Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng
biết rằng mỗi đơn vị dài trên các trục tọa độ là
?
Ta có:
Do mỗi đơn vị trên trục là 2 cm nên
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng
biết rằng mỗi đơn vị dài trên các trục tọa độ là
?
Ta có:
Do mỗi đơn vị trên trục là 2 cm nên
Xét hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và đường thẳng
. Gọi
. Tính giá trị của tham số
để đoạn thẳng
chia
thành hai phần có diện tích bằng nhau?
Ta có đồ thị hàm số tiếp xúc với trục hoành tại
.
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và đường thẳng
.
Gọi S1 là diện tích hình phẳng giới hạn bởi đồ thị hàm số , đoạn thẳng
và trục hoành.
Gọi S2 là diện tích của tam giác .
Theo bài ra ta có:
Vậy
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và đồ thị hàm số
?
Phương trình hoành độ giao điểm
Khi đó ta có:
Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số liên tục trên đoạn
và hai đường thẳng
là
Ta có hình phẳng giới hạn bởi là
.
Tính thể tích của vật thể giới hạn bởi hai mặt phẳng biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với
tại điểm có hoành độ
là hình chữ nhật có kích thước là
và
?
Thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với tại điểm có hoành độ
là hình chữ nhật có kích thước là
và
Diện tích thiết diện được xác định theo hàm là:
⇒ Thể tích vật thể tròn xoay:
Với giá trị nào của thì diện tích của hình phẳng giới hạn bởi hai đồ thị
và
bằng
?
Xét phương trình hoành độ giao điểm .
Khi đó diện tích hình phẳng giới hạn bởi hai đồ thị trên được tính bởi
.
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và đường thẳng
?
Xét các phương trình hoành độ giao điểm:
Diện tích S của hình phẳng (H) là:
Xét là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, trục tung và đường thẳng
. Giá trị của
sao cho thể tích của khối tròn xoay tạo thành khi quay
quanh trục hoành bằng
là?
Thể tích khối tròn xoay tạo thành khi quay quanh trục hoành là:
Mà
Vậy là giá trị cần tìm.
Cho hình là hình phẳng giới hạn bởi parabol
, đường cong
và trục hoành (phần tô đậm trong hình vẽ).
Tính diện tích của hình
?
Phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Một họa tiết hình cánh bướm như hình vẽ bên.

Phần tô đậm được đính đá với giá thành . Phần còn lại được tô màu với giá thành
.
Cho Hỏi để trang trí
họa tiết như vậy cần số tiền bỏ ra là bao nhiêu?
Vì .
Parabol là: hoặc
Diện tích phần tô đậm là
Diện tích hình chữ nhật là
Diện tích phần trắng là
Tổng chi phí trang chí là:
Bổ dọc một quả dưa hấu ta được thiết diện là hình elip có trục lớn , trục nhỏ
. Biết cứ
dưa hấu sẽ làm được cốc sinh tố giá
đồng. Hỏi từ quả dưa hấu trên có thể thu được bao nhiêu tiền từ việc bán nước sinh tố? Biết rằng bề dày vỏ dưa không đáng kể.
Đường elip có trục lớn , trục nhỏ
có phương trình:
.
Do đó thể tích quả dưa là
.
Do đó tiền bán nước thu được là đồng.
Tính diện tích hình phẳng S giới hạn bởi đồ thị các hàm số và
, trục hoành và trục tung.
Giao điểm Nhẩm được nghiệm 1
Gọi là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành như hình vẽ:
Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là:
Từ hình vẽ ta thấy
Do đó
Vậy mệnh đề sai là:
Tính thể tích khối tròn xoay khi cho hình phẳng giới hạn bởi đồ thị các hàm số và
quay quanh trục Ox.
Xét phương trình hoành độ giao điểm
Khi đó thể tích khối tròn xoay có được khi quay hình phẳng giới hạn bởi các đồ thị hàm số
quay quanh trục Ox được tính bởi công thức
Ta thấy trên thì
, do vậy ta có công thức
(đvtt)
Cho hình vẽ:
Diện tích hình phẳng (phần gạch chéo) giới hạn bởi đồ thị 3 hàm số như hình bên, bằng kết quả nào sau đây?
Diện tích miền tích phân được chia thành hai phần. Phần 1 với x nằm trong khoảng a đến b và phần 2 với x nằm trong khoảng b đến c:
.
Tính diện tích hình phẳng giới hạn bởi các đường ?
Phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Diện tích hình phẳng giới hạn bởi nhánh đường cong với
, đường thẳng
và trục hoành bằng
Xét phương trình hoành độ giao điểm:
Ta có
Diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng
,
là
Ta có .
Diện tích hình phẳng giới hạn bởi hai đường và
bằng:
Xét phương trình hoành độ giao điểm
Hình vẽ minh họa
Diện tích hình phẳng là:
Diện tích S của hình phẳng giới hạn bởi đường cong , trục hoành và hai đường thẳng
là
Phương trình hoành độ giao điểm
Khi đó:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: