau.

    Hướng dẫn:

    \lim_{x ightarrow 0^{+}}y = -
\infty nên đồ thị hàm số có đúng một đường tiệm cận đứng.

    Vậy khẳng định đúng là “Đồ thị hàm số có đúng một đường tiệm cận đứng.”

  • Câu 11: Nhận biết
    Tổng số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{{1 - 3x}}{{x + 2}} có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Ta có: \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} \frac{{1 - 3x}}{{x + 2}} =  + \infty ;\mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \frac{{1 - 3x}}{{x + 2}} =  - \infty => Đồ thị hàm số có tiệm cận đứng là x = -2

    Ta có: \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{1 - 3x}}{{x + 2}} =  - 3 => y = -3 là tiệm cận ngang của đồ thị hàm số.

  • Câu 12: Thông hiểu
    Xác định số tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{\sqrt{x^{2} + 2x
+ 1}}{x^{2} - 1} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Ta có y = \frac{\sqrt{x^{2} + 2x +
1}}{x^{2} - 1} = \frac{|x + 1|}{x^{2} - 1} = \left\{ \begin{gathered}
  \frac{1}{{x - 1}}{\text{   }}khi{\text{ }}x >  - 1,x e 1 \hfill \\
   - \frac{1}{{x - 1}}{\text{ }}khi{\text{ }}x <  - 1 \hfill \\ 
\end{gathered}  ight.

    Dễ thấy đồ thị hàm số có tiệm cận đứng x
= 1.

    \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{\sqrt{x^{2} + 2x + 1}}{x^{2} - 1} =
0 ightarrow y = 0 là TCN.

    Vậy đồ thị hàm số có đúng hai tiệm cận.

  • Câu 13: Nhận biết
    Xác định tiệm cận đứng của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Tiệm cận đứng của đồ thị hàm số đã cho có phương trình là

    Hướng dẫn:

    Quan sát bảng biến thiên ta thấy \lim_{x
ightarrow 1^{+}}f(x) = - \infty; \lim_{x ightarrow 1^{-}}f(x) = +
\infty.

    Do đó đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số y =
f(x).

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Tiệm cận đứng của đồ thị hàm số y =
\frac{x + 1}{x + 3}

    Hướng dẫn:

    Ta có \lim_{x ightarrow - 3^{+}}y = -\infty\lim_{x ightarrow -3^{-}}y = + \infty nên đồ thị hàm số nhận đường thẳng x = - 3 làm tiệm cận đứng.

  • Câu 15: Nhận biết
    Tìm số đường tiệm cận

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị của hàm số đã cho có bao nhiêu tiệm cận?

    Hướng dẫn:

    Đồ thị của hàm số đã cho có 2 đường tiệm cận.

  • Câu 16: Thông hiểu
    Tìm mệnh đề đúng

    Cho hàm số y = \frac{x - 1}{\sqrt{2x^{2}
- 1} - 1}. Gọi d,n lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số. Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Để căn thức có nghĩa khi 2x^{2} - 1 \geq
0 \Leftrightarrow x \in \left( - \infty; - \frac{1}{\sqrt{2}}
ightbrack \cup \left\lbrack \frac{1}{\sqrt{2}}; + \infty
ight)

    Xét \sqrt{2x^{2} - 1} - 1 =
0

    \Leftrightarrow \sqrt{2x^{2} - 1} = 1
\Leftrightarrow 2x^{2} - 1 = 1

    \Leftrightarrow x = \pm 1 \in \left( -
\infty; - \frac{1}{\sqrt{2}} ightbrack \cup \left\lbrack
\frac{1}{\sqrt{2}}; + \infty ight)

    Do đó tập xác định của hàm số:

    D = \left(
- \infty; - \frac{1}{\sqrt{2}} ightbrack \cup \left\lbrack
\frac{1}{\sqrt{2}}; + \infty ight)\backslash\left\{ - 1;1
ight\}.

    Ta có

    \lim_{x ightarrow - 1}y = \lim_{x
ightarrow - 1}\frac{(x - 1)\left( \sqrt{2x^{2} - 1} + 1
ight)}{2\left( x^{2} - 1 ight)}= \lim_{x ightarrow -1}\frac{\sqrt{2x^{2} - 1} + 1}{2(x + 1)} = \infty ightarrow x = -1 là TCĐ;

    \lim_{x ightarrow 1}y = \lim_{x
ightarrow 1}\frac{(x - 1)\left( \sqrt{2x^{2} - 1} + 1 ight)}{2\left(x^{2} - 1 ight)}= \lim_{x ightarrow 1}\frac{\sqrt{2x^{2} - 1} +
1}{2(x + 1)} = \frac{1}{2} ightarrow x = 1 không là TCĐ;

    \lim_{x ightarrow + \infty}\frac{x -
1}{\sqrt{2x^{2} - 1} - 1} = \frac{1}{\sqrt{2}} ightarrow y =
\frac{1}{\sqrt{2}} là TCN;

    \lim_{x ightarrow - \infty}\frac{x -
1}{\sqrt{2x^{2} - 1} - 1} = - \frac{1}{\sqrt{2}} ightarrow y = -
\frac{1}{\sqrt{2}} là TCN.

    Vậy d = 1,n = 2 ightarrow n + d =
3.

  • Câu 17: Nhận biết
    Đồ thị hàm số sau có tiệm cận ngang là đường thẳng nào sau đây?

    Toán 12 Kết nối tri thức bài 3

  • Câu 18: Thông hiểu
    Chọn đáp án đúng nhất

    Cho hàm số y = \frac{{\sqrt {{x^2} - x + 3}  - \sqrt {2x + 1} }}{{{x^3} - 2{x^2} - x + 2}}. Trong các khẳng định sau, khẳng định nào là khẳng định đúng?

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

     

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {{x^2} - x + 3 \geqslant 0} \\   {2x + 1 \geqslant 0} \\   {{x^3} - 2{x^2} - x + 2 e 0} \end{array} \Rightarrow } ight.\left\{ {\begin{array}{*{20}{c}}  {x \geqslant \frac{{ - 1}}{2}} \\   {x e 2} \\   {x e  \pm 1} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant \frac{{ - 1}}{2}} \\   {x e 2} \\   {x e 1} \end{array}} ight.

    Từ điều kiện ta có:

    \begin{matrix}  y = \dfrac{{\left( {{x^2} - x + 3} ight) - \left( {2x + 1} ight)}}{{\left( {{x^2} - 3x + 2} ight)\left( {x + 1} ight)\left( {\sqrt {{x^2} - x - 3}  + \sqrt {2x + 1} } ight)}} \hfill \\  y = \dfrac{{{x^2} - 3x + 2}}{{\left( {{x^2} - 3x + 2} ight)\left( {x + 1} ight)\left( {\sqrt {{x^2} - x + 3}  + \sqrt {2x + 1} } ight)}} \hfill \\  y = \dfrac{1}{{\left( {x + 1} ight)\left( {\sqrt {{x^2} - x + 3}  + \sqrt {2x + 1} } ight)}} \hfill \\ \end{matrix}

    Đồ thị hàm số không có tiệm cận đứng

    Mặt khác

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{1}{{{x^2}.\left( {1 + \dfrac{1}{x}} ight)\left( {\sqrt {1 - \dfrac{1}{x} + \dfrac{3}{{{x^2}}}}  + \sqrt {\dfrac{2}{x} + \dfrac{1}{{{x^2}}}} } ight)}} = 0

    => y = 0 là tiệm cận ngang của đồ thị hàm số

    Không tồn tại \mathop {\lim }\limits_{x \to  - \infty } f\left( x ight)

    Vậy đồ thị hàm số không có tiệm cận đứng và có đúng một tiệm cận ngang

  • Câu 19: Nhận biết
    Xác định tiệm cận ngang của đồ thị hàm số

    Tiệm cận ngang của đồ thị hàm số y =
\frac{2020}{x - 1} là đường thẳng có phương trình?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{2020}{x - 1} = 0 nên tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình y = 0.

  • Câu 20: Nhận biết
    Chọn đáp án đúng

    Tiệm cận đứng của đồ thị hàm số y =\frac{x - 1}{x - 3} là

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow 3^{-}}\frac{x - 1}{x- 3} = - \infty. Suy ta tiệm cận đứng là đường thẳng x = 3.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo