Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân KNTT (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn đáp án đúng

    Một ô tô đang chạy đều với vận tốc 15 m/s thì phía trước xuất hiện chướng ngại vật nên người lái đạp phanh gấp. Kể từ thời điểm đó, ô tô chuyển động chậm dần đều với gia tốc -
a m/s2. Biết ô tô chuyển động thêm được 20 m thì dừng hẳn. Hỏi a thuộc khoảng nào dưới đây:

    Hướng dẫn:

    Từ giả thiết ta có v = \int_{}^{}{( -
a)dt} \Rightarrow v = 15 - at

    s = \int_{}^{}{tdt} = \int_{}^{}{(15 -
at)dt} \Rightarrow s = 15t - \frac{at^{2}}{2}

    Ô tô chuyển động được 20m thì dừng tại thời điểm

    Suy ra

    \left\{ \begin{matrix}
v = 0 \\
s = 20 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
15 - at_{1} = 0 \\
15t_{1} - \frac{a{t_{1}}^{2}}{2} = 20 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
at_{1} = 15 \\
15t_{1} - \frac{15t_{1}}{2} = 20 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
15 - at_{1} = 0 \\
t_{1} = \frac{8}{3} \\
\end{matrix} ight.\  \Leftrightarrow a = \frac{45}{8} \Rightarrow a
\in (5;6)

  • Câu 2: Vận dụng
    Xác định tham số a thỏa mãn điều kiện

    Tích phân I =
\int_{2}^{3}{\frac{a^{2}x^{2} + 2x}{ax}dx} có giá trị nhỏ nhất khi số thực dương a có giá trị là:

    Hướng dẫn:

    Tích phân I =
\int_{2}^{3}{\frac{a^{2}x^{2} + 2x}{ax}dx} có giá trị nhỏ nhất khi số thực dương a có giá trị là:

    I = \int_{2}^{3}{\frac{a^{2}x^{2} +
2x}{ax}dx} = \int_{2}^{3}{\left( ax + \frac{2}{a}
ight)dx}

    = \left. \ \left( \frac{a}{2}x^{2} +
\frac{2}{a}x ight) ight|_{2}^{3} = \frac{5a}{2} +
\frac{2}{a}

    Vì a là số thực dương nên I =
\frac{5a}{2} + \frac{2}{a} \geq 2\sqrt{\frac{5a}{2}.\frac{2}{a}} =
2\sqrt{5}.

    Đáp án đúng là 2\sqrt 5.

  • Câu 3: Vận dụng cao
    Tính tích phân

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} thỏa mãn f\left( \frac{\pi}{2} ight) = - 1 với \forall x\mathbb{\in R} ta có: f'(x).f(x) - \sin2x = f'(x)\cos x -f(x)\sin x. Tính tích phân I =
\int_{0}^{\frac{\pi}{4}}{f(x)dx}?

    Hướng dẫn:

    Ta có:

    f'(x).f(x) - \sin2x = f'(x)\cos x- f(x)\sin x

    \Leftrightarrow f'(x).f(x) - \sin2x =\left\lbrack f(x)\cos x ightbrack'

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}\left\lbrack f'(x).f(x) -\sin2x ightbrack dx = \int_{}^{}{\left\lbrack f(x)\cos xightbrack'}dx

    \Leftrightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x + C

    Theo bài ra ta có: f\left( \frac{\pi}{2}
ight) = - 1 \Rightarrow C = 0

    \Rightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x

    \Leftrightarrow f^{2}(x) + \cos2x =2f(x)\cos x

    \Leftrightarrow f^{2}(x) - 2f(x)\cos x +\cos^{2}x = \sin^{2}x

    \Leftrightarrow \left\lbrack f(x) - \cos x ightbrack^{2} = \sin^{2}x \Leftrightarrow \left\lbrack\begin{matrix}f(x) - \cos x = \sin x \\f(x) - \cos x = - \sin x \\\end{matrix} ight.

    f\left( \frac{\pi}{2} ight) = -
1 nên nhận f(x) = \cos x - \sin
x

    Vậy I = \int_{0}^{\frac{\pi}{4}}{f(x)dx}
= \int_{0}^{\frac{\pi}{4}}{\left\lbrack \cos x - \sin x ightbrack
dx} = \left. \ \left( \cos x - \sin x ight)
ight|_{0}^{\frac{\pi}{4}} = \sqrt{2} - 1

  • Câu 4: Vận dụng cao
    Tìm đáp án đúng

    Cho hàm số y = f(x) có đạo hàm dương và liên tục trên \lbrack
0;1brack thỏa mãn f(0) =
15\int_{0}^{1}{\left\{
f'(x)\left\lbrack f(x) ightbrack^{2} + \frac{1}{25} ight\} dx}
\leq 2\int_{0}^{1}{\left\lbrack \sqrt{f'(x)}.f(x) ightbrack
dx}. Tích phân \int_{0}^{1}{\left\lbrack f(x)
ightbrack^{3}dx} là:

    Hướng dẫn:

    5\int_{0}^{1}\mspace{2mu}\left\lbrack
f^{'}(x)\lbrack f(x)brack^{2} + \frac{1}{25} ightbrack dx
\leqslant
2\int_{0}^{1}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx

    \Leftrightarrow5\int_{0}^{1}\mspace{2mu} f^{'}(x)\lbrack f(x)brack^{2}dx+ \frac{1}{5} \leqslant2\int_{0}^{1}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx

    Áp dụng BĐT Cauchy-Schwarz:

    \Rightarrow \left(\int_{0}^{1}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dxight)^{2} \leqslant \int_{0}^{1}\mspace{2mu}\mspace{2mu}dx\cdot \int_{0}^{1}\mspace{2mu}\mspace{2mu} f^{'}(x)\lbrack f(x)brack^{2}dx

    \Rightarrow 5\left(\int_{0}^{1}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dxight)^{2} + \frac{1}{5} \leqslant2\int_{0}^{2}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx

    \Leftrightarrow 5\left(
\int_{0}^{1}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx -
\frac{1}{5} ight)^{2} \leqslant 0 \Leftrightarrow
\int_{0}^{1}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx =
\frac{1}{5}.

    Dấu "=" xảy ra khi chỉ khi \left\{\begin{matrix}\int_{0}^{1}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx =\dfrac{1}{5} \Rightarrow k = \dfrac{1}{5} \\\sqrt{f^{'}(x)}f(x) = k \\\end{matrix} ight.

    \Rightarrow \int_{}^{}\
f^{'}(x)f^{2}(x)dx = \int_{}^{}\ \frac{1}{25}dx = \frac{1}{25}x +
C

    \Rightarrow \frac{\left\lbrack f(x)
ightbrack^{3}}{3} = \frac{1}{25}x + C \Leftrightarrow f(x) =
\sqrt[3]{\frac{3}{25}x + 3C}

    f(0) = 1 \Rightarrow 3C = 1 \Rightarrow
f(x) = \sqrt[3]{\frac{3}{25}x + 1}

    \Rightarrow \int_{0}^{1}{\left\lbrack
f(x) ightbrack^{3}dx} = \int_{0}^{1}{\left( \frac{3}{25}x + 1
ight)dx} = \frac{53}{50}

  • Câu 5: Vận dụng
    Tính giá trị của tích phân

    Tích phân I = \int_{0}^{a}{x\sqrt{x +
1}}dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{0}^{a}{x\sqrt{x +
1}}dx có giá trị là:

    I = \int_{0}^{a}{x\sqrt{x + 1}}dx =
\int_{0}^{a}{(x + 1)\sqrt{x + 1}}dx - \int_{0}^{a}\sqrt{x +
1}dx

    = \int_{0}^{a}(x + 1)^{\frac{3}{2}}dx -
\int_{0}^{a}(x + 1)^{\frac{1}{2}}dx

    = \left. \ \left\lbrack \frac{2}{5}(x +
1)^{\frac{5}{2}} ightbrack ight|_{0}^{a} - \left. \ \left\lbrack
\frac{2}{3}(x + 1)^{\frac{3}{2}} ightbrack ight|_{0}^{a}

    \  = \frac{2}{5}\sqrt{(x + 1)^{5}} -
\frac{2}{3}\sqrt{(x + 1)^{3}} + \frac{4}{15}

    Đáp án đúng là I = \frac{{2\sqrt {{{\left( {a + 1} ight)}^5}} }}{5} - \frac{{2\sqrt {{{\left( {a + 1} ight)}^3}} }}{3} + \frac{4}{{15}}.

  • Câu 6: Vận dụng cao
    Tính giá trị của tích phân

    Tích phân I = \int_{1}^{e}{\frac{\ln
x\left( 2\sqrt{ln^{2}x + 1} + 1 \right)}{x}dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{1}^{e}{\frac{\ln
x\left( 2\sqrt{ln^{2}x + 1} + 1 ight)}{x}dx} có giá trị là:

    Ta có:

    I = \int_{1}^{e}{\frac{\ln x\left(
2\sqrt{ln^{2}x + 1} + 1 ight)}{x}dx} =
\int_{1}^{e}{\frac{2lnx\sqrt{ln^{2}x + 1}}{x}dx} +
\int_{1}^{e}{\frac{\ln x}{x}dx}.

    Xét I_{1} =
\int_{1}^{e}{\frac{2lnx\sqrt{ln^{2}x + 1}}{x}dx}.

    Đặt t = ln^{2}x + 1 \Rightarrow dt =
\frac{2lnx}{x}dx.

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 \\
x = e \Rightarrow t = 2 \\
\end{matrix} ight..

    \Rightarrow I_{1} =
{\int_{1}^{2}{\sqrt{t}dt = \left. \ \left( \frac{2}{3}\sqrt{t^{3}}
ight) ight|}}_{1}^{2} = \frac{4\sqrt{2} - 2}{3}.

    Xét I_{2}\int_{1}^{e}{\frac{\ln
x}{x}dx}.

    Đặt t = \ln x \Rightarrow dt =
\frac{1}{x}dx.

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 0 \\
x = e \Rightarrow t = 1 \\
\end{matrix} ight..

    \Rightarrow I_{2} = \int_{0}^{1}{dt} =
1.

    \Rightarrow I = I_{1} + I_{2} =
\frac{4\sqrt{2} + 1}{3}.

    Vậy đáp án cần chọn là: I =
\frac{4\sqrt{2} + 1}{3}.

  • Câu 7: Thông hiểu
    Tính giá trị biểu thức

    Biết tích phân I = \int_{0}^{1}{\frac{(x
- 1)^{2}}{x^{2} + 1}dx} = a\ln b + c trong đó a;b;c là các số nguyên. Tính giá trị biểu thức a + b + c?

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = \int_{0}^{1}{\left( 1 - \frac{2x}{x^{2} + 1}
ight)dx}

    = \left. \ \left( x - \ln\left| x^{2} +
1 ight| ight) ight|_{0}^{1} = 1 - ln2

    Khi đó a = - 1;b = 2;c = 1 \Rightarrow a
+ b + c = 2

  • Câu 8: Thông hiểu
    Tính giá trị tích phân I

    Tích phân \int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{2}}{\dfrac{\cos^{3}x}{\sin
x}dx} bằng

    Hướng dẫn:

    Ta có:

    Cách 1: Thử nghiệm

    Cách 2: Đặt \sin x = t.

    Đáp án cần tìm - \frac{1}{4} +\ln\sqrt{2}

  • Câu 9: Vận dụng
    Chọn đáp án đúng

    Tích phân I =\int_{1}^{e}{\frac{2\ln x\sqrt{ln^{2}x + 1}}{x}dx} có gái trị là:

    Hướng dẫn:

    Xét tích phân I =
\int_{1}^{e}{\frac{2lnx\sqrt{ln^{2}x + 1}}{x}dx}

    Ta nhận thấy: \left( ln^{2}x + 1
ight)' = \frac{2lnx}{x}.

    Ta dùng đổi biến số.

    Đặt t = ln^{2}x + 1 \Rightarrow dt =
\frac{2lnx}{x}dx.

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 \\
x = e \Rightarrow t = 2 \\
\end{matrix} ight..

    I = \int_{1}^{2}{\sqrt{t}dx} = \left. \
\left( \frac{2}{3}t^{\frac{3}{2}} ight) ight|_{1}^{2} =
\frac{4\sqrt{2} - 2}{3}.

    Đáp án đúng là I = \frac{4\sqrt{2} -
2}{3}.

  • Câu 10: Vận dụng cao
    Chọn kết quả đúng

    Bổ dọc một quả dưa hấu ta được thiết diện là hình elip có trục lớn là 28cm, trục nhỏ 25cm. Biết cứ 1000cm3 dưa hấu sẽ làm được cốc sinh tố giá 20.000 đồng. Hỏi từ quả dưa như trên có thể thu được bao nhiêu tiền từ việc bán nước sinh tố? (Biết rằng bề dày của vỏ dưa không đáng kể, kết quả đã được quy tròn)

    Hướng dẫn:

    Hình vẽ minh họa

    Giả sử thiết diện nằm trên hệ Oxy, tâm O trùng với tâm thiết diện

    Suy ra elip: \frac{x^{2}}{14^{2}} +
\frac{y^{2}}{12,5^{2}} = 1. Thể tích quả dưa hấu chính là thể tích vật thể thu được khi quay phần gạch chéo quanh trục Ox.

    \Rightarrow V = \left| \pi\int_{-
14}^{14}{12,5^{2}\left( 1 - \frac{x^{2}}{14^{2}} ight)dx} ight| =
\frac{8750\pi}{3}

    Số tiền thu được là:

    20000.\frac{8750\pi}{3} \approx 183259
\approx 183000 đồng.

  • Câu 11: Thông hiểu
    Tính điện lượng chạy qua tiết diện thẳng

    Dòng diện xoay chiều hình sin chạy qua mạch điện dao động LC lí tưởng có phương trình i = I_{0}\sin\left( \omega t + \frac{\pi}{2}
ight). Ngoài ra i =
q'(t) với q là điện tích tức thời trong tụ. Tính từ lúc t =
0, điện lượng chạy qua tiết diện thẳng của dây dẫn của mạch trong thời gian \frac{\pi}{2\omega}

    Hướng dẫn:

    Điện lượng cần tìm là:

    \int_{0}^{\frac{\pi}{2\omega}}{\left\lbrack
I_{0}\sin\left( \omega t + \frac{\pi}{2} ight) ightbrack dt} =
\int_{0}^{\frac{\pi}{2\omega}}{\left\lbrack I_{0}\cos(\omega t)
ightbrack dt}

    = \left. \ \left\lbrack I_{0}\sin(\omega
t) ightbrack ight|_{0}^{\frac{\pi}{2\omega}} =
\frac{I_{0}}{\omega}

  • Câu 12: Vận dụng
    Tính tích phân I

    Tích phân I =
\int_{0}^{\frac{\pi}{4}}{\frac{2x - \sin x}{2 - 2cosx}dx} có giá trị là:

    Hướng dẫn:

    Ta biến đổi:

    I =
\int_{\frac{\pi}{3}}^{\frac{\pi}{4}}{\frac{2x - \sin x}{2 - 2cosx}dx} =
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{x}{1 - \cos x}dx} -
\frac{1}{2}\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{\sin x}{1 - \cos
x}dx}.

    Xét I_{1} =
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{x}{1 - \cos x}dx} =
\frac{1}{2}\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{x}{sin^{2}\frac{x}{2}}dx}.

    Đặt \left\{ \begin{matrix}
u = x \\
dv = \frac{1}{sin^{2}\frac{x}{2}}dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = - 2cot\frac{x}{2} \\
\end{matrix} ight..

    \Rightarrow I_{1} =
\frac{1}{2}\left\lbrack \left. \ \left( - 2x.cot\frac{x}{2} ight)
ight|_{\frac{\pi}{3}}^{\frac{\pi}{2}} +
2\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\cot\frac{x}{2}dx} ightbrack

    =
\frac{1}{2}\left\lbrack - \pi + \frac{2\pi\sqrt{3}}{3} + 4ln\sqrt{2}
ightbrack.

    Xét I_{2} =
\frac{1}{2}\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{\sin x}{1 - \cos
x}dx}.

    Đặt t = 1 - \cos x \Rightarrow dt = \sin xdx.

    Đổi cận \left\{ \begin{matrix}
x = \frac{\pi}{3} \Rightarrow t = \frac{1}{2} \\
x = \frac{\pi}{2} \Rightarrow t = 1 \\
\end{matrix} ight..

    \Rightarrow I_{2} =
\frac{1}{2}{\int_{\frac{1}{2}}^{1}{\frac{1}{t}dt = \frac{1}{2}\left. \
\left( \ln|t| ight) ight|}}_{\frac{1}{2}}^{1} =
\frac{1}{2}ln2.

    I = I_{1} - I_{2} = \frac{1}{2}\left( -
\pi + \frac{2\pi\sqrt{3}}{3} + 4ln\sqrt{2} - ln2 ight).

  • Câu 13: Vận dụng
    Tính giới hạn của tích phân

    Giá trị của \lim_{n ightarrow +
\infty}\int_{n}^{n + 1}{\frac{1}{1 + e^{x}}dx} bằng

    Hướng dẫn:

    Giải toán bằng hai cách như sau:

    Cách 1: Thử bằng máy tính

    Lấy giá trị n càng lớn càng tốt. Giả sử n = 100.

    Nhập biểu thức \int_{100}^{101}{\frac{1}{1 +
e^{x}}dx}

    Máy tính cho kết quả \approx 2.35 \times
10^{- 44} \approx 0.

    Cách 2: Giải chi tiết

    I = \int_{n}^{n + 1}{\left( \frac{1}{1 +
e^{x}} ight)dx} = \int_{n}^{n + 1}{1dx} - \int_{n}^{n +
1}{\frac{e^{x}}{1 + e^{x}}dx}

    = 1 - \int_{n}^{n + 1}{\frac{e^{x}}{1 +
e^{x}}dx}

    \Leftrightarrow I = 1 - \int_{n}^{n +
1}\frac{d\left( e^{x} + 1 ight)}{1 + e^{x}} = 1 - \left. \ \ln\left| 1
+ e^{x} ight| ight|_{n}^{n + 1}

    \Leftrightarrow I = 1 + \ln\left| 1 +
e^{n} ight| - \ln\left| 1 + e^{n + 1} ight|

    Ta luôn có \lim_{n ightarrow +
\infty}\frac{\ln\left( 1 + e^{n} ight)}{n} = 1

    \lim_{n ightarrow + \infty}\int_{n}^{n
+ 1}{\frac{1}{1 + e^{x}}dx} = \lim_{n ightarrow + \infty}\left\lbrack
1 + \ln\left| 1 + e^{n} ight| - \ln\left( 1 + e^{n + 1} ight)
ightbrack

    = 1 + \lim_{n ightarrow +
\infty}\frac{\ln\left( 1 + e^{n} ight)}{n}.n - \frac{\ln\left| 1 +
e^{n + 1} ight|}{n + 1}.(n + 1)

    = 1 + n - (n + 1) = 0

  • Câu 14: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn điều kiện f(0) = 2\sqrt{2};f(x) > 0 với \forall x\mathbb{\in R}f(x).f'(x) = (2x + 1)\sqrt{1 +f^{2}(x)} với \forall x\mathbb{\inR}. Tính giá trị f(1)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn điều kiện f(0) = 2\sqrt{2};f(x) > 0 với \forall x\mathbb{\in R}f(x).f'(x) = (2x + 1)\sqrt{1 +f^{2}(x)} với \forall x\mathbb{\inR}. Tính giá trị f(1)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Vận dụng
    Tính tổng các giá trị tham số m

    Tổng tất cả các giá trị của tham số m thỏa mãn \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} + 3}dx} =
m^{2} - 1 bằng:

    Hướng dẫn:

    Ta có:

    \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow
\int_{0}^{1}{\frac{9^{x}}{9^{x} + 3}dx} + m\int_{0}^{1}{\frac{3}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow m^{2} -
m\int_{0}^{1}{\frac{3}{9^{x} + 3}dx} - \int_{0}^{1}{\frac{9^{x}}{9^{x} +
3}dx} - 1 = 0

    Phương trình trên là phương trình bậc hai đối với biến m, với các hệ số
    \left\{ \begin{matrix}a = 1 \\b = - \int_{0}^{1}{\dfrac{3}{9^{x} + 3}dx} \\c = - \int_{0}^{1}{\dfrac{9^{x}}{9^{x} + 3}dx} \\\end{matrix} ight..

    Áp dụng hệ thứ Vi- et \Rightarrow m_{1} +
m_{2} = \frac{- b}{a} = \int_{0}^{1}{\frac{3}{9^{x} + 3}dx} =
\frac{1}{2}

  • Câu 16: Vận dụng
    Chọn đáp án đúng

    Tích phân I =
\int_{\frac{\pi}{3}}^{\frac{\pi}{6}}{\frac{\sin^{3}x}{\sqrt{\cos
x}}dx} có giá trị là:

    Hướng dẫn:

    Ta nhận thấy: \left( \cos x ight)'
= - \sin x. Ta dùng đổi biến số.

    Đặt t = \cos x \Rightarrow dt = - \sin
xdx.

    Đổi cận\left\{ \begin{matrix}
x = \dfrac{\pi}{3} \Rightarrow t = \dfrac{1}{2} \\
x = \dfrac{\pi}{6} \Rightarrow t = \dfrac{\sqrt{3}}{2} \\
\end{matrix} ight..

    I =
\int_{\dfrac{\pi}{3}}^{\dfrac{\pi}{2}}{\dfrac{\sin^{3}x}{\sqrt{\cos x}}dx} =
\int_{\dfrac{\pi}{3}}^{\dfrac{\pi}{2}}{\dfrac{\left( 1 - \cos^{2}x
ight)\sin x}{\sqrt{\cos x}}dx}

    \Rightarrow I =
\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}{\frac{t^{2} - 1}{\sqrt{t}}dt} =
{\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}{\left( t^{\frac{3}{2}} - t^{-
\frac{1}{2}} ight)dx }}

    \left. { = \left( {\frac{2}{5}{t^{\frac{5}{2}}} - 2{t^{\frac{1}{2}}}} ight)} ight|_{\frac{1}{2}}^{\frac{{\sqrt 3 }}{2}} = \frac{{19 - 17\sqrt[4]{3}}}{{\sqrt 2 }}

    Tích phân I =
\int_{\frac{\pi}{3}}^{\frac{\pi}{6}}{\frac{sin^{3}x}{\sqrt{\cos
x}}dx} có giá trị là: I = \frac{19
- 17\sqrt[4]{3}}{\sqrt{2}}.

  • Câu 17: Thông hiểu
    Tìm giá trị của biểu thức

    Cho tích phân I = \int_{1}^{e}{\left( x +
\frac{1}{x} \right)\ln xdx} = ae^{2} + b, ab là các số hữu tỉ. Giá trị của 2a
- 3b là:

    Hướng dẫn:

    Ta có:

    I = \int_{1}^{e}{\left( x + \frac{1}{x}
ight)\ln xdx} = \int_{1}^{e}{x\ln xdx} + \int_{1}^{e}{\frac{1}{x}\ln
xdx}, với t = \ln x

    = \left. \ \left( \frac{x^{2}}{2}\ln x
ight) ight|_{1}^{e} - \int_{1}^{e}{\frac{x}{2}dx} + \int_{0}^{1}{dt}
= \frac{e^{2}}{4} + \frac{5}{4}

    \Rightarrow a = \frac{1}{4},b =
\frac{5}{4} \Rightarrow 2a - 3b = - \frac{13}{4}.

    Đáp án đúng là -\frac{13}{4}.

  • Câu 18: Vận dụng
    Chọn đáp án đúng

    Tích phân I = \int_{1}^{2}\frac{ax +
1}{x^{2} + 3x + 2}dx = \frac{3}{5}\ln\frac{4}{3} +
\frac{3}{5}\ln\frac{2}{3}. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int_{1}^{2}\frac{ax + 1}{x^{2} + 3x
+ 2}dx = a\int_{1}^{2}\frac{x}{x^{2} + 3x + 2}dx +
\int_{1}^{2}\frac{1}{x^{2} + 3x + 2}dx.

    Xét I_{1} = a\int_{1}^{2}\frac{x}{x^{2} +
3x + 2}dx = a\int_{1}^{2}\left( \frac{2}{x + 2} - \frac{1}{x + 1}
ight)dx

    = a\left. \ \left( 2ln|x + 2| - \ln|x +
1| ight) ight|_{1}^{2}

    = a(2ln4 - 3ln3 + ln2) =
2a\ln\frac{4}{3} + a\ln\frac{2}{3}

    Xét I_{2} = \int_{1}^{2}\frac{1}{x^{2} +
3x + 2}dx = \left. \ \left( \ln|x + 1| - \ln|x + 2| ight)
ight|_{1}^{2} = - \ln\frac{4}{3} - \ln\frac{2}{3}.

    \Rightarrow I = I_{1} + I_{2}^{\ }\  =
(2a - 1)\ln\frac{4}{3} + (a - 1)\ln\frac{2}{3}

    Theo đề bài: I =
\frac{3}{5}\ln\frac{4}{3} + \frac{3}{5}\ln\frac{2}{3} \Rightarrow a =
\frac{4}{5}.

  • Câu 19: Vận dụng
    Tính tích phân I

    Tích phân I = \int_{- 2}^{-
1}\frac{\left| x^{3} - 3x + 2 \right|}{x - 1}dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{- 2}^{-
1}\frac{\left| x^{3} - 3x + 2 ight|}{x - 1}dx có giá trị là:

    Ta có: \underset{f(x)}{\overset{x^{3} -
3x + 2}{︸}} = 0 \Leftrightarrow (x - 1)^{2}(x + 2) = 0 \Leftrightarrow
x = 1 \vee x = - 2.

    Bảng xét dấu:

    Ta có

    :I = \int_{- 2}^{- 1}\frac{x^{3} - 3x +
2}{x - 1}dx = \int_{- 2}^{- 1}\left( x^{2} + x - 2 ight)dx

    = \left. \
\left( \frac{1}{3}x^{3} + \frac{1}{2}x^{2} - 2x ight) ight|_{- 2}^{-
1} = \frac{7}{6}.

    Đáp án đúng là I =
\frac{7}{6}.

  • Câu 20: Vận dụng cao
    Viết phương trình tiếp tuyến

    Cho hàm số y = f(x) là hàm số bậc ba có đồ thị như hình vẽ:

    Biết \int_{1}^{4}{x.f''(x - 1)dx}
= 7\int_{1}^{2}{2x.f'\left(
x^{2} - 1 ight)dx} = - 3. Phương trình tiếp tuyến với đồ thị hàm số y = f(x) tại điểm có hoành độ x = 3 là:

    Hướng dẫn:

    Từ đồ thị hàm số ta suy ra f(0) =
2;f'(0) = 0

    Xét tích phân \int_{1}^{2}{2x.f'\left( x^{2} - 1
ight)dx}. Đặt u = x^{2} - 1
\Rightarrow du = 2xdx

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow u = 0 \\
x = 2 \Rightarrow u = 3 \\
\end{matrix} ight.

    Do đó \int_{1}^{2}{2x.f'\left( x^{2}
- 1 ight)dx} = \int_{1}^{3}{f'(u)du} = \left. \ f(u)
ight|_{0}^{3} = f(3) - f(0)

    \Rightarrow f(3) - f(0) = - 3
\Rightarrow f(3) = - 1

    Xét tích phân \int_{1}^{4}{x.f''(x - 1)dx}. Đặt u = x - 1 \Rightarrow du = dx

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow u = 0 \\
x = 4 \Rightarrow u = 3 \\
\end{matrix} ight.

    \Rightarrow \int_{1}^{4}{x.f''(x
- 1)dx} = \int_{0}^{3}{(u + 1)f''(u)du} = \int_{0}^{3}{(u +
1)d\left\lbrack f'(u) ightbrack}

    = \left. \ (u + 1)f'(u)
ight|_{0}^{3} - \int_{0}^{3}{f'(u)du}

    = 4f'(3) - f'(0) - \left. \ f(u)
ight|_{0}^{3}

    = 4f'(3) - f'(0) - f(3) +
f(0)

    Theo bài ra suy ra

    4f'(3) - f'(0) - f(3) + f(0) =
7

    \Rightarrow 4f'(3) = 7 + f(3) - f(0)
= 4 \Rightarrow f'(3) = 1

    Như vậy f(3) = - 1;f'(3) =
1. Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = 3 là: y = x - 4.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo