Trong không gian với hệ tọa độ , cho hai điểm
. Phương trình mặt phẳng
đi qua
và vuông góc với đường thẳng
là:
Ta có: là vectơ pháp tuyến của mặt phẳng
Phương trình mặt phẳng là:
Trong không gian với hệ tọa độ , cho hai điểm
. Phương trình mặt phẳng
đi qua
và vuông góc với đường thẳng
là:
Ta có: là vectơ pháp tuyến của mặt phẳng
Phương trình mặt phẳng là:
Trong không gian , viết phương trình mặt phẳng
biết
đi qua hai điểm
và vuông góc với mặt phẳng
.
Ta có và
có một vectơ pháp tuyến là
Mặt phẳng có một vectơ pháp tuyến là
Do đó, có phương trình là
.
Chọn khẳng định sai
Câu sai: “Nếu là một vectơ pháp tuyến của mặt phẳng
thì
cũng là một vectơ pháp tuyến của mặt phẳng
.”
Trong không gian với hệ trục toạ độ . Phương trình mặt phẳng qua
và song song với mặt phẳng
là:
Phương pháp tự luận
Mặt phẳng qua và có vectơ pháp tuyến
có phương trình:
.
Phương pháp trắc nghiệm
Mặt phẳng qua và song song với
có phương trình
.
Trong không gian , tìm phương trình mặt phẳng
cắt ba trục
lần lượt tại ba điểm
?
Phương trình mặt phẳng :
Trong không gian cho mặt phẳng
. Điểm nào sau đây nằm trên mặt phẳng
?
Ta thấy tọa độ điểm thỏa mãn phương trình mặt phẳng
nên điểm
nằm trên
.
Trong không gian , mặt phẳng
có một vectơ pháp tuyến là:
Mặt phẳng có một vectơ pháp tuyến là:
.
Trong không gian với hệ toạ độ , cho ba điểm
,
,
. Phương trình mặt phẳng
là:
Phương pháp tự luận
,
qua
và có vectơ pháp tuyến
Phương pháp trắc nghiệm
Sử dụng MTBT tính tích có hướng.
Hoặc thay tọa độ cả 3 điểm A, B, C vào mặt phẳng xem có thỏa hay không?
Trong không gian với hệ toạ độ , viết phương trình mặt phẳng
đi qua hai điểm
,
đồng thời cắt các tia
lần lượt tại hai điểm
(không trùng với gốc tọa độ
) sao cho
Gọi lần lượt là giao điểm của
với các tia
Do .
Đặt
Gọi là môt vectơ pháp tuyến của mặt phẳng
Phương trình măt phẳng .
Trong không gian với hệ toạ độ . Phương trình mặt phẳng (P) đi qua điểm
và nhận
là VTPT có phương trình là:
Mặt phẳng (P) đi qua điểm và nhận
là VTPT có phương trình là:
.
Vậy .
Phương pháp trắc nghiệm (nên có)
Từ tọa độ VTPT suy ra hệ số B=0, vậy loại ngay đáp án và
Chọn 1 trong 2 PT còn lại bằng cách thay tọa độ điểm A vào.
Trong không gian với hệ tọa độ , cho điểm
và vectơ
. Viết phương trình mặt phẳng
đi qua điểm
và có vectơ pháp tuyến
.
Phương trình tổng quát của mặt phẳng (P) có dạng:
Trong không gian , viết phương trình của mặt phẳng
đi qua điểm
và vuông góc với trục
.
Vì mặt phẳng (P) vuông góc với Ox nên có một vectơ pháp tuyến là vectơ .
Phương trình tổng quát của mặt phẳng (P) là
.
Trong không gian với hệ tọa độ , tính thể tích tứ diện
, biết
lần lượt là giao điểm của mặt phẳng
với trục
.
Theo giả thiết ta có: suy ra
Trong không gian với hệ trục tọa độ , gọi
là mặt phẳng chứa trục
và tạo với mặt phẳng
góc
. Phương trình mặt phẳng
là:
+) Mặt phẳng chứa trục
nên có dạng:
.
+) Mặt phẳng tạo với mặt phẳng
góc
nên
.
Phương trình mặt phẳng là:
Trong không gian với hệ tọa độ , viết phương trình mặt phẳng đi qua ba điểm
và
.
Ta có:
Mặt phẳng đi qua điểm
và nhận
làm vectơ pháp tuyến có phương trình là:
Trong không gian với hệ tọa độ , cho mặt phẳng
đi qua điểm
và vuông góc với hai mặt phẳng
và
. Phương trình của mặt phẳng
là
Ta có các vectơ pháp tuyến của (P) và (Q) là
Theo giả thiết mặt phẳng (α) vuông góc với (P) và (Q) do đó
Suy ra, phương trình mặt phẳng (α) có dạng
Hay
Trong không gian với hệ tọa độ , cho hai mặt phẳng
. Chọn khẳng định đúng.
Hai mặt phẳng có vectơ pháp tuyến lần lượt là
Ta có
⇒ .
Trong các khẳng định sau, khẳng định nào sai?
Ta có:
Vậy khẳng định sai là: .
Trong không gian với hệ toạ độ , cho mặt phẳng
. Vectơ nào là vectơ pháp tuyến của mặt phẳng
?
Vectơ nào là vectơ pháp tuyến của mặt phẳng có tọa độ là
hoặc
.
Trong không gian với hệ tọa độ , cho hai mặt phẳng
và
. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?
Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: