Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Bài 1 Nguyên hàm KNTT (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn đáp án đúng

    Một nguyên hàm của f(x) =
\frac{x}{sin^{2}x} là :

    Hướng dẫn:

    Ta có: I =\int_{}^{}{\frac{x}{sin^2x}dx}

    Đặt: \left\{ \begin{matrix}
u = x \\
dv = \frac{1}{sin^{2}x}dx \\
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = - \cot x \\
\end{matrix} \right.

    Khi đó: I = uv - \int_{}^{}{vdu} = -x\cot x + \int_{}^{}{\cot xdx}= - x\cot x + \ln\left| \sin x \right| +C

  • Câu 2: Nhận biết
    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Hướng dẫn:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 3: Nhận biết
    Chọn đáp án đúng

    Tìm nguyên hàm của hàm số f(x) = e^{x} -
e^{- x} .

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx = e^{x} + e^{-
x} + C},

  • Câu 4: Thông hiểu
    Xác định hàm số f(x)

    Nếu \int_{}^{}{f(x)dx = e^{x} + sin^2x+ C} thì f(x) là hàm nào ?

    Hướng dẫn:

    Ta có: \left( e^{x} + sin^{2}x + C\right)^{'} = e^{x} + sin2x.

  • Câu 5: Nhận biết
    Chọn khẳng định đúng

    Giả sử hàm số F(x) là một nguyên hàm của hàm số f(x) trên K. Khẳng định nào sau đây đúng.

    Hướng dẫn:

    Khẳng định đúng là: “Với mỗi nguyên hàm G của f trên K thì tồn tại một hằng số C sao cho G(x) = F(x) + C với x thuộc K.”

  • Câu 6: Nhận biết
    Tìm kết quả đúng

    Hàm số nào sau đây là một nguyên hàm của hàm số y = \frac{1}{x \ln3}?

    Hướng dẫn:

    Ta có: y = \log_{3}x \Rightarrow y' = \frac{1}{x \ln3}.

  • Câu 7: Thông hiểu
    Tính giá trị của biểu thức

    Biết F(x) là nguyên hàm của f(x) = 4^{x}F(1) = \dfrac{1}{\ln2}. Khi đó giá trị F(2) bằng:

    Hướng dẫn:

    Ta có \int_{}^{}{4^{x}dx =
\frac{1}{\ln4}.4^{x} + C = F(x)}

    F(1) = \frac{1}{\ln2} \Leftrightarrow
\frac{4}{\ln4} + C = \frac{1}{\\ln2} \Leftrightarrow C = -
\frac{1}{\ln2}.

    Do đó F(2) = \frac{1}{\ln4}.4^{2} -
\frac{1}{\ln2} = \frac{16}{2\ln2} - \frac{1}{\ln2} =
\frac{7}{\ln2}.

  • Câu 8: Vận dụng
    Viết phương trình tiếp tuyến

    Cho hàm số y = f(x) thỏa mãn f'(x).f^{2}(x) = x^{2}f(2) = 2. Phương trình tiếp tuyến của đồ thị hàm số g(x) = f(x) + x^{2} tại điểm có hoành độ bằng 3 là:

    Hướng dẫn:

    Ta có: f'(x).f^{2}(x) =
x^{2}

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{f'(x).f^{2}(x)dx} =
\int_{}^{}{x^{2}dx}

    \Leftrightarrow
\int_{}^{}{f^{2}(x)df(x)} = \frac{x^{3}}{3} + C

    \Leftrightarrow \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} + C. Theo bài ra ta có: f(2) = 2 \Rightarrow \frac{f^{3}(2)}{3} =
\frac{2^{3}}{3} + C \Rightarrow C = 0

    Suy ra \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} \Leftrightarrow f(x) = x

    Vậy g(x) = x^{2} + x \Rightarrow
g'(x) = 2x + 1

    Ta có: g'(3) = 7;g(3) =
12

    Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:

    y = g'(3)(x - 3) + g(3)

    \Leftrightarrow y = 7(x - 3) + 12
\Leftrightarrow y = 7x - 9

  • Câu 9: Vận dụng
    Xác định nguyên hàm của hàm số

    Nguyên hàm của I =
\int_{}^{}{xsin^{2}x}dx là:

    Hướng dẫn:

    Ta biến đổi:

    I = \int_{}^{}{xsin^{2}x}dx =
\int_{}^{}{x\left( \frac{1 - cos2x}{2} \right)dx}

    = \frac{1}{2}\int_{}^{}{xdx -
\frac{1}{2}\int_{}^{}{xcos2x}}dx = \frac{1}{4}x^{2} -
\frac{1}{2}\underset{I_{1}}{\overset{\int_{}^{}{xcos2xdx}}{︸}} +
C_{1}

    \mathbf{I}_{\mathbf{1}}\mathbf{=}\int_{}^{}{\mathbf{x}\mathbf{cos2}\mathbf{xdx}}.

    Đặt\left\{ \begin{matrix}
u = x \\
dv = cos2x \\
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = \frac{1}{2}sin2x \\
\end{matrix} \right..

    \Rightarrow I_{1} = \int_{}^{}{xcos2xdx}
= \frac{1}{2}xsin2x - \frac{1}{2}\int_{}^{}{sin2xdx =} \frac{1}{2}xsin2x + \frac{1}{4}cos2x +
C.

    \Rightarrow I = \frac{1}{4}\left( x^{2} -
\frac{1}{2}cos2x - xsin2x \right) + C = \frac{1}{8}\left( 2x^{2} - 2xsin2x - cos2x
\right) + C

    = - \frac{1}{8}cos2x + \frac{1}{4}\left(
x^{2} + xsin2x \right) + C.

  • Câu 10: Vận dụng
    Tính tổng các nghiệm của phương trình

    Tìm tổng các nghiệm của phương trình F(x) = x, biết F(x) là một nguyên hàm của hàm số f\left( x ight) = \frac{x}{{\sqrt {8 - {x^2}} }} thỏa mãn F(2) = 0 

    Hướng dẫn:

    \begin{matrix}  F\left( x ight) = \int {f\left( x ight)dx}  \hfill \\   = \int {\dfrac{x}{{\sqrt {8 - {x^2}} }}dx}  = \dfrac{1}{2}\int {d\frac{x}{{\sqrt {8 - {x^2}} }}d\left( {8 - {x^2}} ight)}  \hfill \\   \Rightarrow F\left( x ight) =  - \sqrt {8 - {x^2}}  + C \hfill \\ \end{matrix}

    Ta có: F(2) = 0 => C = 2

    => F\left( x ight) =  - \sqrt {8 - {x^2}}  + 2

    Xét phương trình F(x) = x ta có:

    \begin{matrix}  F\left( x ight) = x \hfill \\   \Leftrightarrow  - \sqrt {8 - {x^2}}  + 2 = x \hfill \\   \Leftrightarrow \sqrt {8 - {x^2}}  = 2 - x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2 - x \geqslant 0} \\   {8 - {x^2} = {{\left( {2 - x} ight)}^2}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 2} \\   {{x^2} - 2x + 2 = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 2} \\   {x = 1 \pm \sqrt 3 } \end{array}} ight. \Leftrightarrow x = 1 - \sqrt 3  \hfill \\ \end{matrix}

    Vậy tổng các nghiệm của phương trình đã cho bằng x = 1 - \sqrt 3

  • Câu 11: Thông hiểu
    Xác định nguyên hàm của hàm số f(x)

    Tìm nguyên hàm của hàm số f(x)thỏa mãn điều kiện: f(x) = 2x - 3cosx,\ F\left( \frac{\pi}{2} \right)
= 3

    Hướng dẫn:

    Ta có: F(x) = \int_{}^{}{(2x - 3cosx)dx =
x^{2} - 3sinx + C}

    F\left( \frac{\pi}{2} \right) = 3
\Leftrightarrow \left( \frac{\pi}{2} \right)^{2} - 3sin\frac{\pi}{2} + C
= 3

    \Leftrightarrow C = 6 -\dfrac{\pi^{2}}{4}

    Vậy F(x) = x^{2} - 3sinx + 6 -
\frac{\pi^{2}}{4}

  • Câu 12: Thông hiểu
    Tìm nguyên hàm của hàm số

    Tìm một nguyên hàm của hàm số f\left( x ight) = \frac{{\ln x}}{x}.\sqrt {{{\ln }^2}x + 1}?

    Hướng dẫn:

    Ta có: F(x) = \int_{}^{}{\frac{\ln x}{x}\sqrt{\ln^{2}x + 1}dx}

    Đặt \sqrt{ln^{2}x + 1} \Rightarrow t^{2}= \ln^{2}x + 1 \Rightarrow tdt = \frac{\ln x}{x}dx

    Khi đó F(x) = \int_{}^{}{t^{2}dt} =\frac{t^{3}}{3} + C = \frac{\sqrt{\left( \ln^{2}x + 1 ight)^{3}}}{3} +C.

  • Câu 13: Thông hiểu
    Chọn đáp án thích hợp

    Hàm số nào dưới đây là họ nguyên hàm của hàm số y = cos2x?

    Hướng dẫn:

    Ta có: \int_{}^{}{\cos2xdx} =\frac{1}{2}\sin2x + C

    = \frac{1}{2}.2\sin x\cos x + C =\frac{1}{2}.\left( 1 + 2\sin x\cos x ight) + C -\frac{1}{2}

    = \frac{1}{2}.\left( \sin^{2}x +2\sin x\cos x + \cos^{2}x ight) + C'

    = \frac{1}{2}.\left( \sin x + \cos x
ight)^{2} + C'

    Vậy đáp án cần tìm là: y =
\frac{1}{2}\left( \sin x + \cos x ight)^{2} + C.

  • Câu 14: Thông hiểu
    Tìm câu sai

    Cho hàm số f(x) = \frac{1}{2x -
3} . Gọi F(x) là một nguyên hàm của f(x). Chọn phương án sai.

    Hướng dẫn:

    Ta có F(x) = \int_{}^{}\frac{1}{2x - 3}dx
= \int_{}^{}{\frac{1}{2}.\frac{1}{(2x - 3)}d(2x - 3)}

    = \frac{\ln|2x - 3|}{2} + C

    Từ đây ta thấy F(x) = \frac{\ln|2x -
3|}{2} + 10 đúng.

    Với F(x) = \frac{\ln|4x - 6|}{4} +
10 ta thấy

    \frac{\ln|4x - 6|}{4} + 10 = \frac{ln2 +
\ln|2x - 3|}{4} + 10 eq F(x), vậy F(x) = \frac{\ln|4x - 6|}{4} + 10 sai.

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Tính\int_{}^{}{\cos
x.sin^{2}x.dx}

    Hướng dẫn:

    Ta có: \int_{}^{}{\cos x.sin^{2}x.dx =
\int_{}^{}{sin^{2}x.d\left( \sin x \right) = \frac{sin^{3}x}{3} +
C}}

  • Câu 16: Thông hiểu
    Tìm nguyên hàm của hàm số f(x)

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{\sqrt{x + 1} + \sqrt{x - 1}} .

    Hướng dẫn:

    Ta có

    \int_{}^{}{\frac{dx}{\sqrt{x + 1} +
\sqrt{x - 1}} }= \int_{}^{}\frac{\left( \sqrt{x + 1} - \sqrt{x - 1}
ight)dx}{\left( \sqrt{x + 1} - \sqrt{x - 1} ight)\left( \sqrt{x + 1}
+ \sqrt{x - 1} ight)}

    =
\frac{1}{2}\int_{}^{}{\left( \sqrt{x + 1} - \sqrt{x - 1} ight)dx }=
\frac{1}{2}.\frac{2}{3}\left\lbrack (x + 1)^{\frac{3}{2}} - (x -
1)^{\frac{3}{2}} ightbrack + C

    = \frac{1}{3}\left\lbrack (x +
1)^{\frac{3}{2}} - (x - 1)^{\frac{3}{2}} ightbrack + C

  • Câu 17: Thông hiểu
    Tính giá trị của biểu thức

    Biết \int_{}^{}{x(x + 1)^{3}dx} = a(x +
1)^{5} + b(x + 1)^{4} + C, với a,b \in \mathbb{Q}. Tính giá trị S = {\left( {\frac{{a + b}}{{a.b}}} \right)^{2020}}

    Hướng dẫn:

    Ta có: x(x + 1)^{3} = (x + 1)^{4} - (x +
1)^{3}

    Khi đó \int_{}^{}{x(x + 1)^{3}dx} =
\frac{1}{5}(x + 1)^{5} - \frac{1}{4}(x + 1)^{4} + C

    \Rightarrow a = \frac{1}{5};b = -
\frac{1}{4} \Leftrightarrow S = \left\lbrack \frac{\frac{1}{5} -
\frac{1}{4}}{\frac{1}{5}.\left( - \frac{1}{4} \right)}
\right\rbrack^{2020} = 1

  • Câu 18: Thông hiểu
    Tìm F(x)

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{x - 1} trên khoảng (1; + \infty) thỏa mãn F(e + 1) = 4. Xác định công thức F(x)?

    Hướng dẫn:

    Ta có: F(x) = \int_{}^{}\frac{dx}{x - 1}
= \int_{}^{}\frac{d(x - 1)}{x - 1} = \ln|x - 1| + C = \ln(x - 1) +
C (vì (1; + \infty))

    F(e + 1) = 4 \Leftrightarrow \ln(e + 1
- 1) + C = 4 \Rightarrow C = 3

    Vậy F(x) = \ln(x - 1) + 3.

  • Câu 19: Nhận biết
    Xác định họ nguyên hàm của f(x)

    Tìm nguyên hàm F(x) của hàm số f(x) = \sin x + \cos x thỏa mãn F\left( \frac{\pi}{2} \right) =
2.

    Hướng dẫn:

    Ta có

    F(x) = \int_{}^{}{f(x)dx}

    = \int_{}^{}{\left( \sin x + \cos x
ight)dx = \sin x - \cos x + C}.

    Do F\left( \frac{\pi}{2} ight) =
2 nên \sin\frac{\pi}{2} -
\cos\frac{\pi}{2} + C = 2

    \Leftrightarrow 1 + C = 2 \Leftrightarrow C =
1.

    Vậy hàm số cần tìm là F(x) = \sin x -
\cos x + 1.

  • Câu 20: Vận dụng
    Chọn mệnh đề đúng

    Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x} trên khoảng (0;\pi). Biết rằng giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3}. Chọn mệnh đề đúng trong các mệnh đề sau?

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} =\int_{}^{}{\dfrac{2\cos x - 1}{\sin^{2}x}dx} =\int_{}^{}{\dfrac{2\cos x}{\sin^{2}x}dx} -\int_{}^{}{\dfrac{1}{\sin^{2}x}dx}

    = \int_{}^{}\frac{2d\left( \sin xight)}{\sin^{2}x} - \int_{}^{}{\frac{1}{\sin^{2}x}dx} = - \frac{2}{\sin x} + \cot x + C

    F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x} trên khoảng (0;\pi) nên hàm số F(x) có công thức dạng F(x) = - \frac{2}{\sin x} + \cot x + C với mọi x \in (0;\pi)

    Xét hàm số F(x) = - \frac{2}{\sin x} +
\cot x + C xác định và liên tục trên (0;\pi)

    Ta có: F'(x) = f(x) = \frac{2\cos x -1}{\sin^{2}x}

    \Rightarrow F'(x) = 0\Leftrightarrow \frac{2\cos x - 1}{\sin^{2}x} = 0

    \Leftrightarrow \cos x = \frac{1}{2}
\Leftrightarrow x = \pm \frac{\pi}{3} + k2\pi;\left( k\mathbb{\in Z}
ight)

    Trên khoảng (0;\pi) phương trình F'(x) = 0 có một nghiệm x = \frac{\pi}{3}

    Ta có bảng biến thiên như sau:

    \underset{(0;\pi)}{\max F(x)} = F\left(
\frac{\pi}{3} ight) = - \sqrt{3} + C. Theo bài ra ta có: - \sqrt{3} + C = \sqrt{3} \Rightarrow C =
2\sqrt{3}

    Do đó F(x) = - \frac{2}{\sin x} + \cot x
+ 2\sqrt{3} suy ra F\left(
\frac{\pi}{6} ight) = 3\sqrt{3} - 4.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo