Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 1 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Tìm số điểm cực trị của hàm số

    Cho hàm số f(x) liên tục và có đạo hàm trên \mathbb{R}. Biết f(0) > 0. Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = \left| f(x) - \frac{x^{2}}{2}
ight| có bao nhiêu điểm cực trị?

    Gợi ý:

    Số điểm cực trị của y = |f(x)| = Số điểm cực trị của y = f(x) + Số nghiệm bội lẻ của f(x) = 0.

    Hướng dẫn:

    Xét g(x) = f(x) - \frac{x^{2}}{2}
\Rightarrow g'(x) = f'(x) - x.

    Từ đồ thị ta thấy: g'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Vì hệ số cao nhất của f(x) nhỏ hơn 0 nên hệ số cao nhất của g(x) cùng nhỏ hơn 0. Ta có bảng biến thiên:

    \Rightarrow g( x )=0 luôn có đúng 2 nghiệm bội lé.

    Số điểm cực trị của hàm số y = \left|
f(x) - \frac{x^{2}}{2} ight| là 5.

  • Câu 2: Thông hiểu
    Xác định số cực trị của hàm số

    Cho hàm số y = f(x) có f'\left( x ight) = x\left( {x - 1} ight){\left( {x + 2} ight)^2}. Số điểm cực trị của hàm số đã cho là

    Hướng dẫn:

    Ta có: f'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \\   {x =  - 2} \end{array}} ight.

    Nhận thấy {\left( {x + 2} ight)^2} > 0,\forall x e  - 2

    => f’(x) không đổi dấu khi qua nghiệm x = -2 nên x = -2 không là điểm cực trị của hàm số

    Ngoài ra f’(x) cùng dấu với tam thức bậc hai x2(x - 1) = x2 – x nên suy ra x = 0, x = 1 là hai điểm cực trị của hàm số.

     

  • Câu 3: Vận dụng
    Xác định tham số m để hàm số nghịch m trên khoảng

    Cho hàm số y =  - {x^3} + 3{x^2} + 3mx - 1. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)

    Hướng dẫn:

    Ta có: y' =  - 3{x^2} + 6x + 3m

    Hàm số đã cho nghịch biến trên khoảng (0; +∞)

    =>  y' \leqslant 0,\forall x \in \left( {0; + \infty } ight)

    => m \leqslant {x^2} - 2x = g\left( x ight),\forall x \in \left( {0; + \infty } ight)

    => m \leqslant \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight)

    Xét  g\left( x ight) = {x^2} - 2x;\forall x \in \left( {0; + \infty } ight) ta có:

    \begin{matrix}  g'\left( x ight) = 2x - 2 \hfill \\  g'\left( x ight) = 0 \Rightarrow x = 1 \hfill \\ \end{matrix}

    Ta lại có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to 0} g\left( x ight) = 0} \\   {\mathop {\lim }\limits_{x \to \infty } g\left( x ight) =  + \infty } \\   {g\left( 1 ight) =  - 1} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight) =  - 1 \Rightarrow m \leqslant  - 1

  • Câu 4: Vận dụng
    Chọn phương án đúng

    Cho hàm số y = f(x)có bảng xét dấu đạo hàm như sau:

    Hàm số g(x) = f\left( 3 - 2^{x}
\right)đồng biến trên khoảng nào sau đây

    Hướng dẫn:

    Ta có g'(x) = - 2^{x}ln2.f'\left(
3 - 2^{x} ight).

    Để g(x) = f\left( 3 - 2^{x}
ight)đồng biến thì

    g'(x) = - 2^{x}ln2.f'\left( 3 -
2^{x} ight) \geq 0 \Leftrightarrow f'\left( 3 - 2^{x} ight) \leq
0

    \Leftrightarrow - 5 \leq 3 - 2^{x} \leq 2 \Leftrightarrow 0 \leq x
\leq 3.

    Vậy hàm số đồng biến trên (1;\
2).

  • Câu 5: Vận dụng
    Chọn đáp án đúng

    Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Hàm số y = f(2 - x)đồng biến trên khoảng

    Hướng dẫn:

    Cách 1:

    Ta thấy f'(x) < 0 với \left\lbrack \begin{matrix}
x \in (1;4) \\
x < - 1 \\
\end{matrix} ight. nên f(x) nghịch biến trên (1;4)( -
\infty; - 1) suy ra g(x) = f( -
x) đồng biến trên( - 4; -
1)(1; + \infty).

    Khi đó f(2 - x) đồng biến biến trên khoảng ( - 2;1)(3; + \infty)

    Cách 2:

    Dựa vào đồ thị của hàm số y =
f'(x) ta có f'(x) < 0
\Leftrightarrow \left\lbrack \begin{matrix}
x < - 1 \\
1 < x < 4 \\
\end{matrix} ight..

    Ta có \left( f(2 - x) ight)^{'} =
(2 - x)^{'}.f'(2 - x) = - f'(2 - x).

    Để hàm số y = f(2 - x) đồng biến thì \left( f(2 - x) ight)^{'} > 0
\Leftrightarrow f'(2 - x) < 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2 - x < - 1 \\
1 < 2 - x < 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x > 3 \\
- 2 < x < 1 \\
\end{matrix} ight..

  • Câu 6: Vận dụng
    Chọn phương án đúng

    Cho hàm số y = f(x). Biết đồ thị hàm số y = f'(x) có đồ thị như hình vẽ bên. Hàm số y = f\left( 3 - x^{2}
\right) + 2018 đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có \left\lbrack f\left( 3 - x^{2}
ight) + 2018 ightbrack^{'} = - 2x.f'\left( 3 - x^{2}
ight).

    - 2x.f'\left( 3 - x^{2} ight) =
0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
3 - x^{2} = - 6 \\
3 - x^{2} = - 1 \\
3 - x^{2} = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 3 \\
x = \pm 2 \\
x = \pm 1 \\
\end{matrix} ight..

    Bảng xét dấu của đạo hàm hàm số đã cho

    Từ bảng xét dấu suy ra hàm số đồng biến trên ( - 1;\ \ 0).

  • Câu 7: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) = \left| x^{2} - 4x +3 ight| + mx với m là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số m để hàm số y= f(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = \left| x^{2} - 4x +3 ight| + mx với m là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số m để hàm số y= f(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu
    Tìm khoảng đồng biến của hàm số

    Hàm số y = x^{4} - 4x^{3} đồng biến trên khoảng

    Hướng dẫn:

    Tập xác định D\mathbb{= R}.

    Ta có y' = 4x^{3} -
12x^{2}

    Cho y' = 0 \Leftrightarrow 4x^{3} -
12x^{2} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = \pm \sqrt{3} \\
\end{matrix} ight..

    Bảng xét dấu

    Dựa vào bảng xét dấu ta thấy hàm số đồng biến trên khoảng \left( \sqrt{3}\ ;\  + \infty ight) nên cũng đồng biến trên khoảng (3\ ;\  +
\infty).

  • Câu 9: Vận dụng
    Chọn kết luận đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Tìm số điểm cực trị của hàm số g(x) =
f\left( x^{2} - 2x ight) trên khoảng (0; + \infty)?

    Hướng dẫn:

    Đặt g(x) = f\left( x^{2} - 2x ight)
\Rightarrow g'(x) = (2x - 2)f'\left( x^{2} - 2x
ight)

    Từ bảng xét dấu của hàm số f'(x)

    g'(x) = 0 \Leftrightarrow g(x) =
f\left( x^{2} - 2x ight) \Rightarrow \left\lbrack \begin{matrix}
2x - 2 = 0 \\
f'\left( x^{2} - 2x ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 2x = - 1\  \\
x^{2} - 2x = 2\ \  \\
2x - 2 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 1 \pm \sqrt{3} \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Từ bảng biến thiên suy ra hàm số g(x) =
f\left( x^{2} - 2x ight) có hai cực trị trên khoảng (0; + \infty).

  • Câu 10: Vận dụng
    Tìm mệnh đề sai

    Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị của hàm số y = f'(x) như hình vẽ. Xét hàm số g(x) = f\left( x^{2} - 2
\right). Mệnh đề nào dưới đây sai?

    Hướng dẫn:

    Ta có g'(x) = \left( x^{2} - 2
ight)^{'}.f'\left( x^{2} - 2 ight) = 2x.f'\left( x^{2} -
2 ight).

    Hàm số nghịch biến khi g'(x) \leq 0
\Leftrightarrow x.f'\left( x^{2} - 2 ight) \leq 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \leq 0 \\
f'\left( x^{2} - 2 ight) \geq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \geq 0 \\
f'\left( x^{2} - 2 ight) \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Từ đồ thị hình của hàm số y =
f'(x) như hình vẽ, ta thấy

    f'(x) \leq 0 \Leftrightarrow x \leq
2f'(x) \geq 0
\Leftrightarrow x \geq 2.

    + Với \left\{ \begin{matrix}
x \leq 0 \\
f'\left( x^{2} - 2 ight) \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 0 \\
x^{2} - 2 \geq 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
  x \leqslant 0 \hfill \\
  {x^2} \geqslant 4 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  x \leqslant 0 \hfill \\
  \left[ \begin{gathered}
  x \geqslant 2 \hfill \\
  x \leqslant  - 2 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow x \leqslant  - 2.

    + Với \left\{ \begin{matrix}
x \geq 0 \\
f'\left( x^{2} - 2 ight) \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x^{2} - 2 \leq 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x^{2} \leq 4 \\
\end{matrix} ight.\  \Leftrightarrow 0 \leq x \leq 2.

    Như vậy hàm số nghịch biến trên mỗi khoảng ( - \infty; - 2), (0;2); suy ra hàm số đồng biến trên ( - 2;0)(2; + \infty).

    Do ( - 1;0) \subset ( - 2;0) nên hàm số đồng biến trên ( - 1;0). Vậy “Hàm số g(x) nghịch biến trên ( - 1;0)” sai.

  • Câu 11: Vận dụng
    Tính tổng P

    Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m - 2} ight){x^2} + 12x + 1 đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:

    Hướng dẫn:

    Ta có: y' = 3{x^2} - 6\left( {m - 2} ight)x + 12

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 9{{\left( {m - 2} ight)}^2} - 36 \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    => m \in \left\{ {0;1;2;3;4} ight\}

    => Tổng P bằng 10

  • Câu 12: Thông hiểu
    Xác định hàm số đồng biến trên R

    Trong các hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Ta có: y = {x^3} + {x^2} + 2x + 1 \Rightarrow y' = 3{x^2} - 6x + 3 \geqslant 0,\forall x \in \mathbb{R}

    Ta có: y’ = 0 chỉ tại x = 1

    Vậy y = {x^3} + {x^2} + 2x + 1 đồng biến trên

  • Câu 13: Vận dụng
    Tìm giá trị tham số m theo yêu cầu

    Cho hàm số y = \frac{\ln x - 4}{\ln x -2m} với m là tham số. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số đồng biến trên khoảng (1;e). Tìm số phần tử của S.

    Hướng dẫn:

    Ta có: y = f(x) = \frac{\ln x - 4}{\ln x
- 2m}

    Đặt t = \ln x, điều kiện t \in (0;1)

    g(t) = \frac{t - 4}{t - 2m}; g'(t) = \frac{- 2m + 4}{(t -
2m)^{2}}

    Để hàm số f(x) đồng biến trên (1;e) thì hàm số g(t) đồng biến trên (0;1) \Leftrightarrow g'(t) > 0,\ \ t \in
(0;1)

    \Leftrightarrow \frac{- 2m +
4}{(t - 2m)^{2}} > 0,t \in (0;1)

    \Leftrightarrow \left\{ \begin{matrix}
- 2m + 4 > 0 \\
2m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\frac{1}{2} < m < 2 \\
m < 0 \\
\end{matrix} ight.

    S là tập hợp các giá trị nguyên dương \Rightarrow S = \left\{ 1
ight\}.

    Vậy số phần tử của tập S1.\Leftrightarrow \left\{ \begin{matrix}
- 2m + 4 > 0 \\
2m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\dfrac{1}{2} < m < 2 \\
m < 0 \\
\end{matrix} ight.

  • Câu 14: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) thỏa mãn f'(x) = x^{2}(x - 1);\forall
x\mathbb{\in R}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Từ biểu thức của f'(x) ta có bảng xét dấu như sau:

    Dễ thấy hàm số đạt cực tiểu tại x =
1 nên mệnh đề “y = f(x) đạt cực tiểu tại x = 1” đúng và mệnh đề “y = f(x) đạt cực tiểu tại x = 0” sai.

    Hàm số có đúng một điểm cực trị nên mệnh đề “y = f(x) không có cực trị” sai và “y = f(x) có hai điểm cực trị” sai.

  • Câu 15: Vận dụng
    Định tham số m thỏa mãn điều kiện

    Tìm tất cả các giá trị thực của tham số m để khoảng cách từ điểm M(0;3) đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x^{3} + 3mx +
1 bằng \frac{2}{\sqrt{5}}.

    Hướng dẫn:

    Ta có y' = 3x^{2} + 3m;\ y' = 0
\Leftrightarrow x^{2} = - m.

    Để hàm số có hai điểm cực trị \Leftrightarrow y' = 0 có hai nghiệm phân biệt \Leftrightarrow m < 0. (*)

    Thực hiện phép chia y cho y' ta được phần dư 2mx + 1, nên đường thẳng \Delta:y = 2mx + 1 chính là đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.

    Yêu cầu bài toán

    \Leftrightarrow d\lbrack
M,\Deltabrack = \frac{2}{\sqrt{4m^{2} + 1}} =
\frac{2}{\sqrt{5}}

    \Leftrightarrow m^{2} = 1 \Leftrightarrow
m = \pm 1.

    Đối chiếu điều kiện (*), ta chọn m = - 1.

  • Câu 16: Vận dụng
    Điểm cực đại của hàm số

    Cho hàm số y = f(x) có đạo hàm. Biết f(x) có đạo hàm f’(x) và hàm số y = f’(x) có đồ thị như hình vẽ:

    Điểm cực đại của hàm số

    Hàm số g(x) = f(x - 1) đạt cực đại tại điểm nào dưới đây?

    Hướng dẫn:

    Cách 1: Ta có:

    \begin{matrix}  g'\left( x ight) = f'\left( {x - 1} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x - 1 = 1} \\   {x - 1 = 3} \\   {x - 1 = 5} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 2} \\   {x = 4} \\   {x = 6} \end{array}} ight. \hfill \\ \end{matrix}

    \begin{matrix}  g'\left( x ight) = f'\left( {x - 1} ight) > 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {1 < x - 1 < 3} \\   {x - 1 > 5} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2 < x < 4} \\   {x > 6} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy chọn đáp án B

    Cách 2: Đồ thị hàm số g’(x) = f’(x – 1) là phép tịnh tiến đồ thị hàm số y = f’(x) theo phương trục hoành sang bên phải 1 đơn vị. Ta có hình vẽ minh họa:

    Điểm cực đại của hàm số

    Đồ thị hàm số g’(x) = f’(x – 1) cắt trục hoành tạo các điểm có hoành độ x = 2, x = 4, x = 6 và giá trị hàm số g’(x) đổi dấu từ dương sang âm khi qua điểm x = 4

    Chọn B

  • Câu 17: Vận dụng
    Xác định số điểm cực trị của hàm số

    Cho hàm số f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}}. Số điểm cực trị của hàm số đã cho là:

    Hướng dẫn:

    Áp dụng công thức khai triển nhị thức Newton ta có:

    \begin{matrix}  f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}} = {\left( {1 + x} ight)^{10}} \hfill \\   \Rightarrow f'\left( x ight) = 10{\left( {1 + x} ight)^9} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Xác định số điểm cực trị của hàm số

    Vậy hàm số đã cho có duy nhất một điểm cực trị x = -1

  • Câu 18: Vận dụng cao
    Tìm điều kiện để hàm số nghịch biến trên khoảng

    Tìm tập hợp T tất cả các giá trị của tham số thực m để hàm số y = \frac{1}{3}{x^3} - \left( {m + 1} ight){x^2} + \left( {{m^2} + 2m} ight)x - 3 nghịch biến trên khoảng (-1; 1)

    Hướng dẫn:

     Ta có: y' = {x^2} - 2\left( {m + 1} ight)x + \left( {{m^2} + 2m} ight)

    Để hàm số nghịch biến trên khoảng (-1; 1) thì

    \begin{matrix}  y' \leqslant 0,\forall x \in \left( { - 1;1} ight) \hfill \\   \Leftrightarrow {x^2} - 2\left( {m + 1} ight)x + \left( {{m^2} + 2m} ight) \leqslant 0,\forall x \in \left( { - 1;1} ight) \hfill \\ \end{matrix}

    Ta có y’ = 0 => x = m hoặc x = m + 2

    Bảng xét dấu

    Tìm điều kiện để hàm số nghịch biến trên khoảng

    Từ bảng xét dấu ta thấy để hàm số nghịch biến trên khoảng (-1; 1) thì

    \left\{ {\begin{array}{*{20}{c}}  {m \leqslant  - 1} \\   {m + 2 \geqslant 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m \leqslant  - 1} \\   {m \geqslant  - 1} \end{array}} ight. \Leftrightarrow m =  - 1

  • Câu 19: Vận dụng
    Tìm m thỏa mãn điều kiện

    Tìm tất cả các giá trị thực của tham số a để hàm số y= ax^3 - ax^2 + 1 có điểm cực tiểu x = \frac{2}{3}.

    Hướng dẫn:

    Nếu a = 0 thì y = 1: Hàm hằng nên không có cực trị.

    Với a eq 0, ta có y' = 3ax^{2} - 2ax = ax(3x - 2);y' = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \frac{2}{3} \\
\end{matrix} ight.\ .

    a >
0\overset{}{ightarrow}y' đổi dấu từ '' - '' sang '' + '' khi qua x = \frac{2}{3}\overset{}{ightarrow}Hàm số đạt cực tiểu tại điểm x =
\frac{2}{3}. Do đó a >
0 thỏa mãn.

    a <
0\overset{}{ightarrow}y' đổi dấu từ '' + '' sang '' - '' khi qua x = \frac{2}{3}\overset{}{ightarrow}Hàm số đạt cực đại tại điểm x =
\frac{2}{3}.

    Do đó a <
0 không thỏa mãn.

    Nhận xét. Nếu dùng \left\{ \begin{matrix}
y'\left( \frac{2}{3} ight) = 0 \\
y''\left( \frac{2}{3} ight) > 0 \\
\end{matrix} ight. mà bổ sung thêm điều kiện a\boxed{=}0 nữa thì được, tức là giải hệ \left\{ \begin{matrix}
a=0 \\
y'\left( \frac{2}{3} ight) = 0 \\
y''\left( \frac{2}{3} ight) > 0 \\
\end{matrix} ight..

    Như vậy, khi gặp hàm y = ax^{3} + bx^{2} + cd + d mà chưa chắc chắn hệ số a\boxed{=}0 thì cần xét hai trường hợp a = 0a=0 (giải hệ tương tự như trên).

  • Câu 20: Vận dụng cao
    Chọn đáp án thích hợp

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= \frac{\sqrt{x^{2} - 8x} - 4}{\sqrt{x^{2} - 8x} + m} nghịch biến trên ( - 1;0) là:

    Hướng dẫn:

    Đặt t = \sqrt{x^{2} - 8x}

    Điều kiện xác định x^{2} - 8x \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \leq 0 \\
x \geq 8 \\
\end{matrix} ight.

    Xét hàm t = \sqrt{x^{2} - 8x};x \in ( -
1;0) ta có:

    t' = \frac{2x - 8}{2\sqrt{x^{2} -
8x}} = \frac{x - 4}{\sqrt{x^{2} - 8x}} < 0;\forall x \in ( -
1;0)

    Ta có bảng biến thiên

    Từ bảng biến thiên ta thấy hàm số t =
\sqrt{x^{2} - 8x} nghịch biến trên khoảng ( - 1;0)t
\in (0;3)

    Khi đó yêu cầu bài toán \Leftrightarrow y
= \frac{t - 4}{t + m} đồng biến trên (0;3)

    Điều kiện xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Ta có: y' = \frac{m + 4}{(t +
m)^{2}};\forall x \in D

    Để hàm số đồng biến trên (0;3) thì

    \left\{ \begin{matrix}
y' > 0 \\
- m otin (0;3) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m + 4 > 0 \\
\left\lbrack \begin{matrix}
- m \leq 0 \\
- m \geq 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 4 \\
\left\lbrack \begin{matrix}
m \geq 0 \\
m \leq - 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
- 4 < m \leq - 3 \\
m \geq 0 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là m \in ( - 4; -
3brack \cup \lbrack 0; + \infty)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo