Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân KNTT (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Xác định giá trị tích phân

    Tích phân I = \int_{-
1}^{\frac{1}{2}}{\frac{4x - 3}{\sqrt{5 + 4x - x^{2}}}dx} có giá trị là:

    Hướng dẫn:

    Thực hiện tính tích phân I theo hai cách như sau:

    Cách 1:

    Ta có:\left( 5 + 4x - x^{2} ight)'
= 4 - 2x4x - 3 = 5 - 2(4 -
2x).

    I =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{4x - 3}{\sqrt{5 + 4x - x^{2}}}dx}

    = \int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{5}{\sqrt{5 + 4x - x^{2}}}dx} -
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{2(4 - 2x)}{\sqrt{5 + 4x -
x^{2}}}dx}.

    Xét I_{1} =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{5}{\sqrt{5 + 4x - x^{2}}}dx} =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{5}{\sqrt{9 - (x -
2)^{2}}}dx}.

    Đặt x - 2 = 3sint,t \in \left\lbrack -
\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =
3costdt.

    Đổi cận \left\{ \begin{matrix}
x = \frac{7}{2} \Rightarrow t = \frac{\pi}{6} \\
x = \frac{1}{2} \Rightarrow t = - \frac{\pi}{6} \\
\end{matrix} ight..

    \Rightarrow I_{1} = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{6}}{\frac{5.3cost}{\sqrt{9 - 9sin^{2}t}}dt} =
\frac{5\pi}{3}.

    Xét I_{2} =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{2(4 - 2x)}{\sqrt{5 + 4x -
x^{2}}}dx}.

    Đặt t = 5 + 4x - x^{2} \Rightarrow dt = 4
- 2x.

    Đổi cận \left\{ \begin{matrix}
x = \dfrac{1}{2} \Rightarrow t = \dfrac{27}{4} \\
x = \dfrac{7}{2} \Rightarrow t = \dfrac{27}{4} \\
\end{matrix} ight.\  \Rightarrow I_{2} = 0.

    \Rightarrow I =
\frac{5\pi}{3}.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 2: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn điều kiện f(0) = 2\sqrt{2};f(x) > 0 với \forall x\mathbb{\in R}f(x).f'(x) = (2x + 1)\sqrt{1 +f^{2}(x)} với \forall x\mathbb{\inR}. Tính giá trị f(1)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn điều kiện f(0) = 2\sqrt{2};f(x) > 0 với \forall x\mathbb{\in R}f(x).f'(x) = (2x + 1)\sqrt{1 +f^{2}(x)} với \forall x\mathbb{\inR}. Tính giá trị f(1)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Vận dụng
    Chọn đáp án đúng

    Tích phân I =\int_{1}^{e}{\frac{2\ln x\sqrt{ln^{2}x + 1}}{x}dx} có gái trị là:

    Hướng dẫn:

    Xét tích phân I =
\int_{1}^{e}{\frac{2lnx\sqrt{ln^{2}x + 1}}{x}dx}

    Ta nhận thấy: \left( ln^{2}x + 1
ight)' = \frac{2lnx}{x}.

    Ta dùng đổi biến số.

    Đặt t = ln^{2}x + 1 \Rightarrow dt =
\frac{2lnx}{x}dx.

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 \\
x = e \Rightarrow t = 2 \\
\end{matrix} ight..

    I = \int_{1}^{2}{\sqrt{t}dx} = \left. \
\left( \frac{2}{3}t^{\frac{3}{2}} ight) ight|_{1}^{2} =
\frac{4\sqrt{2} - 2}{3}.

    Đáp án đúng là I = \frac{4\sqrt{2} -
2}{3}.

  • Câu 4: Vận dụng cao
    Tính giá trị của tích phân

    Tích phân I = \int_{1}^{e}{\frac{\ln
x\left( 2\sqrt{ln^{2}x + 1} + 1 \right)}{x}dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{1}^{e}{\frac{\ln
x\left( 2\sqrt{ln^{2}x + 1} + 1 ight)}{x}dx} có giá trị là:

    Ta có:

    I = \int_{1}^{e}{\frac{\ln x\left(
2\sqrt{ln^{2}x + 1} + 1 ight)}{x}dx} =
\int_{1}^{e}{\frac{2lnx\sqrt{ln^{2}x + 1}}{x}dx} +
\int_{1}^{e}{\frac{\ln x}{x}dx}.

    Xét I_{1} =
\int_{1}^{e}{\frac{2lnx\sqrt{ln^{2}x + 1}}{x}dx}.

    Đặt t = ln^{2}x + 1 \Rightarrow dt =
\frac{2lnx}{x}dx.

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 \\
x = e \Rightarrow t = 2 \\
\end{matrix} ight..

    \Rightarrow I_{1} =
{\int_{1}^{2}{\sqrt{t}dt = \left. \ \left( \frac{2}{3}\sqrt{t^{3}}
ight) ight|}}_{1}^{2} = \frac{4\sqrt{2} - 2}{3}.

    Xét I_{2}\int_{1}^{e}{\frac{\ln
x}{x}dx}.

    Đặt t = \ln x \Rightarrow dt =
\frac{1}{x}dx.

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 0 \\
x = e \Rightarrow t = 1 \\
\end{matrix} ight..

    \Rightarrow I_{2} = \int_{0}^{1}{dt} =
1.

    \Rightarrow I = I_{1} + I_{2} =
\frac{4\sqrt{2} + 1}{3}.

    Vậy đáp án cần chọn là: I =
\frac{4\sqrt{2} + 1}{3}.

  • Câu 5: Vận dụng
    Ghi đáp án vào ô trống

    Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất v =
50m/s, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

    Đáp án: 667m

    Đáp án là:

    Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất v =
50m/s, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

    Đáp án: 667m

    Giả sử hàm số biểu thị cho vận tốc có dạng (P):v(t) = at^{2} + bt + c\left( a,b,c\mathbb{\in
R} ight)

    Do (P) đi qua gốc O nên c =
0

    (P) có đỉnh là I(10;50) \Rightarrow \left\{ \begin{matrix}
\frac{- b}{2a} = 10 \\
50 = a.100 + b.10 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{1}{2} \\
b = 10 \\
\end{matrix} ight.

    Do đó (P):v(t) = - \frac{1}{2}t^{2} +
10t

    Xe dừng lại khi v(t) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 0 \\
t = 20 \\
\end{matrix} ight.

    Quảng đường xe ô tô di chuyển trong 20 giây là S = \int_{0}^{20}{\left( - \frac{1}{2}t^{2} + 10t
ight)dt} \approx 667m

  • Câu 6: Vận dụng
    Chọn đáp án đúng

    Tích phân I = \int_{-
1}^{1}{\frac{x}{\sqrt{x + 1} - 1}dx} có giá trị là:

    Hướng dẫn:

    Ta có:

    \frac{x}{\sqrt{x + 1} - 1} = \sqrt{x +
1} + 1

    \Rightarrow I = \int_{-
1}^{1}\frac{x}{\sqrt{x + 1} - 1}dx = \int_{- 1}^{1}\left( \sqrt{x + 1} +
1 ight)dx

    = \left. \ \left\lbrack \frac{2}{3}(x +
1)^{\frac{3}{2}} + x ightbrack ight|_{- 1}^{1} =
\frac{4\sqrt{2}}{3} + 2

    Đáp án đúng là I = \frac{4\sqrt{2}}{3} +
2.

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Tích phân \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = a - \ln b với a;b\mathbb{\in Z}. Giá trị của a + b bằng:

    Hướng dẫn:

    Ta có: \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = \int_{0}^{1}{\left( 1 - \frac{2x}{x^{2} + 1}
ight)dx}

    = \left. \ x ight|_{0}^{1} - \left. \
\ln\left( x^{2} + 1 ight) ight| = 1 - ln2

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
\end{matrix} ight.\  \Rightarrow a + b = 3

  • Câu 8: Vận dụng
    Chọn đáp án chính xác

    Cho hàm số y = f(x) có đạo hàm trên khoảng (0; + \infty) thỏa mãn f(x) = x.\ln\left\lbrack\frac{x^{3}}{xf'(x) - f(x)} ightbrack và f(1) = 0. Giá trị tích phân D = \int_{1}^{5}{f(x)dx} bằng:

    Hướng dẫn:

    Từ giả thiết ta có:

    f(x) = x.\ln\left\lbrack\frac{x^{3}}{xf'(x) - f(x)} ightbrack

    \Leftrightarrow \frac{f(x)}{x} =
\ln\left\lbrack \frac{x^{3}}{xf'(x) - f(x)}
ightbrack

    \Leftrightarrow e^{\frac{f(x)}{x}} =
\frac{x^{3}}{xf'(x) - f(x)}

    \Leftrightarrow \frac{xf'(x) -
f(x)}{x^{2}}.e^{\frac{f(x)}{x}} = x

    \Leftrightarrow \left\lbrack
\frac{f(x)}{x} ightbrack'.e^{\frac{f(x)}{x}} = x(*)

    Lấy nguyên hàm hai vế của (*) suy ra e^{\frac{f(x)}{x}} = \frac{x^{2}}{2} +
C

    f(1) = 0 \Rightarrow C =
\frac{1}{2} nên e^{\frac{f(x)}{x}}
= \frac{x^{2}}{2} + \frac{1}{2} \Rightarrow f(x) = x\ln\frac{x^{2} +
1}{2};\forall x \in (0; + \infty)

    D = \int_{1}^{5}{f(x)dx} =\int_{1}^{5}{x.\ln\frac{x^{2} + 1}{2}dx}(**)

    Đặt \left\{ \begin{matrix}u = \ln\dfrac{x^{2} + 1}{2} \\dv = xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{2x}{x^{2} + 1}dx \\v = \dfrac{x^{2} + 1}{2} \\\end{matrix} ight.

    Theo công thức tích phân từng phần ta được:

    D = \left. \ \left( \frac{x^{2} +1}{2}.\ln\frac{x^{2} + 1}{2} ight) ight|_{1}^{5} - \int_{1}^{5}{xdx}= 13\ln13 - \left. \ \frac{x^{2}}{2} ight|_{1}^{5} = 13\ln13 -12

  • Câu 9: Vận dụng
    Chọn đáp án đúng

    Tích phân I = \int_{1}^{2}\frac{ax +
1}{x^{2} + 3x + 2}dx = \frac{3}{5}\ln\frac{4}{3} +
\frac{3}{5}\ln\frac{2}{3}. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int_{1}^{2}\frac{ax + 1}{x^{2} + 3x
+ 2}dx = a\int_{1}^{2}\frac{x}{x^{2} + 3x + 2}dx +
\int_{1}^{2}\frac{1}{x^{2} + 3x + 2}dx.

    Xét I_{1} = a\int_{1}^{2}\frac{x}{x^{2} +
3x + 2}dx = a\int_{1}^{2}\left( \frac{2}{x + 2} - \frac{1}{x + 1}
ight)dx

    = a\left. \ \left( 2ln|x + 2| - \ln|x +
1| ight) ight|_{1}^{2}

    = a(2ln4 - 3ln3 + ln2) =
2a\ln\frac{4}{3} + a\ln\frac{2}{3}

    Xét I_{2} = \int_{1}^{2}\frac{1}{x^{2} +
3x + 2}dx = \left. \ \left( \ln|x + 1| - \ln|x + 2| ight)
ight|_{1}^{2} = - \ln\frac{4}{3} - \ln\frac{2}{3}.

    \Rightarrow I = I_{1} + I_{2}^{\ }\  =
(2a - 1)\ln\frac{4}{3} + (a - 1)\ln\frac{2}{3}

    Theo đề bài: I =
\frac{3}{5}\ln\frac{4}{3} + \frac{3}{5}\ln\frac{2}{3} \Rightarrow a =
\frac{4}{5}.

  • Câu 10: Vận dụng
    Xét tính đúng sai của mỗi ý hỏi

    Một người điều khiển ô tô đang ở đường dẫn muốn nhập làn vào đường cao tốc. Khi ô tô cách điểm nhập làn 200 m, tốc độ của ô tô là 36\ km/h. Hai giây sau đó, ô tô bắt đầu tăng tốc với tốc độ v(t) = at + b(a,b \in
\mathbb{R,}a > 0), trong đó t là thời gian tính bẳng giây kể từ khi bắt đầu tăng tốc. Biết rằng ô tô nhập làn cao tốc sau 12 giây và duy trì sự tăng tốc trong 24 giây kể từ khi bắt đầu tăng tốc.

    a) Quãng đường ô tô đi được từ khi bắt đầu tăng tốc đến khi nhập làn là 180 m. Đúng||Sai

    b) Giá trị của b là 10. Đúng||Sai

    c) Quãng đường S(t) (đơn vị: mét) mà ô tô đi được trong thời gian t giây (0
\leq t \leq 24) kể từ khi tăng tốc được tính theo công thức S(t) = \int_{0}^{24}{v(t)dt} . Sai||Đúng

    d) Sau 24 giây kể từ khi tăng tốc, tốc độ của ô tô không vượt quá tốc độ tối đa cho phép là 100\ km/h. Sai||Đúng

    Đáp án là:

    Một người điều khiển ô tô đang ở đường dẫn muốn nhập làn vào đường cao tốc. Khi ô tô cách điểm nhập làn 200 m, tốc độ của ô tô là 36\ km/h. Hai giây sau đó, ô tô bắt đầu tăng tốc với tốc độ v(t) = at + b(a,b \in
\mathbb{R,}a > 0), trong đó t là thời gian tính bẳng giây kể từ khi bắt đầu tăng tốc. Biết rằng ô tô nhập làn cao tốc sau 12 giây và duy trì sự tăng tốc trong 24 giây kể từ khi bắt đầu tăng tốc.

    a) Quãng đường ô tô đi được từ khi bắt đầu tăng tốc đến khi nhập làn là 180 m. Đúng||Sai

    b) Giá trị của b là 10. Đúng||Sai

    c) Quãng đường S(t) (đơn vị: mét) mà ô tô đi được trong thời gian t giây (0
\leq t \leq 24) kể từ khi tăng tốc được tính theo công thức S(t) = \int_{0}^{24}{v(t)dt} . Sai||Đúng

    d) Sau 24 giây kể từ khi tăng tốc, tốc độ của ô tô không vượt quá tốc độ tối đa cho phép là 100\ km/h. Sai||Đúng

    a) Ta có 36km/h = 10m/s.

    Sau 2s quãng đường ô tô đi được lúc chưa tăng tốc là: 2.10 = 20(m)

    Quãng đường ô tô đi được từ khi bắt đầu tăng tốc đến khi nhập làn là

    200 - 20 = 180(m)

    Do đó, a đúng

    b) Tại thời điểm lúc ô tô bắt đầu tăng tốc (t = 0) thì vận tốc của ô tô vẫn đang là 10(m/s) nên v(0) = 10 \Rightarrow a.0 + b = 10 \Rightarrow b =
10.

    Do đó, b đúng

    c) Quãng đường S(t) (đơn vị: mét) mà ô tô đi được trong thời gian t giây (0 \leq t \leq 24) kể từ khi tăng tốc được tính theo công thức S =
\int_{0}^{t}{v(t)dt}.

    Do đó, c sai

    d) Ta có: v(t) = at +
10(m/s).

    Quãng đường ô tô đi được từ khi bắt đầu tăng tốc đến khi nhập làn là 180(m) đi trong thời gian 12s nên ta có:

    S(12) = \int_{0}^{12}{v(t)dt} = 180
\Leftrightarrow \int_{0}^{12}{(at + 10)dt} = 180

    \Leftrightarrow a\int_{0}^{12}{tdt} +
\int_{0}^{12}{10dt} = 180

    \Leftrightarrow 72a + 120 = 180
\Rightarrow a = \frac{5}{6}

    Suy ra v(t) = \frac{5}{6}t +
10(m/s)

    Vậy sau 24 giây kể từ khi tăng tốc, tốc độ của ô tô là:

    v(24) = 30(m/s) = 108(km/h) >
100(km/h)

    Do đó, d sai

  • Câu 11: Vận dụng cao
    Tính tích phân

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} thỏa mãn f\left( \frac{\pi}{2} ight) = - 1 với \forall x\mathbb{\in R} ta có: f'(x).f(x) - \sin2x = f'(x)\cos x -f(x)\sin x. Tính tích phân I =
\int_{0}^{\frac{\pi}{4}}{f(x)dx}?

    Hướng dẫn:

    Ta có:

    f'(x).f(x) - \sin2x = f'(x)\cos x- f(x)\sin x

    \Leftrightarrow f'(x).f(x) - \sin2x =\left\lbrack f(x)\cos x ightbrack'

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}\left\lbrack f'(x).f(x) -\sin2x ightbrack dx = \int_{}^{}{\left\lbrack f(x)\cos xightbrack'}dx

    \Leftrightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x + C

    Theo bài ra ta có: f\left( \frac{\pi}{2}
ight) = - 1 \Rightarrow C = 0

    \Rightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x

    \Leftrightarrow f^{2}(x) + \cos2x =2f(x)\cos x

    \Leftrightarrow f^{2}(x) - 2f(x)\cos x +\cos^{2}x = \sin^{2}x

    \Leftrightarrow \left\lbrack f(x) - \cos x ightbrack^{2} = \sin^{2}x \Leftrightarrow \left\lbrack\begin{matrix}f(x) - \cos x = \sin x \\f(x) - \cos x = - \sin x \\\end{matrix} ight.

    f\left( \frac{\pi}{2} ight) = -
1 nên nhận f(x) = \cos x - \sin
x

    Vậy I = \int_{0}^{\frac{\pi}{4}}{f(x)dx}
= \int_{0}^{\frac{\pi}{4}}{\left\lbrack \cos x - \sin x ightbrack
dx} = \left. \ \left( \cos x - \sin x ight)
ight|_{0}^{\frac{\pi}{4}} = \sqrt{2} - 1

  • Câu 12: Vận dụng cao
    Tính giá trị của tham số a

    Biết I = \int_{0}^{1}{\frac{\sqrt{ln^{3}x
+ 3x}\left( ln^{2}x + \frac{1}{3}x \right)}{x}dx} = \frac{2}{9}\left(
\sqrt{1 + ae + 27e^{2} + 27e^{3}} - 3\sqrt{3} \right), a là các số hữu tỉ. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int_{1}^{e}{\frac{\sqrt{ln^{3}x +
3x}\left( ln^{2}x + \frac{1}{3}x ight)}{x}dx}

    =
\frac{1}{3}\int_{1}^{e}{\frac{\sqrt{ln^{3}x + 3x}\left( 3ln^{2}x + x
ight)}{x}dx}

    Đặt t = ln^{3}x + 3x \Rightarrow dt =
\frac{3}{x}ln^{2}x + 1

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 3 \\
x = e \Rightarrow t = 1 + 3e \\
\end{matrix} ight..

    \Rightarrow I = \int_{3}^{1 +
3e}\sqrt{t}dt = \frac{2}{3}\left. \ \left( \sqrt{t^{3}} ight)
ight|_{3}^{1 + 3e} = \frac{2}{3}\left( \sqrt{(1 + 3e)^{3}} - 3\sqrt{3}
ight).

    = \frac{2}{9}\left( \sqrt{1 + 9e +
27e^{2} + 27e^{3}} - 3\sqrt{3} ight) \Rightarrow a = 9

  • Câu 13: Thông hiểu
    Tính giá trị biểu thức S

    Biết I = \int_{0}^{4}{x\ln(2x + 1)dx} =
\frac{a}{b}ln3 - c, trong đó a, b, c là các số nguyên dương và \frac{b}{c} là phân số tối giản. Tính S = a + b + c.

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{4}{x\ln(2x +
1)dx}

    Đặt \left\{ \begin{matrix}
\ln(2x + 1) = u \\
xdx = dv \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\dfrac{2}{2x + 1}dx = du \\
\dfrac{x^{2}}{2} - \dfrac{1}{8} = v \\
\end{matrix} ight.

    I = \int_{0}^{4}{udv} = \left. \ uv
ight|_{0}^{4} - \int_{0}^{4}{vdu}

    = \left. \ \left( \frac{x^{2}}{2} -
\frac{1}{8} ight)\ln|2x + 1| ight|_{0}^{4} - \int_{0}^{4}{\left(
\frac{x^{2}}{2} - \frac{1}{8} ight).\frac{2}{2x + 1}dx}

    = \frac{63}{8}ln9 -
\int_{0}^{4}{\frac{4x^{2} - 1}{4(2x + 1)}dx} = \frac{63}{8}ln9 -
\frac{1}{4}\int_{0}^{4}{(2x - 1)dx}

    = \frac{63}{8}ln9 - \left. \
\frac{1}{4}\left( x^{2} - x ight) ight|_{0}^{4} = \frac{63}{4}ln3 -
3

    \Rightarrow a = 63;b = 4;c = 3
\Rightarrow S = 63 + 4 + 3 = 70

  • Câu 14: Vận dụng
    Chọn kết luận đúng

    Cho các hàm số f(x) có đạo hàm cấp một, đạo hàm cấp hai liên tục trên \lbrack 0;1brack và thỏa mãn \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx}
eq 0. Giá trị của biểu thức \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} bằng:

    Hướng dẫn:

    Đặt \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx} =
k

    Ta có:

    k = \int_{0}^{1}{e^{x}f''(x)dx}
= \int_{0}^{1}{e^{x}d\left\lbrack f'(x) ightbrack}

    = \left. \ e^{x}f'(x)
ight|_{0}^{1} - \int_{0}^{1}{e^{x}f'(x)dx} = \left. \
e^{x}f'(x) ight|_{0}^{1} - k

    \Rightarrow 2k = \left. \ e^{x}f'(x)
ight|_{0}^{1}

    Ta có:

    k = \int_{0}^{1}{e^{x}f'(x)dx} =
\int_{0}^{1}{e^{x}d\left\lbrack f(x) ightbrack}

    = \left. \ e^{x}f(x) ight|_{0}^{1} -
\int_{0}^{1}{e^{x}f(x)dx} = \left. \ e^{x}f(x) ight|_{0}^{1} -
k

    \Rightarrow 2k = \left. \ e^{x}f(x)
ight|_{0}^{1}

    Vậy \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} = \frac{\left. \ e^{x}f'(x) ight|_{0}^{1}}{\left. \
e^{x}f(x) ight|_{0}^{1}} = 1

  • Câu 15: Vận dụng
    Chọn mệnh đề đúng

    Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x}. Biết rằng giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3}. Chọn mệnh đề đúng trong các mệnh đề sau?

    Hướng dẫn:

    Ta có:

    F(x) = \int_{}^{}{f(x)dx} =\int_{}^{}{\frac{2\cos x}{\sin^{2}x}dx} -\int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = \int_{}^{}{\frac{2}{\sin^{2}x}d\left(\sin x ight)} - \int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = - \frac{2}{\sin x} + \cot x +
C

    Suy ra F'(x) = f(x) = \frac{2\cos x -1}{\sin^{2}x}

    Trên khoảng (0;\pi) ta có:

    F'(x) = 0 \Leftrightarrow 2\cos x - 1= 0 \Leftrightarrow x = \frac{\pi}{3}

    Ta có bảng biến thiên

    Giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3} nên t s có:

    F\left( \frac{\pi}{3} ight) = \sqrt{3}
\Leftrightarrow - \frac{3\sqrt{3}}{3} + C = \sqrt{3} \Leftrightarrow C =
2\sqrt{3}

    Vậy F(x) = - \frac{2}{\sin x} + \cot x +
2\sqrt{3} \Rightarrow F\left( \frac{\pi}{6} ight) = 3\sqrt{3} -
4.

  • Câu 16: Thông hiểu
    Tìm tỉ số a và b

    Biết I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{x\cos2xdx} = a\pi\sqrt{3} +
b\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\sin2xdx}, ab là các số hữu tỉ. Giá trị của \frac{a}{b} là:

    Hướng dẫn:

    Ta có:

    I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{x\cos2xdx} = \left. \ \left(
\frac{1}{2}x\sin2x ight) ight|_{\frac{\pi}{6}}^{\frac{\pi}{2}} -
\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\sin2xdx}

    = - \frac{\pi\sqrt{3}}{24} -
\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\sin2xdx}

    \Rightarrow \left\{ \begin{matrix}
a = - \dfrac{1}{24} \\
b = - \dfrac{1}{2} \\
\end{matrix} ight.\  \Rightarrow \dfrac{a}{b} =
\frac{1}{12}

  • Câu 17: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có đạo hàm liên tục trên \lbrack 0;1brack và thỏa mãn f(0) = 0. Biết rằng \int_{0}^{1}{f^{2}(x)dx} = \frac{9}{2}\int_{0}^{1}{f'(x)\cos\frac{\pi x}{2}}dx= \frac{3\pi}{4}. Tích phân \int_{0}^{1}{f(x)d(x)} bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm liên tục trên \lbrack 0;1brack và thỏa mãn f(0) = 0. Biết rằng \int_{0}^{1}{f^{2}(x)dx} = \frac{9}{2}\int_{0}^{1}{f'(x)\cos\frac{\pi x}{2}}dx= \frac{3\pi}{4}. Tích phân \int_{0}^{1}{f(x)d(x)} bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng
    Xác định tất cả các giá trị tham số a

    Có bao nhiêu giá trị của a trong đoạn \left\lbrack \frac{\pi}{4};2\pi
\right\rbrack thỏa mãn \int_{0}^{a}\frac{\sin x}{\sqrt{1 + 3\cos x}}dx =\frac{2}{3}.

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{a}{\frac{\sin x}{\sqrt{1 +
3cosx}}dx}

    Đặt \sqrt{1 + 3cosx} = t,t \geq 0

    \Rightarrow t^{2} = 1 + 3cosx \Rightarrow
2tdt = - 3sinxdx

    \Leftrightarrow \frac{- 2tdt}{3} = \sin
xdx

    \Rightarrow I = -
\frac{2}{3}\int_{2}^{\sqrt{1 + 3cosa}}\frac{tdt}{t} = -
\frac{2}{3}\int_{2}^{\sqrt{1 + 3cosa}}{dt}

    = - \frac{2}{3}\sqrt{1 + 3cosa} +
\frac{2}{3}.2

    I = \frac{2}{3} \Rightarrow \sqrt{1 +
3cosa} = 1 \Rightarrow \cos a = 0

    \Rightarrow a =
\frac{\pi}{2};\frac{3\pi}{2}

    Suy ra, đáp án là 2.

  • Câu 19: Vận dụng
    Tính giá trị của tích phân

    Tích phân I = \int_{0}^{a}{x\sqrt{x +
1}}dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{0}^{a}{x\sqrt{x +
1}}dx có giá trị là:

    I = \int_{0}^{a}{x\sqrt{x + 1}}dx =
\int_{0}^{a}{(x + 1)\sqrt{x + 1}}dx - \int_{0}^{a}\sqrt{x +
1}dx

    = \int_{0}^{a}(x + 1)^{\frac{3}{2}}dx -
\int_{0}^{a}(x + 1)^{\frac{1}{2}}dx

    = \left. \ \left\lbrack \frac{2}{5}(x +
1)^{\frac{5}{2}} ightbrack ight|_{0}^{a} - \left. \ \left\lbrack
\frac{2}{3}(x + 1)^{\frac{3}{2}} ightbrack ight|_{0}^{a}

    \  = \frac{2}{5}\sqrt{(x + 1)^{5}} -
\frac{2}{3}\sqrt{(x + 1)^{3}} + \frac{4}{15}

    Đáp án đúng là I = \frac{{2\sqrt {{{\left( {a + 1} ight)}^5}} }}{5} - \frac{{2\sqrt {{{\left( {a + 1} ight)}^3}} }}{3} + \frac{4}{{15}}.

  • Câu 20: Thông hiểu
    Tính quãng đường mà ô tô đi được

    Một ô tô đang chạy với vận tốc 36km/h thì tăng tốc chuyển động nhanh dần với gia tốc a(t) = 1 + \frac{t}{3}\left(
m/s^{2} ight). Tính quãng đường mà ô tô đi được sau 6 giây kể từ khi ôtô bắt đầu tăng tốc.

    Hướng dẫn:

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{\left( 1 + \frac{t}{3} ight)dt} = t + \frac{t^{2}}{6} +
C

    Do khi bắt đầu tăng tốc v_{0} = 36(km/h)
= 10(m/s)

    \Rightarrow v_{(t = 0)} = 10 \Rightarrow
C = 10 \Rightarrow v(t) = t + \frac{t^{2}}{6} + 10

    Khi đó quãng đường xe đi được sau 6 giây kể từ khi ô tô bắt đầu tăng tốc bằng

    S = \int_{0}^{6}{v(t)dt} =
\int_{0}^{6}{\left( t + \frac{t^{2}}{6} + 10 ight)dt} =
90m

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo