Trong không gian với hệ tọa độ , cho mặt phẳng
. Vectơ nào dưới đây là một vectơ pháp tuyến của
?
Mặt phẳng có vectơ pháp tuyến
Mặt phẳng có vectơ pháp tuyến là:
Trong không gian với hệ tọa độ , cho mặt phẳng
. Vectơ nào dưới đây là một vectơ pháp tuyến của
?
Mặt phẳng có vectơ pháp tuyến
Mặt phẳng có vectơ pháp tuyến là:
Trong không gian với hệ tọa độ , cho mặt phẳng
. Điểm nào dưới đây không thuộc mặt phẳng
?
Điểm không thuộc mặt phẳng
.
Trong không gian với hệ tọa độ , cho hai mặt phẳng
. Khoảng cách giữa hai mặt phẳng
và
là
Lấy .
Vì nên khoảng cách giữa hai mặt phẳng (P) và (Q) bằng khoảng cách từ điểm M đến mặt phẳng (Q).
.
Phương trình tổng quát của mặt phẳng qua điểm
và có cặp vectơ chỉ phương
là:
Vectơ pháp tuyến của là tích có hướng của 2 vecto chỉ phương
có thể thay thế bởi
Phương trình có dạng
Vậy
Trong không gian với hệ tọa độ , tính thể tích tứ diện
, biết
lần lượt là giao điểm của mặt phẳng
với trục
.
Theo giả thiết ta có: suy ra
Trong không gian với hệ trục toạ độ ,cho 2 đường thẳng
. Viết phương trình mặt phẳng
vuông góc với
,cắt
tại
và cắt
tại
(có tọa nguyên) sao cho
.
Do mặt phẳng vuông góc với
.
Mặt phẳng cắt
tại
, cắt
tại
.
Vậy mặt phẳng .
Trong không gian , cho
. Nếu ba vectơ
đồng phẳng thì:
Ta có:
Ba vectơ đồng phẳng
Trong không gian , phương trình của mặt phẳng
là:
Trong không gian , phương trình của mặt phẳng
là:
Trong không gian với hệ toạ độ . Phương trình mặt phẳng (P) đi qua điểm
và nhận
là VTPT có phương trình là:
Mặt phẳng (P) đi qua điểm và nhận
là VTPT có phương trình là:
.
Vậy .
Phương pháp trắc nghiệm (nên có)
Từ tọa độ VTPT suy ra hệ số B=0, vậy loại ngay đáp án và
Chọn 1 trong 2 PT còn lại bằng cách thay tọa độ điểm A vào.
Trong không gian , phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm
và song song với mặt phẳng
?
Mặt phẳng có phương trình là
nên có một vectơ pháp tuyến là
.
Phương trình của mặt phẳng cần tìm có dạng
.
Chọn khẳng định đúng
Câu đúng là: Nếu hai mặt phẳng song song thì hai vectơ pháp tuyến tương ứng cùng phương
Trong các khẳng định sau, khẳng định nào sai?
Ta có:
Vậy khẳng định sai là: .
Trong không gian với hệ tọa độ , viết phương trình mặt phẳng đi qua ba điểm
và
.
Ta có:
Mặt phẳng đi qua điểm
và nhận
làm vectơ pháp tuyến có phương trình là:
Trong không gian với hệ toạ độ . Mặt phẳng (P) đi qua các điểm
,
,
có phương trình là:
Phương pháp tự luận
Theo công thức phương trình mặt chắn ta có:
.
Vậy .
Phương pháp trắc nghiệm
Nhập phương trình mặt phẳng (P) vào máy tính, sau đó dùng hàm CALC và nhập tọa độ của các điểm vào. Nếu tất cả các điểm đều cho kết quả bằng 0 thì đó đó là mặt phẳng cần tìm. Chỉ cần 1 điểm làm cho phương trình khác 0 đều loại.
Trong không gian với hệ trục tọa độ , khoảng cách từ
đến mặt phẳng
là
Khoảng cách từ điểm đến mặt phẳng
là:
Trong không gian với hệ toạ độ , cho mặt phẳng
. Tìm khẳng định đúng trong các mệnh đề sau:
Khẳng định đúng là: “”
Trong không gian , cho hình bình hành
với
. Diện tích hình bình hành
bằng:
Gọi là diện tích hình bình hành
khi đó
Mà
Vậy diện tích hình bình hành bằng 2.
Trong không gian , tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm đến mặt phẳng
là:
Trong hệ tọa độ , cho hai đường thẳng chéo nhau
và
. Phương trình mặt phẳng
chứa
và song song với
là
Phương trình tham số
đi qua điểm
và có vectơ chỉ phương
Phương trình tham số
đi qua điểm
và có vectơ chỉ phương
Vì mặt phẳng chứa
và song song với
, ta có:
Mặt phẳng đi qua
và vectơ pháp tuyến
nên phương trình mặt phẳng
hay
.
Phương trình tổng quát của mặt phẳng đi qua và song song với vectơ
là:
Theo đề bài, ta có:
Chọn làm 1 vectơ pháp tuyến.
Phương trình mặt phẳng cần tìm có dạng :
Mà mp lại qua A nên
Phương trình cần tìm là: .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: