Phương trình tổng quát của mặt phẳng đi qua và song song với vectơ
là:
Theo đề bài, ta có:
Chọn làm 1 vectơ pháp tuyến.
Phương trình mặt phẳng cần tìm có dạng :
Mà mp lại qua A nên
Phương trình cần tìm là: .
Phương trình tổng quát của mặt phẳng đi qua và song song với vectơ
là:
Theo đề bài, ta có:
Chọn làm 1 vectơ pháp tuyến.
Phương trình mặt phẳng cần tìm có dạng :
Mà mp lại qua A nên
Phương trình cần tìm là: .
Trong không gian với hệ toạ độ , cho ba điểm
. Tính khoảng cách
từ gốc toạ độ
đến mặt phẳng
?
Phương trình tổng quát của mặt phẳng có dạng:
Khoảng cách từ gốc tọa độ đến
là:
Trong không gian , cho điểm
và mặt phẳng
. Mặt phẳng
đi qua
và song song với mặt phẳng
có phương trình là:
Do mặt phẳng (Q) song song với mặt phẳng (P) nên có vectơ pháp tuyến là
Phương trình mặt phẳng (Q) là:
Trong không gian với hệ tọa độ , cho mặt phẳng
và hai điểm
. Gọi
là mặt phẳng qua
và vuông góc với
. Phương trình nào là phương trình của mặt phẳng
?
Vì là mặt phẳng đi qua A, B và vuông góc với
nên mặt phẳng
nhận
làm hai vectơ chỉ phương.
Vectơ pháp tuyến của mặt phẳng là
Phương trình mặt phẳng
Cho tứ diện có
. Phương trình tổng quát của mặt phẳng chứa AC và song song với BD là:
Theo đề bài, ta có các vecto là
Có thể chọn làm một vectơ pháp tuyến cho mặt phẳng.
Phương trình mặt phẳng này có dạng .
Mặt khác, điểm A thuộc mặt phẳng nên ta thay tọa độ điểm A vào phương trình đường thẳng trên:
Vậy phương trình cần tìm .
Trong không gian , cho đường thẳng
đi qua điểm
và có véc-tơ chỉ phương là
. Phương trình nào sau đây không phải là của đường thẳng
?
Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình .
Trong không gian , viết phương trình của mặt phẳng
đi qua điểm
và vuông góc với trục
.
Vì mặt phẳng (P) vuông góc với Ox nên có một vectơ pháp tuyến là vectơ .
Phương trình tổng quát của mặt phẳng (P) là
.
Trong không gian , cho mặt phẳng
. Tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm M đến mặt phẳng (P) là:
Trong không gian , cho ba điểm
. Phương trình nào dưới đây là phương trình mặt phẳng
?
Phương trình đoạn chắn của mặt phẳng là:
Trong không gian với hệ toạ độ . Điểm nào sau đây thuộc mặt phẳng (P)
Phương pháp tự luận
Thay tọa độ các điểm vào phương trình mặt phẳng, nếu điểm nào làm cho vế trái bằng 0 thì đó là điểm thuộc mặt phẳng.
Phương pháp trắc nghiệm
Nhập phương trình mặt phẳng (P) vào máy tính dạng sau: , sau đó dùng hàm CALC và nhập tọa độ
của các điểm vào. Nếu bằng 0 thì điểm đó thuộc mặt phẳng.
Trong không gian với hệ tọa độ , cho hai mặt phẳng
. Mặt phẳng
vuông góc với cả
và
đồng thời cắt trục
tại điểm có hoành độ bằng
. Phương trình của mặt phẳng
là:
Ta có: (P) có vectơ pháp tuyến , (Q) có vectơ pháp tuyến
.
Vì mặt phẳng (α) vuông góc với cả (P) và (Q) nên (α) có một vectơ pháp tuyến là
Vì mặt phẳng (α) cắt trục Ox tại điểm có hoành độ bằng 3 nên (α) đi qua điểm M(3; 0; 0).
Vậy (α) đi qua điểm M(3; 0; 0) và có vectơ pháp tuyến nên (α) có phương trình
.
Trong không gian với hệ tọa độ , cho điểm
và vectơ
. Viết phương trình mặt phẳng
đi qua điểm
và có vectơ pháp tuyến
.
Phương trình tổng quát của mặt phẳng (P) có dạng:
Trong không gian , phương trình nào sau đây là phương trình của mặt phẳng?
Phương trình tổng quát của mặt phẳng là: .
Trong không gian với hệ tọa độ , cho
. Viết phương trình mặt phẳng trung trực của
.
Mặt phẳng trung trực nhận
làm vectơ pháp tuyến và đi qua trung điểm
của
nên ta có phương trình mặt phẳng
là:
.
Trong không gian Oxyz, cho điểm và vectơ
. Viết phương trình mặt phẳng
qua A và nhận vectơ
làm vectơ pháp tuyến:
Viết phương trình mặt phẳng qua và có vectơ pháp tuyến
Vậy phương trình mặt phẳng cần tìm là: .
Trong không gian với hệ trục tọa độ , cho mặt phẳng
. Mặt phẳng
có một vectơ pháp tuyến là
Mặt phẳng có một vectơ pháp tuyến là
.
Trong các khẳng định sau, khẳng định nào sai?
Ta có:
Vậy khẳng định sai là: .
Trong không gian với hệ trục tọa độ , cho hai mặt phẳng có phương trình
và mặt cầu
. Mặt phẳng
vuông với mặt phẳng
đồng thời tiếp xúc với mặt cầu
.
Mặt cầu có tâm
và bán kính
Gọi là một vectơ pháp tuyến của mặt phẳng
Ta có :
Lúc đó mặt phẳng có dạng :
.
Do mặt phẳng tiếp xúc với mặt cầu
Vậy phương trình mặt phẳng :
hoặc
.
Trong không gian với hệ toạ độ . Mặt phẳng (P) là
có phương trình song song với:
Mặt phẳng (P) là có phương trình song song với trục Oy.
Trong không gian với hệ toạ độ . Phương trình mặt phẳng (P) đi qua điểm
và nhận
là VTPT có phương trình là:
Mặt phẳng (P) đi qua điểm và nhận
là VTPT có phương trình là:
.
Vậy .
Phương pháp trắc nghiệm (nên có)
Từ tọa độ VTPT suy ra hệ số B=0, vậy loại ngay đáp án và
Chọn 1 trong 2 PT còn lại bằng cách thay tọa độ điểm A vào.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: