Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân KNTT (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn đáp án đúng

    Tích phân I =\int_{1}^{e}{\frac{2\ln x\sqrt{ln^{2}x + 1}}{x}dx} có gái trị là:

    Hướng dẫn:

    Xét tích phân I =
\int_{1}^{e}{\frac{2lnx\sqrt{ln^{2}x + 1}}{x}dx}

    Ta nhận thấy: \left( ln^{2}x + 1
ight)' = \frac{2lnx}{x}.

    Ta dùng đổi biến số.

    Đặt t = ln^{2}x + 1 \Rightarrow dt =
\frac{2lnx}{x}dx.

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 \\
x = e \Rightarrow t = 2 \\
\end{matrix} ight..

    I = \int_{1}^{2}{\sqrt{t}dx} = \left. \
\left( \frac{2}{3}t^{\frac{3}{2}} ight) ight|_{1}^{2} =
\frac{4\sqrt{2} - 2}{3}.

    Đáp án đúng là I = \frac{4\sqrt{2} -
2}{3}.

  • Câu 2: Vận dụng
    Tính giá trị biểu thức

    Cho hàm số f(x) thỏa mãn \int_{0}^{3}\left\lbrack 2x\ln(x + 1) + xf'(x)
ightbrack dx = 0f(3) =
1. Biết \int_{0}^{3}{f(x)}dx =\frac{a + b\ln2}{2} với a;b \in
\mathbb{R}^{+}. Giá trị của biểu thức a + b là:

    Hướng dẫn:

    Tính I = \int_{0}^{3}{2x\ln(x +
1)}dx

    Đặt \left\{ \begin{matrix}u = \ln(x + 1) \\dv = 2xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x + 1}dx \\v = x^{2} \\\end{matrix} ight. khi đó:

    I = \left. \ x^{2}\ln(x + 1)
ight|_{0}^{3} - \int_{0}^{3}{\frac{x^{2}}{x + 1}dx}

    = 9ln4 - \left. \ \left( \frac{x^{2}}{2}
- x + \ln|x + 1| ight) ight|_{0}^{3} = 16ln2 -
\frac{3}{2}

    Tính J =
\int_{0}^{3}{xf'(x)}dx.

    Đặt \left\{ \begin{matrix}
u_{J} = x \\
dv_{J} = f'(x)dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du_{J} = dx \\
v_{J} = f(x) \\
\end{matrix} ight. khi đó

    J = \int_{0}^{3}{xf'(x)}dx = \left.
\ xf(x) ight|_{0}^{3} - \int_{0}^{3}{f(x)}dx

    \int_{0}^{3}\left\lbrack 2x\ln(x + 1)
+ xf'(x) ightbrack dx = 0

    \Rightarrow I + J = 0 \Rightarrow 16\ln2- \frac{3}{2} + 3 - \int_{0}^{3}{f(x)}dx = 0

    \Rightarrow \int_{0}^{3}{f(x)}dx = 16\ln2+ \frac{3}{2} = \frac{3 + 32\ln2}{2}

    \Rightarrow \left\{ \begin{matrix}
a = 3 \\
b = 32 \\
\end{matrix} ight.\  \Rightarrow a + b = 35

  • Câu 3: Vận dụng
    Xét tính đúng sai của các nhận định

    Một vật chuyển động với gia tốc a(t) =
2cost\left( \ m/s^{2} \right).

    a) Tại thời điểm bắt đầu chuyển động, vật có vận tốc bằng 0. Khi đó, vận tốc của vật được biểu diễn bởi hàm số v(t) = 2sint\ (\
m/s).Đúng||Sai

    b) Vận tốc của vật tại thời điểm t =
\frac{\pi}{2}1\
m/s.Sai||Đúng

    c) Quãng đường vật đi được từ thời điểm t
= 0\ \ (\ s) đến thời điểm t = \pi\
(s)4\ m. Đúng||Sai

    d) Quãng đường vật đi được từ thời điểm t
= \frac{\pi}{2} (s) đến thời điểm t
= \frac{3\pi}{4} (s) là 2\
m. Sai||Đúng

    Đáp án là:

    Một vật chuyển động với gia tốc a(t) =
2cost\left( \ m/s^{2} \right).

    a) Tại thời điểm bắt đầu chuyển động, vật có vận tốc bằng 0. Khi đó, vận tốc của vật được biểu diễn bởi hàm số v(t) = 2sint\ (\
m/s).Đúng||Sai

    b) Vận tốc của vật tại thời điểm t =
\frac{\pi}{2}1\
m/s.Sai||Đúng

    c) Quãng đường vật đi được từ thời điểm t
= 0\ \ (\ s) đến thời điểm t = \pi\
(s)4\ m. Đúng||Sai

    d) Quãng đường vật đi được từ thời điểm t
= \frac{\pi}{2} (s) đến thời điểm t
= \frac{3\pi}{4} (s) là 2\
m. Sai||Đúng

    a) Ta có v(t) = \int_{}^{}a(t)dt =
\int_{}^{}2\cos t\ dt = 2sint + C.

    Mà tại thời điểm bắt đầu chuyển động, vật có vận tốc bằng 0 nên ta có v(0) = 0 hay C = 0. Vậy v(t) = 2sint

    Suy ra đúng.

    b) Vận tốc của vật tại thời điểm t =
\frac{\pi}{2}v\left(
\frac{\pi}{2} \right) = 2sin\frac{\pi}{2} = 2(\ m/s).

    Suy ra sai.

    c) Quãng đường vật đi được từ thời điểm t
= 0\ \ (\ s) đến thời điểm t = \pi\
(s)

    \int_{0}^{\pi}v(t)dt =
\int_{0}^{\pi}2\sin t\ dt = - \left. \ 2cost \right|_{0}^{\pi} = -
2cos\pi - ( - 2cos0) = 4\ (\ m).

    Suy ra đúng.

    d) Quãng đường vật đi được từ thời điểm t
= \frac{\pi}{2} (s) đến thời điểm t
= \frac{3\pi}{4} (s) là

    \int_{\frac{\pi}{2}}^{\frac{3\pi}{4}}{v(t)dt} =
\int_{\frac{\pi}{2}}^{\frac{3\pi}{4}}{2sintdt} = - \left. \ 2cost
\right|_{\frac{\pi}{2}}^{\frac{3\pi}{4}} = - 2cos\frac{3\pi}{4} - \left(
- 2cos\frac{\pi}{2} \right) = \sqrt{2}\ (\ m).

    Suy ra Sai.

  • Câu 4: Thông hiểu
    Tính giá trị biểu thức

    Biết \int_{0}^{1}{\frac{x^{2} + 2x}{(x +
3)^{2}}dx} = \frac{a}{4} - 4ln\frac{4}{b} với a;b là các số nguyên dương. Giá trị của biểu thức a^{2} + b^{2} bằng:

    Hướng dẫn:

    Giả sử I = \int_{0}^{1}{\frac{x^{2} +
2x}{(x + 3)^{2}}dx}. Đặt t = x + 3
\Rightarrow dt = dx, đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 3 \\
x = 1 \Rightarrow t = 4 \\
\end{matrix} ight.

    I = \int_{3}^{4}{\frac{t^{2} - 4t +
3}{t^{2}}dx} = \int_{3}^{4}{\left( 1 - \frac{4}{t} + \frac{3}{t^{2}}
ight)dx}

    = \left. \ \left( t - 4ln|t| -
\frac{3}{t} ight) ight|_{3}^{4} = \frac{5}{4} -
4ln\frac{4}{3}

    \Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow a^{2} + b^{2} = 34

  • Câu 5: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn điều kiện f(0) = 2\sqrt{2};f(x) > 0 với \forall x\mathbb{\in R}f(x).f'(x) = (2x + 1)\sqrt{1 +f^{2}(x)} với \forall x\mathbb{\inR}. Tính giá trị f(1)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn điều kiện f(0) = 2\sqrt{2};f(x) > 0 với \forall x\mathbb{\in R}f(x).f'(x) = (2x + 1)\sqrt{1 +f^{2}(x)} với \forall x\mathbb{\inR}. Tính giá trị f(1)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Vận dụng
    Tính quãng đường ôtô di chuyển được

    Một ôtô đang chạy với vận tốc 19m/s thì người lái hãm phanh, ôtô chuyển động chậm dần đều với vận tốc v(t) =
- 38t + 19 (m/s), trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu hãm phanh. Hỏi từ lúc hãm phanh đến khi dừng hẳn, ôtô còn di chuyển bao nhiêu mét?

    Hướng dẫn:

    Khi ô tô dừng lại hẳn

    \Rightarrow v = 0 \Leftrightarrow 19 -
38t = 0 \Leftrightarrow t = \frac{1}{2}

    s = \int_{}^{}{(19 - 38t)dt} \Rightarrow
s = 19t - 19t^{2}

    t = \frac{1}{2} \Rightarrow s =
19.\frac{1}{2} - 19.\left( \frac{1}{2} ight)^{2} =
4,75(m)

  • Câu 7: Vận dụng
    Tính tổng các giá trị tham số m

    Tổng tất cả các giá trị của tham số m thỏa mãn \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} + 3}dx} =
m^{2} - 1 bằng:

    Hướng dẫn:

    Ta có:

    \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow
\int_{0}^{1}{\frac{9^{x}}{9^{x} + 3}dx} + m\int_{0}^{1}{\frac{3}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow m^{2} -
m\int_{0}^{1}{\frac{3}{9^{x} + 3}dx} - \int_{0}^{1}{\frac{9^{x}}{9^{x} +
3}dx} - 1 = 0

    Phương trình trên là phương trình bậc hai đối với biến m, với các hệ số
    \left\{ \begin{matrix}a = 1 \\b = - \int_{0}^{1}{\dfrac{3}{9^{x} + 3}dx} \\c = - \int_{0}^{1}{\dfrac{9^{x}}{9^{x} + 3}dx} \\\end{matrix} ight..

    Áp dụng hệ thứ Vi- et \Rightarrow m_{1} +
m_{2} = \frac{- b}{a} = \int_{0}^{1}{\frac{3}{9^{x} + 3}dx} =
\frac{1}{2}

  • Câu 8: Vận dụng
    Chọn đáp án chính xác

    Cho hàm số y = f(x) có đạo hàm trên khoảng (0; + \infty) thỏa mãn f(x) = x.\ln\left\lbrack\frac{x^{3}}{xf'(x) - f(x)} ightbrack và f(1) = 0. Giá trị tích phân D = \int_{1}^{5}{f(x)dx} bằng:

    Hướng dẫn:

    Từ giả thiết ta có:

    f(x) = x.\ln\left\lbrack\frac{x^{3}}{xf'(x) - f(x)} ightbrack

    \Leftrightarrow \frac{f(x)}{x} =
\ln\left\lbrack \frac{x^{3}}{xf'(x) - f(x)}
ightbrack

    \Leftrightarrow e^{\frac{f(x)}{x}} =
\frac{x^{3}}{xf'(x) - f(x)}

    \Leftrightarrow \frac{xf'(x) -
f(x)}{x^{2}}.e^{\frac{f(x)}{x}} = x

    \Leftrightarrow \left\lbrack
\frac{f(x)}{x} ightbrack'.e^{\frac{f(x)}{x}} = x(*)

    Lấy nguyên hàm hai vế của (*) suy ra e^{\frac{f(x)}{x}} = \frac{x^{2}}{2} +
C

    f(1) = 0 \Rightarrow C =
\frac{1}{2} nên e^{\frac{f(x)}{x}}
= \frac{x^{2}}{2} + \frac{1}{2} \Rightarrow f(x) = x\ln\frac{x^{2} +
1}{2};\forall x \in (0; + \infty)

    D = \int_{1}^{5}{f(x)dx} =\int_{1}^{5}{x.\ln\frac{x^{2} + 1}{2}dx}(**)

    Đặt \left\{ \begin{matrix}u = \ln\dfrac{x^{2} + 1}{2} \\dv = xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{2x}{x^{2} + 1}dx \\v = \dfrac{x^{2} + 1}{2} \\\end{matrix} ight.

    Theo công thức tích phân từng phần ta được:

    D = \left. \ \left( \frac{x^{2} +1}{2}.\ln\frac{x^{2} + 1}{2} ight) ight|_{1}^{5} - \int_{1}^{5}{xdx}= 13\ln13 - \left. \ \frac{x^{2}}{2} ight|_{1}^{5} = 13\ln13 -12

  • Câu 9: Vận dụng
    Tìm giá trị của tích phân I

    Tích phân I = \int_{- 2}^{2}\left|
\frac{x^{2} - x - 2}{x - 1} \right|dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{- 2}^{0}\left|
\frac{x^{2} - x - 2}{x - 1} ight|dx có giá trị là:

    Ta có:

    f(x) = \frac{x^{2} - x - 2}{x - 1}
\Rightarrow f(x) = 0

    \Leftrightarrow x = - 1 \vee x = 2 \land
x eq 1

    Bảng xét dấu:

    Ta có:

    I = \int_{- 2}^{0}\left| \frac{x^{2} - x
- 2}{x - 1} ight|dx = - \int_{- 2}^{- 1}\left( \frac{x^{2} - x - 2}{x
- 1} ight)dx + \int_{- 1}^{0}\frac{x^{2} - x - 2}{x -
1}dx.

    I_{1} = - \int_{- 2}^{- 1}\left(
\frac{x^{2} - x - 2}{x - 1} ight)dx = - - \int_{- 2}^{- 1}\left( x -
\frac{2}{x - 1} ight)dx

    = - \left. \ \left( \frac{x^{2}}{2} -
2ln|x - 1| ight) ight|_{- 2}^{- 1} = \frac{5}{2} + 2ln2 -
2ln3.

    I_{2} = \int_{- 1}^{0}\left( \frac{x^{2}
- x - 2}{x - 1} ight)dx = ... = \left. \ \left( \frac{x^{2}}{2} -
2ln|x - 1| ight) ight|_{- 1}^{0} = \frac{1}{2} - 2ln2.

    \Rightarrow I = I_{1} + I_{2} = 3 -
2ln3.

  • Câu 10: Thông hiểu
    Tìm giá trị tích phân I

    Tích phân I = \int_{1}^{e}{x\left(
ln^{2}x + \ln x \right)dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{1}^{e}{x\left(
ln^{2}x + \ln x ight)dx}

    Ta biến đổi: I = \int_{1}^{e}{x\left(
ln^{2}x + \ln x ight)dx} = \int_{1}^{e}{x\ln x\left( \ln x + 1
ight)dx}.

    Đặt t = x\ln x \Rightarrow dt = \left(
\ln x + 1 ight)dx.

    Đổi cận\left\{ \begin{matrix}
x = 1 \Rightarrow t = 0 \\
x = e \Rightarrow t = e \\
\end{matrix} ight..

    \Rightarrow I = \int_{0}^{e}{dt} =
e.

    Đáp án đúng là I = e.

  • Câu 11: Vận dụng cao
    Xác định giá trị tích phân

    Tích phân I = \int_{-
1}^{\frac{1}{2}}{\frac{4x - 3}{\sqrt{5 + 4x - x^{2}}}dx} có giá trị là:

    Hướng dẫn:

    Thực hiện tính tích phân I theo hai cách như sau:

    Cách 1:

    Ta có:\left( 5 + 4x - x^{2} ight)'
= 4 - 2x4x - 3 = 5 - 2(4 -
2x).

    I =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{4x - 3}{\sqrt{5 + 4x - x^{2}}}dx}

    = \int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{5}{\sqrt{5 + 4x - x^{2}}}dx} -
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{2(4 - 2x)}{\sqrt{5 + 4x -
x^{2}}}dx}.

    Xét I_{1} =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{5}{\sqrt{5 + 4x - x^{2}}}dx} =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{5}{\sqrt{9 - (x -
2)^{2}}}dx}.

    Đặt x - 2 = 3sint,t \in \left\lbrack -
\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =
3costdt.

    Đổi cận \left\{ \begin{matrix}
x = \frac{7}{2} \Rightarrow t = \frac{\pi}{6} \\
x = \frac{1}{2} \Rightarrow t = - \frac{\pi}{6} \\
\end{matrix} ight..

    \Rightarrow I_{1} = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{6}}{\frac{5.3cost}{\sqrt{9 - 9sin^{2}t}}dt} =
\frac{5\pi}{3}.

    Xét I_{2} =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{2(4 - 2x)}{\sqrt{5 + 4x -
x^{2}}}dx}.

    Đặt t = 5 + 4x - x^{2} \Rightarrow dt = 4
- 2x.

    Đổi cận \left\{ \begin{matrix}
x = \dfrac{1}{2} \Rightarrow t = \dfrac{27}{4} \\
x = \dfrac{7}{2} \Rightarrow t = \dfrac{27}{4} \\
\end{matrix} ight.\  \Rightarrow I_{2} = 0.

    \Rightarrow I =
\frac{5\pi}{3}.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 12: Vận dụng
    Tính tích phân I

    Tích phân I = \int_{- 2}^{-
1}\frac{\left| x^{3} - 3x + 2 \right|}{x - 1}dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{- 2}^{-
1}\frac{\left| x^{3} - 3x + 2 ight|}{x - 1}dx có giá trị là:

    Ta có: \underset{f(x)}{\overset{x^{3} -
3x + 2}{︸}} = 0 \Leftrightarrow (x - 1)^{2}(x + 2) = 0 \Leftrightarrow
x = 1 \vee x = - 2.

    Bảng xét dấu:

    Ta có

    :I = \int_{- 2}^{- 1}\frac{x^{3} - 3x +
2}{x - 1}dx = \int_{- 2}^{- 1}\left( x^{2} + x - 2 ight)dx

    = \left. \
\left( \frac{1}{3}x^{3} + \frac{1}{2}x^{2} - 2x ight) ight|_{- 2}^{-
1} = \frac{7}{6}.

    Đáp án đúng là I =
\frac{7}{6}.

  • Câu 13: Thông hiểu
    Tìm các giá trị thực của tham số m

    Tìm tất cả các giá trị thực của tham số m thỏa mãn \int_{0}^{m}{(2x + 1)dx} < 2?

    Hướng dẫn:

    Ta có: \int_{0}^{m}{(2x + 1)dx} < 2
\Leftrightarrow \left. \ \left( x^{2} + x ight) ight|_{0}^{m} <
2

    \Leftrightarrow m^{2} + m - 2 < 0
\Leftrightarrow - 2 < m < 1

  • Câu 14: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có đạo hàm liên tục trên \lbrack 0;1brack và thỏa mãn f(0) = 0. Biết rằng \int_{0}^{1}{f^{2}(x)dx} = \frac{9}{2}\int_{0}^{1}{f'(x)\cos\frac{\pi x}{2}}dx= \frac{3\pi}{4}. Tích phân \int_{0}^{1}{f(x)d(x)} bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm liên tục trên \lbrack 0;1brack và thỏa mãn f(0) = 0. Biết rằng \int_{0}^{1}{f^{2}(x)dx} = \frac{9}{2}\int_{0}^{1}{f'(x)\cos\frac{\pi x}{2}}dx= \frac{3\pi}{4}. Tích phân \int_{0}^{1}{f(x)d(x)} bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Thông hiểu
    Tìm điều kiện tham số m thỏa mãn yêu cầu

    Tìm tất cả các giá trị thực của tham số m để tồn tại tích phân \int_{1}^{1 + m}\frac{dx}{x(x - 5)(x -
4)}?

    Hướng dẫn:

    Tích phân \int_{1}^{1 + m}\frac{dx}{x(x -
5)(x - 4)} tồn tại khi và chỉ khi hàm số y = \frac{1}{x(x - 5)(x - 4)} liên tục trên \lbrack 1;1 + mbrack hoặc \lbrack 1 + m;1brack

    Mà hàm số y = \frac{1}{x(x - 5)(x -
4)} liên tục trên các khoảng ( -
\infty;0),(0;4),(4;5),(5; + \infty)

    Nên hàm số y = \frac{1}{x(x - 5)(x -
4)} liên tục trên \lbrack 1;1 +
mbrack hoặc \lbrack 1 +
m;1brack khi và chỉ khi

    0 < 1 + m < 4 \Leftrightarrow - 1
< m < 3 \Rightarrow m \in ( - 1;3).

  • Câu 16: Vận dụng cao
    Tính giá trị của tích phân

    Tích phân I = \int_{1}^{e}{\frac{\ln
x\left( 2\sqrt{ln^{2}x + 1} + 1 \right)}{x}dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{1}^{e}{\frac{\ln
x\left( 2\sqrt{ln^{2}x + 1} + 1 ight)}{x}dx} có giá trị là:

    Ta có:

    I = \int_{1}^{e}{\frac{\ln x\left(
2\sqrt{ln^{2}x + 1} + 1 ight)}{x}dx} =
\int_{1}^{e}{\frac{2lnx\sqrt{ln^{2}x + 1}}{x}dx} +
\int_{1}^{e}{\frac{\ln x}{x}dx}.

    Xét I_{1} =
\int_{1}^{e}{\frac{2lnx\sqrt{ln^{2}x + 1}}{x}dx}.

    Đặt t = ln^{2}x + 1 \Rightarrow dt =
\frac{2lnx}{x}dx.

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 \\
x = e \Rightarrow t = 2 \\
\end{matrix} ight..

    \Rightarrow I_{1} =
{\int_{1}^{2}{\sqrt{t}dt = \left. \ \left( \frac{2}{3}\sqrt{t^{3}}
ight) ight|}}_{1}^{2} = \frac{4\sqrt{2} - 2}{3}.

    Xét I_{2}\int_{1}^{e}{\frac{\ln
x}{x}dx}.

    Đặt t = \ln x \Rightarrow dt =
\frac{1}{x}dx.

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 0 \\
x = e \Rightarrow t = 1 \\
\end{matrix} ight..

    \Rightarrow I_{2} = \int_{0}^{1}{dt} =
1.

    \Rightarrow I = I_{1} + I_{2} =
\frac{4\sqrt{2} + 1}{3}.

    Vậy đáp án cần chọn là: I =
\frac{4\sqrt{2} + 1}{3}.

  • Câu 17: Vận dụng cao
    Viết phương trình tiếp tuyến

    Cho hàm số y = f(x) là hàm số bậc ba có đồ thị như hình vẽ:

    Biết \int_{1}^{4}{x.f''(x - 1)dx}
= 7\int_{1}^{2}{2x.f'\left(
x^{2} - 1 ight)dx} = - 3. Phương trình tiếp tuyến với đồ thị hàm số y = f(x) tại điểm có hoành độ x = 3 là:

    Hướng dẫn:

    Từ đồ thị hàm số ta suy ra f(0) =
2;f'(0) = 0

    Xét tích phân \int_{1}^{2}{2x.f'\left( x^{2} - 1
ight)dx}. Đặt u = x^{2} - 1
\Rightarrow du = 2xdx

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow u = 0 \\
x = 2 \Rightarrow u = 3 \\
\end{matrix} ight.

    Do đó \int_{1}^{2}{2x.f'\left( x^{2}
- 1 ight)dx} = \int_{1}^{3}{f'(u)du} = \left. \ f(u)
ight|_{0}^{3} = f(3) - f(0)

    \Rightarrow f(3) - f(0) = - 3
\Rightarrow f(3) = - 1

    Xét tích phân \int_{1}^{4}{x.f''(x - 1)dx}. Đặt u = x - 1 \Rightarrow du = dx

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow u = 0 \\
x = 4 \Rightarrow u = 3 \\
\end{matrix} ight.

    \Rightarrow \int_{1}^{4}{x.f''(x
- 1)dx} = \int_{0}^{3}{(u + 1)f''(u)du} = \int_{0}^{3}{(u +
1)d\left\lbrack f'(u) ightbrack}

    = \left. \ (u + 1)f'(u)
ight|_{0}^{3} - \int_{0}^{3}{f'(u)du}

    = 4f'(3) - f'(0) - \left. \ f(u)
ight|_{0}^{3}

    = 4f'(3) - f'(0) - f(3) +
f(0)

    Theo bài ra suy ra

    4f'(3) - f'(0) - f(3) + f(0) =
7

    \Rightarrow 4f'(3) = 7 + f(3) - f(0)
= 4 \Rightarrow f'(3) = 1

    Như vậy f(3) = - 1;f'(3) =
1. Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = 3 là: y = x - 4.

  • Câu 18: Vận dụng
    Chọn đáp án đúng

    Tích phân I = \int_{1}^{2}\frac{ax +
1}{x^{2} + 3x + 2}dx = \frac{3}{5}\ln\frac{4}{3} +
\frac{3}{5}\ln\frac{2}{3}. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int_{1}^{2}\frac{ax + 1}{x^{2} + 3x
+ 2}dx = a\int_{1}^{2}\frac{x}{x^{2} + 3x + 2}dx +
\int_{1}^{2}\frac{1}{x^{2} + 3x + 2}dx.

    Xét I_{1} = a\int_{1}^{2}\frac{x}{x^{2} +
3x + 2}dx = a\int_{1}^{2}\left( \frac{2}{x + 2} - \frac{1}{x + 1}
ight)dx

    = a\left. \ \left( 2ln|x + 2| - \ln|x +
1| ight) ight|_{1}^{2}

    = a(2ln4 - 3ln3 + ln2) =
2a\ln\frac{4}{3} + a\ln\frac{2}{3}

    Xét I_{2} = \int_{1}^{2}\frac{1}{x^{2} +
3x + 2}dx = \left. \ \left( \ln|x + 1| - \ln|x + 2| ight)
ight|_{1}^{2} = - \ln\frac{4}{3} - \ln\frac{2}{3}.

    \Rightarrow I = I_{1} + I_{2}^{\ }\  =
(2a - 1)\ln\frac{4}{3} + (a - 1)\ln\frac{2}{3}

    Theo đề bài: I =
\frac{3}{5}\ln\frac{4}{3} + \frac{3}{5}\ln\frac{2}{3} \Rightarrow a =
\frac{4}{5}.

  • Câu 19: Vận dụng cao
    Tìm tích phân

    Cho hàm số y = f(x) dương và liên tục trên \lbrack 1;3brack thỏa mãn \max_{\lbrack 1;3brack}f(x) =
2;\min_{\lbrack 1;3brack}f(x) = \frac{1}{2} và biểu thức S =
\int_{1}^{3}{f(x)dx}.\int_{1}^{3}{\frac{1}{f(x)}dx} đạt giá trị lớn nhất, khi đó \int_{1}^{3}{f(x)dx} bằng:

    Hướng dẫn:

    Do \frac{1}{2} \leq f(x) \leq 2
\Rightarrow f(x) + \frac{1}{f(x)} \leq \frac{5}{2}

    \Rightarrow \int_{1}^{3}{\left\lbrack
f(x) + \frac{1}{f(x)} ightbrack dx} \leq 5

    \Rightarrow \int_{1}^{3}{f(x)dx} +
\int_{1}^{3}{\frac{1}{f(x)}dx} \leq 5

    \Rightarrow
\int_{1}^{3}{\frac{1}{f(x)}dx} \leq 5 -
\int_{1}^{3}{f(x)dx}

    \Rightarrow S =
\int_{1}^{3}{f(x)dx}.\int_{1}^{3}{\frac{1}{f(x)}dx} \leq
5\int_{1}^{3}{f(x)dx} - \left\lbrack \int_{1}^{3}{f(x)dx}
ightbrack^{2}

    \leq \frac{25}{4} - \left\lbrack
\int_{1}^{3}{f(x)dx - \frac{5}{2}} ightbrack^{2} \leq
\frac{25}{4}

    Dấu bằng xảy ra khi và chỉ khi \int_{1}^{3}{f(x)dx} = \frac{5}{2}.

  • Câu 20: Vận dụng
    Chọn đáp án đúng

    Một ca nô đang chạy trên Hồ Tây với vận tốc 20 m/s thì hết xăng. Từ thời điểm đó, ca nô chuyển động chậm dần đều với vận tốc v(t) = - 5t + 20 m/s, trong đó t là khoảng thời gian tính bằng giây, kể từ lúc hết xăng. Hỏi từ lúc hết xăng đến lúc dừng hẳn, ca nô đi được bao nhiêu mét?

    Hướng dẫn:

    Khi dừng hẳn \Rightarrow v = 0
\Rightarrow t = 4(s).

    Phương trình quãng đường đi được của ca - nô từ khi hết xăng

    s = \int_{}^{}(20 - 5t)dt \Rightarrow s =
20t - \frac{5t^{2}}{2}

    Tại t = 4 \Rightarrow s = 40

    Suy ra: ca - nô đi được 40 mét

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo