Hàm số đồng biến trên khoảng
Ta có: .
.
Bảng xét dấu của như sau:
Nhìn vào bảng xét dấu của ta thấy hàm số
đồng biến trên khoảng
.
Vậy hàm số đồng biến trên khoảng
.
Hàm số đồng biến trên khoảng
Ta có: .
.
Bảng xét dấu của như sau:
Nhìn vào bảng xét dấu của ta thấy hàm số
đồng biến trên khoảng
.
Vậy hàm số đồng biến trên khoảng
.
Gọi là tập hợp tất cả các giá trị của tham số
để hàm số
đồng biến trên
. Tổng giá trị của tất cả các phần tử thuộc
bằng:
Ta có
Ta có có một nghiệm đơn là
, do đó nếu
không nhận
là nghiệm thì
đổi dấu qua
.
Do đó để đồng biến trên
thì
hay
nhận
làm nghiệm (bậc lẻ).
Suy ra
.
Tổng các giá trị của là
.
Hỏi hàm số đồng biến trên khoảng nào?
Ta có:
Tập xác định:
Ta có: ;
suy ra
Giới hạn: ;
Bảng biến thiên:
Vậy hàm số đồng biến trên khoảng .
Cho hàm số với
là tham số. Khi giá trị của
biến thiên thì số điểm cực trị của hàm số có thể là
hoặc
hoặc
. Tính giá trị biểu thức
?
Đặt
Ta có bảng biến thiên của như sau:
TH1:
Hàm số có 3 điểm cực trị suy ra
TH2:
Hàm số có 3 điểm cực trị suy ra
TH3:
Hàm số có 3 điểm cực trị suy ra
Vậy
Tìm giá trị của tham số m để hàm số đồng biến trên
Ta có:
Hàm số đồng biến trên
Tìm các giá trị của tham số m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
Hỏi có bao nhiêu số nguyên để hàm số
nghịch biến trên khoảng
.
TH1: . Ta có:
là phương trình của một đường thẳng có hệ số góc âm nên hàm số luôn nghịch biến trên
.
Do đó nhận .
TH2: . Ta có:
là phương trình của một đường Parabol nên hàm số không thể nghịch biến trên
.
Do đó loại .
TH3: . Khi đó hàm số nghịch biến trên khoảng
, dấu “=” chỉ xảy ra ở hữu hạn điểm trên
.
,
Vì nên
.
Vậy có giá trị
nguyên cần tìm là
hoặc
.
Cho hàm số với
là tham số. Định điều kiện của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì đồ thị hàm số
có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dương
thỏa mãn
Cho hàm số có đạo hàm liên tục trên
và có đồ thị hàm số
như sau:
Xét hàm số và các mệnh đề sau:
(i) Hàm số có ba điểm cực trị.
(ii) Hàm số đạt cực tiểu tại
.
(iii) Hàm số đạt cực đại tại
.
(iv) Hàm số đồng biến trên khoảng
.
(v) Hàm số nghịch biến trên khoảng
.
Có bao nhiêu mệnh đề đúng trong các mệnh đề đã cho?
Ta có:
Từ đồ thị ta nhận thấy là nghiệm kép nên ta có bảng biến thiên
Dựa vào bảng biến thiên ta có hàm số ta thấy hàm số có 3 cực trị và đồng biến trên khoảng
.
Vậy có tất cả 2 mệnh đề đúng.
Tìm điều kiện của tham số để hàm số
có ba điểm cực trị?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số đa cho có ba điểm cực trị khi và chỉ khi .
Cho hàm số có đạo hàm
với mọi
.
a) Phương trình có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Đúng||Sai
d) Hàm số có ba điểm cực đại. Sai||Đúng
Cho hàm số có đạo hàm
với mọi
.
a) Phương trình có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Đúng||Sai
d) Hàm số có ba điểm cực đại. Sai||Đúng
a) Sai
Ta có .
.
Vậy phương trình có hai nghiệm.
b) Đúng
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số đồng biến trên các khoảng
.
Ta có nên hàm số
đồng biến trên khoảng
.
c) Đúng
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực trị.
d) Sai
Ta có:
.
.
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực đại.
Để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
. Tìm giá trị tham số
thỏa mãn yêu cầu bài toán?
Để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
. Tìm giá trị tham số
thỏa mãn yêu cầu bài toán?
Cho hàm số . Hàm số
có đồ thị như hình vẽ:
Gọi là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Cho hàm số . Hàm số
có đồ thị như hình vẽ:
Gọi là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Cho hàm số đa thức có đạo hàm trên
. Biết
và đồ thị hàm số
như hình sau.
Hàm số đồng biến trên khoảng nào dưới đây?
Xét hàm số trên
.
Vì là hàm số đa thức nên
cũng là hàm số đa thức và
.
Ta có .
Do đó .
Dựa vào sự tương giao của đồ thị hàm số và đường thẳng
, ta có
Suy ra bảng biến thiên của hàm số như sau:
Từ đó ta có bảng biến thiên của hàm số như sau:
Dựa vào bảng biến thiên trên, ta thấy hàm số đồng biến trên khoảng
.
Cho hàm số với
là tham số thực. Tìm tất cả các giá trị của
để hàm số có hai điểm cực trị
thỏa mãn
.
Ta có
Yêu cầu bài toán có hai nghiệm phân biệt
thỏa mãn
Nhận xét. Nhắc lại kiến thức lớp dưới phương trình
có hai nghiệm phân biệt
thỏa mãn
Cho hàm số . Số điểm cực trị của hàm số đã cho là:
Áp dụng công thức khai triển nhị thức Newton ta có:
Ta có bảng biến thiên như sau:

Vậy hàm số đã cho có duy nhất một điểm cực trị x = -1
Cho hàm số . Có bao nhiêu giá trị nguyên của tham số
thuộc
để hàm số đã cho đồng biến trên khoảng
.
Ta có đạo hàm của là
.
Hàm số đã cho đồng biến trên khoảng khi và chỉ khi
(*)
Xét hàm số
ta có do đó ta có bảng biến thiên của hàm số
như sau
Qua bảng biến thiên ta có , kết hợp với
ta có 6 giá trị nguyên của
là
.
Cho hàm số biết hàm số
có đạo hàm
và hàm số
có đồ thị như hình vẽ. Đặt
. Kết luận nào sau đây đúng?
Ta có:
.
Ta có:
Hàm số đồng biến
.
Hàm số nghịch biến
.
Vậy hàm số đồng biến trên khoảng
;
và nghịch biến trên khoảng
;
.
Số giá trị nguyên của tham số m để hàm số đồng biến trên
?
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.
Cho hàm số (với
là tham số) có đồ thị
. Giả sử các điểm
là các điểm cực trị của
. Để tam giác
đều thì giá trị của tham số
nằm trong khoảng nào sau đây?
Tập xác định
Ta có:
Hàm số có ba điểm cực trị khi và chỉ khi phương trình có ba nghiệm phân biệt hay
có hai nghiệm khác 0
Khi đó
Đồ thị có ba điểm cực trị là
;
;
.
Ta có:
Do đó tam giác đều
Kết hợp với điều kiện .
Vậy đáp án cần tìm là .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: