Hàm số có đạo hàm
,
. Hàm số
có tất cả bao nhiêu điểm cực tiểu?
Ta có:
có
nghiệm bội lẻ và hệ số
dương nên có
cực tiểu
Hàm số có đạo hàm
,
. Hàm số
có tất cả bao nhiêu điểm cực tiểu?
Ta có:
có
nghiệm bội lẻ và hệ số
dương nên có
cực tiểu
Cho hàm số y = f(x) có đạo hàm. Biết f(x) có đạo hàm f’(x) và hàm số y = f’(x) có đồ thị như hình vẽ:

Hàm số g(x) = f(x - 1) đạt cực đại tại điểm nào dưới đây?
Cách 1: Ta có:
Vậy chọn đáp án B
Cách 2: Đồ thị hàm số g’(x) = f’(x – 1) là phép tịnh tiến đồ thị hàm số y = f’(x) theo phương trục hoành sang bên phải 1 đơn vị. Ta có hình vẽ minh họa:

Đồ thị hàm số g’(x) = f’(x – 1) cắt trục hoành tạo các điểm có hoành độ x = 2, x = 4, x = 6 và giá trị hàm số g’(x) đổi dấu từ dương sang âm khi qua điểm x = 4
Chọn B
Cho hàm số đa thức có đạo hàm trên
. Biết
và đồ thị hàm số
như hình sau.
Hàm số đồng biến trên khoảng nào dưới đây?
Xét hàm số trên
.
Vì là hàm số đa thức nên
cũng là hàm số đa thức và
.
Ta có .
Do đó .
Dựa vào sự tương giao của đồ thị hàm số và đường thẳng
, ta có
Suy ra bảng biến thiên của hàm số như sau:
Từ đó ta có bảng biến thiên của hàm số như sau:
Dựa vào bảng biến thiên trên, ta thấy hàm số đồng biến trên khoảng
.
Có bao nhiêu giá trị thực của tham số để hàm số
có điểm cực đại
và điểm cực tiểu
thỏa mãn biểu thức
?
Ta có: có
nên
.
Hàm số có cực đại và cực tiểu khi và chỉ khi .
Trường hợp 1:
Do
Lại có
Với điều kiện thỏa mãn.
Trường hợp 2:
Do
Lại có
Với điều kiện thỏa mãn.
Vậy có 2 giá trị thực của tham số m thỏa mãn.
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số không có cực trị. Số phần tử của S là:
Xét hàm số ta có:
Hàm số đã cho không có cực trị
=> Phương trình y’ = 0 vô nghiệm hoặc có nghiệm kép
=>
Do m là số nguyên nên
Vậy tập S có 4 phần tử.
Cho hàm số có
. Hàm số
đồng biến trên khoảng nào dưới đây?
Xét dấu f’(x) như sau:

Ta có:
Chọn ta có:
=> là khoảng âm
Khi đó bảng xét dấu của y’ = (f(x2))’ như sau:

Từ trục xét dấu ta thấy. Hàm số y = f(x2) đồng biến trên (-1; 0)
Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=>
=> Tổng P bằng 10
Cho hàm số Biết
là điểm cực tiểu của đồ thị hàm số. Tìm tọa độ điểm cực đại
của đồ thị hàm số.
Đạo hàm và
.
Điểm là điểm cực tiểu
Khi đó .
Ta có
Suy ra là điểm cực đại của đồ thị hàm số.
Cho hàm số y = f’(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số để hàm số
có đúng 11 điểm cực trị?

Hàm số đạt cực trị tại
Xét hàm số
Bảng biến thiên của hàm số suy ra chỉ có phương trình
cho ta nghiệm bội lẻ.
Nếu
=> Số điểm cực trị u là 1
=> Số nghiệm bội lẻ của phương trình u = 4 tối đa 2 nghiệm bội lẻ (Không thỏa yêu cầu)
Khi m > 0 => Số điểm cực trị u là 5 ta có bảng biến thiên của hàm số

Áp dụng công thức:
Số điểm cực trị của hàm số f(u) = số nghiệm bội lẻ của phương trình (u = 4) + số điểm cực trị của u
=> . Kết hợp với điều kiện
=> Có 29 giá trị nguyên thỏa mãn yêu cầu.
Cho hàm số có bảng xét dấu như sau:
Hỏi hàm số nghịch biến trên các khoảng nào dưới đây?
Ta có:
Xét
Bảng xét dấu là:
Căn cứ vào bảng xét dấu ta thấy
Hàm số nghịch biến trên khoảng
.
Tìm tất cả các giá trị thực của tham số để hàm số
có các điểm cực trị nhỏ hơn
Ta có
Yêu cầu bài toán có hai nghiệm phân biệt
.
Tìm tất cả các giá trị của tham số để hàm số
nghịch biến trên khoảng
?
Tập xác định
Ta có:
Theo yêu cầu bài toán:
Vậy đáp án cần tìm là .
Cho hàm số xác định trên
và có đạo hàm
trong đó
. Hàm số
đồng biến trên khoảng nào?
Ta có:
Vì nên
Suy ra hàm số đồng biến trên .
Biết rằng hàm số có hai điểm cực trị. Mệnh đề nào sau đây là đúng?
Ta có .
Có
Để hàm số đã cho đạt cực đại, cực tiểu khi và chỉ khi có hai nghiệm phân biệt
.
Số giá trị nguyên của tham số m để hàm số đồng biến trên
?
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.
Hỏi có bao nhiêu số nguyên để hàm số
nghịch biến trên khoảng
.
TH1: . Ta có:
là phương trình của một đường thẳng có hệ số góc âm nên hàm số luôn nghịch biến trên
.
Do đó nhận .
TH2: . Ta có:
là phương trình của một đường Parabol nên hàm số không thể nghịch biến trên
.
Do đó loại .
TH3: . Khi đó hàm số nghịch biến trên khoảng
, dấu “=” chỉ xảy ra ở hữu hạn điểm trên
.
,
Vì nên
.
Vậy có giá trị
nguyên cần tìm là
hoặc
.
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
. Tìm giá trị tham số
thỏa mãn yêu cầu bài toán?
Để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
. Tìm giá trị tham số
thỏa mãn yêu cầu bài toán?
Cho hàm số có bảng xét dấu của đạo hàm như sau
Hàm số đồng biến trên khoảng nào dưới đây?
Ta có:
Với , lại có
Vậy hàm số đồng biến trên khoảng
và
Chú ý:
+) Ta xét
Suy ra hàm số nghịch biến trên khoảng nên loại hai phương án
+) Tương tự ta xét
Suy ra hàm số nghịch biến trên khoảng
Giá trị của tham số m sao cho hàm số nghịch biến trên khoảng (0; 2)?
Ta có:
Hàm số nghịch biến trên khoảng (0; 2)
=>
=>
Xét hàm số
Ta có:
=> g(x) đồng biến trên đoạn [0; 2]
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: