Trong không gian với hệ tọa độ , cho vectơ
và điểm
. Tọa độ điểm
thỏa mãn
là:
Gọi tọa độ điểm là
, ta có:
.
Ta có:
.
Vậy .
Trong không gian với hệ tọa độ , cho vectơ
và điểm
. Tọa độ điểm
thỏa mãn
là:
Gọi tọa độ điểm là
, ta có:
.
Ta có:
.
Vậy .
Tích tất cả giá trị của để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án:
Tích tất cả giá trị của để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Gọi là góc giữa hai đường thẳng đã cho.
Đường thẳng có vectơ chỉ phương là
.
Đường thẳng có vectơ chỉ phương là
.
Ta có:
Vậy tích tất cả các giá trị của tham số a bằng -4.
Trong không gian với một hệ trục toạ độ cho trước, ra đa phát hiện một chiếc máy bay di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 10 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì toạ độ của máy bay sau 10 phút tiếp theo
. Khi đó

Gọi là vị trí của máy bay sau 10 phút bay tiếp theo. Vì hướng của máy bay không đổi nên
và
cùng hướng. Do vận tốc máy bay không đổi và thời gian bay từ
đến
bằng thời gian bay từ
đến
nên
.
Do đó, .
Mặt khác: nên
Vậy .
Vậy tọa độ của máy bay trong 10 phút tiếp theo là .
Suy ra
Cho hình chóp có đáy
là tam giác đều cạnh bằng
vuông góc với đáy và
bằng 1. Thiết lập hệ tọa độ như hình vẽ bên dưới, tọa độ điểm
. Khi đó
bằng bao nhiêu?

Các vectơ đơn vị trên các trục lần lươt là
với
là điểm thuộc tia
sao cho
và
là điểm thuộc tia
sao cho
.
Vì đều và
nên
là trung điểm cùa
.
Mà nên
và
.
Vì và
cùng hướng và
nên
.
Theo quy tắc hình bình hành, ta có .
Suy ra . Vậy
Để theo dõi hành trình của một chiếc một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890 km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo km.
Tính quãng đường máy bay bay được.
Từ đó suy ra toạ độ.
Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:
Vì máy bay duy trì hướng bay về phía nam nên toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ toạ độ đã chọn là (0;445;0).
Dưới đây là một giá đỡ chịu hai lực. Biểu diễn từng lực dưới dạng vectơ Descartes

a.
b.
c. Độ lớn lực tổng hợp lên giá đỡ bằng
d. Góc tạo bởi lực tổng hợp lên trục là
Dưới đây là một giá đỡ chịu hai lực. Biểu diễn từng lực dưới dạng vectơ Descartes

a. Sai
b. Đúng
c. Độ lớn lực tổng hợp lên giá đỡ bằng Đúng
d. Góc tạo bởi lực tổng hợp lên trục là
Sai
(a)
Độ lớn lực tác dụng lên từng trục tọa độ Descartes như sau:
» Chọn SAI.
(b)
Cắt mặt phẳng tọa độ lực tác dụng lên trục tọa độ là
là chiều ngang và
là chiều dọc như hình vẽ

Độ lớn lực tác dụng lên trục tọa độ
và
bằng
Cắt mặt phẳng tọa độ lực tác dụng lên trục tọa độ là
là chiều ngang và
là chiều dọc như hình vẽ

Vậy
» Chọn ĐÚNG.
(c) Độ lớn lực tổng hợp lên giá đỡ bằng
Lực tổng hợp tác dụng lên giá đỡ là :
» Chọn ĐÚNG.
(d) Góc tạo bởi lực tổng hợp lên trục là
Gọi là góc tạo bởi lực tổng hợp lên trục
.
» Chọn SAI.
Trong không gian với hệ trục tọa độ , cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của là
.
b) .
c) Góc giữa hai đường thẳng và
bằng
.
d) Điểm nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
.
Trong không gian với hệ trục tọa độ , cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của là
. Đúng
b) . Đúng
c) Góc giữa hai đường thẳng và
bằng
. Đúng
d) Điểm nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai
a) Đúng: Gọi là trung điểm
.
Ta có
b) Đúng: Ta có .
c) Đúng: Ta có .
Suy ra .
d) Sai: Gọi thỏa mãn
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
suy ra
.
Suy ra .
Vậy .
Trong không gian hệ trục tọa độ , cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Trong không gian với một hệ trục toạ độ cho trước, ra đa phát hiện một chiếc máy bay di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 10 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì toạ độ của máy bay sau 5 phút tiếp theo là gì?

Gọi là vị trí của máy bay sau 5 phút tiếp theo. Vì hướng của máy bay không đổi nên
và
cùng hướng. Do vận tốc của máy bay không đổi và thời gian bay từ
đến
gấp đôi thời gian bay từ
đến
nên
.
Do đó .
Mặt khác, nên
.
Vậy tọa độ của máy bay sau 5 phút tiếp theo là .
Trong không gian cho hình hộp chữ nhật
có các cạnh
,
,
(xem hình vẽ dưới đây). Tọa độ
. Tính giá trị biểu thức

Ta có và hình chiếu của
lên
trùng với
nên
.
.
Trong không gian với hệ tọa độ , cho điểm
thỏa
và
. Tọa độ của vectơ
là
Ta có:
Suy ra
Trong không gian với hệ toạ độ , cho
. Tìm tọa độ điểm
để tứ giác
là hình bình hành.
Gọi tọa độ điểm .
Ta có: ,
.
Tứ giác là hình bình hành
Vậy .
Trong không gian cho ba điểm
và
Để
thẳng hàng thì giá trị
bằng
Ta có
thẳng hàng khi
cùng phương
Vậy
Cho biết máy bay đang bay với vận tốc
(đơn vị:
. Máy bay
ngược hướng và có tốc độ gấp 2 lần tốc độ của máy bay
. Tọa độ vectơ vận tốc
của máy bay
là
Tọa độ vectơ vận tốc của máy bay
là:
Để theo dõi hành trình của một chiếc máy bay, ta có thể lập hệ toạ độ có gốc
trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng
trùng với mặt đất với trục
hướng về phía tây, trục
hướng về phía nam và trục
hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là
trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian
được lấy theo kilômét.

Quãng đường máy bay bay được với vận tốc trong nửa giờ là:
Vì máy bay duy trì hướng bay về phía nam nên tọa độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ tọa độ đã chọn là
Trong không gian , cho hình lập phương
có cạnh bằng 4, đỉnh
trùng với gốc
, các điểm
lần lượt nằm trên các tia
.
a. Tọa độ của điểm là:
b. Tọa độ của vec tơ là:
c. Tọa độ của vec tơ là:
d. Tọa độ của vec tơ là:
Trong không gian , cho hình lập phương
có cạnh bằng 4, đỉnh
trùng với gốc
, các điểm
lần lượt nằm trên các tia
.
a. Tọa độ của điểm là:
Sai
b. Tọa độ của vec tơ là:
Sai
c. Tọa độ của vec tơ là:
Đúng
d. Tọa độ của vec tơ là:
Đúng
Hình vẽ minh họa

(a) Tọa độ của điểm là:
Do cùng hướng với
và
nên
hay
.
Suy ra: .
» Chọn SAI.
(b) Tọa độ của vec tơ là:
Do cùng hướng với
và
nên
hay
.
Theo quy tắc hình bình hành, ta có: .
Suy ra: .
» Chọn SAI.
(c) Tọa độ của vec tơ là:
Do cùng hướng với
và
nên
hay
.
Suy ra: .
» Chọn ĐÚNG.
(d) Tọa độ của vec tơ là:
.
Theo quy tắc hình hộp, ta có: .
Suy ra:
» Chọn ĐÚNG.
Trong không gian , cho hình chóp
có đáy
là hình thoi cạnh bằng 5 , giao điểm hai đường chéo
và
trùng với gốc
. Các vectơ
lần lượt cùng hướng với
,
và
như hình bên dưới. Toạ độ vectơ
với
là trung điểm của cạnh
, khi đó
bằng bao nhiêu?

Vì là hình thoi cạnh bằng 5 ,
là giao điểm của
và
nên
là trung điểm của
và
.
Xét vuông tại
, có
.
Vì và
cùng hướng và
nên
.
Vì và
cùng hướng và
nên
.
Ta có
Có mà
và
cùng hướng nên
.
Có và
cùng hướng và
nên
.
Có
Lại có .
Vì là trung điểm của
nên
.
Do đó .
Suy ra
Trong không gian với hệ tọa độ Oxyz, cho hai điểm và
. Điểm
thỏa mãn
có tọa độ là:
Từ giả thiết nên ba điểm
thẳng hàng và
nằm khác phía so với điểm M do
âm.
Lại có
.
.
Gọi tọa độ , khi đó
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) .
b) Ba điểm thẳng hàng.
c) Điểm là điểm đối xứng của với
qua
. Khi đó
.
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
.
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng
b) Ba điểm thẳng hàng. Sai
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng
a) Đúng: Vì nên
.
b) Sai: Ta có .
Vì nên
không cùng phương suy ra
không thẳng hàng.
c) Đúng
Vì là điểm đối xứng với
qua
nên
là trung điểm của
.
Ta có suy ra
.
Do đó . Vậy
.
d) Đúng. Gọi là điểm thỏa mãn
.
Ta có:
Do không thay đổi nên
nhỏ nhất khi
nhỏ nhất hay
là hình chiếu của điểm
trên mặt phẳng
.
Do đó suy ra
.
Vậy .
Trong không gian , cho điểm
. Trong các phát biểu sau, phát biểu nào sai?
+) Ta có khoảng cách từ đến mặt phẳng tọa độ
bằng
nên “Khoảng cách từ
đến mặt phẳng tọa độ
bằng
đúng.
+) Khoảng cách từ đến trục
bằng
nên “Khoảng cách từ
đến trục
bằng
” đúng.
+) Tọa độ hình chiếu vuông góc của điểm lên mặt phẳng
là
.
Suy ra tọa độ điểm đối xứng với
qua mặt phẳng
là
nên “Tọa độ điểm
đối xứng với
qua mặt phẳng
là
” sai.
+) Tọa độ hình chiếu vuông góc của điểm lên trục
là
.
Suy ra tọa độ điểm đối xứng với
qua trục
là
nên “Tọa độ điểm
đối xứng với
qua trục
là
” đúng.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: