Cho hàm số có đạo hàm
. Số điểm cực trị của hàm số đã cho là
Bảng biến thiên
Từ bảng biến thiên ta thấy hàm số đã cho có đúng một điểm cực trị đó là điểm cực tiểu .
Cho hàm số có đạo hàm
. Số điểm cực trị của hàm số đã cho là
Bảng biến thiên
Từ bảng biến thiên ta thấy hàm số đã cho có đúng một điểm cực trị đó là điểm cực tiểu .
Tìm tất cả các giá trị thực của tham số để khoảng cách từ điểm
đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số
bằng
Ta có
Để hàm số có hai điểm cực trị có hai nghiệm phân biệt
.
Thực hiện phép chia cho
ta được phần dư
, nên đường thẳng
chính là đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.
Yêu cầu bài toán
.
Đối chiếu điều kiện , ta chọn
.
Cho hàm số (với
là tham số) có đồ thị
. Giả sử các điểm
là các điểm cực trị của
. Để tam giác
đều thì giá trị của tham số
nằm trong khoảng nào sau đây?
Tập xác định
Ta có:
Hàm số có ba điểm cực trị khi và chỉ khi phương trình có ba nghiệm phân biệt hay
có hai nghiệm khác 0
Khi đó
Đồ thị có ba điểm cực trị là
;
;
.
Ta có:
Do đó tam giác đều
Kết hợp với điều kiện .
Vậy đáp án cần tìm là .
Tổng bình phương của tất cả các giá trị nguyên của tham số để hàm số
nghịch biến trên
là:
Tập xác định: .
Ta có: .
Hàm số nghịch biến trên ( dấu "=" xảy ra tại hữu hạn
)
TH1: .
+ Với ta có
nên
thỏa mãn.
+ Với ta có
(không thỏa với mọi
) nên loại
.
TH2: . Ta có
Vậy .
Để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
. Tìm giá trị tham số
thỏa mãn yêu cầu bài toán?
Để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
. Tìm giá trị tham số
thỏa mãn yêu cầu bài toán?
Số giá trị nguyên của tham số m để hàm số đồng biến trên
?
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.
Tìm các giá trị của tham số m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
Cho hàm số . Hàm số
có đồ thị như hình vẽ:
Gọi là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Cho hàm số . Hàm số
có đồ thị như hình vẽ:
Gọi là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Xác định các giá trị của tham số để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Xác định các giá trị của tham số để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Cho hàm số . Có bao nhiêu giá trị nguyên của tham số
thuộc
để hàm số đã cho đồng biến trên khoảng
.
Ta có đạo hàm của là
.
Hàm số đã cho đồng biến trên khoảng khi và chỉ khi
(*)
Xét hàm số
ta có do đó ta có bảng biến thiên của hàm số
như sau
Qua bảng biến thiên ta có , kết hợp với
ta có 6 giá trị nguyên của
là
.
Cho hàm số , m là tham số; gọi x1, x2 là các điểm cực trị của hàm số đã cho. Tính giá trị lớn nhất của biểu thức
.
Cho hàm số (với
là tham số). Tìm tất cả các giá trị của tham số
để hàm số đồng biến trên từng khoảng xác định?
Tập xác định
Ta có: .
Để hàm số đồng biến trên khoảng xác định thì
Vậy đáp án cần tìm là: .
Cho hàm số bậc ba với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Cho hàm số bậc ba với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Cho hàm số với
là tham số. Gọi
là tập hợp các giá trị nguyên dương của
để hàm số đồng biến trên khoảng
. Tìm số phần tử của
.
Ta có:
Đặt , điều kiện
;
Để hàm số đồng biến trên
thì hàm số
đồng biến trên
là tập hợp các giá trị nguyên dương
.
Vậy số phần tử của tập là
.
Gọi là giá trị của tham số
để đồ thị hàm số
có hai điểm cực trị là
sao cho diện tích tam giác
bằng
(
là gốc tọa độ). Khi đó giá trị biểu thức
bằng:
Tập xác định .
Ta có:
Ta có bảng biến thiên như sau:
Suy ra
Đường thẳng (PQ) đi qua điểm và nhận
làm một vecto pháp tuyến nên có phương trình
Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:
Vậy .
Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ:

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số có 3 điểm cực trị. Tổng các phần tử của S là:
Xét hàm số có đạo hàm
Để hàm số có 3 điểm cực trị thì
Vậy tổng các phần tử của S là 2
Cho hàm số với
là tham số. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số đã cho có duy nhất một cực tiểu. Hỏi tập
có bao nhiêu phần tử?
Điều kiện để hàm số có duy nhất một cực tiểu là
và phương trình
có duy nhất một nghiệm.
Để phương trình có duy nhất một nghiệm thì phương trình (*) vô nghiệm hoặc có nghiệm duy nhất x = 0.
Mặt khác
Vậy có tất cả 19 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số có bảng xét dấu của đạo hàm như sau
Hàm số đồng biến trên khoảng nào dưới đây?
Ta có:
Với , lại có
Vậy hàm số đồng biến trên khoảng
và
Chú ý:
+) Ta xét
Suy ra hàm số nghịch biến trên khoảng nên loại hai phương án
+) Tương tự ta xét
Suy ra hàm số nghịch biến trên khoảng
Cho hàm số . Mệnh đề nào dưới đây đúng?
Ta có ,
;
.
Vậy hàm số nghịch biến trên khoảng và đồng biến trên khoảng
.
Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (-1; +∞)
Ta có: . Theo yêu cầu bài toán ta có:
=>
Xét hàm số
Ta có bảng biến thiên như sau:

Vậy
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: