Trong không gian , mặt phẳng
. Một véc tơ pháp tuyến của
có tọa độ là?
Mặt phẳng có VTPT là:
Trong không gian , mặt phẳng
. Một véc tơ pháp tuyến của
có tọa độ là?
Mặt phẳng có VTPT là:
Trong không gian với hệ toạ độ . Điểm nào sau đây thuộc mặt phẳng (P)
Phương pháp tự luận
Thay tọa độ các điểm vào phương trình mặt phẳng, nếu điểm nào làm cho vế trái bằng 0 thì đó là điểm thuộc mặt phẳng.
Phương pháp trắc nghiệm
Nhập phương trình mặt phẳng (P) vào máy tính dạng sau: , sau đó dùng hàm CALC và nhập tọa độ
của các điểm vào. Nếu bằng 0 thì điểm đó thuộc mặt phẳng.
Trong không gian , cho
. Nếu ba vectơ
đồng phẳng thì:
Ta có:
Ba vectơ đồng phẳng
Trong không gian với hệ toạ độ , viết phương trình mặt phẳng
đi qua hai điểm
,
đồng thời cắt các tia
lần lượt tại hai điểm
(không trùng với gốc tọa độ
) sao cho
Gọi lần lượt là giao điểm của
với các tia
Do .
Đặt
Gọi là môt vectơ pháp tuyến của mặt phẳng
Phương trình măt phẳng .
Trong không gian cho mặt phẳng
. Điểm nào sau đây nằm trên mặt phẳng
?
Ta thấy tọa độ điểm thỏa mãn phương trình mặt phẳng
nên điểm
nằm trên
.
Trong không gian với hệ toạ độ , cho mặt phẳng (P) có phương trình
. Mặt phẳng (P) có một vectơ pháp tuyến là:
Mặt phẳng (P) có phương trình có một vectơ pháp tuyến
Trong không gian với hệ tọa độ ; cho điểm
. Gọi
là hình chiếu vuông góc của điểm
trên ba trục tọa độ
. Viết phương trình mặt phẳng
?
Có là hình chiếu của
lên các trục tọa độ nên mặt phẳng cần tìm là
Trong không gian với hệ tọa độ , cho hai mặt phẳng
lần lượt có phương trình là
và cho điểm
. Tìm phương trình mặt phẳng
đi qua điểm
và đồng thời vuông góc với hai mặt phẳng
?
Ta có:
Do vuông góc với
nên
Chọn
Hơn nữa đi qua
nên có phương trình là:
Trong không gian với hệ toạ độ , gọi
là mặt phẳng qua các hình chiếu của
lên các trục tọa độ. Phương trình của mặt phẳng
là:
Gọi lần lượt là hình chiếu vuông góc của điểm A trên trục
.
Ta có: ,
,
.
Phương trình mặt phẳng qua
,
,
là:
.
Vậy .
Trong không gian , phương trình của mặt phẳng
là:
Trong không gian , phương trình của mặt phẳng
là:
Trong không gian với hệ tọa độ , cho mặt phẳng
, véc tơ nào trong các vectơ được cho dưới đây là một vectơ pháp tuyến của
?
Ta có phương trình mặt phẳng nên có một vectơ pháp tuyến của mặt phẳng
là:
Mặt khác cùng phương với
Do đó là một vectơ pháp tuyến của
.
Trong không gian với hệ trục toạ độ , cho mặt phẳng
. Khẳng định nào sau đây sai?
Do .
Trong không gian , phương trình nào sau đây là phương trình của mặt phẳng?
Phương trình tổng quát của mặt phẳng là: .
Trong không gian với hệ toạ độ , cho
,
,
,
. Khi đó phương trình mặt phẳng
là:
Phương trình mặt phẳng cần tìm là:
.
Trong không gian với hệ tọa độ , cho hai mặt phẳng
và điểm
. Tính khoảng cách
từ
đến
.
Khoảng cách từ M đến mặt phẳng (P) là:
Ba mặt phẳng cắt nhau tại điểm A.Tọa độ của A là:
Tọa độ của A là nghiệm của hệ phương trình :
Giải (1),(2) tính x,y theo z được
Thế vào phương trình (3) được , từ đó có
.
Vậy .
Trong không gian với hệ trục tọa độ , cho tứ diện
có các đỉnh
,
,
và
. Phương trình mặt phẳng
đi qua
đồng thời cách đều
Trường hợp 1:
Trường hợp 2: đi qua trung điểm
của
.

Trong không gian với hệ tọa độ , cho
. Viết phương trình mặt phẳng trung trực của
.
Mặt phẳng trung trực nhận
làm vectơ pháp tuyến và đi qua trung điểm
của
nên ta có phương trình mặt phẳng
là:
.
Trong không gian với hệ toạ độ , cho mặt phẳng
. Tìm khẳng định sai trong các mệnh đề sau:
Khẳng định sai: “ khi và chỉ khi
song song với mặt phẳng
.”
Trong không gian , viết phương trình của mặt phẳng
đi qua điểm
và vuông góc với trục
.
Vì mặt phẳng (P) vuông góc với Ox nên có một vectơ pháp tuyến là vectơ .
Phương trình tổng quát của mặt phẳng (P) là
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: