Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Chân trời sáng tạo Bài 1 (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm nhóm chứa tứ phân vị thứ nhất

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14; 15)

    [15; 16)

    [16; 17)

    [17; 18)

    [18; 19)

    Số con hổ

    1

    3

    8

    6

    2

    Nhóm chứa tứ phân vị thứ nhất là

    Hướng dẫn:

    Cỡ mẫu là: 1 + 3 + 8 + 6 + 2 = 20.

    Gọi x1; x2; …; x20 là tuổi thọ của 20 con hổ được sắp xếp theo thứ tự tăng dần

    Tứ phân vị thứ nhất của mẫu số liệu gốc là\left\lbrack \frac{x_{5} + x_{6}}{2} \right\rbrack
\in[16; 17) nên nhóm chứa tứ phân vị thứ nhất là [16; 17).

  • Câu 2: Nhận biết
    Xác định khoảng biến thiên

    Cho bảng tần số ghép nhóm dưới đây:

    Độ tuổi

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    [70; 75)

    [75; 80)

    [80; 85)

    [85; 90)

    Tần số

    4

    7

    4

    6

    16

    12

    2

    0

    Hãy xác định khoảng biến thiên của mẫu số liệu ghép nhóm trên?

    Hướng dẫn:

    Do nhóm số liệu [85; 90) có tần số là 0 nên ta sẽ chỉ xét đến nhóm số liệu [80; 85).

    Do đó: R = 85 – 50 = 35.

  • Câu 3: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14; 15)

    [15; 16)

    [16; 17)

    [17; 18)

    [18; 19)

    Số con hổ

    1

    3

    8

    6

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm này là

    Hướng dẫn:

    Khoảng biến thiên R = 19 – 14 = 5

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Một mẫu số liệu ghép nhóm có tứ phân vị là Q_{1} = 4,Q_{2} = 6,Q_{3} = 9. Khoảng tứ phân vị của mẫu số ghép nhóm đó là bao nhiêu?

    Hướng dẫn:

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

    \Delta Q = Q_{3} - Q_{1} = 9 - 4 =
5

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Xét mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, tứ phân vị thứ hai, tứ phân vị thứ ba lần lượt là 27,5; 30,5; 33. Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó bằng

    Hướng dẫn:

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta Q = Q_{3} - Q_{1} = 33 - 27,5 =
2,5

  • Câu 6: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu gốc

    Thời gian hoàn thành bài kiểm tra của học sinh lớp 12A được cho trong bảng sau:

    Thời gian (phút)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số học sinh

    8

    16

    4

    2

    Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc bằng bao nhiêu?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu gốc là R = 43 - 27 = 16

  • Câu 7: Nhận biết
    Chọn đáp án thích hợp

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    \lbrack 14;\ \ 15) \lbrack 15;\ \ 16) \lbrack 16;\ \ 17) \lbrack 17;\ \ 18) \lbrack 18;\ \ 19)

    Số con hổ

    1 3 8 6 2

    Số đặc trưng nào không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng?

    Hướng dẫn:

    Đáp án đúng là Khoảng tứ phân vị.

  • Câu 8: Nhận biết
    Tìm khoảng biến thiên mẫu số liệu ghép nhóm

    Mỗi ngày bác T đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác T trong 20 ngày được thống kê lại ở bảng sau:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là: 4,2 - 2,7 = 1,5(km)

  • Câu 9: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Cho mẫu số liệu ghép nhóm cho bởi bảng sau:

    Nhóm

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    Tần số

    3

    7

    2

    9

    Khoảng biến thiên của mẫu số liệu ghép nhóm này là

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    R = 40 – 0 = 40.

  • Câu 10: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Đo chiều cao (tính bằngcm) của 500 học sinh trong một trường THPT ta thu được kết quả như sau:

    Chiều cao

    \lbrack 150;\ 154) \lbrack 154;\ 158) \lbrack 158;\ 162) \lbrack 162;\ 166) \lbrack 166;\ 170)

    Số học sinh

    25

    50

    200

    175

    50

    Khoảng biến thiên của mẫu số liệu trên là

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu trên là R = 170 - 150 = 20

  • Câu 11: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho mẫu số liệu ghép nhóm về chiều cao (đơn vị: cm) của cây trong vườn nghiên cứu như sau:

    Chiều cao

    [40; 45)

    [45; 50)

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    Số cây

    5

    10

    7

    9

    7

    4

    Xét tính đúng sai của các khẳng định sau:

    a) Nhóm [45; 50) có tần số tích luỹ là 15. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 30. Đúng||Sai

    c) Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{3n}{4} là nhóm [55; 60). Sai||Đúng

    d) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là Q_{3} > 61. Sai||Đúng

    Đáp án là:

    Cho mẫu số liệu ghép nhóm về chiều cao (đơn vị: cm) của cây trong vườn nghiên cứu như sau:

    Chiều cao

    [40; 45)

    [45; 50)

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    Số cây

    5

    10

    7

    9

    7

    4

    Xét tính đúng sai của các khẳng định sau:

    a) Nhóm [45; 50) có tần số tích luỹ là 15. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 30. Đúng||Sai

    c) Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{3n}{4} là nhóm [55; 60). Sai||Đúng

    d) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là Q_{3} > 61. Sai||Đúng

    a) Đúng: Nhóm [45;50) có tần số tích luỹ là 5 + 10 = 15.

    b) Đúng: Khoảng biến thiên là 70 – 40 = 30

    c) Sai: Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{n}{2} = 31,5 là nhóm [60; 65).

    d) Sai: Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{n}{2} = 31,5 là nhóm [60; 65).

    Đầu mút trái, độ dài và tần số của nhóm [60; 65) lần lượt là s = 60;h = 5;n_{2} = 7.

    Tần số tích luỹ của nhóm liền trước là cf_{4} = 31 nên tứ phân vị thứ ba là:

    Q_{1} = 60 + \left( \frac{31,5 - 31}{7}
ight).5 \approx 60,36

  • Câu 12: Thông hiểu
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là \lbrack
0;5). Xác định khoảng biến thiên của mẫu số liệu sau khi ghép nhóm?

    Hướng dẫn:

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [30; 35)

    2

    Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là R = 35 - 0 = 35.

  • Câu 13: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Tìm hiểu thời gian hoàn thành một bài tập (đơn vị: phút) của một số học sinh thu được kết quả sau:

    Thời gian

    \lbrack 0;\ 4) \lbrack 4;\ 8) \lbrack 8;12) \lbrack 12;16) \lbrack 16;20)

    Số học sinh

    2

    4

    7

    4

    3

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm này là

    Hướng dẫn:

    Cỡ mẫu: n = 2 + 4 + 7 + 4 + 3 =
20.

    Gọi x_{1};\ x_{2};\ \ldots;\ x_{20}thời gian hoàn thành bài tập của 20 học sinh và được sắp xếp theo thứ tự không giảm.

    Tứ phân vị thứ ba Q_{1}\frac{x_{5} + x_{6}}{2}. Do x_{5},\ \ x_{6} đều thuộc nhóm \lbrack 4;8) nên nhóm này chứa Q_{1}.

    Khi đó Q_{1} = 4 + \frac{\frac{20}{4} -
2}{4}.4 = 7

    Tứ phân vị thứ ba Q_{3}\frac{x_{15} + x_{16}}{2}. Do x_{15},\ \ x_{16} đều thuộc nhóm \lbrack 12;16) nên nhóm này chứa Q_{3}.

    Khi đó: Q_{3} = 12 + \frac{\frac{3.20}{4}
- 13}{4}.4 = 14.

    Vậy khoảng tứ phân vị của mẫu số liệu trên là \Delta_{Q} = Q_{3} - Q_{1} = 14 - 7 =
7.

  • Câu 14: Thông hiểu
    Xác định khoảng tứ phân vị của mẫu số liệu

    Một hãng xe ôtô thống kê lại số lần gặp sự cố về động cơ của 100 chiếc xe cùng loại sau 2 năm sử dụng đầu tiên ở bảng sau.

    Số lần gặp sự cố

    \lbrack 0,5\ ;\ 2,5)\lbrack 2,5\ ;\ 4,5)\lbrack 4,5\ ;\ 6,5)\lbrack 6,5\ ;\ 8,5)\lbrack 8,5\ ;\ 10,5)

    Số xe

    17

    33

    25

    20

    5

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này? (Làm tròn các kết quả đến hàng phần trăm).

    Hướng dẫn:

    Do cỡ mẫu n = 100

    Gọi x_{1}; x_{2}; …; x_{100} là mẫu số liệu gốc gồm số lần gặp sự cố của 100 chiếc xe cùng loại sau 2 năm sử dụng, sắp xếp theo thứ tự không giảm.

    Ta có x_{1}, …, x_{17} \in \lbrack0,5\ ;\ 2,5); x_{18}, …, x_{50} \in \lbrack2,5\ ;\ 4,5); x_{51}, …, x_{75} \in \lbrack4,5\ ;\ 6,5); x_{76}, …, x_{95} \in \lbrack6,5\ ;\ 8,5); x_{96}, …, x_{100} \in \lbrack8,5\ ;\ 10,5).

    Nên tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{25} + x_{26} ight)\in \lbrack 2,5\ ;\4,5).

    Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là

    Q_{1} = 2,5 + \frac{\frac{100}{4} -17}{33} \cdot (4,5 - 2,5) \approx 2,98

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{75} + x_{76} ight)\in \lbrack 2,5\ ;\4,5).

    x_{75} \in \lbrack4,5\ ;\ 6,5); x_{76} \in \lbrack6,5\ ;\ 8,5).

    Nên Q_{3} = 6,5

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    \Delta_{Q} = Q_{3} - Q_{1} \approx 6,5 - 2,98 =3,52

  • Câu 15: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Cỡ mẫu

    n = 20

    Gọi x_{1};x_{2};\ldots;x_{20} là mẫu số liệu gốc về quãng đường đi bộ mỗi ngày của bác Hương trong 20 ngày được xếp theo thứ tự không giảm.

    Ta có: x_{1};\ldots;x_{3} \in \lbrack2,7;3,0);x_{4};\ldots;x_{9} \in \lbrack 3,0;3,3);x_{10};\ldots;x_{14}\in \lbrack 3,3;3,6);;x_{15};\ldots;x_{18} \in \lbrack3,6;3,9);x_{19};x_{20} \in \lbrack 3,9;4,2).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{5} + x_{6} \right) \in
\lbrack 3,0;3,3).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{1} = 3,0 + \frac{\frac{20}{4} - 3}{6}(3,3 -
3,0) = 3,1

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{15} + x_{16} \right) \in
\lbrack 3,6;3,9).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 3,6 + \frac{\frac{3.20}{4} - (3
+ 6 + 5)}{4}(3,9 - 3,6) = 3,675

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta_{Q} = Q_{3} - Q_{1} =
0,575

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (67%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo