Biết khác
và vuông góc với cả hai vectơ
. Khẳng định nào sau đây đúng?
Theo đề bài ta có: khác
và vuông góc với cả hai vectơ
nên
Vậy khẳng định đúng là
Biết khác
và vuông góc với cả hai vectơ
. Khẳng định nào sau đây đúng?
Theo đề bài ta có: khác
và vuông góc với cả hai vectơ
nên
Vậy khẳng định đúng là
Trong không gian , cho
, điểm
và điểm
. Tọa độ trọng tâm tam giác
là
Từ
Tọa độ trọng tâm của tam giác
là
Vậy tọa độ trọng tâm .
Trong không gian với hệ trục tọa độ , cho các điểm
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Ta có: suy ra
và
không vuông góc với nhau.
Vậy mệnh đề sai là: “”.
Biết rằng và
. Tính
?
Ta có:
Trong không gian với hệ trục tọa độ cho
. Gọi
là vectơ thỏa mãn
. Tìm tọa độ
?
Giả sử , khi đó:
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?
Đáp án: 1223
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?
Đáp án: 1223
Gọi là tọa độ của máy bay sau 5 phút tiếp theo.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ gấp 4 lần thời gian bay từ
nên
Mặt khác, máy bay giữ nguyên hướng bay nên và
cùng hướng.
Suy ra
Tọa độ của máy bay sau 5 phút tiếp theo là .
Do đó,
Trong không gian , cho các vectơ
và
(với
là tham số thực). Có bao nhiêu giá trị của
để
?
Ta có:
Khi đó
Do đó
Vậy có 2 giá trị tham số m thỏa mãn yêu cầu bài toán.
Trong không gian với hệ trục tọa độ cho hai điểm
,
. Tìm tọa độ điểm
thuộc trục
sao cho
cách đều hai điểm
.
Gọi . Ta có:
Trong không gian , véctơ
vuông góc với hai véctơ
và
; đồng thời
tạo với tia
một góc tù và độ dài véctơ
bằng 3. Tìm véctơ
.
Ta có và
không cùng phương đồng thời
.
Do .
Mặt khác tạo với tia
một góc tù nên
.
Suy ra .
Vậy .
Trong không gian , cho hai vectơ
và
. Tính
?
Ta có:
Trong không gian với hệ trục tọa độ , cho điểm
. Với giá trị nào của
thì ba điểm đã cho thẳng hàng?
Ta có:
Vì ba điểm A; B; M thẳng hàng nên cùng phương
Vậy đáp án cần tìm là .
Trong không gian hệ trục tọa độ , cho
. Gọi
là trọng tâm tam giác
. Tính độ dài đoạn thẳng
?
Vì là trọng tâm tam giác
nên tọa độ điểm
hay
Vậy .
Trong không gian với hệ tọa độ Oxyz, cho hình vuông ,
. Biết đỉnh
thuộc mặt phẳng (Oxy) và có tọa độ là những số nguyên, khi đó
bằng:
- Tham số hóa điểm A
- Sử dụng điều kiện ABCD là hình vuông để tìm A.
- Tính
Ta có trung điểm BD là và điểm
thuộc mặt phẳng
nên
. Lại có: ABCD là hình vuông
hoặc
Trong không gian hệ trục tọa độ , cho
và
là điểm đối xứng cới điểm
qua
. Khi đó
bằng:
Gọi là hình chiếu của M trên
ta có
. Do
đối xứng với
qua
, khi đó
là trung điểm của
Suy ra từ đó
.
Trong không gian với hệ trục tọa độ cho
,
,
. Biết rằng
là hình bình hành, khi đó tọa độ điểm
là
Gọi , ta có
là hình bình hành nên
.
Vậy
Cho tứ diện đều cạnh
Tính
theo
Hình vẽ minh họa
Gọi là trọng tâm của
Do đó
Ta có
Mà là tứ diện đều nên
Suy ra
Vậy
Trong không gian với hệ trục tọa độ , cho hai vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
.
Vậy
Trong không gian với hệ trục tọa độ , cho điểm
và điểm
. Tìm tọa độ điểm
để ba điểm
thẳng hàng?
Ta có:
Lại có:
Vì ba điểm A; B; M thẳng hàng nên cùng phương
Vậy đáp án cần tìm là .
Trong không gian , cho tam giác
với
,
,
. Gọi
là trọng tâm tam giác
và
là điểm thay đổi trên
. Độ dài
ngắn nhất bằng
Do là trọng tâm tam giác
.
Gọi là hình chiếu vuông góc của
trên mặt phẳng
, khi đó
là khoảng cách từ
đến mặt phẳng
, ta có:
Với là điểm thay đổi trên mặt phẳng
, ta có
, do đó
ngắn nhất
. Vậy độ dài
ngắn nhất bằng
.
Trong không gian với hệ tọa độ , cho
,
,
. Tìm tọa độ điểm
, biết
vuông góc với
, mặt cầu ngoại tiếp tứ diện
có bán kính bằng
và
có cao độ âm.
Hình vẽ minh họa
Ta có ,
Do vuông góc với nên một VTCP của đường thẳng
được chọn là
Đường thẳng qua
và có VTCP
nên có phương trình tham số là:
.
Do vuông tại
.
Gọi là trung điểm
khi đó
là tâm đường tròn ngoại tiếp tam giác
. Gọi
là đường thẳng qua
và song song với
nên
, suy ra
là trục đường tròn ngoại tiếp
.
Trong mặt phẳng vẽ đường trung trực của
cắt
tại
và cắt
tại
.
Mặt phẳng qua
và có một VTPT
nên có phương trình tổng quát là:
.
Ta có .
Do nên
, mà
, mà cao độ của
âm nên
thỏa mãn.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: