Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 14 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định điểm thuộc mặt phẳng

    Trong không gian Oxyz cho mặt phẳng (\alpha):x - 2y + 2z - 3 = 0. Điểm nào sau đây nằm trên mặt phẳng (\alpha)?

    Hướng dẫn:

    Ta thấy tọa độ điểm Q(1;0;1) thỏa mãn phương trình mặt phẳng (\alpha):x -
2y + 2z - 3 = 0 nên điểm Q nằm trên (\alpha).

  • Câu 2: Nhận biết
    Tìm câu sai

    Trong không gian với hệ trục toạ độ Oxyz, cho điểm M(2; - 1;3) và các mặt phẳng: (\alpha):x - 2 = 0, (\beta):y + 1 = 0, (\gamma):z - 3 = 0. Tìm khẳng định sai.

    Hướng dẫn:

    Câu sai là: “(\alpha)//Ox

  • Câu 3: Nhận biết
    Viết phương trình mặt phẳng trung trực

    Trong không gian với hệ tọa độ Oxyz, cho M(1; - 1;2),N(3;1; - 4). Viết phương trình mặt phẳng trung trực của MN.

    Hướng dẫn:

    Mặt phẳng trung trực MN nhận \frac{1}{2}\overrightarrow{MN} = (1;1; -
3) làm vectơ pháp tuyến và đi qua trung điểm I(2;0; - 1) của MN nên ta có phương trình mặt phẳng MN là: x + y
- 3z - 5 = 0.

  • Câu 4: Thông hiểu
    Tìm mặt phẳng cách đều hai mặt phẳng cho trước

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P):x + y - 2z + 5 = 0(Q): - x - y + 2z + 9 = 0. Mặt phẳng nào sau đây cách đều hai mặt phẳng (P) và (Q)?

    Hướng dẫn:

    Gọi (R) là mặt phẳng cách đều hai mặt phẳng (P) và (Q) thì (P)//(Q)//(R)

    Do đó (R) có dạng x + y − 2z + m = 0.

    Gọi A(1; 0; 3) ∈ (P) , B(1; 0; −4) ∈ (Q).

    Khi đó trung điểm M của đoạn AB nằm trên (R), tức M\left( 1;0; - \frac{1}{2} ight) \in
(R).

    Suy ra 1 + 0 - 2.\left( - \frac{1}{2}
ight) + m = 0 \Leftrightarrow m = - 2.

    Vậy (R): x + y − 2z − 2 = 0 hay (R): −x − y + 2z + 2 = 0.

  • Câu 5: Nhận biết
    Tìm khoảng cách từ A đến (Oxy)

    Trong không gian với hệ trục tọa độ Oxyz, khoảng cách từ A( - 2;1; - 6) đến mặt phẳng (Oxy)

    Hướng dẫn:

    Khoảng cách từ điểm A đến mặt phẳng (Oxy):z = 0 là:

    d\left( A;(Oxy) ight) = \frac{| -
6|}{\sqrt{1}} = 6

  • Câu 6: Nhận biết
    Chọn kết luận đúng

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y +
3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Chọn kết luận đúng?

    Hướng dẫn:

    Tọa độ điểm A là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x + 2y - z - 6 = 0 \\
2x - y + 3z + 13 = 0 \\
3x - 2y + 3z + 16 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A( - 1;2; - 3)

  • Câu 7: Nhận biết
    Tìm khẳng định đúng

    Chọn khẳng định đúng

    Hướng dẫn:

    Câu đúng là: Nếu hai mặt phẳng song song thì hai vectơ pháp tuyến tương ứng cùng phương

  • Câu 8: Thông hiểu
    Tìm khẳng định đúng

    Trong không gian với hệ trục toạ độ Oxyz, cho điểm A( - 1;2;1) và hai mặt phẳng (\alpha):2x + 4y - 6z - 5 = 0(\beta):x + 2y - 3z = 0. Tìm khẳng định đúng?

    Hướng dẫn:

    \overrightarrow{n_{\alpha}} = (2;4; -
6), \overrightarrow{n_{\beta}} =
(1;2; - 3) \Rightarrow
(\alpha)//(\beta)

    A \in (\beta)

  • Câu 9: Nhận biết
    Tìm câu sai

    Chọn khẳng định sai

    Hướng dẫn:

    Câu sai: “Nếu hai đường thẳngAB,CD song song thì vectơ \left\lbrack
\overrightarrow{AB},\overrightarrow{CD} \right\rbrack là một vectơ pháp tuyến của mặt phẳng (ABCD)”.

  • Câu 10: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):2x - y + z - 1 = 0. Vectơ nào là vectơ pháp tuyến của mặt phẳng (P)?

    Hướng dẫn:

    Vectơ nào là vectơ pháp tuyến của mặt phẳng (P) có tọa độ là (2; - 1;1) hoặc ( - 2;1; - 1).

  • Câu 11: Nhận biết
    Tìm mặt phẳng (P)

    Trong không gian Oxyz, hãy viết phương trình của mặt phẳng (P) đi qua điểm M(0; - 1;0) và vuông góc với đường thẳng OM.

    Hướng dẫn:

    Mặt phẳng (P) đi qua điểm M(0; -
1;0) và có một véc-tơ pháp tuyến là \overrightarrow{OM} = (0; - 1;0) nên có phương là:

    0(y - 0) + ( - 1)(y + 1) + 0(z - 0) = 0
\Leftrightarrow y + 1 = 0.

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, gọi (P)là mặt phẳng chứa trục Ox và vuông góc với mặt phẳng (Q):x + y + z - 3 = 0. Phương trình mặt phẳng (P) là:

    Hướng dẫn:

    +) Trục Ox véctơ đơn vị \overrightarrow{i} = (1;0;0).

    Mặt phẳng (Q) có VTPT {\overrightarrow{n}}_{(Q)} = (1;1;1).

    Mặt phẳng (P) chứa trục Ox và vuông góc với (Q):x + y + z - 3 = 0nên (P) có VTPT \overrightarrow{n} = \left\lbrack
\overrightarrow{i},\overrightarrow{n_{(Q)}} \right\rbrack = (0; -
1;1).

    Phương trình mặt phẳng (P) là: y - z = 0.

  • Câu 13: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ toạ độ Oxyz. Mặt phẳng (P) đi qua các điểm A( - 1;0;0), B(0;2;0), C(0;0; - 2) có phương trình là:

    Hướng dẫn:

    Phương pháp tự luận

    Theo công thức phương trình mặt chắn ta có: \frac{x}{- 1} + \frac{y}{2} + \frac{z}{- 2} =
1

    \Leftrightarrow - 2x + y - z - 2 =
0.

    Vậy - 2x + y - z - 2 = 0.

    Phương pháp trắc nghiệm

    Nhập phương trình mặt phẳng (P) vào máy tính, sau đó dùng hàm CALC và nhập tọa độ (x;y;z)của các điểm vào. Nếu tất cả các điểm đều cho kết quả bằng 0 thì đó đó là mặt phẳng cần tìm. Chỉ cần 1 điểm làm cho phương trình khác 0 đều loại.

  • Câu 14: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là:

    Hướng dẫn:

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là: z = 0

  • Câu 15: Nhận biết
    Phương trình tổng quát

    Phương trình tổng quát của mặt phẳng (\alpha) qua điểm B (3, 4, -5) và có cặp vectơ chỉ phương \overrightarrow a  = \left( {3,1, - 1} ight),\,\,\,\overrightarrow b  = \left( {1, - 2,1} ight)  là:

    Hướng dẫn:

    Vectơ pháp tuyến của (\alpha) là tích có hướng của 2 vecto chỉ phương \overrightarrow n  = \left[ {\overrightarrow a \overrightarrow {,b} } ight] = \left( { - 1, - 4, - 7} ight) có thể thay thế bởi \overrightarrow n  = \left( {1,4,7} ight)

    Phương trình  (\alpha) có dạng x + 4y + 7z + D = 0

    B \in \left( \alpha  ight) \Leftrightarrow 3 + 16 - 35 + D = 0 \Leftrightarrow D = 16

    Vậy (\alpha): x + 4y +7z +16 = 0

  • Câu 16: Thông hiểu
    Tìm phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz cho các điểm A(0;1;2),B(2; - 2;1),C( - 2;0;1). Phương trình mặt phẳng đi qua A và vuông góc với BC là:

    Hướng dẫn:

    Ta có: \overrightarrow{n} =
\frac{1}{2}\overrightarrow{BC} = ( - 2;1;0)

    Vậy phương trình mặt phẳng đi qua A và vuông góc với BC là:

    - 2(x - 0) + 1(y - 1) = 0

    \Leftrightarrow - 2x + y - 1 =
0

    \Leftrightarrow 2x - y + 1 =
0

  • Câu 17: Nhận biết
    Viết phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(5;1;3),B(1;2;6),C(5;0;4),D(4;0;6). Viết phương trình mặt phẳng chứa AB và song song với CD.

    Hướng dẫn:

    +) \overrightarrow{AB} = ( - 4;1;3),\ \
\overrightarrow{CD} = ( - 1;0;2) \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{CD} \right\rbrack =
(2;5;1).

    +) Mặt phẳng đi quaA có VTPT \overrightarrow{n} = (2;5;1)có phương trình là: 2x + 5y + z - 18 =
0.

    +) Thay tọa độ điểm Cvào phương trình mặt phẳng thấy không thỏa mãn.

    Vậy phương trình mặt phẳng thỏa mãn yêu cầu bài toán là: 2x + 5y + z - 18 = 0

  • Câu 18: Nhận biết
    Tính thể tích tứ diện

    Trong không gian với hệ tọa độ Oxyz, tính thể tích tứ diện OABC, biết A;B;C lần lượt là giao điểm của mặt phẳng 2x - 3y + 4z + 24 = 0 với trục Ox,Oy,Oz.

    Hướng dẫn:

    Theo giả thiết ta có: A( -
12;0;0),B(0;8;0),C(0;0; - 6) suy ra

    V_{OABC} = \frac{1}{6}OA.OB.OC =
\frac{1}{6}.12.8.6 = 96

  • Câu 19: Nhận biết
    Xác định một vectơ pháp tuyến của mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 2y + z + 2017 = 0, véc tơ nào trong các vectơ được cho dưới đây là một vectơ pháp tuyến của (P)?

    Hướng dẫn:

    Ta có phương trình mặt phẳng (P):2x - 2y
+ z + 2017 = 0 nên có một vectơ pháp tuyến của mặt phẳng (P) là: \overrightarrow{n_{(P)}} = (2; - 2;1)

    Mặt khác \overrightarrow{n} = (4; -
4;2) cùng phương với \overrightarrow{n_{(P)}} = (2; - 2;1)

    Do đó \overrightarrow{n} = (4; -
4;2) là một vectơ pháp tuyến của (P):2x - 2y + z + 2017 = 0.

  • Câu 20: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz cho A(2;0;0),B(0; - 2;0),C(0;0; - 1). Viết phương trình mặt phẳng (ABC)?

    Hướng dẫn:

    Phương trình mặt phẳng (ABC)\frac{x}{2} + \frac{y}{- 2} + \frac{z}{-
1} = 1

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo