Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 1 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn đáp án đúng

    Tìm tập hợp tất cả các giá trị của m để hàm số y
= \frac{m - \sin x}{cos^{2}x} nghịch biến trên \left( 0;\frac{\pi}{6} \right).

    Hướng dẫn:

    Ta có

    y' = \frac{- cos^{2}x + 2m\sin x -
2sin^{2}x}{cos^{3}x} = \frac{- 1 +
2m\sin x - sin^{2}x}{cos^{3}x}

    Để hàm số nghịch biến trên \left(
0;\frac{\pi}{6} ight) thì

    y' \leq 0,\forall x \in \left(
0;\frac{\pi}{6} ight)

    \Leftrightarrow - sin^{2}x + 2m\sin x - 1
\leq 0,\forall x \in \left(
0;\frac{\pi}{6} ight), vì cos^{3}x > 0,\forall x \in \left(
0;\frac{\pi}{6} ight) (1)

    Đặt \sin x = t,t \in \left( 0;\frac{1}{2}
ight).

    Khi đó (1) \Leftrightarrow - t^{2} + 2mt
- 1 \leq 0,\forall t \in \left( 0;\frac{1}{2} ight)

    \Leftrightarrow m \leq \frac{t^{2} +
1}{2t},\forall t \in \left( 0;\frac{1}{2} ight)\ (2)

    Ta xét hàm f(t) = \frac{t^{2} +
1}{2t},\forall t \in \left( 0;\frac{1}{2} ight)

    Ta có f'(t)=\frac{2\left( t^{2}-1ight)}{4t^2} < 0,\forall t \in \left( 0;\frac{1}{2}ight)

    Bảng biến thiên

    Từ bảng biến thiên suy ra (2)
\Leftrightarrow m \leq \frac{5}{4}.

  • Câu 2: Thông hiểu
    Tìm m thỏa mãn yêu cầu bài toán

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} + mx^{2} + (2m - 1)x -
1 đồng biến trên tập số thực?

    Hướng dẫn:

    Ta có: y' = x^{2} + 2mx + 2m -
1

    Hàm số đồng biến trên \mathbb{R} khi

    y' \geq 0 \Leftrightarrow x^{2} +
2mx + 2m - 1

    \Leftrightarrow \Delta' \leq 0
\Leftrightarrow m^{2} - 2m + 1 \leq 0 \Leftrightarrow m = 1

    Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 3: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) = \left| x^{2} - 4x +3 ight| + mx với m là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số m để hàm số y= f(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = \left| x^{2} - 4x +3 ight| + mx với m là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số m để hàm số y= f(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số y =f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f\left( 2 - e^{x} ight) -\frac{1}{3}e^{3x} + 3e^{2x} - 5e^{x} + 1 đồng biến trong khoảng nào dưới đây?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f\left( 2 - e^{x} ight) -\frac{1}{3}e^{3x} + 3e^{2x} - 5e^{x} + 1 đồng biến trong khoảng nào dưới đây?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = x^{4} - 2(m + 2)x^{2} + 3m
- 1. Tìm m để hàm số đã cho có cực tiểu nhưng không có cực đại?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4(m +
2)x

    y' = 0 \Leftrightarrow 4x^{3} - 4(m
+ 2)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = m + 2 \\
\end{matrix} ight.

    Để hàm số đã cho chỉ có điểm cực tiểu và không có điểm cực đại thì m + 2 \leq 0 \Leftrightarrow m \leq -
2.

    Vậy đáp án cần tìm là ( - \infty; -
2brack.

  • Câu 6: Vận dụng
    Chọn đáp án đúng

    Cho hàm số đa thức bậc bốn f(x). Đồ thị hàm số y = f'(3 - 2x) được biểu thị trong hình vẽ sau:

    Hàm số y = f(x) nghịch biến trong khoảng nào?

    Hướng dẫn:

    Đặt t = 3 - 2x. Ta có bảng xét dấu của f'(3 - 2x) được mô tả lại như sau:

    Từ đó suy ra bảng xét dấu của f'(t)

    Vậy hàm số y = f(x) nghịch biến trên các khoảng ( - \infty; -
1),(3;5).

  • Câu 7: Vận dụng cao
    Tìm khẳng định sai

    Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

    Xét hàm số g\left( x ight) = f\left( {\frac{{x - 1}}{2}} ight) - \frac{{{x^3}}}{3} + \frac{{3{x^2}}}{2} - 2x + 3. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Ta có:

    g'\left( x ight) = \frac{1}{2}f'\left( {\frac{{x - 1}}{2}} ight) - \left( {{x^2} - 3x + 2} ight)

    f'\left( {\frac{{x - 1}}{2}} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{{x - 1}}{2} = \dfrac{{ - 5}}{2}} \\   {\dfrac{{x - 1}}{2} =  - 1} \\   {\dfrac{{x - 1}}{2} = \frac{1}{2}} \\   {\dfrac{{x - 1}}{2} = 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 4} \\   {x =  - 1} \\   {x = 2} \\   {x = 7} \end{array}} ight.

    f'\left( {\frac{{x - 1}}{2}} ight) > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{{x - 1}}{2} <  - \dfrac{5}{2}} \\   {\dfrac{1}{2} < \dfrac{{x - 1}}{2} < 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x <  - 4} \\   {2 < x < 7} \end{array}} ight.

    Ta có bảng xét dấu cho các biểu thức

    Tìm khẳng định sai

    Từ bảng xét dấu ta thấy

    x \in \left( {0;1} ight) \subset \left( {0;2} ight) \Rightarrow g'\left( x ight) < 0

    Khi đó hàm số nghịch biến

    => Đáp án B sai

  • Câu 8: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2} - 2x,\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {2 - \sqrt {{x^2} + 1} } ight) - \sqrt {{x^2} + 1}  - 3 đồng biến trên các khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2} - 2x,\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {2 - \sqrt {{x^2} + 1} } ight) - \sqrt {{x^2} + 1}  - 3 đồng biến trên các khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Vận dụng
    Chọn đáp án đúng

    Cho hàm số y = f(x) = x^{3} - (2m +
1)x^{2} + (3 - m)x + 2 với m là tham số. Định điều kiện của tham số m để hàm số y = f\left( |x| ight) có ba điểm cực trị?

    Hướng dẫn:

    Ta có:

    y' = f'(x) = 3x^{2} - 2(2m + 1)x
+ 3 - m

    y' = 0 \Leftrightarrow 3x^{2} - 2(2m
+ 1)x + 3 - m = 0(*)

    Để hàm số y = f\left( |x|
ight) có ba điểm cực trị thì đồ thị hàm số y = f(x) có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dươngx_{1};x_{2} thỏa mãn \left\lbrack \begin{matrix}
0 = x_{1} < x_{2} \\
x_{1} < 0 < x_{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
3 - m = 0 \\
2m + 1 > 0 \\
\end{matrix} ight.\  \\
3 - m < 0 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 3

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Tìm điều kiện của tham số thực m để hàm số y = x^{3} - 3x^{2} + 3(m + 1)x +
2 đồng biến trên \mathbb{R}.

    Hướng dẫn:

    Tập xác định: D =
\mathbb{R}.

    Ta có: y' = 3x^{2} - 6x + 3(m +
1)

    YCBT \Leftrightarrow y' \geq 0,\
\forall x\mathbb{\in R \Leftrightarrow}\Delta' = - 9m \leq 0
\Leftrightarrow m \geq 0.

  • Câu 11: Vận dụng
    Chọn mệnh đề đúng

    Biết rằng hàm số y = (x + a)^{3} + (x +b)^{3} - x^{3} có hai điểm cực trị. Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Ta có y' = 3(x + a)^{2} + 3(x +b)^{2} - 3x^{2},\ \ \forall x\mathbb{\in R}.

    y' = 0 \Leftrightarrow (x + a)^{2}+ (x + b)^{2} - x^{2} = 0

    \Leftrightarrow x^{2} + 2(a + b)x + a^{2}
+ b^{2} = 0 (*)

    Để hàm số đã cho đạt cực đại, cực tiểu khi và chỉ khi (*) có hai nghiệm phân biệt

    \Leftrightarrow \Delta' = (a + b)^{2}
- \left( a^{2} + b^{2} ight) > 0 \Leftrightarrow ab >
0.

  • Câu 12: Vận dụng
    Chọn đáp án đúng

    Cho hàm số y =
f(x) xác định trên y =
f(x) và có đạo hàm f'(x) = (2 -
x)(x + 3)g(x) + 2021 trong đó g(x)
< 0;\forall x\mathbb{\in R}. Hàm số y = f(1 - x) + 2021x + 2022 đồng biến trên khoảng nào?

    Hướng dẫn:

    Ta có:

    y' = - f'(1 - x) +
2021

    y' = - \left\lbrack (1 + x)(4 -
x)g(1 - x) + 2021 ightbrack + 2021

    y' = (x + 1)(x - 4).g(1 - x)
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    g(x) < 0;\forall x\mathbb{\in
R} nên y' > 0;\forall x \in
( - 1;4)

    Suy ra hàm số đồng biến trên ( -
1;4).

  • Câu 13: Thông hiểu
    Tìm m để hàm số có hai cực trị

    Cho hàm số y = \frac{1}{3}x^{3} - mx^{2}
- x + m + 1 với m là tham số. Tìm các giá trị của tham số m để đồ thị hàm số có hai điểm cực trị A;B thỏa mãn {x_{A}}^{2} + {x_{B}}^{2} = 2?

    Hướng dẫn:

    Ta có: y' = x^{2} - 2mx -
1(*)

    Hàm số đã cho có hai điểm cực trị A;B \Leftrightarrow \Delta' > 0 \Leftrightarrow
m^{2} + 1 > 0;\forall m\mathbb{\in R}

    Khi đó \left\{ \begin{matrix}x_{A} + x_{B} = - \dfrac{b}{a} = 2m \\x_{A}.x_{B} = \dfrac{c}{a} = - 1 \\\end{matrix} ight.. Theo bài ra ta có:

    {x_{A}}^{2} + {x_{B}}^{2} = 2
\Leftrightarrow \left( x_{A} + x_{B} ight)^{2} - 2x_{A}.x_{B} =
2

    \Leftrightarrow 4m^{2} - 2.( - 1) = 2
\Leftrightarrow m = 0

    Vậy m = 0 là giá trị cần tìm.

  • Câu 14: Vận dụng
    Tìm tất cả các giá trị của m để hàm số có cực trị

    Cho hàm số y = 2x^{3} + 3(m - 1)x^{2} +
6(m - 2)x - 1 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có điểm cực đại và điểm cực tiểu nằm trong khoảng ( - 2;3).

    Hướng dẫn:

    Ta có y' = 6x^{2} + 6(m - 1)x + 6(m -
2)

    y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 2 - m \\
\end{matrix} ight.\ .

    Để hàm số có hai cực trị \Leftrightarrow
y' = 0 có hai nghiệm phân biệt \Leftrightarrow 2 - m eq - 1 \Leftrightarrow m
eq 3.

    Nếu - 1 < 2 - m \Leftrightarrow m <
3, ycbt \Leftrightarrow - 2 < -
1 < 2 - m < 3

    \Leftrightarrow \left\{ \begin{matrix} m >-1 \\m<3 \\\end{matrix} ight.\  \Leftrightarrow - 1< m < 3.

    Nếu 2 - m < - 1 \Leftrightarrow m >
3, ycbt \Leftrightarrow - 2 < 2
- m < - 1 < 3

    \Leftrightarrow \left\{ \begin{matrix}
m > 3 \\
m < 4 \\
\end{matrix} ight.\  \Leftrightarrow 3< m<4.

    Vậy m \in ( - 1;3) \cup
(3;4).

  • Câu 15: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng
    Chọn kết luận đúng

    Cho hàm số y = f(x) biết hàm số f(x) có đạo hàm f'(x) và hàm số y = f'(x) có đồ thị như hình vẽ. Đặt g(x) = f(x+1). Kết luận nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    g(x) = f(x+1).

    Ta có: g'(x) = f'(x +
1)

    Hàm số g(x) đồng biến

    \Leftrightarrow g'(x) > 0
\Leftrightarrow f'(x + 1) > 0

    \Leftrightarrow \left[ \begin{gathered}
  x + 1 > 5 \hfill \\
  1 < x + 1 < 3 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  x > 4 \hfill \\
  0 < x < 2 \hfill \\ 
\end{gathered}  ight..

    Hàm số g(x) nghịch biến

    \Leftrightarrow g'(x) < 0\Leftrightarrow f'(x + 1) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
3 < x + 1 < 5 \\
x + 1 < 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
2 < x < 4 \\
x < 0 \\
\end{matrix} ight..

    Vậy hàm số g(x) đồng biến trên khoảng (0\ ;\ 2); (4;\  + \infty) và nghịch biến trên khoảng (2\ ;\ 4); ( - \infty;\ 0).

  • Câu 17: Vận dụng
    Ghi đáp án vào ô trống

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số f\left( x ight) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a e 0} ight) có đồ thị của đạo hàm f’(x) như hình vẽ:

    Xác định số điểm cực trị của hàm số

    Biết rằng e > n. Số điểm cực trị của hàm số y = f'\left( {f\left( x ight) - 2x} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f\left( x ight) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a e 0} ight) có đồ thị của đạo hàm f’(x) như hình vẽ:

    Xác định số điểm cực trị của hàm số

    Biết rằng e > n. Số điểm cực trị của hàm số y = f'\left( {f\left( x ight) - 2x} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Vận dụng
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên \mathbb{R}. Hàm số y = f'(x) có đồ thị như hình vẽ. Hàm số g(x) = f(x - 1) + \frac{2019 -
2018x}{2018} đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có g'(x) = f'(x - 1) -
1.

    g'(x) \geq 0 \Leftrightarrow f'(x- 1) - 1 \geq 0 \Leftrightarrow f'(x - 1) \geq 1

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 \leq - 1 \\
x - 1 \geq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x \leq 0 \\
x \geq 3 \\
\end{matrix} ight.\ .

    Từ đó suy ra hàm số g(x) = f(x - 1) +
\frac{2019 - 2018x}{2018} đồng biến trên khoảng ( - 1\ ;\ 0).

  • Câu 20: Vận dụng
    Chọn phương án thích hợp

    Cho hàm số y = \frac{1}{3}x^{3} - (m +
1)x^{2} + (2m + 1)x - \frac{4}{3} với m > 0 là tham số thực. Tìm giá trị của m để đồ thị hàm số có điểm cực đại thuộc trục hoành.

    Hướng dẫn:

    Đạo hàm y' = x^{2} - 2(m + 1)x + (2m
+ 1)

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 2m + 1 \\
\end{matrix} ight.

    Do m > 0\overset{}{ightarrow}2m + 1
eq 1 nên đồ thị hàm số luôn có hai điểm cực trị.

    Do m > 0\overset{}{ightarrow}2m + 1
> 1\overset{}{ightarrow} hoành độ điểm cực đại là x = 1 nên y_{CD} = y(1) = m - 1.

    Yêu cầu bài toán \Leftrightarrow y_{CD} =0 \Leftrightarrow m - 1 = 0 \Leftrightarrow m = 1: thỏa mãn.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo