Có tất cả bao nhiêu giá trị nguyên của tham số để hàm số
đồng biến trên
.
Ta có .
Với .
Vậy hàm số đồng biến trên .
Với . Hàm số đã cho đồng biến trên
khi và chỉ khi
.
Vì .
Có tất cả bao nhiêu giá trị nguyên của tham số để hàm số
đồng biến trên
.
Ta có .
Với .
Vậy hàm số đồng biến trên .
Với . Hàm số đã cho đồng biến trên
khi và chỉ khi
.
Vì .
Tính tổng tất cả các giá trị nguyên của tham số
để hàm số
đồng biến trên tập xác định?
Tập xác định
Ta có:
Để hàm số đồng biến trên tập xác định thì
Vì nên
Vậy .
Cho hàm số có đạo hàm
. Hàm số
có bao nhiêu điểm cực đại?
Từ giả thiết ta có bảng biến thiên của hàm số f(x)

Ta có:
g(x) = f(3 – x)
=> g’(x) = -f’(3 – x)
Từ bảng biến thiên của hàm số f(x) ta có:
=> Ta có bảng biến thiên của hàm số g(x) là:

Từ bảng biến thiên ta nhận thấy hàm số g(x) có một điểm cực đại.
Số giá trị nguyên của tham số để hàm số
đồng biến trên
là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=> Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.
Cho hàm số và đồ thị của hàm số
như hình vẽ sau:
Hàm số có bao nhiêu điểm cực trị?
Cho hàm số và đồ thị của hàm số
như hình vẽ sau:
Hàm số có bao nhiêu điểm cực trị?
Cho hàm số bậc bốn y = f(x) có đồ thị (C1) và hàm số y = f’(x) có đồ thị (C2) như hình vẽ bên. Số điểm cực trị của đồ thị hàm số trên khoảng
là:

Ta có:

Xét
Từ đồ thị ta được:
Phương trình có nghiệm đơn
Phương trình có 2 nghiệm đơn và 1 nghiệm bội chẵn (x = 0)
Phương trình có 1 nghiệm đơn.
Vậy g’(x) = 0 có 8 nghiệm đơn nên hàm số g(x) có 8 điểm cực trị.
Cho hàm số liên tục trên tập số thực và có bảng biến thiên như sau:
Đặt với
là tham số. Tìm điều kiện của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số liên tục trên tập số thực và có bảng biến thiên như sau:
Đặt với
là tham số. Tìm điều kiện của tham số
để hàm số
có đúng ba điểm cực trị?
Tìm tất cả các giá trị thực của tham số để hàm số
có hai cực trị?
Ta có:
Để hàm số đã cho có hai cực trị thì có hai nghiệm phân biệt
Vậy với thì hàm số
có hai cực trị.
Tìm giá trị của tham số m để hàm số đồng biến trên
Ta có:
Hàm số đồng biến trên
Cho hàm số biết hàm số
có đạo hàm
và hàm số
có đồ thị như hình vẽ. Đặt
. Kết luận nào sau đây đúng?
Ta có:
.
Ta có:
Hàm số đồng biến
.
Hàm số nghịch biến
.
Vậy hàm số đồng biến trên khoảng
;
và nghịch biến trên khoảng
;
.
Cho hàm số đa thức có đạo hàm trên
. Biết
và đồ thị hàm số
như hình sau.
Hàm số đồng biến trên khoảng nào dưới đây?
Xét hàm số trên
.
Vì là hàm số đa thức nên
cũng là hàm số đa thức và
.
Ta có .
Do đó .
Dựa vào sự tương giao của đồ thị hàm số và đường thẳng
, ta có
Suy ra bảng biến thiên của hàm số như sau:
Từ đó ta có bảng biến thiên của hàm số như sau:
Dựa vào bảng biến thiên trên, ta thấy hàm số đồng biến trên khoảng
.
Cho hàm số (
,
,
) có đồ thị như hình vẽ bên.
Số điểm cực trị của hàm số đã cho là
Quan sát đồ thị hàm số ta có;
Số điểm cực trị của hàm số đã cho là 3.
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Cho hàm số có bảng biến thiên như hình vẽ:
Hàm số nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .
Cho hàm số có đạo hàm
với mọi
.
a) Phương trình có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Đúng||Sai
d) Hàm số có ba điểm cực đại. Sai||Đúng
Cho hàm số có đạo hàm
với mọi
.
a) Phương trình có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Đúng||Sai
d) Hàm số có ba điểm cực đại. Sai||Đúng
a) Sai
Ta có .
.
Vậy phương trình có hai nghiệm.
b) Đúng
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số đồng biến trên các khoảng
.
Ta có nên hàm số
đồng biến trên khoảng
.
c) Đúng
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực trị.
d) Sai
Ta có:
.
.
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực đại.
Tìm tất cả các giá trị thực của tham số để hàm số
có điểm cực tiểu
.
Nếu thì
: Hàm hằng nên không có cực trị.
Với , ta có
▪ đổi dấu từ
sang
khi qua
Hàm số đạt cực tiểu tại điểm
. Do đó
thỏa mãn.
▪ đổi dấu từ
sang
khi qua
Hàm số đạt cực đại tại điểm
.
Do đó không thỏa mãn.
Nhận xét. Nếu dùng mà bổ sung thêm điều kiện
nữa thì được, tức là giải hệ
.
Như vậy, khi gặp hàm mà chưa chắc chắn hệ số
thì cần xét hai trường hợp
và
(giải hệ tương tự như trên).
Tổng bình phương của tất cả các giá trị nguyên của tham số để hàm số
nghịch biến trên
là:
Tập xác định: .
Ta có: .
Hàm số nghịch biến trên ( dấu "=" xảy ra tại hữu hạn
)
TH1: .
+ Với ta có
nên
thỏa mãn.
+ Với ta có
(không thỏa với mọi
) nên loại
.
TH2: . Ta có
Vậy .
Cho hàm số với
là tham số. Gọi
là tập hợp tất cả các giá trị của tham số
để hàm số nghịch biến trên một khoảng có độ dài bằng
. Tính tổng các phần tử của tập hợp
?
Ta có:
Dễ thấy nếu suy ra hàm số đồng biến trên
nên trường hợp này không thỏa mãn
Theo yêu cầu bài toán
Vậy tổng tất cả các phần tử của tập S bằng -2.
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có:
Ta có:
Cho g’(x) = 0 =>
Dựa vào f’(x) ta có:
Lập bảng xét dấu như sau:

Quan sát bảng xét dấy ta suy ra hàm số đồng biến trên khoảng (2; 4)
Cho hàm số có một nguyên hàm là hàm số F(x). Số điểm cực trị của hàm số F(x) là
TXĐ: có một nguyên hàm là hàm số F(x)
=> F’(x) = f(x),
=>
Ta có bảng xét dấu F’(x) như sau:

Dựa vào bảng trên ta thấy hàm số F(x) có một điểm cực trị.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: