Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân KNTT (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Tính tích phân I

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 6;5brack có đồ thị gồm hai đoạn thẳng và nửa đường tròn như hình vẽ:

    Tính giá trị I = \int_{-
6}^{5}{\left\lbrack f(x) + 2 ightbrack dx}?

    Hướng dẫn:

    Hình vẽ minh họa

    Dựa vào đồ thị ta có: A( - 6; - 1),B( -
2;1) suy ra phương trình đường thẳng AB:y = \frac{1}{2}x + 2

    \Rightarrow I_{1} = \int_{0}^{-
2}{\left\lbrack \frac{1}{2}x + 2 + 2 ightbrack dx} = 8

    Phương trình đường tròn (C): x^{2} + (y - 1)^{2} = 4 \Rightarrow y = 1 +
\sqrt{4 - x^{2}}

    \Rightarrow I_{2} = \int_{-
2}^{2}{\left\lbrack 1 + \sqrt{4 - x^{2}} + 2 ightbrack dx} = 12 +
2\pi

    Điểm C(2;1),D(5;3) nên phương trình đường thẳng CD là: y = \frac{2}{3}x - \frac{1}{3}

    \Rightarrow I_{3} =
\int_{2}^{5}{\left\lbrack \frac{2}{3}x - \frac{1}{3} + 2 ightbrack
dx} = 12

    Vậy I = I_{1} + I_{2} + I_{3} = 32 +
2\pi

  • Câu 2: Vận dụng
    Chọn mệnh đề đúng

    Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x}. Biết rằng giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3}. Chọn mệnh đề đúng trong các mệnh đề sau?

    Hướng dẫn:

    Ta có:

    F(x) = \int_{}^{}{f(x)dx} =\int_{}^{}{\frac{2\cos x}{\sin^{2}x}dx} -\int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = \int_{}^{}{\frac{2}{\sin^{2}x}d\left(\sin x ight)} - \int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = - \frac{2}{\sin x} + \cot x +
C

    Suy ra F'(x) = f(x) = \frac{2\cos x -1}{\sin^{2}x}

    Trên khoảng (0;\pi) ta có:

    F'(x) = 0 \Leftrightarrow 2\cos x - 1= 0 \Leftrightarrow x = \frac{\pi}{3}

    Ta có bảng biến thiên

    Giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3} nên t s có:

    F\left( \frac{\pi}{3} ight) = \sqrt{3}
\Leftrightarrow - \frac{3\sqrt{3}}{3} + C = \sqrt{3} \Leftrightarrow C =
2\sqrt{3}

    Vậy F(x) = - \frac{2}{\sin x} + \cot x +
2\sqrt{3} \Rightarrow F\left( \frac{\pi}{6} ight) = 3\sqrt{3} -
4.

  • Câu 3: Thông hiểu
    Chọn phương án đúng

    Tính tích phân: \int_{0}^{1}{\frac{x}{\sqrt{x +
1}}dx}

    Hướng dẫn:

    Ta có hai cách giải bài toán như sau:

    Cách 1: Thử trực tiếp bằng máy tính

    Cách 2: Đặt \sqrt{x + 1} = t, biến đổi

  • Câu 4: Vận dụng
    Ghi đáp án vào ô trống

    Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất v =
50m/s, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

    Đáp án: 667m

    Đáp án là:

    Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất v =
50m/s, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

    Đáp án: 667m

    Giả sử hàm số biểu thị cho vận tốc có dạng (P):v(t) = at^{2} + bt + c\left( a,b,c\mathbb{\in
R} ight)

    Do (P) đi qua gốc O nên c =
0

    (P) có đỉnh là I(10;50) \Rightarrow \left\{ \begin{matrix}
\frac{- b}{2a} = 10 \\
50 = a.100 + b.10 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{1}{2} \\
b = 10 \\
\end{matrix} ight.

    Do đó (P):v(t) = - \frac{1}{2}t^{2} +
10t

    Xe dừng lại khi v(t) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 0 \\
t = 20 \\
\end{matrix} ight.

    Quảng đường xe ô tô di chuyển trong 20 giây là S = \int_{0}^{20}{\left( - \frac{1}{2}t^{2} + 10t
ight)dt} \approx 667m

  • Câu 5: Thông hiểu
    Tính quãng đường của chất điểm

    Một chất điểm đang chuyển động với vận tốc v_{0} = 18(m/s) thì tăng tốc với gia tốc a(t) = t^{2} + 5t\left( m/s^{2}
ight). Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3s kể từ lúc bắt đầu tăng tốc.

    Hướng dẫn:

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{\left( t^{2} + 5t ight)dt} = \frac{t^{3}}{3} +
\frac{5t^{2}}{2} + C

    Do khi bắt đầu tăng tốc v_{0} =
18 nên v_{(t = 0)} = 18 \Rightarrow
C = 18

    \Rightarrow v(t) = \frac{t^{3}}{3} +
\frac{5t^{2}}{2} + 18

    Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô bắt đầu tăng tốc bằng

    S = \int_{0}^{3}{v(t)dt} =
\int_{0}^{3}{\left( \frac{t^{3}}{3} + \frac{5t^{2}}{2} + 18 ight)dt} =
\frac{333}{4}(m)

  • Câu 6: Vận dụng
    Tính tích phân I

    Tích phân I =
\int_{0}^{\frac{\pi}{4}}{\frac{2x - \sin x}{2 - 2cosx}dx} có giá trị là:

    Hướng dẫn:

    Ta biến đổi:

    I =
\int_{\frac{\pi}{3}}^{\frac{\pi}{4}}{\frac{2x - \sin x}{2 - 2cosx}dx} =
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{x}{1 - \cos x}dx} -
\frac{1}{2}\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{\sin x}{1 - \cos
x}dx}.

    Xét I_{1} =
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{x}{1 - \cos x}dx} =
\frac{1}{2}\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{x}{sin^{2}\frac{x}{2}}dx}.

    Đặt \left\{ \begin{matrix}
u = x \\
dv = \frac{1}{sin^{2}\frac{x}{2}}dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = - 2cot\frac{x}{2} \\
\end{matrix} ight..

    \Rightarrow I_{1} =
\frac{1}{2}\left\lbrack \left. \ \left( - 2x.cot\frac{x}{2} ight)
ight|_{\frac{\pi}{3}}^{\frac{\pi}{2}} +
2\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\cot\frac{x}{2}dx} ightbrack

    =
\frac{1}{2}\left\lbrack - \pi + \frac{2\pi\sqrt{3}}{3} + 4ln\sqrt{2}
ightbrack.

    Xét I_{2} =
\frac{1}{2}\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{\sin x}{1 - \cos
x}dx}.

    Đặt t = 1 - \cos x \Rightarrow dt = \sin xdx.

    Đổi cận \left\{ \begin{matrix}
x = \frac{\pi}{3} \Rightarrow t = \frac{1}{2} \\
x = \frac{\pi}{2} \Rightarrow t = 1 \\
\end{matrix} ight..

    \Rightarrow I_{2} =
\frac{1}{2}{\int_{\frac{1}{2}}^{1}{\frac{1}{t}dt = \frac{1}{2}\left. \
\left( \ln|t| ight) ight|}}_{\frac{1}{2}}^{1} =
\frac{1}{2}ln2.

    I = I_{1} - I_{2} = \frac{1}{2}\left( -
\pi + \frac{2\pi\sqrt{3}}{3} + 4ln\sqrt{2} - ln2 ight).

  • Câu 7: Vận dụng
    Tính tích phân

    Cho hàm số f(x) đồng biến và có đạo hàm cấp hai trên đoạn \lbrack
0;2brack và thỏa mãn 2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0 với \forall x \in \lbrack
0;2brack. Biết rằng f(0) = 1;f(2)
= e^{6} khi đó tích phân M =
\int_{- 2}^{0}{(2x + 1)f(x)dx} bằng:

    Hướng dẫn:

    Ta có:

    2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0

    \Leftrightarrow f(x).f''(x) -
\left\lbrack f'(x) ightbrack^{2} = 2\left\lbrack f(x)
ightbrack^{2}

    \Leftrightarrow
\frac{f(x).f''(x) - \left\lbrack f'(x)
ightbrack^{2}}{\left\lbrack f(x) ightbrack^{2}} = 2

    \Leftrightarrow \left\lbrack
\frac{f'(x)}{f(x)} ightbrack' = 2 \Leftrightarrow
\int_{}^{}{\left\lbrack \frac{f'(x)}{f(x)} ightbrack'dx} =
\int_{}^{}{2dx}

    \Leftrightarrow \frac{f'(x)}{f(x)} =
2x + C_{1} \Leftrightarrow \ln\left| f(x) ight| = x^{2} + C_{1}x +
C_{2}

    Theo bài ra ta có:

    \left\{ \begin{matrix}
f(0) = 1 \\
f(2) = e^{6} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
ln1 = C_{2} \\
4 + 2C_{1} = 6 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
C_{2} = 0 \\
C_{1} = 1 \\
\end{matrix} ight.

    \Rightarrow \ln\left| f(x) ight| =
x^{2} + x \Rightarrow f(x) = e^{x^{2} + x}

    \Rightarrow M = \int_{- 2}^{0}{(2x +
1)e^{x^{2} + x}dx} = \left. \ e^{x^{2} + x} ight|_{- 2}^{0} = 1 -
e^{2}

  • Câu 8: Thông hiểu
    Tính giá trị biểu thức

    Biết \int_{0}^{1}{\frac{x^{2} + 2x}{(x +
3)^{2}}dx} = \frac{a}{4} - 4ln\frac{4}{b} với a;b là các số nguyên dương. Giá trị của biểu thức a^{2} + b^{2} bằng:

    Hướng dẫn:

    Giả sử I = \int_{0}^{1}{\frac{x^{2} +
2x}{(x + 3)^{2}}dx}. Đặt t = x + 3
\Rightarrow dt = dx, đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 3 \\
x = 1 \Rightarrow t = 4 \\
\end{matrix} ight.

    I = \int_{3}^{4}{\frac{t^{2} - 4t +
3}{t^{2}}dx} = \int_{3}^{4}{\left( 1 - \frac{4}{t} + \frac{3}{t^{2}}
ight)dx}

    = \left. \ \left( t - 4ln|t| -
\frac{3}{t} ight) ight|_{3}^{4} = \frac{5}{4} -
4ln\frac{4}{3}

    \Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow a^{2} + b^{2} = 34

  • Câu 9: Vận dụng cao
    Tính tích phân

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} thỏa mãn f\left( \frac{\pi}{2} ight) = - 1 với \forall x\mathbb{\in R} ta có: f'(x).f(x) - \sin2x = f'(x)\cos x -f(x)\sin x. Tính tích phân I =
\int_{0}^{\frac{\pi}{4}}{f(x)dx}?

    Hướng dẫn:

    Ta có:

    f'(x).f(x) - \sin2x = f'(x)\cos x- f(x)\sin x

    \Leftrightarrow f'(x).f(x) - \sin2x =\left\lbrack f(x)\cos x ightbrack'

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}\left\lbrack f'(x).f(x) -\sin2x ightbrack dx = \int_{}^{}{\left\lbrack f(x)\cos xightbrack'}dx

    \Leftrightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x + C

    Theo bài ra ta có: f\left( \frac{\pi}{2}
ight) = - 1 \Rightarrow C = 0

    \Rightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x

    \Leftrightarrow f^{2}(x) + \cos2x =2f(x)\cos x

    \Leftrightarrow f^{2}(x) - 2f(x)\cos x +\cos^{2}x = \sin^{2}x

    \Leftrightarrow \left\lbrack f(x) - \cos x ightbrack^{2} = \sin^{2}x \Leftrightarrow \left\lbrack\begin{matrix}f(x) - \cos x = \sin x \\f(x) - \cos x = - \sin x \\\end{matrix} ight.

    f\left( \frac{\pi}{2} ight) = -
1 nên nhận f(x) = \cos x - \sin
x

    Vậy I = \int_{0}^{\frac{\pi}{4}}{f(x)dx}
= \int_{0}^{\frac{\pi}{4}}{\left\lbrack \cos x - \sin x ightbrack
dx} = \left. \ \left( \cos x - \sin x ight)
ight|_{0}^{\frac{\pi}{4}} = \sqrt{2} - 1

  • Câu 10: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian t(s)a(t)
= 2t - 7\ \ \left( m/s^{2} \right). Biết vận tốc ban đầu bằng 6\ \ (m/s). Xét tính đúng sai của các mệnh đề sau:

    a) [NB] Phương trình vận tốc của chất điểm tại tời điểm t được xác định bởi công thức v(t) = \int_{}^{}{a(t)}dt. Đúng||Sai

    b) [TH] Tại thời điểm t
= 7\ \ (s), vận tốc của chất điểm là 6\ \ (m/s). Đúng||Sai

    c) [VD] Độ dịch chuyển của vật trong khoảng thời gian 1 \leq t \leq 718m. Sai||Đúng

    d) [VDC] Trong 8 giây đầu tiên, thời điểm chất điểm xa nhất về phía bên phải là t = 7\ \
(s). Sai||Đúng

    Đáp án là:

    Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian t(s)a(t)
= 2t - 7\ \ \left( m/s^{2} \right). Biết vận tốc ban đầu bằng 6\ \ (m/s). Xét tính đúng sai của các mệnh đề sau:

    a) [NB] Phương trình vận tốc của chất điểm tại tời điểm t được xác định bởi công thức v(t) = \int_{}^{}{a(t)}dt. Đúng||Sai

    b) [TH] Tại thời điểm t
= 7\ \ (s), vận tốc của chất điểm là 6\ \ (m/s). Đúng||Sai

    c) [VD] Độ dịch chuyển của vật trong khoảng thời gian 1 \leq t \leq 718m. Sai||Đúng

    d) [VDC] Trong 8 giây đầu tiên, thời điểm chất điểm xa nhất về phía bên phải là t = 7\ \
(s). Sai||Đúng

    a) [NB] Phương trình vận tốc của chất điểm tại thời điểm t được xác định bởi công thức v(t) = \int_{}^{}{a(t)}dt.

    b) [TH] Tại thời điểm t = 7\ \
(s), vận tốc của chất điểm là 6\ \
(m/s).

    Ta có v(t) = \int_{}^{}{a(t)}dt =
\int_{}^{}(2t - 7)dt = t^{2} - 7t + C.

    v(0) = 6 \Rightarrow C = 6 \Rightarrow
v(t) = t^{2} - 7t + 6.

    Vậy v(7) = 7^{2} - 7.7 + 6 = 6\ \
(m/s).

    c) [VD] Độ dịch chuyển của vật trong khoảng thời gian 1 \leq t \leq 718m.

    Độ dịch chuyển của vật trong khoảng thời gian 1 \leq t \leq 7

    S = \int_{1}^{7}{v(t)}dt =
\int_{1}^{7}\left( t^{2} - 7t + 6 ight)dt= \left. \ \left(\frac{t^{3}}{3} - \frac{7t^{2}}{2} + 6t ight) ight|_{1}^{7} = -
18.

    d) [VD] Trong 8 giây đầu tiên, thời điểm chất điểm xa nhất về phía bên phải là t = 7\ \ (s).

    Vị trí của chất điểm so với vị trí ban đầu tại thời điểm t

    s(t) = \int_{}^{}{v(t)dt} =\int_{}^{}{\left( t^{2} - 7t + 6 ight)dt}= \frac{t^{3}}{3} -\frac{7t^{2}}{2} + 6t + C

    Ta cần tìm giá trị lớn nhất của s(t) với t
\in \lbrack 0;\ 8brack.

    Do s'(t) = v(t) nên s'(t) = 0 \Leftrightarrow v(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = 6 \\
\end{matrix} ight..

    Lại có s(0) = C, s(1) = \frac{17}{6} + C, s(6) = - 18 + C, s(8) = - \frac{16}{3} + C.

    Vậy giá trị lớn nhất của s(t) với t \in \lbrack 0;\ 8brack đạt được khi t = 1.

  • Câu 11: Vận dụng cao
    Chọn phương án thích hợp

    Tích phân I = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}{\frac{\sin x}{\left( \cos x +
\sqrt{3}\sin x \right)^{2}}dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{-
\frac{\pi}{3}}^{\frac{\pi}{3}}{\frac{\sin x}{\left( \cos x +
\sqrt{3}\sin x ight)^{2}}dx} có gái trị là:

    Ta có:

    I = \int_{-
\frac{\pi}{3}}^{\frac{\pi}{3}}{\frac{\sin x}{\left( \cos x +
\sqrt{3}\sin x ight)^{2}}dx} = \int_{-
\frac{\pi}{3}}^{\frac{\pi}{3}}{\frac{\sin x}{4\left( \frac{1}{2}\cos x +
\frac{\sqrt{3}}{2}\sin x ight)^{2}}dx}

    Suy ra I = \int_{-
\frac{\pi}{3}}^{\frac{\pi}{3}}{\frac{\sin x}{4\left\lbrack \sin\left( x
+ \frac{\pi}{6} ight) ightbrack^{2}}dx}.

    Đặt u = x + \frac{\pi}{6} \Rightarrow x =
u - \frac{\pi}{6} \Rightarrow dx = du.

    Đổi cận\left\{ \begin{matrix}
x = - \frac{\pi}{3} \Rightarrow u = - \frac{\pi}{6} \\
x = \frac{\pi}{3} \Rightarrow u = \frac{\pi}{2} \\
\end{matrix} ight.

    I = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\sin\left( u - \frac{\pi}{6}
ight)}{4sin^{2}u}du} = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\sin u.cos\frac{\pi}{6} -
\sin\frac{\pi}{6}\cos u}{4sin^{2}u}du}

    = \frac{1}{8}\int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\sqrt{3}.sinu - \cos
u}{sin^{2}u}du} = \frac{1}{8}\left( \int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\sqrt{3}\sin u}{1 - cos^{2}u}du -
\int_{- \frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\cos u}{sin^{2}u}du}}
ight)

    Xét I_{1} = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\sqrt{3}\sin u}{1 -
cos^{2}u}du}.

    Đặt t = \cos u,u \in \lbrack 0;\pibrack
\Rightarrow dt = - \sin udu.

    Đổi cận \left\{ \begin{matrix}u = - \dfrac{\pi}{6} \Rightarrow t = \dfrac{\sqrt{3}}{2} \\u = \dfrac{\pi}{2} \Rightarrow t = 0 \\\end{matrix} ight..

    \Rightarrow I_{1} =
\int_{\frac{\sqrt{3}}{2}}^{0}\frac{\sqrt{3}dt}{1 - t^{2}} =
\frac{\sqrt{3}}{2}\int_{\frac{\sqrt{3}}{2}}^{0}\left( \frac{1}{1 - t} +
\frac{1}{1 + t} ight)dt

    = \frac{\sqrt{3}}{2}\left. \ \left(
ln\left| \frac{t + 1}{t - 1} ight| ight)
ight|_{\frac{\sqrt{3}}{2}}^{0} = - \frac{\sqrt{3}}{2}\ln\left(
\frac{\sqrt{3} + 2}{- \sqrt{3} + 2} ight).

    Xét I_{2} = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\cos u}{sin^{2}u}du}.

    Đặt t = \sin u,u \in \left\lbrack -
\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dt = \cos
udu.

    Đổi cận \left\{ \begin{matrix}
u = - \frac{\pi}{6} \Rightarrow t = - \frac{1}{2} \\
u = \frac{\pi}{2} \Rightarrow t = 1 \\
\end{matrix} ight..

    I_{2} = \int_{-
\frac{1}{2}}^{1}{\frac{1}{t^{2}}du} = \left. \ \left( - \frac{1}{t}
ight) ight|_{- \frac{1}{2}}^{1} = - 3.

    \Rightarrow I = \frac{1}{8}\left( I_{1} -
I_{2} ight) = - \frac{\sqrt{3}}{16}\ln\left( \frac{\sqrt{3} + 2}{-
\sqrt{3} + 2} ight) + \frac{3}{8}.

    Đáp án đúng là I = -
\frac{\sqrt{3}}{16}\ln\left( \frac{\sqrt{3} + 2}{- \sqrt{3} + 2} ight)
+ \frac{3}{8}

  • Câu 12: Vận dụng
    Chọn đáp án đúng

    Tích phân I =\int_{1}^{e}{\frac{2\ln x\sqrt{ln^{2}x + 1}}{x}dx} có gái trị là:

    Hướng dẫn:

    Xét tích phân I =
\int_{1}^{e}{\frac{2lnx\sqrt{ln^{2}x + 1}}{x}dx}

    Ta nhận thấy: \left( ln^{2}x + 1
ight)' = \frac{2lnx}{x}.

    Ta dùng đổi biến số.

    Đặt t = ln^{2}x + 1 \Rightarrow dt =
\frac{2lnx}{x}dx.

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 \\
x = e \Rightarrow t = 2 \\
\end{matrix} ight..

    I = \int_{1}^{2}{\sqrt{t}dx} = \left. \
\left( \frac{2}{3}t^{\frac{3}{2}} ight) ight|_{1}^{2} =
\frac{4\sqrt{2} - 2}{3}.

    Đáp án đúng là I = \frac{4\sqrt{2} -
2}{3}.

  • Câu 13: Vận dụng
    Tính tổng các giá trị tham số m

    Tổng tất cả các giá trị của tham số m thỏa mãn \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} + 3}dx} =
m^{2} - 1 bằng:

    Hướng dẫn:

    Ta có:

    \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow
\int_{0}^{1}{\frac{9^{x}}{9^{x} + 3}dx} + m\int_{0}^{1}{\frac{3}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow m^{2} -
m\int_{0}^{1}{\frac{3}{9^{x} + 3}dx} - \int_{0}^{1}{\frac{9^{x}}{9^{x} +
3}dx} - 1 = 0

    Phương trình trên là phương trình bậc hai đối với biến m, với các hệ số
    \left\{ \begin{matrix}a = 1 \\b = - \int_{0}^{1}{\dfrac{3}{9^{x} + 3}dx} \\c = - \int_{0}^{1}{\dfrac{9^{x}}{9^{x} + 3}dx} \\\end{matrix} ight..

    Áp dụng hệ thứ Vi- et \Rightarrow m_{1} +
m_{2} = \frac{- b}{a} = \int_{0}^{1}{\frac{3}{9^{x} + 3}dx} =
\frac{1}{2}

  • Câu 14: Vận dụng
    Xét tính đúng sai của các khẳng định

    Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau t năm được xác định bởi hàm số S(t) (đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho bởi S'(t) = 1,2698e^{0,014t}, với t là số năm kể từ năm 2014, S'(t) tính bằng triệu người / năm.

    a) S(t) là một nguyên hàm của S'(t).Đúng||Sai

    b) S(t) = 90,7e^{0,014t} +
90,7.Sai||Đúng

    c) Theo công thức trên, tốc độ tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người / năm) khoảng 1,7triệu người /năm. Đúng||Sai

    d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoẳng 120triệu người. Đúng||Sai

    Đáp án là:

    Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau t năm được xác định bởi hàm số S(t) (đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho bởi S'(t) = 1,2698e^{0,014t}, với t là số năm kể từ năm 2014, S'(t) tính bằng triệu người / năm.

    a) S(t) là một nguyên hàm của S'(t).Đúng||Sai

    b) S(t) = 90,7e^{0,014t} +
90,7.Sai||Đúng

    c) Theo công thức trên, tốc độ tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người / năm) khoảng 1,7triệu người /năm. Đúng||Sai

    d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoẳng 120triệu người. Đúng||Sai

    Ta có S(t) là một nguyên hàm của S'(t)

    \int_{}^{}{S'(t)dt
=}\int_{}^{}{1,2698e^{0,014t}dt} = 1,2698\int_{}^{}\left( e^{0,014t}
\right)^{t}dt

    = \frac{1,2698e^{0,014t}}{0,014} =
90,7e^{0,014t} + C.

    S(0) = 90,7 nên C = 0. Suy ra S(t) = 90,7e^{0,014t}.

    Tốc độ tăng dân số ở nước ta năm 2034 là:

    S'(20) = 1,2698e^{0,014.20} \approx
1,7 (triệu người/năm).

    Dân số nước ta năm 2034 là: S(20) =
90,7e^{0,014.20} \approx 120 (triệu người).

  • Câu 15: Vận dụng
    Chọn đáp án đúng

    Tích phân I = \int_{1}^{2}\frac{ax +
1}{x^{2} + 3x + 2}dx = \frac{3}{5}\ln\frac{4}{3} +
\frac{3}{5}\ln\frac{2}{3}. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int_{1}^{2}\frac{ax + 1}{x^{2} + 3x
+ 2}dx = a\int_{1}^{2}\frac{x}{x^{2} + 3x + 2}dx +
\int_{1}^{2}\frac{1}{x^{2} + 3x + 2}dx.

    Xét I_{1} = a\int_{1}^{2}\frac{x}{x^{2} +
3x + 2}dx = a\int_{1}^{2}\left( \frac{2}{x + 2} - \frac{1}{x + 1}
ight)dx

    = a\left. \ \left( 2ln|x + 2| - \ln|x +
1| ight) ight|_{1}^{2}

    = a(2ln4 - 3ln3 + ln2) =
2a\ln\frac{4}{3} + a\ln\frac{2}{3}

    Xét I_{2} = \int_{1}^{2}\frac{1}{x^{2} +
3x + 2}dx = \left. \ \left( \ln|x + 1| - \ln|x + 2| ight)
ight|_{1}^{2} = - \ln\frac{4}{3} - \ln\frac{2}{3}.

    \Rightarrow I = I_{1} + I_{2}^{\ }\  =
(2a - 1)\ln\frac{4}{3} + (a - 1)\ln\frac{2}{3}

    Theo đề bài: I =
\frac{3}{5}\ln\frac{4}{3} + \frac{3}{5}\ln\frac{2}{3} \Rightarrow a =
\frac{4}{5}.

  • Câu 16: Vận dụng
    Chọn kết luận đúng

    Cho các hàm số f(x) có đạo hàm cấp một, đạo hàm cấp hai liên tục trên \lbrack 0;1brack và thỏa mãn \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx}
eq 0. Giá trị của biểu thức \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} bằng:

    Hướng dẫn:

    Đặt \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx} =
k

    Ta có:

    k = \int_{0}^{1}{e^{x}f''(x)dx}
= \int_{0}^{1}{e^{x}d\left\lbrack f'(x) ightbrack}

    = \left. \ e^{x}f'(x)
ight|_{0}^{1} - \int_{0}^{1}{e^{x}f'(x)dx} = \left. \
e^{x}f'(x) ight|_{0}^{1} - k

    \Rightarrow 2k = \left. \ e^{x}f'(x)
ight|_{0}^{1}

    Ta có:

    k = \int_{0}^{1}{e^{x}f'(x)dx} =
\int_{0}^{1}{e^{x}d\left\lbrack f(x) ightbrack}

    = \left. \ e^{x}f(x) ight|_{0}^{1} -
\int_{0}^{1}{e^{x}f(x)dx} = \left. \ e^{x}f(x) ight|_{0}^{1} -
k

    \Rightarrow 2k = \left. \ e^{x}f(x)
ight|_{0}^{1}

    Vậy \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} = \frac{\left. \ e^{x}f'(x) ight|_{0}^{1}}{\left. \
e^{x}f(x) ight|_{0}^{1}} = 1

  • Câu 17: Vận dụng cao
    Ghi đáp án vào ô trống

    Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.

    Đáp án: 6750000 đồng.

    Đáp án là:

    Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.

    Đáp án: 6750000 đồng.

    Gọi phương trình parabol (P):y = ax^{2} +
bx + c.

    Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho ( P) có đỉnh I ∈ Oy (như hình vẽ)

    Ta có hệ phương trình: \left\{
\begin{matrix}
\frac{9}{4} = c\ (I \in (P))\ \ \ \ \ \ \  \\
\frac{9}{4}a - \frac{3}{2}b + c = 0 \\
\frac{9}{4}a - \frac{3}{2}b + c = 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
c = \frac{9}{4} \\
a = - 1 \\
b = 0 \\
\end{matrix} ight.\  ight.

    Vậy (P):y = - x^{2} +
\frac{9}{4}

    Dựa vào đồ thị, diện tích cửa parabol là: S = \int_{\frac{- 3}{2}}^{\frac{3}{2}}\left( -
x^{2} + \frac{9}{4} ight)dx = 2\left. \ \left( - \frac{x}{3}^{3} +
\frac{9}{4}x ight) ight|_{0}^{\frac{9}{4}} =
\frac{9}{2}(m^{2}).

    Số tiền phải trả là \frac{9}{2}.1500000 =
6750000 đồng.

  • Câu 18: Vận dụng cao
    Chọn đáp án đúng

    Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường parabol có đỉnh I(2;9) và trục đối xứng song song với trục tung như hình dưới. Tính quãng đường s mà vật di chuyển được trong 3 giờ đó.

    Hướng dẫn:

    Ta tìm được phương trình của parabol là

    (P):y = - \frac{3}{4}x^{2} + 3x +
6

    Như vậy, quãng đường s mà vật di chuyển được trong 3 giờ là:

    s = \int_{0}^{1}{\left( -
\frac{3}{4}t^{2} + 3t + 6 ight)dt} = \left( - \frac{x^{3}}{4} +
\frac{3x^{2}}{2} + 6x ight)|_{0}^{3}

    = \frac{99}{4} = 24,75(km)

  • Câu 19: Vận dụng
    Chọn đáp án đúng

    Một ô tô đang chạy đều với vận tốc 15 m/s thì phía trước xuất hiện chướng ngại vật nên người lái đạp phanh gấp. Kể từ thời điểm đó, ô tô chuyển động chậm dần đều với gia tốc -
a m/s2. Biết ô tô chuyển động thêm được 20 m thì dừng hẳn. Hỏi a thuộc khoảng nào dưới đây:

    Hướng dẫn:

    Từ giả thiết ta có v = \int_{}^{}{( -
a)dt} \Rightarrow v = 15 - at

    s = \int_{}^{}{tdt} = \int_{}^{}{(15 -
at)dt} \Rightarrow s = 15t - \frac{at^{2}}{2}

    Ô tô chuyển động được 20m thì dừng tại thời điểm

    Suy ra

    \left\{ \begin{matrix}
v = 0 \\
s = 20 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
15 - at_{1} = 0 \\
15t_{1} - \frac{a{t_{1}}^{2}}{2} = 20 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
at_{1} = 15 \\
15t_{1} - \frac{15t_{1}}{2} = 20 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
15 - at_{1} = 0 \\
t_{1} = \frac{8}{3} \\
\end{matrix} ight.\  \Leftrightarrow a = \frac{45}{8} \Rightarrow a
\in (5;6)

  • Câu 20: Thông hiểu
    Xét sự đúng sai của các mệnh đề sau

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a) \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left( \sin xight)dx} = 2\int_{0}^{1}{x.f(x)dx} Đúng||Sai

    b) \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx} = \int_{1}^{e}{\frac{f(x)}{x^{2}}dx} Đúng||Sai

    c) \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx} = \frac{1}{2}\int_{0}^{a^{2}}{x.f(x)dx} Đúng||Sai

    Đáp án là:

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a) \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left( \sin xight)dx} = 2\int_{0}^{1}{x.f(x)dx} Đúng||Sai

    b) \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx} = \int_{1}^{e}{\frac{f(x)}{x^{2}}dx} Đúng||Sai

    c) \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx} = \frac{1}{2}\int_{0}^{a^{2}}{x.f(x)dx} Đúng||Sai

    Ta có:

    \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left(\sin x ight)dx} = \int_{0}^{\frac{\pi}{2}}{2\sin x.\cos x.f\left( \sin xight)dx}

    Đặt t = \sin x \Rightarrow dt = \cos
xdx

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 0 \\x = \dfrac{\pi}{2} \Rightarrow t = 1 \\\end{matrix} ight. từ đó ta có:

    \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left(\sin x ight)dx} = \int_{0}^{1}{2tf(t)dt} =2\int_{0}^{1}{2xf(x)dx}

    Ta có: \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx}

    Đặt t = e^{x} \Rightarrow dt =
e^{x}dx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 1 \\
x = 1 \Rightarrow t = e \\
\end{matrix} ight. từ đó ta có:

    \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx} = \int_{0}^{e}{\frac{f(t)}{t^{2}}dt} =
\int_{0}^{e}{\frac{f(x)}{x^{2}}dx}

    Ta có: \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx}

    Đặt t = x^{2} \Rightarrow dt =
2xdx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 0 \\
x = a \Rightarrow t = a^{2} \\
\end{matrix} ight. từ đó ta có:

    \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx} = \frac{1}{2}\int_{0}^{a^{2}}{tf(t)}dt =
\frac{1}{2}\int_{0}^{a^{2}}{xf(x)}dx

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo