Diện tích hình phẳng giới hạn bởi , trục hoành,
và
là:
Ta có: nên ta có:
Diện tích hình phẳng giới hạn bởi , trục hoành,
và
là:
Ta có: nên ta có:
Diện tích hình phẳng giới hạn bởi nhánh đường cong với
, đường thẳng
và trục hoành bằng
Xét phương trình hoành độ giao điểm:
Ta có
Thể tích khối tròn xoay khi quay quanh trục Ox hình phẳng giới hạn bởi là
. Tính
?
Phương trình hoành độ giao điểm
Ta có:
Vậy
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường quay xung quanh
.
Thể tích vật thể bằng:
.
Cho hàm số liên tục trên
. Diện tích hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, đường thẳng
là
Công thức đúng là:
Diện tích hình phẳng giới hạn bởi các đường , trục hoành;
và
bằng:
Hoành độ giao điểm của đồ thị hàm số và trục hoành là nghiệm của phương trình:
Diện tích hình phẳng giới hạn bởi các đường là:
Thể tích của khối tròn xoay sinh ra khi cho hình phẳng giới hạn bởi parabol và đường thẳng
xoay quanh trục
tính bởi công thức nào sau đây?
Hình vẽ minh họa
Ta có và
cắt nhau tại hai điểm
và
Suy ra thể tích khối tròn xoay đã cho bằng thể tích khối tròn xoay
trừ đi thể tích khối tròn xoay
. Trong đó:
được sinh ra khi quay hình phẳng giới hạn bởi các đường
, trục Ox, x = 0, x = 1.
được sinh ra khi quay hình phẳng giới hạn bởi các đường
, trục Ox, x = 0, x = 1.
Vậy thể tích khối tròn xoay đã cho bằng .
Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông cạnh bằng cm bằng cách khoét đi bốn phần bằng nhau có hình dạng parabol như hình bên. Biết
cm,
cm. Biết giá trang trí hoa văn
là 50.000 đồng, tính số tiền cần bỏ ra để trang trí hoa văn đó.
Đưa parabol vào hệ trục ta tìm được phương trình là:
.
Diện tích hình phẳng giới hạn bởi , trục hoành và các đường thẳng
,
là:
.
Tổng diện tích phần bị khoét đi:
.
Diện tích của hình vuông là: .
diện tích bề mặt hoa văn là: .
Vậy số tiền cần bỏ ra để trang trí hoa văn đó là: đồng
Trong mặt phẳng tọa độ , cho đường tròn
.
Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn quanh trục hoành.
Trong mặt phẳng tọa độ , cho đường tròn
.
Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn quanh trục hoành.
Với giá trị nào của thì diện tích của hình phẳng giới hạn bởi hai đồ thị
và
bằng
?
Xét phương trình hoành độ giao điểm .
Khi đó diện tích hình phẳng giới hạn bởi hai đồ thị trên được tính bởi
.
Một bác thợ xây bơm nước vào bể chứa nước. Gọi là thể tích nước bơm được sau
giây. Cho
và ban đầu bể không có nước. Sau 3 giây thì thể tích nước trong bể là
, sau
giây thì thể tích nước trong bể là
. Tính thể tích nước trong bể sau khi bơm được
giây.
Ta có:
(1)
(2)
Từ (1), (2) . Sau khi bơm
giây thì thể tích nước trong bể là:
=
.
Diện tích nhỏ nhất giới hạn bởi parabol và đường thẳng
là:
Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình
Vì nên phương trình luôn có 2 nghiệm phân biệt
với
Ta có: .
Diện tích hình phẳng giới hạn bởi (P) và (d) là:
Vậy diện tích nhỏ nhất giới hạn bởi parabol và đường thẳng
là
.
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số với các trục tọa độ?
Xét .
Ta có diện tích hình phẳng giới hạn bởi đồ thị hàm số với các trục tọa độ là:
.
Vì biểu thức không đổi dấu trên miền
nên:
Gọi là phần giao của hai khối
hình trụ có bán kính
, hai trục hình trụ vuông góc với nhau như hình vẽ sau. Tính thể tích của khối
.
Đặt hệ toạ độ như hình vẽ, xét mặt cắt song song với mp
cắt trục
tại
, thiết diện mặt cắt luôn là hình vuông có cạnh
.
Do đó thiết diện mặt cắt có diện tích: .
Vậy .
Diện tích hình phẳng giới hạn bởi hai đồ thị được cho bởi công thức nào sau đây?
Ta có:
Với
Với
Ta có:
Dựng một lều trại có dạng parabol, với kích thước: nền trại là một hình chữ nhật có chiều rộng là mét, chiều sâu là
mét, đỉnh của parabol cách mặt đất là
mét. Tính thể tích phần không gian phía bên trong trại để số lượng người tham dự trại phù hợp?
Giả sử nền trại là hình chữ nhật ABCD có AB = 3 mét, BC = 6 mét, đỉnh của parabol là I.
Chọn hệ trục tọa độ Oxy sao cho: O là trung điểm của cạnh AB, A, B và I, phương trình của parabol có dạng .
Do I, A, B thuộc nên ta có .
Vậy thể tích phần không gian phía trong trại là .
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng
biết rằng mỗi đơn vị dài trên các trục tọa độ là
?
Ta có:
Do mỗi đơn vị trên trục là 2 cm nên
Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số và các trục tọa độ.
Đồ thị hàm số đã cho cắt hai trục Ox tại điểm A(−1; 0) và cắt trục Oy tại điểm B, do đó diện tích cần tìm là
Cho hình vẽ:
Diện tích của hình phẳng được giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
(phần tô đậm trong hình vẽ) tính theo công thức:
Áp dụng công thức tính diện tích hình phẳng ta có:
Vậy đáp án cần tìm là: .
Diện tích hình phẳng giới hạn bởi hai đường và
bằng:
Xét phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: