Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 1 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tìm m để hàm số nghịch biến trên khoảng cho trước

    Tìm giá trị của tham số m để hàm số y
= \frac{\cot x - 2}{\cot x - m} nghịch biến trên \left( \frac{\pi}{4};\frac{\pi}{2}
ight)?

    Hướng dẫn:

    Đặt t = \cot x \Rightarrow t' =
\frac{- 1}{sin^{2}x} < 0;\forall x \in \left(
\frac{\pi}{4};\frac{\pi}{2} ight)

    \Rightarrow \cot\frac{\pi}{2} < t <
\cot\frac{\pi}{4} hay 0 < t <
1

    Bài toán trở thành tìm m để hàm số y =
\frac{t - 2}{t - m} đồng biến trên (0;1)

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Ta có: y' = \frac{2 - m}{(t -
m)^{2}}. Hàm số y = \frac{t - 2}{t
- m} đồng biến trên (0;1)

    \Leftrightarrow y' > 0;\forall t
\in (0;1) \Leftrightarrow \left\{ \begin{matrix}
2 - m > 0 \\
m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 2 \\
\left\lbrack \begin{matrix}
m \geq 1 \\
m \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Vậy đáp án cần tìm là \left\lbrack
\begin{matrix}
m \leq 0 \\
1 \leq m < 2 \\
\end{matrix} ight..

  • Câu 2: Thông hiểu
    Tìm các giá trị nguyên của x thỏa mãn yêu cầu

    Cho hàm số y = f(x)f'(x) > 0;\forall x\mathbb{\in R}. Có bao nhiêu giá trị nguyên của x để f(22x) > f\left( x^{2}
ight)?

    Hướng dẫn:

    Ta có: f'(x) > 0;\forall
x\mathbb{\in R} suy ra hàm số f(x) đồng biến trên \mathbb{R}

    Suy ra f(22x) > f\left( x^{2} ight)
\Leftrightarrow 22x > x^{2} \Leftrightarrow 0 < x <
22

    Vậy có tất cả 21 giá trị nguyên của x.

  • Câu 3: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như hình vẽ.

    Đặt g(x) = f\left( \frac{x^{2} + 1}{x}
ight). Tìm số điểm cực trị của hàm số y = g(x).

    Đáp án: 6

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như hình vẽ.

    Đặt g(x) = f\left( \frac{x^{2} + 1}{x}
ight). Tìm số điểm cực trị của hàm số y = g(x).

    Đáp án: 6

    Đặt g'(x) = \left( \frac{x^{2} -
1}{x^{2}} ight)f'\left( \frac{x^{2} + 1}{x} ight)

    g'\left( x ight) = 0 \Leftrightarrow \left[ \begin{gathered}
  \left( {\frac{{{x^2} - 1}}{{{x^2}}}} ight) = 0 \hfill \\
  f'\left( {\frac{{{x^2} + 1}}{x}} ight) = 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}
  x =  \pm 1 \hfill \\
  \frac{{{x^2} + 1}}{x} = a\,\,\left( {a <  - 2} ight) \hfill \\
  \frac{{{x^2} + 1}}{x} = b\,\,\left( { - 2 < b < 2} ight) \hfill \\
  \frac{{{x^2} + 1}}{x} = c\,\,\left( {c > 2} ight) \hfill \\ 
\end{gathered}  ight.

    Xét hàm số h(x) = \frac{x^{2} +
1}{x},h'(x) = \frac{x^{2} - 1}{x^{2}},h'(x) = 0 \Leftrightarrow
x = \pm 1

    Bảng biến thiên của hàm số h(x) =
\frac{x^{2} + 1}{x}

    Dựa vào bảng biến thiến trên ta thấy phương trình h(x) = a,h(x) = c.

    Mỗi phương trình có hai nghiệm phân biệt khác \pm 1, mà a eq c \Rightarrow f'\left(
\frac{x^{2} + 1}{x} ight) = 0 có 4 nghiệm đơn phân biệt x_{1},x_{2},x_{3},x_{4} khác \pm 1 và phương trình h(x) = b vô nghiệm.

    Do đó phương trình g'(x) = 0 có 6 nghiệm đơn phân biệt lần lượt theo thứ tự từ nhỏ đến lớn là x_{1},- 1,x_{2},x_{3},1,x_{4}.

    Vậy hàm số g(x) = f\left( \frac{x^{2} +
1}{x} ight)có 6 cực trị.

  • Câu 4: Vận dụng
    Số điểm cực trị của hàm số

    Cho hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên \mathbb{R}. Khi đó hàm số y = f\left( {{x^2} - 2x} ight) có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Ta có hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên \mathbb{R} nên f’(x) = 0 có ba nghiệm x = -2; x = -1, x = 0

    Đặt  g\left( x ight) = f\left( {{x^2} - 2x} ight) \Rightarrow g'\left( x ight) = \left( {2x - 2} ight)f\left( {{x^2} - 2x} ight)

    Vì f’(x) liên tục trên \mathbb{R} nên g’(x) cũng liên tục trên \mathbb{R}. Do đó những điểm g’(x) có thể đổi dấu thuộc tập các điểm thỏa mãn.

    \left[ {\begin{array}{*{20}{c}}  {2x - 2 = 0} \\   {{x^2} - 2x =  - 2} \\   {{x^2} - 2x =  - 1} \\   {{x^2} - 2x = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 0} \\   {x = 2} \end{array}} ight.

    Ba nghiệm trên đều là nghiệm đơn hoặc bội lẻ nên hàm số g(x) có ba điểm cực trị.

     

  • Câu 5: Thông hiểu
    Chọn mệnh đề đúng

    Biết m_{0} là giá trị của tham số m để hàm số y = x^{3} - 3x^{2} + mx - 1 có hai điểm cực trị x_{1};x_{2} sao cho {x_{1}}^{2} + {x_{2}}^{2} - x_{1}x_{2} =
13. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 6x +
m

    Hàm số có hai cực trị \Leftrightarrow
\Delta' = 9 - 3m > 0 \Leftrightarrow m < 3

    x_{1};x_{2} là hai nghiệm của phương trình 3x^{2} - 6x + m =
0

    Áp dụng hệ thức Vi – et ta có: \left\{\begin{matrix}S = x_{1} + x_{2} = 2 \\P = x_{1}.x_{2} = \dfrac{m}{3} \\\end{matrix} ight.

    Ta có: {x_{1}}^{2} + {x_{2}}^{2} -
x_{1}x_{2} = 13

    \Leftrightarrow \left( x_{1} + x_{2}
ight)^{2} - 3x_{1}x_{2} = 13

    \Leftrightarrow m = - 9 \in ( - 15; -
7).

  • Câu 6: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có đồ thị của hàm số y = f'(x) như sau:

    Trên khoảng ( - 10;10) có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số g(x) = f(x) + mx + 2020 có đúng một cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đồ thị của hàm số y = f'(x) như sau:

    Trên khoảng ( - 10;10) có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số g(x) = f(x) + mx + 2020 có đúng một cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Vận dụng
    Chọn mệnh đề đúng

    Biết rằng hàm số y = (x + a)^{3} + (x +b)^{3} - x^{3} có hai điểm cực trị. Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Ta có y' = 3(x + a)^{2} + 3(x +b)^{2} - 3x^{2},\ \ \forall x\mathbb{\in R}.

    y' = 0 \Leftrightarrow (x + a)^{2}+ (x + b)^{2} - x^{2} = 0

    \Leftrightarrow x^{2} + 2(a + b)x + a^{2}
+ b^{2} = 0 (*)

    Để hàm số đã cho đạt cực đại, cực tiểu khi và chỉ khi (*) có hai nghiệm phân biệt

    \Leftrightarrow \Delta' = (a + b)^{2}
- \left( a^{2} + b^{2} ight) > 0 \Leftrightarrow ab >
0.

  • Câu 8: Vận dụng
    Tìm mệnh đề sai

    Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị của hàm số y = f'(x) như hình vẽ. Xét hàm số g(x) = f\left( x^{2} - 2
\right). Mệnh đề nào dưới đây sai?

    Hướng dẫn:

    Ta có g'(x) = \left( x^{2} - 2
ight)^{'}.f'\left( x^{2} - 2 ight) = 2x.f'\left( x^{2} -
2 ight).

    Hàm số nghịch biến khi g'(x) \leq 0
\Leftrightarrow x.f'\left( x^{2} - 2 ight) \leq 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \leq 0 \\
f'\left( x^{2} - 2 ight) \geq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \geq 0 \\
f'\left( x^{2} - 2 ight) \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Từ đồ thị hình của hàm số y =
f'(x) như hình vẽ, ta thấy

    f'(x) \leq 0 \Leftrightarrow x \leq
2f'(x) \geq 0
\Leftrightarrow x \geq 2.

    + Với \left\{ \begin{matrix}
x \leq 0 \\
f'\left( x^{2} - 2 ight) \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 0 \\
x^{2} - 2 \geq 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
  x \leqslant 0 \hfill \\
  {x^2} \geqslant 4 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  x \leqslant 0 \hfill \\
  \left[ \begin{gathered}
  x \geqslant 2 \hfill \\
  x \leqslant  - 2 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow x \leqslant  - 2.

    + Với \left\{ \begin{matrix}
x \geq 0 \\
f'\left( x^{2} - 2 ight) \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x^{2} - 2 \leq 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x^{2} \leq 4 \\
\end{matrix} ight.\  \Leftrightarrow 0 \leq x \leq 2.

    Như vậy hàm số nghịch biến trên mỗi khoảng ( - \infty; - 2), (0;2); suy ra hàm số đồng biến trên ( - 2;0)(2; + \infty).

    Do ( - 1;0) \subset ( - 2;0) nên hàm số đồng biến trên ( - 1;0). Vậy “Hàm số g(x) nghịch biến trên ( - 1;0)” sai.

  • Câu 9: Vận dụng
    Tìm số cực trị của hàm số

    Cho hàm số f\left( x ight) = {x^2}\left( {x - 1} ight).{e^{3x}} có một nguyên hàm là hàm số F(x). Số điểm cực trị của hàm số F(x) là

    Hướng dẫn:

    TXĐ: D = \mathbb{R} có một nguyên hàm là hàm số F(x)

    => F’(x) = f(x), \forall x \in \mathbb{R}

    => F'\left( x ight) = 0 \Leftrightarrow f\left( x ight) = 0 \Leftrightarrow {x^2}\left( {x - 1} ight){e^{3x}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \end{array}} ight.

    Ta có bảng xét dấu F’(x) như sau:

    Tìm số cực trị của hàm số

    Dựa vào bảng trên ta thấy hàm số F(x) có một điểm cực trị.

  • Câu 10: Vận dụng cao
    Chọn đáp án đúng

    Cho hàm số f(x)liên tục trên \mathbb{R} có đồ thị hàm số y = f'(x) cho như hình vẽ

    Hàm số g(x) = 2f\left( |x - 1| \right) -
x^{2} + 2x + 2020 đồng biến trên khoảng nào?

    Hướng dẫn:

    Ta có đường thẳng y = x cắt đồ thị hàm sốy = f'(x) tại các điểm x = - 1;\ \ x = 1;\ \ x = 3 như hình vẽ sau:

    Dựa vào đồ thị của hai hàm số trên ta có f'(x) > x \Leftrightarrow \left\lbrack
\begin{matrix}
x < - 1 \\
1 < x < 3 \\
\end{matrix} ight.f'(x)
< x \Leftrightarrow \left\lbrack \begin{matrix}
- 1 < x < 1 \\
x > 3 \\
\end{matrix} ight..

    + Trường hợp 1: x - 1 < 0
\Leftrightarrow x < 1, khi đó ta có g(x) = 2f(1 - x) - x^{2} + 2x + 2020.

    Ta có g'(x) = - 2f'(1 - x) + 2(1
- x).

    g'(x) > 0 \Leftrightarrow -2f'(1 - x) + 2(1 - x) > 0

    \Leftrightarrow f'(1 - x) < 1 -x\Leftrightarrow \left\lbrack \begin{matrix}
- 1 < 1 - x < 1 \\
1 - x > 3 \\
\end{matrix} ight.\Leftrightarrow \left\lbrack \begin{matrix}
0 < x < 2 \\
x < - 2 \\
\end{matrix} ight..

    Kết hợp điều kiện ta có g'(x) > 0
\Leftrightarrow \left\lbrack \begin{matrix}
0 < x < 1 \\
x < - 2 \\
\end{matrix} ight..

    + Trường hợp 2: x - 1 > 0
\Leftrightarrow x > 1, khi đó ta có g(x) = 2f(x - 1) - x^{2} + 2x + 2020.

    g'(x) = 2f'(x - 1) - 2(x -
1)

    g'(x) > 0 \Leftrightarrow2f'(x - 1) - 2(x - 1) > 0

    \Leftrightarrow f'(x - 1) > x -
1 \Leftrightarrow \left\lbrack \begin{matrix}
x - 1 < - 1 \\
1 < x - 1 < 3 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack \begin{matrix}
x < 0 \\
2 < x < 4 \\
\end{matrix} ight..

    Kết hợp điều kiện ta có g'(x) > 0
\Leftrightarrow 2 < x < 4.

    Vậy hàm số g(x) = 2f\left( |x - 1|
ight) - x^{2} + 2x + 2020 đồng biến trên khoảng (0;1).

  • Câu 11: Vận dụng
    Tìm giá trị tham số m theo yêu cầu

    Cho hàm số y = x^{3} - 3x^{2} - mx +
2 với m là tham số thực. Tìm giá trị của m để đường thẳng đi qua hai điểm cực trị của đồ thị hàm số tạo với đường thẳng d:x + 4y - 5 = 0 một góc \alpha = 45^{0}.

    Hướng dẫn:

    Ta có y' = 3x^{2} - 6x -
m.

    Để đồ thị hàm số đã cho có hai điểm cực trị \Leftrightarrow phương trình y' = 0 có hai nghiệm phân biệt \Leftrightarrow \Delta' = 9 + 3m > 0
\Leftrightarrow m > - 3.

    Ta có

    y = y'.\left( \frac{1}{3}x -
\frac{1}{3} ight) - \left( \frac{2m}{3} + 2 ight)x + 2 -
\frac{m}{3}.

    \overset{}{ightarrow} đường thẳng đi qua hai điểm cực trị AB\Delta:y = - \left( \frac{2m}{3} + 2 ight)x + 2
- \frac{m}{3}.

    Đường thẳng d:x + 4y - 5 = 0 có một VTPT là {\overrightarrow{n}}_{d} =
(1;4).

    Đường thẳng \Delta:y = - \left(
\frac{2m}{3} + 2 ight)x + 2 - \frac{m}{3} có một VTPT là {\overrightarrow{n}}_{\Delta} = \left(
\frac{2m}{3} + 2;1 ight).

    Ycbt \overset{}{\leftrightarrow}\frac{\sqrt{2}}{2} =
cos45^{0}

    = \cos(d,\Delta) = \left|
\cos\left( {\overrightarrow{n}}_{d},{\overrightarrow{n}}_{\Delta}
ight) ight|

    = \dfrac{\left|
1.\left( \dfrac{2m}{3} + 2 ight) + 4.1 ight|}{\sqrt{1^{2} +
4^{2}}.\sqrt{\left( \dfrac{2m}{3} + 2 ight)^{2} + 1^{2}}}

    \overset{}{\leftrightarrow}60m^{2} + 264m
+ 117 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = - \dfrac{1}{2} \\
m = - \dfrac{39}{10}\  \\
\end{matrix} ight.\ \overset{m > - 3}{ightarrow}m = -
\frac{1}{2} (thỏa mãn).

  • Câu 12: Vận dụng
    Xác định tham số m để hàm số nghịch m trên khoảng

    Cho hàm số y =  - {x^3} + 3{x^2} + 3mx - 1. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)

    Hướng dẫn:

    Ta có: y' =  - 3{x^2} + 6x + 3m

    Hàm số đã cho nghịch biến trên khoảng (0; +∞)

    =>  y' \leqslant 0,\forall x \in \left( {0; + \infty } ight)

    => m \leqslant {x^2} - 2x = g\left( x ight),\forall x \in \left( {0; + \infty } ight)

    => m \leqslant \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight)

    Xét  g\left( x ight) = {x^2} - 2x;\forall x \in \left( {0; + \infty } ight) ta có:

    \begin{matrix}  g'\left( x ight) = 2x - 2 \hfill \\  g'\left( x ight) = 0 \Rightarrow x = 1 \hfill \\ \end{matrix}

    Ta lại có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to 0} g\left( x ight) = 0} \\   {\mathop {\lim }\limits_{x \to \infty } g\left( x ight) =  + \infty } \\   {g\left( 1 ight) =  - 1} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight) =  - 1 \Rightarrow m \leqslant  - 1

  • Câu 13: Vận dụng
    Tính tổng P

    Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m - 2} ight){x^2} + 12x + 1 đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:

    Hướng dẫn:

    Ta có: y' = 3{x^2} - 6\left( {m - 2} ight)x + 12

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 9{{\left( {m - 2} ight)}^2} - 36 \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    => m \in \left\{ {0;1;2;3;4} ight\}

    => Tổng P bằng 10

  • Câu 14: Thông hiểu
    Chọn đáp án chính xác

    Tìm tất cả các giá trị của tham số m để hàm số y
= x^{3} - 3(m + 1)x^{2} + 3(3m + 7)x + 1 có cực trị?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 6(m + 1)x + 3(3m
+ 7)

    Để hàm số y = x^{3} - 3(m + 1)x^{2} +
3(3m + 7)x + 1 có cực trị thì y' = 0 có hai nghiệm phân biệt

    \Rightarrow \Delta' > 0
\Leftrightarrow 9m^{2} - 9m - 54 > 0 \Leftrightarrow \left\lbrack
\begin{matrix}
m < - 2 \\
m > 3 \\
\end{matrix} ight..

  • Câu 15: Thông hiểu
    Xác định các giá trị nguyên dương của m

    Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y
= x^{3} - 3mx^{2} + 3\left( m^{2} - 2 ight)x đồng biến trên khoảng (12; + \infty)?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 6mx + 3\left(
m^{2} - 2 ight)

    Hàm số y = x^{3} - 3mx^{2} + 3\left(
m^{2} - 2 ight)x đồng biến trên khoảng (12; + \infty)

    \Leftrightarrow y' \geq 0
\Leftrightarrow 3x^{2} - 6mx + 3\left( m^{2} - 2 ight) \geq
0

    \Leftrightarrow x^{2} - 2mx + m^{2} - 2
\geq 0

    \Leftrightarrow (x - m)^{2} \geq 2
\Leftrightarrow \left\lbrack \begin{matrix}
x - m \geq \sqrt{2} \\
x - m \leq - \sqrt{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x \geq m + \sqrt{2} \\
x \leq m - \sqrt{2} \\
\end{matrix} ight.

    Theo yêu cầu bài toán ta có: \sqrt{2} + m
\leq 12 \Leftrightarrow m \leq 12 - \sqrt{2}

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2;3;...;9;10 ight\}

    Suy ra có tất cả 10 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 16: Vận dụng
    Chọn kết luận đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Tìm số điểm cực trị của hàm số g(x) =
f\left( x^{2} - 2x ight) trên khoảng (0; + \infty)?

    Hướng dẫn:

    Đặt g(x) = f\left( x^{2} - 2x ight)
\Rightarrow g'(x) = (2x - 2)f'\left( x^{2} - 2x
ight)

    Từ bảng xét dấu của hàm số f'(x)

    g'(x) = 0 \Leftrightarrow g(x) =
f\left( x^{2} - 2x ight) \Rightarrow \left\lbrack \begin{matrix}
2x - 2 = 0 \\
f'\left( x^{2} - 2x ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 2x = - 1\  \\
x^{2} - 2x = 2\ \  \\
2x - 2 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 1 \pm \sqrt{3} \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Từ bảng biến thiên suy ra hàm số g(x) =
f\left( x^{2} - 2x ight) có hai cực trị trên khoảng (0; + \infty).

  • Câu 17: Vận dụng
    Tìm m để hàm số đồng biến trên R

    Tìm giá trị của tham số m để hàm số y = \sin 2x + mx + c đồng biến trên \mathbb{R}

    Hướng dẫn:

    Ta có: y' = 2\cos 2x + m

    Hàm số đồng biến trên \mathbb{R}

    \begin{matrix}   \Leftrightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \mathop {\min }\limits_\mathbb{R} y' =  - 2 + m \geqslant 0 \Leftrightarrow m \geqslant 2 \hfill \\ \end{matrix}

  • Câu 18: Vận dụng cao
    Tìm khoảng nghịch biến của hàm số

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2}\left( {x - 9} ight){\left( {x - 4} ight)^2}. Khi đó hàm số y = f\left( {{x^2}} ight) nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' = \left[ {f\left( {{x^2}} ight)} ight]\prime  \hfill \\   = \left( {{x^2}} ight)'{x^4}\left( {x - 9} ight)\left( {{x^2} - 4} ight) \hfill \\   = 2{x^5}\left( {x - 3} ight)\left( {x - 3} ight){\left( {x - 2} ight)^2}.{\left( {x + 2} ight)^2} \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x =  \pm 2} \\   {x =  \pm 3} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng xét dấu như sau:

    Tìm khoảng nghịch biến của hàm số

    Dựa vào bảng xét dấu, hàm số y = f\left( {{x^2}} ight) nghịch biến trên các khoảng (-∞; -3) và (-0; 3)

  • Câu 19: Vận dụng
    Chọn đáp án đúng

    Cho hàm số đa thức bậc bốn f(x). Đồ thị hàm số y = f'(3 - 2x) được biểu thị trong hình vẽ sau:

    Hàm số y = f(x) nghịch biến trong khoảng nào?

    Hướng dẫn:

    Đặt t = 3 - 2x. Ta có bảng xét dấu của f'(3 - 2x) được mô tả lại như sau:

    Từ đó suy ra bảng xét dấu của f'(t)

    Vậy hàm số y = f(x) nghịch biến trên các khoảng ( - \infty; -
1),(3;5).

  • Câu 20: Vận dụng
    Tìm tham số m để hàm số nghịch biến trên khoảng

    Giá trị của tham số m sao cho hàm số y = {x^3} - 2m{x^2} - \left( {m + 1} ight)x + 1 nghịch biến trên khoảng (0; 2)?

    Hướng dẫn:

    Ta có: y' = 3{x^2} - 4mx - m - 1

    Hàm số nghịch biến trên khoảng (0; 2)

    => 3{x^2} - 4mx - m - 1 \leqslant 0,x \in \left[ {0;2} ight]

    => 3{x^2} - 1 \leqslant 3\left( {4x + 1} ight) \Leftrightarrow \frac{{3{x^2} - 1}}{{4x + 1}} \leqslant m,\left( {\forall x \in \left[ {0;2} ight]} ight)

    Xét hàm số g\left( x ight) = \frac{{3{x^2} - 1}}{{4x + 1}};\forall x \in \left[ {0;2} ight]

    Ta có: g'\left( x ight) = \frac{{6x\left( {4x + 1} ight) - 4\left( {3{x^2} - 1} ight)}}{{{{\left( {4x + 1} ight)}^2}}} = \frac{{12{x^2} + 6x + 4}}{{{{\left( {4x + 1} ight)}^2}}};\forall x \in \left[ {0;2} ight]

    => g(x) đồng biến trên đoạn [0; 2]

    Ta có:

    \begin{matrix}  g\left( x ight) = \dfrac{{3{x^2} - 1}}{{4x + 1}} \leqslant m;\forall x \in \left[ {0;2} ight] \hfill \\   \Rightarrow m \geqslant g\left( 2 ight) = \dfrac{{11}}{9} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo