Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 14 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha) cắt các trục tọa độ tại A,B,C. Biết trọng tâm của tam giác ABCG( -
1; - 3;2). Mặt phẳng (\alpha) song song với mặt phẳng nào sau đây?

    Hướng dẫn:

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) là giao điểm với ba trục tọa độ.

    Do G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
x_{A} + x_{B} + x_{C} = 3x_{G} \\
y_{A} + y_{B} + y_{C} = 3y_{G} \\
z_{A} + z_{B} + z_{C} = 3z_{G} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = - 9 \\
c = 6 \\
\end{matrix} ight.

    Vậy phương trình mặt phẳng (\alpha)\frac{x}{- 3} + \frac{y}{- 9} + \frac{z}{6} =
1 \Leftrightarrow 6x + 2y - 3z + 18
= 0

    Vậy mặt phẳng song song với (\alpha) trong các đáp án đã cho là 6x + 2y - 3z - 1 = 0.

  • Câu 2: Nhận biết
    Xác định điểm thuộc mặt phẳng

    Trong không gian Oxyz cho mặt phẳng (\alpha):x - 2y + 2z - 3 = 0. Điểm nào sau đây nằm trên mặt phẳng (\alpha)?

    Hướng dẫn:

    Ta thấy tọa độ điểm Q(1;0;1) thỏa mãn phương trình mặt phẳng (\alpha):x -
2y + 2z - 3 = 0 nên điểm Q nằm trên (\alpha).

  • Câu 3: Thông hiểu
    Xác định phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (\alpha)đi qua A(2; - 1;4), B(3;2; - 1) và vuông góc với mặt phẳng (Q):x + y + 2z - 3 = 0. Phương trình mặt phẳng (\alpha) là:

    Hướng dẫn:

    Phương pháp tự luận

    \overrightarrow{AB} = (1;3; -
5), \overrightarrow{n_{Q}} =
(1;1;2)

    Mặt phẳng (\alpha) đi qua A(2; - 1;4) và có vectơ pháp tuyến \left\lbrack
\overrightarrow{AB},\overrightarrow{n_{Q}} \right\rbrack = ( - 10; -
6;8) = - 2(5;3; - 4) có phương trình: 5x + 3y - 4z + 9 = 0.

    Vậy 5x + 3y - 4z + 9 = 0.

    Phương pháp trắc nghiệm

    Do (\alpha)\bot(Q) \Rightarrow
\overrightarrow{n_{\alpha}}.\overrightarrow{n_{Q}} = 0, kiểm tra mp (\alpha)nào có \overrightarrow{n_{\alpha}}.\overrightarrow{n_{Q}}
= 0.

  • Câu 4: Nhận biết
    Tìm phương trình mặt phẳng

    Trong không gian Oxyz, mặt phẳng (P) đi qua điểm M(3; - 1;4), đồng thời vuông góc với giá của vectơ \overrightarrow{a} =
(1;1;2) có phương trình là:

    Hướng dẫn:

    Mặt phẳng (P) nhận vectơ \overrightarrow{a} = (1;1;2) làm vectơ pháp tuyến và đi qua điểm M(3; -
1;4) nên có phương trình là1(x - 3)
- 1(y + 1) + 2(z - 4) = 0

    \Leftrightarrow x - y + 2z - 12 =
0.

  • Câu 5: Nhận biết
    Xác định điều kiện tham số m

    Trong không gian Oxyz, cho hai mặt phẳng (P):2x + 4y + 3z - 5 = 0(Q):mx - ny - 6z + 2\  = \ 0. Giá trị của m, n sao cho (P)//(Q)

    Hướng dẫn:

    Ta có: (P) có vectơ chỉ phương \overrightarrow{u_{(P)}} = (2;4;3), (Q) có vectơ chỉ phương \overrightarrow{u_{(Q)}} = (m; - n; -
6)

    Để hai mặt phẳng song song thì \overrightarrow{u_{(P)}} =
k\overrightarrow{u_{(Q)}} \Leftrightarrow \left\{ \begin{matrix}
m = 2k \\
- n = 4k \\
- 6 = 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = - 2 \\
m = - 4 \\
n = 8 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: m = - 4;n =
8.

  • Câu 6: Nhận biết
    Tìm câu sai

    Chọn khẳng định sai

    Hướng dẫn:

    Câu sai: “Nếu hai đường thẳngAB,CD song song thì vectơ \left\lbrack
\overrightarrow{AB},\overrightarrow{CD} \right\rbrack là một vectơ pháp tuyến của mặt phẳng (ABCD)”.

  • Câu 7: Thông hiểu
    PT mp qua 2 điểm

    Viết phương trình tổng quát của mặt phẳng (P) qua hai điểm A(\,\, - 2,\,\,3,\,\,5);\,\,\,B\left( {\, - 4,\,\, - 2,\,\,3\,} ight) và có một vectơ chỉ phương \overrightarrow a  = \left( {\,2,\,\, - 3,\,\,4\,} ight) .

    Hướng dẫn:

    Theo đề bài ta có: \overrightarrow {AB}  = \left( { - 2, - 5, - 2} ight)

    Như vậy, VTPT của (P) là tích có hướng của 2 vecto chỉ phương \Rightarrow \overrightarrow n  = \left[ {\overrightarrow a ,\overrightarrow {AB} } ight] = 2\left( {13, - 2, - 8} ight)

    Mp (P) đi qua A (-2,3,5) và nhận vecto \vec{n_P}(13, -2, -8) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x + 2} ight)13 + \left( {y - 3} ight)\left( { - 2} ight) + \left( {z - 5} ight)\left( { - 8} ight) = 0

    \Leftrightarrow 13x - 2y - 8z + 72 = 0

  • Câu 8: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian Oxyz, đường thẳng d:\frac{x + 3}{1} = \frac{y - 1}{- 1}
= \frac{z - 5}{2} có một vectơ chỉ phương là:

    Hướng dẫn:

    Đường thẳng (P) có một vectơ chỉ phương là: \overrightarrow{u_{4}} = ( - 1;\
1;\  - 2)

  • Câu 9: Nhận biết
    Viết phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm A(2;3;1)và vectơ \overrightarrow{n} = (1;2; - 3). Viết phương trình mặt phẳng (\alpha) qua A và nhận vectơ \overrightarrow{n} làm vectơ pháp tuyến:

    Hướng dẫn:

    Viết phương trình mặt phẳng qua A(2;3;1) và có vectơ pháp tuyến \overrightarrow{n} = (1;2; - 3)

    \Rightarrow 1.(x - 2) + 2(x - 3) - 3(z -
1) = 0

    \Leftrightarrow x + 2y - 3z - 5 =
0

    Vậy phương trình mặt phẳng cần tìm là: x
+ 2y - 3z - 5 = 0.

  • Câu 10: Nhận biết
    Tìm khẳng định sai

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (\alpha):Ax + By + Cz + D = 0. Tìm khẳng định sai trong các mệnh đề sau:

    Hướng dẫn:

    Khẳng định sai: “A \neq 0,B = 0,C \neq
0,D = 0 khi và chỉ khi (\alpha) song song với mặt phẳng (Oyz).”

  • Câu 11: Nhận biết
    Tìm tọa độ tâm mặt cầu

    Trong không gian toạ độ Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng?

    Hướng dẫn:

    PTTQ của mặt phẳng có dạng Ax + By + Cz +
D = 0, với A^{2} + B^{2} + C^{2}
eq 0 nên ta chọn 2x + 3y + z - 12
= 0.

  • Câu 12: Nhận biết
    Chọn đáp án đúng

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):(m - 1)x + y - 2z + m
= 0(Q):2x - z + 3 = 0. Tìm m để (P) vuông góc với (Q)?

    Hướng dẫn:

    Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là (m - 1;1; -
2).(2;0; - 1) = 0 \Leftrightarrow m = 0.

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, viết phương trình mặt phẳng (P) biết (P) đi qua hai điểm M(0; - 1;0),N( - 1;1;1) và vuông góc với mặt phẳng (Oxz).

    Hướng dẫn:

    Ta có \overrightarrow{MN} = ( -
1;2;1)(Oxz) có một vectơ pháp tuyến là \overrightarrow{j}\  =
(0;1;0)

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n} = \left\lbrack
\overrightarrow{MN};\overrightarrow{j} ightbrack = ( - 1;0; -
1)

    Do đó, (P) có phương trình là - 1(x - 0) + 0(y + 1) - 1(z - 0) = 0
\Leftrightarrow x + z = 0.

  • Câu 14: Nhận biết
    Tìm phương trình mặt phẳng

    Trong không gian Oxyz, tìm phương trình mặt phẳng (\alpha) cắt ba trục Ox,Oy,Oz lần lượt tại ba điểm A( - 3;0;0),B(0;4;0),C(0;0; -
2)?

    Hướng dẫn:

    Phương trình mặt phẳng (\alpha): \frac{x}{- 3} + \frac{y}{4} + \frac{z}{- 2}
= 1

    \Leftrightarrow 4x - 3y + 6z = -
12

    \Leftrightarrow 4x - 3y + 6z + 12 =
0

  • Câu 15: Nhận biết
    Giao điểm 3 mp

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y + 3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Tọa độ của điểm A đó là:

    Hướng dẫn:

     Tọa độ giao điểm của ba mặt phẳng là nghiệm của hệ phương trình :

    \left\{ \begin{array}{l}x + 2y - z - 6 = 0\left( 1 ight)\\2x - y + 3z + 13 = 0\left( 2 ight)\\3x - 2y + 3z + 16 = 0\left( 3 ight)\end{array} ight.

    Giải (1),(2) tính x,y theo z được x =  - z - 4;y = z + 5.

    Thế vào phương trình (3) được z=-3 , từ đó có x =  - 1,y = 2

    Vậy  A(-1,2,-3).

  • Câu 16: Nhận biết
    Viết phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(5;1;3),B(1;2;6),C(5;0;4),D(4;0;6). Viết phương trình mặt phẳng chứa AB và song song với CD.

    Hướng dẫn:

    +) \overrightarrow{AB} = ( - 4;1;3),\ \
\overrightarrow{CD} = ( - 1;0;2) \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{CD} \right\rbrack =
(2;5;1).

    +) Mặt phẳng đi quaA có VTPT \overrightarrow{n} = (2;5;1)có phương trình là: 2x + 5y + z - 18 =
0.

    +) Thay tọa độ điểm Cvào phương trình mặt phẳng thấy không thỏa mãn.

    Vậy phương trình mặt phẳng thỏa mãn yêu cầu bài toán là: 2x + 5y + z - 18 = 0

  • Câu 17: Nhận biết
    Chọn kết luận đúng

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y +
3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Chọn kết luận đúng?

    Hướng dẫn:

    Tọa độ điểm A là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x + 2y - z - 6 = 0 \\
2x - y + 3z + 13 = 0 \\
3x - 2y + 3z + 16 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A( - 1;2; - 3)

  • Câu 18: Thông hiểu
    Chọn phương án thích hợp

    Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng (P) đi qua hai điểm A(1;1;1), B(0;2;2) đồng thời cắt các tia Ox,Oy lần lượt tại hai điểm M,N (không trùng với gốc tọa độO) sao cho OM
= 2ON

    Hướng dẫn:

    Gọi M(a;0;0),N(0;b;0) lần lượt là giao điểm của (P) với các tia Ox,Oy(a,b > 0)

    Do OM = 2ON \Leftrightarrow a = 2b
\Rightarrow \overrightarrow{MN}( - 2b;b;0) = - b(2; - 1;0) .

    Đặt \overrightarrow{u}(2; -
1;0)

    Gọi \overrightarrow{n} là môt vectơ pháp tuyến của mặt phẳng (P)
\Rightarrow \overrightarrow{n} = \left\lbrack
\overrightarrow{u},\overrightarrow{AB} \right\rbrack = ( -
1;2;1)

    Phương trình măt phẳng (P):x - 2y - z + 2
= 0.

  • Câu 19: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là:

    Hướng dẫn:

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là: z = 0

  • Câu 20: Nhận biết
    Tìm tọa độ giao điểm

    Trong không gian với hệ trục tọa độ Oxyz. Tọa độ giao điểm Mcủa mặt phẳng (P):2x + 3y + z - 4 = 0 với trục Ox là?

    Hướng dẫn:

    Gọi M(a,0,0) là điểm thuộc trục Ox. Điểm M \in (P) \Rightarrow 2a - 4 = 0 \Leftrightarrow a
= 2 .

    Vậy M(2,0,0) là giao điểm của (P),Ox.

    Phương pháp trắc nghiệm

    Giải hệ PT gồm PT của (P) và của (Ox): \left\{ \begin{matrix}
2x + 3y + z - 4 = 0 \\
y = 0 \\
z = 0 \\
\end{matrix} \right.; bấm máy tính.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo