Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 1 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định hàm số thích hợp

    Hàm số y = - x^{3} + 3x^{2} - 2 đồng biến trên khoảng

    Hướng dẫn:

    Ta có: y' = - 3x^{2} +
6x.

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight..

    Bảng xét dấu của y' như sau:

    Nhìn vào bảng xét dấu của y' ta thấy hàm số y = - x^{3} + 3x^{2} -
2 đồng biến trên khoảng (0\ ;\
2).

    Vậy hàm số y = - x^{3} + 3x^{2} -
2 đồng biến trên khoảng (0\ ;\
2).

  • Câu 2: Vận dụng
    Tính tổng các tham số m theo yêu cầu

    Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số f(x) = \frac{1}{5}m^{2}x^{5} - \frac{1}{3}mx^{3} +
10x^{2} - \left( m^{2} - m - 20 \right)x đồng biến trên \mathbb{R}. Tổng giá trị của tất cả các phần tử thuộc S bằng:

    Hướng dẫn:

    Ta có

    f'(x) = m^{2}x^{4} - mx^{2} + 20x -
\left( m^{2} - m - 20 ight)

    = m^{2}\left( x^{4} - 1 ight) -
m\left( x^{2} - 1 ight) + 20(x + 1)

    \Leftrightarrow \left\{ \begin{matrix}
m < \dfrac{1}{3} \\
m \geq - 2 \\
\end{matrix} ight.

    = (x + 1)\left\lbrack m^{2}(x - 1)\left(
x^{2} + 1 ight) - m(x - 1) + 20 ightbrack

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 1 \\
m^{2}(x - 1)\left( x^{2} + 1 ight) - m(x - 1) + 20 = 0(*) \\
\end{matrix} ight.

    Ta có f'(x) = 0 có một nghiệm đơn là x = - 1, do đó nếu (*) không nhận x = - 1 là nghiệm thì f'(x) đổi dấu qua x = - 1.

    Do đó để f(x) đồng biến trên \mathbb{R} thì f'(x) \geq 0,\forall x\mathbb{\in R} hay (*) nhận x = - 1 làm nghiệm (bậc lẻ).

    Suy ra m^{2}( - 1 - 1)(1 + 1) - m( - 1 -
1) + 20 = 0

    \Leftrightarrow - 4m^{2} + 2m + 20 =
0.

    Tổng các giá trị của m\frac{1}{2}.

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Hỏi hàm số y = 2x^{4} + 1 đồng biến trên khoảng nào?

    Hướng dẫn:

    Ta có: y = 2x^{4} + 1

    Tập xác định:\ D\mathbb{= R}

    Ta có: y' = 8x^{3}; y' = 0 \Leftrightarrow 8x^{3} = 0
\Leftrightarrow x = 0suy ra y(0) =
1

    Giới hạn: \lim_{x ightarrow - \infty}y
= + \infty; \lim_{x ightarrow +
\infty}y = + \infty

    Bảng biến thiên:

    Vậy hàm số đồng biến trên khoảng (0; +
\infty).

  • Câu 4: Vận dụng cao
    Tính giá trị biểu thức

    Cho hàm số y = \left| x^{4} - 4x^{3} +
4x^{2} + m ight| với m là tham số. Khi giá trị của m biến thiên thì số điểm cực trị của hàm số có thể là a hoặc b hoặc c. Tính giá trị biểu thức P = a.b.c?

    Hướng dẫn:

    Đặt g(x) = x^{4} - 4x^{3} + 4x^{2} +
m

    \Rightarrow g'(x) = 4x^{3} - 12x^{2}
+ 8x \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên của g(x) như sau:

    TH1: m \geq 0

    Hàm số y = \left| x^{4} - 4x^{3} + 4x^{2}
+ m ight| có 3 điểm cực trị suy ra a = 3

    TH2: - 1 < m < 0

    Hàm số y = \left| x^{4} - 4x^{3} + 4x^{2}
+ m ight| có 3 điểm cực trị suy ra b = 7

    TH3: m \leq - 1

    Hàm số y = \left| x^{4} - 4x^{3} + 4x^{2}
+ m ight| có 3 điểm cực trị suy ra c = 5

    Vậy P = a.b.c = 105

  • Câu 5: Vận dụng
    Tìm m để hàm số đồng biến trên R

    Tìm giá trị của tham số m để hàm số y = \sin 2x + mx + c đồng biến trên \mathbb{R}

    Hướng dẫn:

    Ta có: y' = 2\cos 2x + m

    Hàm số đồng biến trên \mathbb{R}

    \begin{matrix}   \Leftrightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \mathop {\min }\limits_\mathbb{R} y' =  - 2 + m \geqslant 0 \Leftrightarrow m \geqslant 2 \hfill \\ \end{matrix}

  • Câu 6: Vận dụng
    Chọn đáp án đúng

    Tìm các giá trị của tham số m để đồ thị hàm số y = x^{4} +2mx^{2} -1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 4\sqrt{2}

  • Câu 7: Vận dụng
    Tìm các giá trị nguyên tham số m

    Hỏi có bao nhiêu số nguyên m để hàm số y = \left( m^{2} - 1 \right)x^{3} +
(m - 1)x^{2} - x + 4 nghịch biến trên khoảng ( - \infty; + \infty).

    Hướng dẫn:

    TH1: m = 1. Ta có: y = - x + 4 là phương trình của một đường thẳng có hệ số góc âm nên hàm số luôn nghịch biến trên \mathbb{R}.

    Do đó nhận m = 1.

    TH2: m = - 1. Ta có: y = - 2x^{2} - x + 4 là phương trình của một đường Parabol nên hàm số không thể nghịch biến trên \mathbb{R}.

    Do đó loại m = - 1.

    TH3: m eq \pm 1. Khi đó hàm số nghịch biến trên khoảng ( - \infty; +
\infty) \Leftrightarrow y' \leq 0\ \ \forall x\mathbb{\in
R}, dấu “=” chỉ xảy ra ở hữu hạn điểm trên \mathbb{R}.

    \Leftrightarrow 3\left( m^{2} - 1
ight)x^{2} + 2(m - 1)x - 1 \leq 0, \forall x\mathbb{\in R\ \ }

    \Leftrightarrow \left\{ \begin{matrix}
a < 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 1 < 0 \\
(m - 1)^{2} + 3\left( m^{2} - 1 ight) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 1 < 0 \\
(m - 1)(4m + 2) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 1 < m < 1 \\
- \frac{1}{2} \leq m \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow - \frac{1}{2} \leq m <
1

    m\mathbb{\in Z} nên m = 0.

    Vậy có 2 giá trị m nguyên cần tìm là m = 0 hoặc m
= 1.

  • Câu 8: Vận dụng
    Chọn đáp án đúng

    Cho hàm số y = f(x) = x^{3} - (2m +
1)x^{2} + (3 - m)x + 2 với m là tham số. Định điều kiện của tham số m để hàm số y = f\left( |x| ight) có ba điểm cực trị?

    Hướng dẫn:

    Ta có:

    y' = f'(x) = 3x^{2} - 2(2m + 1)x
+ 3 - m

    y' = 0 \Leftrightarrow 3x^{2} - 2(2m
+ 1)x + 3 - m = 0(*)

    Để hàm số y = f\left( |x|
ight) có ba điểm cực trị thì đồ thị hàm số y = f(x) có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dươngx_{1};x_{2} thỏa mãn \left\lbrack \begin{matrix}
0 = x_{1} < x_{2} \\
x_{1} < 0 < x_{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
3 - m = 0 \\
2m + 1 > 0 \\
\end{matrix} ight.\  \\
3 - m < 0 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 3

  • Câu 9: Thông hiểu
    Tìm các khẳng định đúng

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị hàm số y = f'(x) như sau:

    Xét hàm số g(x) = f\left( x^{2} - 3
ight) và các mệnh đề sau:

    (i) Hàm số g(x) có ba điểm cực trị.

    (ii) Hàm số g(x) đạt cực tiểu tại x = 0.

    (iii) Hàm số g(x) đạt cực đại tại x = 2.

    (iv) Hàm số g(x) đồng biến trên khoảng ( - 2;0).

    (v) Hàm số g(x) nghịch biến trên khoảng ( - 1;1).

    Có bao nhiêu mệnh đề đúng trong các mệnh đề đã cho?

    Hướng dẫn:

    Ta có: g'(x) = 2x.f'\left( x^{2}
- 3 ight)

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
f'\left( x^{2} - 3 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 3 = - 2 \\
x^{2} - 3 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = 1 \\
x^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Từ đồ thị ta nhận thấy x = \pm 1 là nghiệm kép nên ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có hàm số g(x) ta thấy hàm số có 3 cực trị và đồng biến trên khoảng ( - 2;0).

    Vậy có tất cả 2 mệnh đề đúng.

  • Câu 10: Thông hiểu
    Chọn biểu thức đúng

    Tìm điều kiện của tham số m để hàm số y = x^{4} + mx^{2} + c có ba điểm cực trị?

    Hướng dẫn:

    Hàm số y = ax^{4} + bx^{2} + c có ba điểm cực trị khi và chỉ khi a.b <
0.

    Để hàm số đa cho có ba điểm cực trị khi và chỉ khi b < 0.

  • Câu 11: Vận dụng
    Xét tính đúng sai của các khẳng định

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    a) Sai

    Ta có f'(x) = (x - 1)^{2}\left( x^{2}
- 3x + 2 ight) = (x - 1)^{3}(x - 2).

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight..

    Vậy phương trình f'(x) = 0 có hai nghiệm.

    b) Đúng

    Bảng biến thiên y = f(x)

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số đồng biến trên các khoảng ( - \infty;1),(2; + \infty).

    Ta có ( - 3;0) \subset ( -
\infty;1) nên hàm số f(x) đồng biến trên khoảng ( - 3;0).

    c) Đúng

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số có hai điểm cực trị.

    d) Sai

    Ta có:

    y = f\left( x^{2} - 6x + 1
ight)

    \Rightarrow y^{'} = \left( x^{2} - 6x
+ 1 ight)^{'}f^{'\left( x^{2} - 6x + 1 ight)} = (2x -
6)f'\left( x^{2} - 6x + 1 ight).

    y' = 0 \Leftrightarrow (2x -
6)f'\left( x^{2} - 6x + 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x - 6 = 0 \\
x^{2} - 6x + 1 = 1 \\
x^{2} - 6x + 1 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \\
x = 0 \\
x = 6 \\
x = - 3 + \sqrt{10} \\
x = - 3 - \sqrt{10} \\
\end{matrix} ight..

    Bảng biến thiên y = f\left( x^{2} - 6x +
1 ight)

    Dựa vào bảng biến thiên của hàm số y =
f\left( x^{2} - 6x + 1 ight) ta thấy hàm số có hai điểm cực đại.

  • Câu 12: Vận dụng
    Ghi đáp án vào ô trống

    Để đồ thị hàm số y = x^{4} - 2mx^{2} + m- 1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 2. Tìm giá trị tham số m thỏa mãn yêu cầu bài toán?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Để đồ thị hàm số y = x^{4} - 2mx^{2} + m- 1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 2. Tìm giá trị tham số m thỏa mãn yêu cầu bài toán?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Vận dụng cao
    Tìm khoảng đồng biến của hàm số

    Cho hàm số đa thức f(x) có đạo hàm trên \mathbb{R}. Biết f(0) = 0 và đồ thị hàm số y = f'(x) như hình sau.

    Hàm số g(x) = \left| 4f(x) + x^{2}
\right| đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Xét hàm số h(x) = 4f(x) + x^{2} trên \mathbb{R}.

    f(x) là hàm số đa thức nên h(x) cũng là hàm số đa thức và h(0) = 4f(0) = 0.

    Ta có h'(x) = 4f'(x) +
2x.

    Do đó h'(x) = 0 \Leftrightarrow
f'(x) = - \frac{1}{2}x.

    Dựa vào sự tương giao của đồ thị hàm số y
= f'(x) và đường thẳng y = -
\frac{1}{2}x, ta có h'(x) = 0
\Leftrightarrow x \in \left\{ - 2;0;4 ight\}

    Suy ra bảng biến thiên của hàm số h(x) như sau:

    Từ đó ta có bảng biến thiên của hàm số g(x) = \left| h(x) ight| như sau:

    Dựa vào bảng biến thiên trên, ta thấy hàm số g(x) đồng biến trên khoảng (0;4).

  • Câu 15: Vận dụng
    Định các giá trị tham số m theo yêu cầu

    Cho hàm số y = x^{3} + 6x^{2} + 3(m + 2)x
- m - 6 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có hai điểm cực trị x_{1},\
x_{2} thỏa mãn x_{1} < - 1 <
x_{2}.

    Hướng dẫn:

    Ta có y' = 3x^{2} + 12x + 3(m + 2) =
3\left\lbrack x^{2} + 4x + (m + 2) ightbrack.

    Yêu cầu bài toán \Leftrightarrow y'=0 có hai nghiệm phân biệt x_{1},\
x_{2} thỏa mãn x_{1} < - 1 <
x_{2}

    \Leftrightarrow y'( - 1) < 0
\Leftrightarrow m < 1.

    Nhận xét. Nhắc lại kiến thức lớp dưới ''phương trình ax^{2} + bx + c = 0 có hai nghiệm phân biệt x_{1},\ \ x_{2}\ \ \left( x_{1} <
x_{2} ight) thỏa mãn x_{1} <
x_{0} < x_{2} \Leftrightarrow af\left( x_{0} ight) <
0''.

  • Câu 16: Vận dụng
    Xác định số điểm cực trị của hàm số

    Cho hàm số f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}}. Số điểm cực trị của hàm số đã cho là:

    Hướng dẫn:

    Áp dụng công thức khai triển nhị thức Newton ta có:

    \begin{matrix}  f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}} = {\left( {1 + x} ight)^{10}} \hfill \\   \Rightarrow f'\left( x ight) = 10{\left( {1 + x} ight)^9} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Xác định số điểm cực trị của hàm số

    Vậy hàm số đã cho có duy nhất một điểm cực trị x = -1

  • Câu 17: Vận dụng cao
    Tìm m để hàm số đồng biến trên khoảng

    Cho hàm số y = \frac{\sqrt{1 - \ln x} +
1}{\sqrt{1 - \ln x} + m}. Có bao nhiêu giá trị nguyên của tham số m thuộc \lbrack - 5;5\rbrack để hàm số đã cho đồng biến trên khoảng \left(
\frac{1}{e^{3}};1 \right).

    Hướng dẫn:

    Ta có đạo hàm của y = \frac{\sqrt{1 - \ln
x} + 1}{\sqrt{1 - \ln x} + m}y' = \frac{1 - m}{2x\sqrt{1 - \ln x}(\sqrt{1 -
\ln x} + m)^{2}}.

    Hàm số đã cho đồng biến trên khoảng \left( \frac{1}{e^{3}};1 ight) khi và chỉ khi y' > 0,\forall x \in \left(
\frac{1}{e^{3}};1 ight)

    \Leftrightarrow \left\{ \begin{matrix}
1 - m > 0 \\
\sqrt{1 - \ln x} + m eq 0,\forall x \in \left( \frac{1}{e^{3}};1
ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m < 1 \\
\sqrt{1 - \ln x} + m eq 0,\forall x \in \left( \frac{1}{e^{3}};1
ight) \\
\end{matrix} ight. (*)

    Xét hàm số g(x) = \sqrt{1 - \ln x},x \in
\left( \frac{1}{e^{3}};1 ight)

    ta có g'(x) = \frac{- 1}{2x\sqrt{1 -
\ln x}} < 0,\forall x \in \left( \frac{1}{e^{3}};1 ight) do đó ta có bảng biến thiên của hàm số g(x) như sau

    Qua bảng biến thiên ta có (*)
\Leftrightarrow \left\{ \begin{matrix}
m < 1 \\
m otin ( - 2; - 1) \\
\end{matrix} ight., kết hợp với m \in \lbrack - 5;5brack ta có 6 giá trị nguyên của mm \in \left\{ - 5; - 4; - 3; - 2; - 1;0
ight\}.

  • Câu 18: Vận dụng
    Chọn kết luận đúng

    Cho hàm số y = f(x) biết hàm số f(x) có đạo hàm f'(x) và hàm số y = f'(x) có đồ thị như hình vẽ. Đặt g(x) = f(x+1). Kết luận nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    g(x) = f(x+1).

    Ta có: g'(x) = f'(x +
1)

    Hàm số g(x) đồng biến

    \Leftrightarrow g'(x) > 0
\Leftrightarrow f'(x + 1) > 0

    \Leftrightarrow \left[ \begin{gathered}
  x + 1 > 5 \hfill \\
  1 < x + 1 < 3 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  x > 4 \hfill \\
  0 < x < 2 \hfill \\ 
\end{gathered}  ight..

    Hàm số g(x) nghịch biến

    \Leftrightarrow g'(x) < 0\Leftrightarrow f'(x + 1) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
3 < x + 1 < 5 \\
x + 1 < 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
2 < x < 4 \\
x < 0 \\
\end{matrix} ight..

    Vậy hàm số g(x) đồng biến trên khoảng (0\ ;\ 2); (4;\  + \infty) và nghịch biến trên khoảng (2\ ;\ 4); ( - \infty;\ 0).

  • Câu 19: Vận dụng
    Tìm m nguyên để hàm số đồng biến trên R

    Số giá trị nguyên của tham số m để hàm số y = 2{x^3} - 3m{x^2} + 6mx + 2 đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Ta có: y' = 6{x^2} - 6mx + 6m

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 6 > 0} \\   {\Delta ' = 9{m^2} - 36m \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.

  • Câu 20: Vận dụng
    Xác định khoảng chứa các giá trị tham số m

    Cho hàm số y = f(x) = x^{4} - 2(m +
1)x^{2} + m^{2} - 8 (với mlà tham số) có đồ thị (C). Giả sử các điểm A;B;C là các điểm cực trị của (C). Để tam giác ABC đều thì giá trị của tham số m nằm trong khoảng nào sau đây?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4(m +
1)x

    y' = 0 \Leftrightarrow 4x^{3} - 4(m
+ 1)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = m + 1 \\
\end{matrix} ight.

    Hàm số có ba điểm cực trị khi và chỉ khi phương trình y' = 0 có ba nghiệm phân biệt hay x^{2} = m + 1 có hai nghiệm khác 0

    \Leftrightarrow m + 1 > 0
\Leftrightarrow m > - 1

    Khi đó y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \sqrt{m + 1} \\
x = - \sqrt{m + 1} \\
\end{matrix} ight.

    Đồ thị (C) có ba điểm cực trị là A\left( 0;m^{2} + 8 ight);B\left( \sqrt{m + 1}; - (m + 1)^{2} + m^{2} + 8
ight);C\left( - \sqrt{m + 1}; -
(m + 1)^{2} + m^{2} + 8 ight).

    Ta có: AB = AC = \sqrt{m + 1 + (m +
1)^{4}}

    Do đó tam giác ABC đều \Leftrightarrow AB = BC

    \Leftrightarrow \sqrt{m + 1 + (m +
1)^{4}} = \sqrt{4(m + 1)}

    \Leftrightarrow m + 1 + (m + 1)^{4} =
4(m + 1)

    \Leftrightarrow (m + 1)^{4} - 3(m + 1) =
0

    \Leftrightarrow (m + 1)\left\lbrack (m +
1)^{3} - 3 ightbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m + 1 = 0 \\
(m + 1)^{3} - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = - 1 + \sqrt[3]{3} \\
\end{matrix} ight.

    Kết hợp với điều kiện m > - 1
\Rightarrow m = - 1 + \sqrt[3]{3}.

    Vậy đáp án cần tìm là m \in \left(
\frac{1}{4};\frac{1}{2} ight).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo