Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 14 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Phương trình tổng quát

    Phương trình tổng quát của mặt phẳng đi qua A(2,-1,3),  B (3, 1, 2) và song song với vectơ \overrightarrow a  = \left( {3, - 1, - 4} ight) là:

    Hướng dẫn:

    Theo đề bài, ta có: \overrightarrow {AB}  = \left( {1,2, - 1} ight);\left[ {\overrightarrow {AB} \overrightarrow {,a} } ight] = \overrightarrow n  = \left( { - 9,1, - 7} ight)

    Chọn \overrightarrow n  = \left( {9, - 1,7} ight) làm 1 vectơ pháp tuyến.

    Phương trình mặt phẳng cần tìm có dạng : 9x - y + 7z + D = 0

    Mà mp lại qua A nên 9.2 - ( - 1) + 7.3 + D = 0 \Leftrightarrow D =  - 40

    Phương trình cần tìm là: 9x - y + 7z - 40 = 0.

  • Câu 2: Thông hiểu
    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm M(1;0;0),N(0; - 2;0),P(0;0;1). Tính khoảng cách h từ gốc toạ độ O đến mặt phẳng (MNP)?

    Hướng dẫn:

    Phương trình tổng quát của mặt phẳng (MNP) có dạng:

    \frac{x}{1} + \frac{y}{- 2} +
\frac{z}{1} = 1 \Leftrightarrow 2x - y + 2z - 2 = 0

    Khoảng cách từ gốc tọa độ (0;0;0) đến (MNP) là: h =
\frac{| - 2|}{\sqrt{4 + 1 + 4}} = \frac{2}{3}

  • Câu 3: Thông hiểu
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm A(2; - 1; - 3) và mặt phẳng (P):3x - 2y + 4z - 5 = 0. Mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) có phương trình là:

    Hướng dẫn:

    Do mặt phẳng (Q) song song với mặt phẳng (P) nên có vectơ pháp tuyến là \overrightarrow{n} = (3; -
2;4)

    Phương trình mặt phẳng (Q) là:

    3(x - 2) - 2(y - 1) + 4(z - 3) =
0

    \Leftrightarrow 3x - 2y + 4z + 4 =
0

  • Câu 4: Thông hiểu
    Tìm phương trình mặt phẳng (Q)

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x + 2y - 5z - 3 = 0 và hai điểm A(3;1;1),B(4;2;3). Gọi (Q) là mặt phẳng qua AB và vuông góc với (P). Phương trình nào là phương trình của mặt phẳng (Q)?

    Hướng dẫn:

    (Q) là mặt phẳng đi qua A, B và vuông góc với (P) nên mặt phẳng (Q) nhận \overrightarrow{AB} =
(1;1;2);\overrightarrow{n_{(P)}} = (1;2; - 5) làm hai vectơ chỉ phương.

    Vectơ pháp tuyến của mặt phẳng (Q)\overrightarrow{n_{(Q)}} = \left\lbrack
\overrightarrow{AB};\overrightarrow{n_{(P)}} ightbrack = ( -
9;7;1)

    Phương trình mặt phẳng

    (Q): - 9(x - 3) + 7(y - 1) + 1(z - 1) =
0

    \Leftrightarrow 9x - 7y - z - 19 =
0

  • Câu 5: Nhận biết
    Phương trình tổng quát

    Cho tứ diện ABCDA(3, -2,1), B\left( { - 4,0,3} ight),C\left( {1,4, - 3} ight),D\left( {2,3,5} ight). Phương trình tổng quát của mặt phẳng chứa AC và song song với BD là:

    Hướng dẫn:

    Theo đề bài, ta có các vecto là

    \begin{array}{l}\overrightarrow {AC}  = \left( { - 2,6, - 4} ight);\overrightarrow {BD}  = \left( {6,3,2} ight)\\ \Rightarrow \left[ {\overrightarrow {AC} ,\overrightarrow {BD} } ight] = \left( {24, - 20, - 42} ight).\end{array}

    Có thể chọn \overrightarrow n  = \left( {12, - 10, - 21} ight) làm một vectơ pháp tuyến cho mặt phẳng.

    Phương trình mặt phẳng này có dạng 12x - 10y - 21z + D = 0.

    Mặt khác, điểm A thuộc mặt phẳng nên ta thay tọa độ điểm A vào phương trình đường thẳng trên: 12.3 - 10( - 2) - 21.1 + D = 0 \Leftrightarrow D =  - 35

    Vậy phương trình cần tìm 12x - 10y - 21z - 35 = 0.

  • Câu 6: Nhận biết
    Chọn đáp án chưa chính xác

    Trong không gian Oxyz, cho đường thẳng \Delta đi qua điểm M(1;2;3) và có véc-tơ chỉ phương là \overrightarrow{u} = (2;4;6). Phương trình nào sau đây không phải là của đường thẳng \Delta?

    Hướng dẫn:

    Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình \left\{ \begin{matrix}
x = 3 + 2t \\
y = 6 + 4t \\
z = 12 + 6t \\
\end{matrix} ight..

  • Câu 7: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, viết phương trình của mặt phẳng (P) đi qua điểm M( - 3; - 2;3) và vuông góc với trục Ox.

    Hướng dẫn:

    Vì mặt phẳng (P) vuông góc với Ox nên có một vectơ pháp tuyến là vectơ \overrightarrow{i} =
(1;0;0).

    Phương trình tổng quát của mặt phẳng (P) là

    1\left( x - ( - 3) ight) + 0\left( y -
( - 2) ight) + 0(z - 3) = 0

    \Leftrightarrow x + 3 = 0.

  • Câu 8: Nhận biết
    Tính khoảng cách

    Trong không gian Oxyz, cho mặt phẳng (P):2x - 2y + z + 5 = 0. Tính khoảng cách từ điểm M( - 1;2; - 3) đến mặt phẳng (P)?

    Hướng dẫn:

    Khoảng cách từ điểm M đến mặt phẳng (P) là:

    d\left( M;(P) ight) = \frac{| - 2 - 4
- 3 + 5|}{\sqrt{9}} = \frac{4}{3}

  • Câu 9: Nhận biết
    Viết phương trình mặt phẳng (MNP)

    Trong không gian Oxyz, cho ba điểm M(0;1;0),N(2;0;0),P(0;0; - 3). Phương trình nào dưới đây là phương trình mặt phẳng (MNP)?

    Hướng dẫn:

    Phương trình đoạn chắn của mặt phẳng (MNP) là: \frac{x}{2} + \frac{y}{1} + \frac{z}{- 3} =
1

  • Câu 10: Nhận biết
    Tìm điểm thuộc mặt phẳng

    Trong không gian với hệ toạ độ Oxyz. Điểm nào sau đây thuộc mặt phẳng (P) - 2x + y - 5 = 0

    Hướng dẫn:

    Phương pháp tự luận

    Thay tọa độ các điểm vào phương trình mặt phẳng, nếu điểm nào làm cho vế trái bằng 0 thì đó là điểm thuộc mặt phẳng.

    Phương pháp trắc nghiệm

    Nhập phương trình mặt phẳng (P) vào máy tính dạng sau: - 2X + Y + 0A - 5 = 0, sau đó dùng hàm CALC và nhập tọa độ (x;y;z)của các điểm vào. Nếu bằng 0 thì điểm đó thuộc mặt phẳng.

  • Câu 11: Thông hiểu
    Tìm phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x - 3y + 2z - 1 = 0,(Q):x - z + 2 =0. Mặt phẳng (\alpha) vuông góc với cả (P)(Q) đồng thời cắt trục Ox tại điểm có hoành độ bằng 3. Phương trình của mặt phẳng (\alpha) là:

    Hướng dẫn:

    Ta có: (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (1; - 3;2), (Q) có vectơ pháp tuyến \overrightarrow{n_{Q}} =
(1;0; - 1).

    Vì mặt phẳng (α) vuông góc với cả (P) và (Q) nên (α) có một vectơ pháp tuyến là \left\lbrack
\overrightarrow{n_{P}};\overrightarrow{n_{Q}} ightbrack = (3;3;3) =
3(1;1;1)

    Vì mặt phẳng (α) cắt trục Ox tại điểm có hoành độ bằng 3 nên (α) đi qua điểm M(3; 0; 0).

    Vậy (α) đi qua điểm M(3; 0; 0) và có vectơ pháp tuyến \overrightarrow{n_{(\alpha)}} = (1;1;1) nên (α) có phương trình x + y + z - 3 =
0.

  • Câu 12: Nhận biết
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(2; - 1;1) và vectơ \overrightarrow{n} = (1;3;4). Viết phương trình mặt phẳng (P) đi qua điểm M(2; - 1;1) và có vectơ pháp tuyến \overrightarrow{n}.

    Hướng dẫn:

    Phương trình tổng quát của mặt phẳng (P) có dạng:

    (x - 2) + 3(y - 1) + 4(z - 1) =
0

    \Leftrightarrow x + 3y + 4z - 3 =
0

  • Câu 13: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian Oxyz, phương trình nào sau đây là phương trình của mặt phẳng?

    Hướng dẫn:

    Phương trình tổng quát của mặt phẳng là: 2x - 3y + 4z - 2024 = 0.

  • Câu 14: Nhận biết
    Viết phương trình mặt phẳng trung trực

    Trong không gian với hệ tọa độ Oxyz, cho M(1; - 1;2),N(3;1; - 4). Viết phương trình mặt phẳng trung trực của MN.

    Hướng dẫn:

    Mặt phẳng trung trực MN nhận \frac{1}{2}\overrightarrow{MN} = (1;1; -
3) làm vectơ pháp tuyến và đi qua trung điểm I(2;0; - 1) của MN nên ta có phương trình mặt phẳng MN là: x + y
- 3z - 5 = 0.

  • Câu 15: Nhận biết
    Viết phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm A(2;3;1)và vectơ \overrightarrow{n} = (1;2; - 3). Viết phương trình mặt phẳng (\alpha) qua A và nhận vectơ \overrightarrow{n} làm vectơ pháp tuyến:

    Hướng dẫn:

    Viết phương trình mặt phẳng qua A(2;3;1) và có vectơ pháp tuyến \overrightarrow{n} = (1;2; - 3)

    \Rightarrow 1.(x - 2) + 2(x - 3) - 3(z -
1) = 0

    \Leftrightarrow x + 2y - 3z - 5 =
0

    Vậy phương trình mặt phẳng cần tìm là: x
+ 2y - 3z - 5 = 0.

  • Câu 16: Nhận biết
    Xác định vectơ pháp tuyến của mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):2x + y - 1 = 0. Mặt phẳng (P) có một vectơ pháp tuyến là

    Hướng dẫn:

    Mặt phẳng (P):2x + y - 1 = 0 có một vectơ pháp tuyến là \overrightarrow{n} =
(2;\ 1;\ 0).

  • Câu 17: Nhận biết
    Chọn khẳng định sai

    Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Ta có: \left| \left\lbrack
\overrightarrow{u};\overrightarrow{v} ightbrack ight| = \left|
\overrightarrow{u} ight|.\left| \overrightarrow{v} ight|.sin\left(
\overrightarrow{u};\overrightarrow{v} ight)

    Vậy khẳng định sai là: \left|\left\lbrack \overrightarrow{u};\overrightarrow{v} ightbrack ight|= \left| \overrightarrow{u} ight|.\left| \overrightarrow{v}ight|.\cos\left( \overrightarrow{u};\overrightarrow{v}ight).

  • Câu 18: Thông hiểu
    Tìm phương trình mặt phẳng thích hợp

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng có phương trình (P)x + 2y + 2z - 1 = 0(Q):x + 2y - z - 3 =
0 và mặt cầu (S):(x - 1)^{2} + (y +
2)^{2} + z^{2} = 5. Mặt phẳng (\alpha) vuông với mặt phẳng (P),(Q) đồng thời tiếp xúc với mặt cầu (S).

    Hướng dẫn:

    Mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} +
z^{2} = 5 có tâm I(1; -
2;0) và bán kính R =
\sqrt{5}

    Gọi \overrightarrow{n_{\alpha}} là một vectơ pháp tuyến của mặt phẳng (\alpha)

    Ta có : {\overrightarrow{n}}_{\alpha} =
\overrightarrow{n_{P}} \land {\overrightarrow{n}}_{Q} \Rightarrow
\overrightarrow{n_{\alpha}} = ( - 6;3;0) = - 3(2; - 1;0) = -
3\overrightarrow{n_{1}}

    Lúc đó mặt phẳng (\alpha) có dạng :2x - y + m = 0.

    Do mặt phẳng (\alpha) tiếp xúc với mặt cầu (S)

    \Rightarrow d\left( I,(\alpha) \right) =
\sqrt{5} \Leftrightarrow \frac{|m + 4|}{\sqrt{5}} = \sqrt{5}
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = - 9 \\
\end{matrix} \right.

    Vậy phương trình mặt phẳng (\alpha):2x -
y + 1 = 0 hoặc 2x - y - 9 =
0.

  • Câu 19: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz. Mặt phẳng (P) là - x + 3z - 2 = 0 có phương trình song song với:

    Hướng dẫn:

    Mặt phẳng (P) là - x + 3z - 2 =
0 có phương trình song song với trục Oy.

  • Câu 20: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian với hệ toạ độ Oxyz. Phương trình mặt phẳng (P) đi qua điểm A( - 1;2;0) và nhận \overrightarrow{n}( - 1;0;2) là VTPT có phương trình là:

    Hướng dẫn:

    Mặt phẳng (P) đi qua điểm A( -
1;2;0) và nhận \overrightarrow{n}(
- 1;0;2) là VTPT có phương trình là:

    - 1(x + 1) + 0(y - 2) + 2(z - 0) =
0

    \Leftrightarrow - x - 1 + 2z = 0
\Leftrightarrow - x + 2z - 1 = 0.

    Vậy - x + 2z - 1 = 0.

    Phương pháp trắc nghiệm (nên có)

    Từ tọa độ VTPT suy ra hệ số B=0, vậy loại ngay đáp án - x + 2y - 5 = 0- x + 2y - 5 = 0

    Chọn 1 trong 2 PT còn lại bằng cách thay tọa độ điểm A vào.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo