Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân KNTT (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Cho tích phân I = \int_{0}^{4}{f(x)dx} =
32. Tính tích phân H =
\int_{0}^{2}{f(2x)dx}?

    Hướng dẫn:

    Đặt t = 2x \Rightarrow dt = 2dx
\Rightarrow dx = \frac{dt}{2}

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 0 \\
x = 2 \Rightarrow t = 4 \\
\end{matrix} ight.

    Khi đó H =
\frac{1}{2}\int_{0}^{4}{f(t)dt} = \frac{1}{2}.32 = 16

  • Câu 2: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn điều kiện f(0) = 2\sqrt{2};f(x) > 0 với \forall x\mathbb{\in R}f(x).f'(x) = (2x + 1)\sqrt{1 +f^{2}(x)} với \forall x\mathbb{\inR}. Tính giá trị f(1)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn điều kiện f(0) = 2\sqrt{2};f(x) > 0 với \forall x\mathbb{\in R}f(x).f'(x) = (2x + 1)\sqrt{1 +f^{2}(x)} với \forall x\mathbb{\inR}. Tính giá trị f(1)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Vận dụng
    Tính giá trị biểu thức

    Cho hàm số f(x) thỏa mãn \int_{0}^{3}\left\lbrack 2x\ln(x + 1) + xf'(x)
ightbrack dx = 0f(3) =
1. Biết \int_{0}^{3}{f(x)}dx =\frac{a + b\ln2}{2} với a;b \in
\mathbb{R}^{+}. Giá trị của biểu thức a + b là:

    Hướng dẫn:

    Tính I = \int_{0}^{3}{2x\ln(x +
1)}dx

    Đặt \left\{ \begin{matrix}u = \ln(x + 1) \\dv = 2xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x + 1}dx \\v = x^{2} \\\end{matrix} ight. khi đó:

    I = \left. \ x^{2}\ln(x + 1)
ight|_{0}^{3} - \int_{0}^{3}{\frac{x^{2}}{x + 1}dx}

    = 9ln4 - \left. \ \left( \frac{x^{2}}{2}
- x + \ln|x + 1| ight) ight|_{0}^{3} = 16ln2 -
\frac{3}{2}

    Tính J =
\int_{0}^{3}{xf'(x)}dx.

    Đặt \left\{ \begin{matrix}
u_{J} = x \\
dv_{J} = f'(x)dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du_{J} = dx \\
v_{J} = f(x) \\
\end{matrix} ight. khi đó

    J = \int_{0}^{3}{xf'(x)}dx = \left.
\ xf(x) ight|_{0}^{3} - \int_{0}^{3}{f(x)}dx

    \int_{0}^{3}\left\lbrack 2x\ln(x + 1)
+ xf'(x) ightbrack dx = 0

    \Rightarrow I + J = 0 \Rightarrow 16\ln2- \frac{3}{2} + 3 - \int_{0}^{3}{f(x)}dx = 0

    \Rightarrow \int_{0}^{3}{f(x)}dx = 16\ln2+ \frac{3}{2} = \frac{3 + 32\ln2}{2}

    \Rightarrow \left\{ \begin{matrix}
a = 3 \\
b = 32 \\
\end{matrix} ight.\  \Rightarrow a + b = 35

  • Câu 4: Vận dụng
    Xét tính đúng sai của các khẳng định

    Một ô tô đang chạy với vận tốc 16\
m/s thì người lái xe bất ngờ phát hiện chường ngại vật trên đường cách đó 50m. Người lái xe phản ứng một giây sau đó đạp phanh khẩn cấp. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) =
- 5t + 15, trong đó là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Gọi s(t) là quãng đường ô tô đi được trong t giây kể từ lúc đạp phanh.

    Trong các mệnh đề sau mệnh đề nào đúng, mệnh đề nào sai?

    a) Công thức biểu diễn hàm số s(t)s(t)
= - \frac{5t^{2}}{2} + 15t + 16Sai||Đúng

    b) Thời gian kể từ khi ô tô đạp phanh đến khi dừng hẳn bằng 3giây.Đúng||Sai

    c) Kể từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển được quãng đường là 38,5\ m. Sai||Đúng

    d) Xe ô tô không va chạm với chướng ngại.Đúng||Sai

    Đáp án là:

    Một ô tô đang chạy với vận tốc 16\
m/s thì người lái xe bất ngờ phát hiện chường ngại vật trên đường cách đó 50m. Người lái xe phản ứng một giây sau đó đạp phanh khẩn cấp. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) =
- 5t + 15, trong đó là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Gọi s(t) là quãng đường ô tô đi được trong t giây kể từ lúc đạp phanh.

    Trong các mệnh đề sau mệnh đề nào đúng, mệnh đề nào sai?

    a) Công thức biểu diễn hàm số s(t)s(t)
= - \frac{5t^{2}}{2} + 15t + 16Sai||Đúng

    b) Thời gian kể từ khi ô tô đạp phanh đến khi dừng hẳn bằng 3giây.Đúng||Sai

    c) Kể từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển được quãng đường là 38,5\ m. Sai||Đúng

    d) Xe ô tô không va chạm với chướng ngại.Đúng||Sai

    a) Ta có s(t) = \int_{}^{}{( - 5t +
15)dt} = - \frac{5t^{2}}{2} + 15t + C

    Do s(0) = 0 nên C = 0. Vậy s(t) = - \frac{5t^{2}}{2} + 15t

    Mệnh đề sai.

    b) Ô tô dừng hẳn khi v(t) = 0 \Leftrightarrow - 5t + 15 = 0
\Leftrightarrow t = 3.

    Mệnh đề đúng.

    c) Quãng đường ô tô di chuyển được từ lúc đạp phanh đến khi dừng hẳn là:

    s(3) = \frac{- 5.9}{2} + 15.3 =
22,5(m).

    Mệnh đề sai.

    d) Do trước khi đạp phanh tài xế còn phản ứng một giây nên kể từ lúc phát hiện chướng ngại đến khi dừng hẳn ô tô đi được quãng đường là: 16 + 22,5 = 38,5(m). Do đó ô tô không va chạm với chướng ngại vật.

    Mệnh đề đúng.

  • Câu 5: Vận dụng
    Tính tích phân

    Cho hàm số f(x) đồng biến và có đạo hàm cấp hai trên đoạn \lbrack
0;2brack và thỏa mãn 2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0 với \forall x \in \lbrack
0;2brack. Biết rằng f(0) = 1;f(2)
= e^{6} khi đó tích phân M =
\int_{- 2}^{0}{(2x + 1)f(x)dx} bằng:

    Hướng dẫn:

    Ta có:

    2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0

    \Leftrightarrow f(x).f''(x) -
\left\lbrack f'(x) ightbrack^{2} = 2\left\lbrack f(x)
ightbrack^{2}

    \Leftrightarrow
\frac{f(x).f''(x) - \left\lbrack f'(x)
ightbrack^{2}}{\left\lbrack f(x) ightbrack^{2}} = 2

    \Leftrightarrow \left\lbrack
\frac{f'(x)}{f(x)} ightbrack' = 2 \Leftrightarrow
\int_{}^{}{\left\lbrack \frac{f'(x)}{f(x)} ightbrack'dx} =
\int_{}^{}{2dx}

    \Leftrightarrow \frac{f'(x)}{f(x)} =
2x + C_{1} \Leftrightarrow \ln\left| f(x) ight| = x^{2} + C_{1}x +
C_{2}

    Theo bài ra ta có:

    \left\{ \begin{matrix}
f(0) = 1 \\
f(2) = e^{6} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
ln1 = C_{2} \\
4 + 2C_{1} = 6 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
C_{2} = 0 \\
C_{1} = 1 \\
\end{matrix} ight.

    \Rightarrow \ln\left| f(x) ight| =
x^{2} + x \Rightarrow f(x) = e^{x^{2} + x}

    \Rightarrow M = \int_{- 2}^{0}{(2x +
1)e^{x^{2} + x}dx} = \left. \ e^{x^{2} + x} ight|_{- 2}^{0} = 1 -
e^{2}

  • Câu 6: Vận dụng
    Tính giá trị của tích phân

    Tích phân I = \int_{0}^{a}{x\sqrt{x +
1}}dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{0}^{a}{x\sqrt{x +
1}}dx có giá trị là:

    I = \int_{0}^{a}{x\sqrt{x + 1}}dx =
\int_{0}^{a}{(x + 1)\sqrt{x + 1}}dx - \int_{0}^{a}\sqrt{x +
1}dx

    = \int_{0}^{a}(x + 1)^{\frac{3}{2}}dx -
\int_{0}^{a}(x + 1)^{\frac{1}{2}}dx

    = \left. \ \left\lbrack \frac{2}{5}(x +
1)^{\frac{5}{2}} ightbrack ight|_{0}^{a} - \left. \ \left\lbrack
\frac{2}{3}(x + 1)^{\frac{3}{2}} ightbrack ight|_{0}^{a}

    \  = \frac{2}{5}\sqrt{(x + 1)^{5}} -
\frac{2}{3}\sqrt{(x + 1)^{3}} + \frac{4}{15}

    Đáp án đúng là I = \frac{{2\sqrt {{{\left( {a + 1} ight)}^5}} }}{5} - \frac{{2\sqrt {{{\left( {a + 1} ight)}^3}} }}{3} + \frac{4}{{15}}.

  • Câu 7: Vận dụng cao
    Tìm giá trị của tích phân I

    Tích phân I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\left( x^{3} + 2x \right)\cos
x + xcos^{2}x}{\cos x}dx} có giá trị là:

    Hướng dẫn:

    Tích phân I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\left( x^{3} + 2x ight)\cos
x + xcos^{2}x}{\cos x}dx}

    Ta có:

    I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\left( x^{3} + 2x ight)\cos
x + xcos^{2}x}{\cos x}dx}

    Xét I_{1} =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{x\cos xdx}.

    Đặt \left\{ \begin{matrix}
u = x \\
dv = \cos xdx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = \sin x \\
\end{matrix} ight..

    \Rightarrow I_{1} = \left. \ \left( x\sin
x ight) ight|_{\frac{\pi}{6}}^{\frac{\pi}{2}} -
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\sin xdx} = \frac{\pi}{4} -
\frac{\sqrt{3}}{2}.

    \Rightarrow I = \left. \ \left(
\frac{1}{4}x^{4} + x^{2} ight) ight|_{\frac{\pi}{6}}^{\frac{\pi}{2}}
+ I_{1} = \frac{5\pi^{4}}{324} + \frac{2\pi^{2}}{9} + \frac{\pi}{4} -
\frac{\sqrt{3}}{2}.

  • Câu 8: Vận dụng
    Chọn đáp án đúng

    Tích phân I = \int_{-
1}^{1}{\frac{x}{\sqrt{x + 1} - 1}dx} có giá trị là:

    Hướng dẫn:

    Ta có:

    \frac{x}{\sqrt{x + 1} - 1} = \sqrt{x +
1} + 1

    \Rightarrow I = \int_{-
1}^{1}\frac{x}{\sqrt{x + 1} - 1}dx = \int_{- 1}^{1}\left( \sqrt{x + 1} +
1 ight)dx

    = \left. \ \left\lbrack \frac{2}{3}(x +
1)^{\frac{3}{2}} + x ightbrack ight|_{- 1}^{1} =
\frac{4\sqrt{2}}{3} + 2

    Đáp án đúng là I = \frac{4\sqrt{2}}{3} +
2.

  • Câu 9: Vận dụng
    Chọn phương án đúng

    Tích phân I = \int_{0}^{1}{\frac{3 +
4x}{\sqrt{3 + 2x - x^{2}}}dx} có giá trị là:

    Hướng dẫn:

    Ta có: \left( 3 + 3x - x^{2} ight)'
= 3 - 2x3 + 4x = 9 - 2(3 -
2x)

    \Rightarrow I = \int_{0}^{1}{\frac{3 +
4x}{\sqrt{3 + 2x - x^{2}}}dx} = \int_{0}^{1}{\frac{7 - 2(2 -
2x)}{\sqrt{3 + 2x - x^{2}}}dx}

    = \int_{0}^{1}{\frac{7}{\sqrt{3 + 2x -
x^{2}}}dx} - \int_{0}^{1}{\frac{2(2 - 2x)}{\sqrt{3 + 2x -
x^{2}}}dx}.

    Xét I_{1} = \int_{0}^{1}{\frac{7}{\sqrt{3
+ 2x - x^{2}}}dx} = \int_{0}^{1}{\frac{7}{\sqrt{4 - (x -
1)^{2}}}dx}.

    Đặt x - 1 = 2sint,t \in \left\lbrack -
\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =
2costdt.

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = - \frac{\pi}{6} \\
x = 1 \Rightarrow t = 0 \\
\end{matrix} ight..

    \Rightarrow I_{1} = \int_{-\frac{\pi}{6}}^{0}{\frac{14cost}{\sqrt{4 - 4\sin^{2}t}}dt} =\frac{7\pi}{6}.

    Xét I_{2} = \int_{0}^{1}{\frac{2(2 -
2x)}{\sqrt{3 + 2x - x^{2}}}dx}.

    Đặt t = 3 + 2x - x^{2} \Rightarrow dt =
(2 - 2x)dx.

    Đổi cận\left\{ \begin{matrix}
x = 0 \Rightarrow t = 3 \\
x = 1 \Rightarrow t = 4 \\
\end{matrix} ight..

    \Rightarrow I_{2} =
\int_{3}^{4}{\frac{2}{\sqrt{t}}dt} = 4\left. \ \left( t^{\frac{1}{2}}
ight) ight|_{3}^{4} = 4\left( 2 - \sqrt{3} ight).

    I = I_{1} - I_{2} = \frac{7\pi}{6} +
4\sqrt{3} - 8.

  • Câu 10: Vận dụng
    Tính quãng đường chuyển động

    Một ô tô đang chạy với vận tốc 10m/s thì tài xế đạp phanh; từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) = - 5t + 10(m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?

    Hướng dẫn:

    Nguyên hàm của hàm vận tốc chính là quãng đường s(t) mà ô tô đi được sau quãng đường t giây kể từ lúc tài xế đạp phanh xe.

    Vào thời điểm người lái xe bắt đầu đạp phanh ứng với t = 0.

    Thời điểm ô tô dừng lại ứng với t_{1}, khi đó v\left( t_{1} ight) = 0 \Leftrightarrow t_{1} =
2.

    Vậy từ lúc đạp phanh đến khi dừng lại quãng đường ô tô đi được là:

    S = \int_{0}^{2}( - 5t + 10)dt = \left(
- \frac{5}{2}t^{2} + 10t ight)|_{0}^{2} = 10(m)

  • Câu 11: Vận dụng
    Xác định tham số a thỏa mãn điều kiện

    Tích phân I =
\int_{2}^{3}{\frac{a^{2}x^{2} + 2x}{ax}dx} có giá trị nhỏ nhất khi số thực dương a có giá trị là:

    Hướng dẫn:

    Tích phân I =
\int_{2}^{3}{\frac{a^{2}x^{2} + 2x}{ax}dx} có giá trị nhỏ nhất khi số thực dương a có giá trị là:

    I = \int_{2}^{3}{\frac{a^{2}x^{2} +
2x}{ax}dx} = \int_{2}^{3}{\left( ax + \frac{2}{a}
ight)dx}

    = \left. \ \left( \frac{a}{2}x^{2} +
\frac{2}{a}x ight) ight|_{2}^{3} = \frac{5a}{2} +
\frac{2}{a}

    Vì a là số thực dương nên I =
\frac{5a}{2} + \frac{2}{a} \geq 2\sqrt{\frac{5a}{2}.\frac{2}{a}} =
2\sqrt{5}.

    Đáp án đúng là 2\sqrt 5.

  • Câu 12: Vận dụng cao
    Chọn kết quả đúng

    Bổ dọc một quả dưa hấu ta được thiết diện là hình elip có trục lớn là 28cm, trục nhỏ 25cm. Biết cứ 1000cm3 dưa hấu sẽ làm được cốc sinh tố giá 20.000 đồng. Hỏi từ quả dưa như trên có thể thu được bao nhiêu tiền từ việc bán nước sinh tố? (Biết rằng bề dày của vỏ dưa không đáng kể, kết quả đã được quy tròn)

    Hướng dẫn:

    Hình vẽ minh họa

    Giả sử thiết diện nằm trên hệ Oxy, tâm O trùng với tâm thiết diện

    Suy ra elip: \frac{x^{2}}{14^{2}} +
\frac{y^{2}}{12,5^{2}} = 1. Thể tích quả dưa hấu chính là thể tích vật thể thu được khi quay phần gạch chéo quanh trục Ox.

    \Rightarrow V = \left| \pi\int_{-
14}^{14}{12,5^{2}\left( 1 - \frac{x^{2}}{14^{2}} ight)dx} ight| =
\frac{8750\pi}{3}

    Số tiền thu được là:

    20000.\frac{8750\pi}{3} \approx 183259
\approx 183000 đồng.

  • Câu 13: Vận dụng
    Chọn đáp án đúng

    Một ô tô đang chạy đều với vận tốc 15 m/s thì phía trước xuất hiện chướng ngại vật nên người lái đạp phanh gấp. Kể từ thời điểm đó, ô tô chuyển động chậm dần đều với gia tốc -
a m/s2. Biết ô tô chuyển động thêm được 20 m thì dừng hẳn. Hỏi a thuộc khoảng nào dưới đây:

    Hướng dẫn:

    Từ giả thiết ta có v = \int_{}^{}{( -
a)dt} \Rightarrow v = 15 - at

    s = \int_{}^{}{tdt} = \int_{}^{}{(15 -
at)dt} \Rightarrow s = 15t - \frac{at^{2}}{2}

    Ô tô chuyển động được 20m thì dừng tại thời điểm

    Suy ra

    \left\{ \begin{matrix}
v = 0 \\
s = 20 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
15 - at_{1} = 0 \\
15t_{1} - \frac{a{t_{1}}^{2}}{2} = 20 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
at_{1} = 15 \\
15t_{1} - \frac{15t_{1}}{2} = 20 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
15 - at_{1} = 0 \\
t_{1} = \frac{8}{3} \\
\end{matrix} ight.\  \Leftrightarrow a = \frac{45}{8} \Rightarrow a
\in (5;6)

  • Câu 14: Vận dụng
    Tính tích phân I

    Tích phân I = \int_{- 2}^{-
1}\frac{\left| x^{3} - 3x + 2 \right|}{x - 1}dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{- 2}^{-
1}\frac{\left| x^{3} - 3x + 2 ight|}{x - 1}dx có giá trị là:

    Ta có: \underset{f(x)}{\overset{x^{3} -
3x + 2}{︸}} = 0 \Leftrightarrow (x - 1)^{2}(x + 2) = 0 \Leftrightarrow
x = 1 \vee x = - 2.

    Bảng xét dấu:

    Ta có

    :I = \int_{- 2}^{- 1}\frac{x^{3} - 3x +
2}{x - 1}dx = \int_{- 2}^{- 1}\left( x^{2} + x - 2 ight)dx

    = \left. \
\left( \frac{1}{3}x^{3} + \frac{1}{2}x^{2} - 2x ight) ight|_{- 2}^{-
1} = \frac{7}{6}.

    Đáp án đúng là I =
\frac{7}{6}.

  • Câu 15: Vận dụng cao
    Tính giá trị biểu thức T

    Tính tổng T = \frac{C_{2018}^{0}}{3} -
\frac{C_{2018}^{1}}{4} + \frac{C_{2018}^{2}}{5} - \frac{C_{2018}^{3}}{6}
+ ... - \frac{C_{2018}^{2017}}{2020} +
\frac{C_{2018}^{2018}}{2021}?

    Hướng dẫn:

    Ta có:

    x^{2}(1 - x)^{2018} = x^{2} \cdot \sum_{k
= 0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k}( - 1)^{k} = \sum_{k =
0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}.

    Do đó

    \int_{0}^{1}\mspace{2mu} x^{2}(1 -x)^{2018}dx = \int_{0}^{1}\mspace{2mu}\sum_{k =0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}dx.

    Mặt khác:

    \int_{0}^{1}\mspace{2mu}\sum_{k =0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}dx. =\left. \ \sum_{k = 0}^{2018}\mspace{2mu} C_{2018}^{k}\frac{x^{k + 3}}{k+ 3}( - 1)^{k} ight|_{0}^{1}= \sum_{k = 0}^{2018}\mspace{2mu}C_{2018}^{k} \cdot \frac{( - 1)^{k}}{k + 3} = T.

    Đặt t = 1 - x \Rightarrow dt = -
dx.

    Đổi cận x = 0 \Rightarrow t = 1x = 1 \Rightarrow t = 0. Khi đó

    \int_{0}^{1}\mspace{2mu}\mspace{2mu}x^{2}(1 - x)^{2018}dx = \int_{1}^{0}\mspace{2mu}\mspace{2mu}t^{2018}(1 - t)^{2}( - dt)

    = \int_{0}^{1}\mspace{2mu}\mspace{2mu}
t^{2018}\left( t^{2} - 2t + 1 ight)dt = \left. \ \left(
\frac{t^{2021}}{2021} - 2 \cdot \frac{t^{2020}}{2020} +
\frac{t^{2019}}{2019} ight) ight|_{0}^{1}

    = \frac{1}{2021} - \frac{2}{2020} +
\frac{1}{2019} = \frac{1}{1010 \cdot 2019 \cdot 2021} =
\frac{1}{4121202990}

  • Câu 16: Vận dụng cao
    Tính tích phân

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} thỏa mãn f\left( \frac{\pi}{2} ight) = - 1 với \forall x\mathbb{\in R} ta có: f'(x).f(x) - \sin2x = f'(x)\cos x -f(x)\sin x. Tính tích phân I =
\int_{0}^{\frac{\pi}{4}}{f(x)dx}?

    Hướng dẫn:

    Ta có:

    f'(x).f(x) - \sin2x = f'(x)\cos x- f(x)\sin x

    \Leftrightarrow f'(x).f(x) - \sin2x =\left\lbrack f(x)\cos x ightbrack'

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}\left\lbrack f'(x).f(x) -\sin2x ightbrack dx = \int_{}^{}{\left\lbrack f(x)\cos xightbrack'}dx

    \Leftrightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x + C

    Theo bài ra ta có: f\left( \frac{\pi}{2}
ight) = - 1 \Rightarrow C = 0

    \Rightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x

    \Leftrightarrow f^{2}(x) + \cos2x =2f(x)\cos x

    \Leftrightarrow f^{2}(x) - 2f(x)\cos x +\cos^{2}x = \sin^{2}x

    \Leftrightarrow \left\lbrack f(x) - \cos x ightbrack^{2} = \sin^{2}x \Leftrightarrow \left\lbrack\begin{matrix}f(x) - \cos x = \sin x \\f(x) - \cos x = - \sin x \\\end{matrix} ight.

    f\left( \frac{\pi}{2} ight) = -
1 nên nhận f(x) = \cos x - \sin
x

    Vậy I = \int_{0}^{\frac{\pi}{4}}{f(x)dx}
= \int_{0}^{\frac{\pi}{4}}{\left\lbrack \cos x - \sin x ightbrack
dx} = \left. \ \left( \cos x - \sin x ight)
ight|_{0}^{\frac{\pi}{4}} = \sqrt{2} - 1

  • Câu 17: Thông hiểu
    Tìm tất cả các giá trị tham số a

    Có bao nhiêu số a \in (0;20\pi) sao cho \int_{0}^{a}{sin^{5}x.sin2xdx} =
\frac{2}{7}.

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{a}{sin^{5}x.sin2xdx} =
2\int_{0}^{a}{sin^{6}x.cosxdx}

    = 2\int_{0}^{a}{sin^{6}x.d\left( \sin x
ight)} = \left. \ 2.\frac{sin^{7}x}{7} ight|_{0}^{a} =
\frac{2sin^{7}a}{7}

    I = \frac{2}{7} \Rightarrow \sin a = 1
\Rightarrow a = \frac{\pi}{2} + k2\pi

    a > 0 \Leftrightarrow \frac{\pi}{2} +
k2\pi > 0 \Rightarrow k2\pi > - \frac{\pi}{2} \Rightarrow k > -
\frac{1}{4}

    a < 20\pi \Rightarrow \frac{1}{2} + 2k
< 20 \Rightarrow k < \frac{39}{4}

    \Rightarrow k =
0;1;2;3;4;5;6;7;8;9 \Rightarrow Có 10 giá trị của a.

  • Câu 18: Thông hiểu
    Tính tích phân I

    Cho \int_{0}^{6}{f(x)dx} = 12. Tính I = \int_{0}^{2}{f(3x)dx}

    Hướng dẫn:

    Ta có:

    Đặt t = 3x \Rightarrow dt = 3dx. Đổi cận:

    x = 0 \Rightarrow t = 0;x = 2 \Rightarrow
t = 6

    \Rightarrow I = \int_{0}^{2}{f(3x)dx} =
\frac{1}{3}\int_{0}^{6}{f(t)dt} =
\frac{1}{3}\int_{0}^{6}{f(x)dx}= \frac{1}{3}.12 = 4

  • Câu 19: Thông hiểu
    Tính giá trị của tham số a

    Tích phân I = \int_{0}^{1}{\frac{2ax}{x +
1}dx} = ln2. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{1}{\frac{2ax}{x + 1}dx} =
2a\int_{0}^{1}{\left( 1 - \frac{1}{x + 1} ight)dx}

    = 2a\left. \ \left( x - \ln|x + 1| ight)
ight|_{0}^{1} = 2a(1 - ln2).

    I = ln2 \Leftrightarrow 2a(1 - ln2) =
ln2 \Leftrightarrow a =
\frac{ln2}{2 - 2ln2}

  • Câu 20: Vận dụng cao
    Tính quãng đường người chạy được

    Một người chạy trong thời gian 1 giờ, vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường thẳng parabol với I\left( \frac{1}{2};8 \right) và trục đối xứng song song với trục tung như hình bên. Tính quãng đường s người đó chạy được trong khoảng thời gian 45 phút, kể từ khi bắt đầu chạy

    Hướng dẫn:

    Ta tìm được phương trình của parabol là

    (P):v(t) = - 32t^{2} + 32t

    Quãng đường s mà người đó chạy được trong khoảng thời gian 0,75 (h) là:

    s = \int_{0}^{0,75}{\left( - 32t^{2} +
32t ight)dt}

    = \left( - \frac{32}{3}t^{3} + 16t^{2}
ight)|_{0}^{0,75} = 4,5(km)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo