Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Chân trời sáng tạo Bài 1 (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định tính đúng sai

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Xác định tính đúng sai của nhận xét sau: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200g” Đúng||Sai

    Đáp án là:

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Xác định tính đúng sai của nhận xét sau: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200g” Đúng||Sai

    Đúng vì giá trị 200 là khoảng biến thiên của mẫu số liệu ghép nhóm.

  • Câu 2: Nhận biết
    Chọn đáp án đúng

    Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12C được cho trong bảng sau:

    Thời gian (phút)

    [25;30)

    [30;35)

    [35;40)

    [40;45)

    Số học sinh

    8

    16

    4

    2

    Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc là bao nhiêu?

    Hướng dẫn:

    Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc là 43 – 27 = 16.

  • Câu 3: Nhận biết
    Tìm mốt của mẫu số liệu ghép nhóm

    Cho mẫu số liệu điểm môn Toán của một nhóm học sinh như sau:

    Điểm

    \lbrack 6;7)

    \lbrack 7;8)

    \lbrack 8;9)

    \lbrack 9;10brack

    Số học sinh

    8

    7

    10

    5

    Mốt của mẫu số liệu (kết quả làm tròn đến hàng phần trăm) là:

    Hướng dẫn:

    Nhóm chứa Mốt là \lbrack
8;9).

    Mốt của mẫu số liệu là M_{e} = 8 +
\frac{10 - 7}{10 - 7 + 10 - 5}(9 - 8) \approx 8,38

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Khoảng biến thiên của mẫu số liệu ghép nhóm được cho ở bảng sau là bao nhiêu?

    Nhóm

    \lbrack 15;22) \lbrack 22;29) \lbrack 29;36) \lbrack 36;43) \lbrack 43;50)

    Tần số

    1 6 21 21 11
    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm ở bảng trên là:

    R = a_{6} - a_{1} = 50 - 15 =
35

  • Câu 5: Nhận biết
    Xác định nhóm chứa tứ phân vị thứ nhất

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14;15)

    [15;16)

    [16;17)

    [17;18)

    [18;19)

    Số con

    1

    3

    8

    6

    2

    Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu ghép nhóm đã cho là:

    Hướng dẫn:

    Ta có: \frac{n}{4} = \frac{20}{4} =
51 + 3 < 5 < 1 + 3 +
8 nên tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm [16;17).

  • Câu 6: Nhận biết
    Tính thể tích theo yêu cầu

    Khi thống kê chiều cao (đơn vị: centimét) của học sinh lớp 12A, người ta thu được mẫu số liệu ghép nhóm như Bảng sau.

    Nhóm

    Tần số

    [155; 160)

    2

    [160; 165)

    5

    [165; 170)

    21

    [170; 175)

    11

    [175; 1800

    11

    N = 40

    Khoảng biến thiên của mẫu số liệu ghép nhóm đó bằng:

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm ta có đầu mút trái của nhóm 1 là a_{1} = 155, đầu mút phải của nhóm 5 là a_{5} = 180.

    Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là R = a_{5} - a_{1} = 180 - 155 = 25

  • Câu 7: Nhận biết
    Chọn công thức tính khoảng tứ phân vị

    Công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1}

  • Câu 8: Nhận biết
    Tìm khoảng biến thiên

    Thống kê thời gian sử dụng mạng xã hội trong ngày của các bạn học sinh tổ 1 và tổ 2 lớp 12A thu được bảng sau:

    Tìm khoảng biến thiên R_{1},\
R_{2}cho thời gian sử dụng mạng xã hội của tổ 1 và tổ 2.

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm của tổ 1: R_{1} = 90

    Khoảng biến thiên của mẫu số liệu ghép nhóm của tổ 2: R_{2} = 60

  • Câu 9: Nhận biết
    Chọn đáp án đúng

    Xét mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, tứ phân vị thứ hai, tứ phân vị thứ ba lần lượt là 27,5; 30,5; 33. Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó bằng

    Hướng dẫn:

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta Q = Q_{3} - Q_{1} = 33 - 27,5 =
2,5

  • Câu 10: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Cho mẫu số liệu ghép nhóm cho bởi bảng sau:

    Nhóm

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    Tần số

    3

    7

    2

    9

    Khoảng biến thiên của mẫu số liệu ghép nhóm này là

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    R = 40 – 0 = 40.

  • Câu 11: Thông hiểu
    Chọn kết quả chính xác

    Bạn Linh thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ lớp 12A và lớp 12\ B ở bảng sau:

    Chiều cao (cm)

    \lbrack 150;155) \lbrack 155;160) \lbrack 160;165) \lbrack 165;170) \lbrack 170;175) \lbrack 175;180)

    Số học sinh nữ lớp 12 A

    2

    7

    12

    3

    0

    1

    Số học sinh nữ lớp 12 B

    0

    9

    8

    2

    1

    5

    Gọi R_{1}; R_{2}lần lượt là khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12A12\
B. Tìm R_{1}; R_{2}.

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12Alà: R_{1} = 180 - 150 = 30 (cm).

    Trong mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12B, khoảng đầu tiên chứa dữ liệu là [155; 160) và khoảng cuối cùng chứa dữ liệu là [175; 180).

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12Blà: R_{2} = 180 - 155 = 25 (cm).

  • Câu 12: Thông hiểu
    Xác định tứ phân vị thứ ba của mẫu số liệu ghép nhóm

    Tìm hiểu thời gian hoàn thành một bài tập (đơn vị: phút) của một số học sinh thu được kết quả sau:

    Tứ phân vị thứ ba của mẫu số liệu ghép nhóm này là

    Hướng dẫn:

    Cỡ mẫu: n = 2 + 4 + 7 + 4 + 3 =
20.

    Tứ phân vị thứ ba Q_{3}\frac{x_{15} + x_{16}}{2}.

    Do x_{15},\ \ x_{16} đều thuộc nhóm \lbrack 12;16) nên nhóm này chứa Q_{3}.

    Do đó: p = 4, a_{4} = 12, m_{4} = 4, m_{1} + m_{2} + m_{3} = 2 + 4 + 7 = 13, a_{5} - a_{4} = 4.

    Ta có: Q_{3} = 12 + \dfrac{\dfrac{3.20}{4}
- 13}{4}.4 = 14.

  • Câu 13: Thông hiểu
    Xác định khoảng tứ phân vị của mẫu số liệu

    Bạn Chi rất thích nhảy hiện đại. Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn Chi được thống kê lại ở bảng sau:

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Cỡ mẫu n = 18

    Gọi x_{1};x_{2};\ldots;x_{18} là mẫu số liệu gốc về thời gian tập nhảy mỗi ngày của bạn Chi được xếp theo thứ tự không giảm.

    Ta có: x_{1};\ldots;x_{6} \in \lbrack20;25);x_{7};\ldots;x_{12} \in \lbrack 25;30);x_{13};\ldots;x_{16} \in\lbrack 30;35);x_{17};\in \lbrack 35;40);x_{18} \in \lbrack40;45)

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{5} \in \lbrack 20;25). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{1} = 20 + \frac{\frac{18}{4}}{6}(25 - 20) =
23,75

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{14} \in \lbrack 30;35). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: Q_{3} = 30 + \frac{\frac{3.18}{4} - (6 + 6)}{4}(35
- 30) = 31,875

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} = 8,125

  • Câu 14: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Thời gian chờ khám bệnh của hai phòng khám 1 và phòng khám 2 được cho trong bảng sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    Số bệnh nhân phòng 1

    3

    12

    15

    18

    Số bệnh nhân phòng 1

    5

    10

    12

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} =
15. Sai|| Đúng

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} =
20. Sai|| Đúng

    (d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1. Sai|| Đúng

    Đáp án là:

    Thời gian chờ khám bệnh của hai phòng khám 1 và phòng khám 2 được cho trong bảng sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    Số bệnh nhân phòng 1

    3

    12

    15

    18

    Số bệnh nhân phòng 1

    5

    10

    12

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} =
15. Sai|| Đúng

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} =
20. Sai|| Đúng

    (d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1. Sai|| Đúng

    (a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3.

    Chọn ĐÚNG.

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} =
15.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} = 20 - 0 =
20

    Chọn SAI.

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} =
20.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} = 15 - 0 =
15

    Chọn SAI.

    (d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1.

    R_{1} > R_{2} nên thời gian khám bệnh ở phòng khám số 1 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 2.

    Chọn SAI

  • Câu 15: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Dưới đây là bảng thống kê số giờ tự học ở nhà trong 3 ngày nghỉ của học sinh lớp 12 như sau:

    Giờ

    [1; 2)

    [2; 3)

    [3; 4)

    [4; 5)

    [5; 6)

    Số học sinh

    8

    10

    12

    9

    3

    Xét tính đúng sai của các khẳng định sau:

    a) Tứ phân vị thứ nhất của mẫu số liệu bằng 2,25 (giờ). Đúng||Sai

    b) Tứ phân vị thứ hai của mẫu số liệu lớn hơn 4 (giờ). Sai||Đúng

    c) Tứ phân vị thứ ba của mẫu số liệu bằng \frac{25}{6}. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu là số nguyên. Sai||Đúng

    Đáp án là:

    Dưới đây là bảng thống kê số giờ tự học ở nhà trong 3 ngày nghỉ của học sinh lớp 12 như sau:

    Giờ

    [1; 2)

    [2; 3)

    [3; 4)

    [4; 5)

    [5; 6)

    Số học sinh

    8

    10

    12

    9

    3

    Xét tính đúng sai của các khẳng định sau:

    a) Tứ phân vị thứ nhất của mẫu số liệu bằng 2,25 (giờ). Đúng||Sai

    b) Tứ phân vị thứ hai của mẫu số liệu lớn hơn 4 (giờ). Sai||Đúng

    c) Tứ phân vị thứ ba của mẫu số liệu bằng \frac{25}{6}. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu là số nguyên. Sai||Đúng

    Ta có

    Giờ

    [1; 2)

    [2; 3)

    [3; 4)

    [4; 5)

    [5; 6)

    Số học sinh

    8

    10

    12

    9

    3

    Tần số tích lũy

    8

    18

    30

    39

    42

    a) Đúng: Ta có số phần tử của mẫu là: n =
42 \Rightarrow \frac{n}{4} = 10,5

    Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10,5.

    Xét nhóm 2 là nhóm [2;3) có s = 2;h =
1;n_{2} = 10 và nhóm 1 là nhóm [1; 2) có cf_{1} = 8

    Áp dụng công thức tứ phân vị thứ nhất của mẫu số liệu có:

    Q_{1} = 2 + \frac{10,5 - 8}{10}.1 =
2,25(giờ)

    b) Sai: Ta có số phần tử của mẫu là n =
42 \Rightarrow \frac{n}{2} = 21

    cf_{2} = 18 < 21 < cf_{3} =
30 suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 21.

    Xét nhóm 3 là nhóm [3; 4) có r = 3;d =
1;n_{3} = 12 và nhóm 2 là nhóm [2;3) có cf_{2} = 18.

    Áp dụng công thức ta có trung vị của mẫu số liệu là:

    M_{e} = 3 + \frac{21 - 18}{12}.1 =
3,25(giờ)

    Vậy tứ phân vị thứ 2 là Q_{2} = M_{e} =
3,25

    c) Đúng: Ta có số phần tử của mẫu là: \frac{3n}{4} = 31,5

    Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 31,5.

    Xét nhóm 4 là nhóm [4;5) có t = 4;l =
1;n_{4} = 9 và nhóm 3 là nhóm [3; 4) có cf_{3} = 30.

    Áp dụng công thức tứ phân vị thứ ba của mẫu số liệu có:

    Q_{3} = 4 + \frac{31,5 - 30}{9}.1 =
\frac{25}{6}(giờ)

    d) Sai: Khoảng tứ phân vị của mẫu số liệu bằng \Delta Q = Q_{3} - Q_{1} =
\frac{23}{12}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (67%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo