Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Biểu thức tọa độ của các phép toán vectơ (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định tọa độ hiệu hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;3; -
2);\overrightarrow{v} = (2;1; - 1). Vectơ \overrightarrow{u} - \overrightarrow{v} có tọa độ là:

    Hướng dẫn:

    Ta có: \overrightarrow{u} -
\overrightarrow{v} = (1 - 2;3 - 1; - 2 + 1) = ( - 1;2; - 1)

    Vậy đáp án cần tìm là ( - 1;2 -
1).

  • Câu 2: Thông hiểu
    Chọn mệnh đề đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (1;1;0), \overrightarrow{b} = (2; - 1; - 2)\overrightarrow{c} = ( - 3;0;2). Chọn mệnh đề đúng?

    Hướng dẫn:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0} là mệnh đề đúng.

  • Câu 3: Thông hiểu
    Tính độ dài vectơ

    Cho tứ diện đều ABCD cạnh a. Tính \left| \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight| theo a?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi G là trọng tâm của \Delta BCD.

    Do đó \left| \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD} ight| = \left|
3\overrightarrow{AG} ight| = 3AG.

    Ta có BG = \frac{2}{3}BI =
\frac{2}{3}.\frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{3}.

    ABCD là tứ diện đều nên AG\bot(BCD) \Rightarrow AG\bot BG.

    Suy ra AG = \sqrt{AB^{2} - BG^{2}} =
\frac{a\sqrt{6}}{3}.

    Vậy \left| \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD} ight| =
3.\frac{a\sqrt{6}}{3} = a\sqrt{6}.

  • Câu 4: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    Đáp án là:

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    a) \overrightarrow{n_{\left( P_{1}
ight)}} = (1;2; - 1) nên mệnh đề sai

    b) \overrightarrow{n_{\left( P_{1}
ight)}} = ( - 2;1;1) nên mệnh đề đúng

    c) \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) = \frac{1.( - 2) +
2.1 + ( - 1)1}{\sqrt{6}\sqrt{6}} = - \frac{1}{6} mệnh đề đúng

    d) Góc hai mặt phẳng không thể tù nên mệnh đề sai

  • Câu 5: Thông hiểu
    Tìm tọa độ điểm D

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(3; - 4;0),B( - 1;1;3),C(3;1;0). Xác định tọa độ điểm D \in Ox sao cho AD = BC?

    Hướng dẫn:

    Ta có: D(x;0;0) \in Ox

    AD = BC \Leftrightarrow \sqrt{(x -
3)^{2} + 16} = 5

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow D(0;0;0) \\
x = 6 \Rightarrow D(6;0;0) \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: D(0;0;0) hoặc D(6;0;0)

  • Câu 6: Thông hiểu
    Tìm tọa độ điểm M

    Trong không gian Oxyz, cho hai điểm A(3;1; - 2), B(2; - 3;5). Điểm M thuộc đoạn AB sao cho MA
= 2MB, tọa độ điểm M

    Hướng dẫn:

    Gọi M(x;\ y;\ z).

    Vì điểm M thuộc đoạn AB sao cho MA
= 2MB \Rightarrow \overrightarrow{AM} =
2\overrightarrow{MB}

    \Leftrightarrow \left\{ \begin{matrix}
x = \dfrac{7}{3} \\
y = - \dfrac{5}{3} \\
z = \dfrac{8}{3} \\
\end{matrix} ight.\  \Rightarrow M\left( \dfrac{7}{3}; -\dfrac{5}{3};\dfrac{8}{3} ight)

    Vậy M\left( \frac{7}{3};\frac{-
5}{3};\frac{8}{3} ight).

  • Câu 7: Nhận biết
    Chọn phương án thích hợp

    Trong không gian, với mọi vectơ \overrightarrow{a},\ \overrightarrow{b} ta có

    Hướng dẫn:

    Công thức tích vô hướng của hai vectơ \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.cos(\overrightarrow{a}.\overrightarrow{b}).

  • Câu 8: Thông hiểu
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho A(0;3;5),B(0;2;5),C(1;1;5). Biết \widehat{ABC} = a^{0} trong đó a là số nguyên dương. Tìm a?

    Đáp án: 135

    Đáp án là:

    Trong không gian Oxyz, cho A(0;3;5),B(0;2;5),C(1;1;5). Biết \widehat{ABC} = a^{0} trong đó a là số nguyên dương. Tìm a?

    Đáp án: 135

    Ta có \overrightarrow{BA} =
(0;1;0),\overrightarrow{BC} = (1; - 1;0).

    Suy ra \overrightarrow{BA}.\overrightarrow{BC} = -
1,\left| \overrightarrow{BA} ight| = 1,\left| \overrightarrow{BC}
ight| = \sqrt{2}.

    \cos\widehat{ABC} =
\frac{\overrightarrow{BA}.\overrightarrow{BC}}{\left|
\overrightarrow{BA} ight|.\left| \overrightarrow{BC} ight|} = -
\frac{1}{\sqrt{2}} \Rightarrow \widehat{ABC} = 135^{0}.

    Vậy a = 135

  • Câu 9: Vận dụng
    Tính giá trị của biểuthức

    Trong không gian Oxyz cho các điểm A(5\ ;\ 1\ ;\ 5), B(4\ ;\ 3\ ;\ 2), C( - 3\ ;\  - 2\ ;\ 1). Điểm I(a\ ;\ b\ ;\ c) là tâm đường tròn ngoại tiếp tam giác ABC. Tính a + 2b + c?

    Hướng dẫn:

    Ta có: \overrightarrow{AB} = ( - 1\ ;\ 2\
;\  - 3), \overrightarrow{AC} = ( -
8\ ;\  - 3\ ;\  - 4).

    Gọi M, N lần lượt là trung điểm AB, AC
\Rightarrow \left\{ \begin{matrix}
M\left( \frac{9}{2}\ ;\ 2\ ;\ \frac{7}{2} ight) \\
N\left( 1\ ;\  - \frac{1}{2}\ ;\ 3 ight) \\
\end{matrix} ight..

    Gọi \overrightarrow{n} là véc tơ pháp tuyến của mặt phẳng (ABC)

    \Rightarrow \overrightarrow{n} =
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} ightbrack = ( -
17\ ;\ 20\ ;\ 19).

    (ABC): - 17x + 20y + 19z - 30 =
0.

    I là tâm đường tròn ngoại tiếp tam giác ABC

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{IM}\bot\overrightarrow{AB} \\
\overrightarrow{IN}\bot\overrightarrow{AC} \\
I \in (ABC) \\
\end{matrix} ight.\  \Leftrightarrow

    \Leftrightarrow \left\{ \begin{matrix}
\left( \frac{9}{2} - a ight).( - 1) + (2 - b).2 + \left( \frac{7}{2} -
c ight).( - 3) = 0 \\
(1 - a).( - 8) + \left( - \frac{1}{2} - b ight).( - 3) + (3 - c).( -
4) = 0 \\
- 17a + 20b + 19c - 30 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left( \dfrac{9}{2} - a ight).( - 1) + (2 - b).2 + \left( \dfrac{7}{2} -
c ight).( - 3) = 0 \\
(1 - a).( - 8) + \left( - \dfrac{1}{2} - b ight).( - 3) + (3 - c).( -
4) = 0 \\
- 17a + 20b + 19c - 30 = 0 \\
\end{matrix} ight..

    Vậy a + 2b + c = 1 + 2.\left( -
\frac{1}{2} ight) + 3 = 3.

  • Câu 10: Vận dụng
    Chọn phương án thíchhợp

    Trong không gian với hệ tọa độ Oxyz, cho A(1;0;2), B(3;1;4), C(3; - 2;1). Tìm tọa độ điểm S, biết SA vuông góc với (ABC), mặt cầu ngoại tiếp tứ diện S.ABC có bán kính bằng \frac{3\sqrt{11}}{2}S có cao độ âm.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có \overrightarrow{AB} =
(2;1;2), \overrightarrow{AC} = (2;
- 2; - 1) \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (3;6; -
6).

    Do SA vuông góc với nên một VTCP của đường thẳng SA được chọn là \overrightarrow{u} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3;6; -
6).

    Đường thẳng SA qua A(1;0;2) và có VTCP \overrightarrow{u} = (3;6; - 6) nên có phương trình tham số là:

    \left\{ \begin{matrix}
x = 1 + 3t \\
y = 6t \\
z = 2 - 6t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

    Do \overrightarrow{AB}.\overrightarrow{AC} = 4 - 2 -
2 = 0 \Rightarrow AB\bot AC \Rightarrow \Delta ABC vuông tại A.

    Gọi M là trung điểm BC, khi đó M là tâm đường tròn ngoại tiếp tam giác ABC. Gọi d là đường thẳng qua M và song song với SA nên d\bot(ABC), suy ra d là trục đường tròn ngoại tiếp \Delta ABC.

    Trong mặt phẳng (SAM) vẽ đường trung trực của SA cắt d tại I và cắt SA tại N.

    Mặt phẳng (ABC) qua A và có một VTPT \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3;6; -
6) nên có phương trình tổng quát là:

    3(x - 1) + 6y - 6(z - 2) = 0
\Leftrightarrow x + 2y - 2z + 3 = 0

    \overrightarrow{BC} = (0; - 3; - 3)
\Rightarrow BC = \sqrt{18} \Rightarrow BC^{2} = 18.

    Ta có R^{2} = IA^{2} + AM^{2}
\Leftrightarrow \frac{99}{4} = IM^{2} + \frac{1}{4}BC^{2} \Rightarrow IM
= \frac{9}{2}.

    Do S \in SA nên S(1 + 3t;6t;2 - 6t), mà SA = 2IM \Rightarrow SA = 9

    \Leftrightarrow d\left( S,(ABC) ight)
= 9

    \Leftrightarrow \frac{\left| 1 + 3t +
12t - 2(2 - 6t) + 3 ight|}{\sqrt{1^{2} + ( - 2)^{2} + 2^{2}}} =
9

    \Leftrightarrow |27t| = 27
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \Rightarrow S(4;6; - 4) \\
t = - 1 \Rightarrow S( - 2; - 6;8) \\
\end{matrix} ight., mà cao độ của S âm nên S(4;6; - 4) thỏa mãn.

  • Câu 11: Thông hiểu
    Chọn phát biểu đúng

    Trong không gian tọa độ Oxyz, cho hai điểm A(1;0;0), B(5;0;0). Gọi (H) là tập hợp các điểm M trong không gian thỏa mãn \overrightarrow{MA}.\overrightarrow{MB} =
0. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Gọi I là trung điểmAB \Rightarrow I(3;0;0).

    Ta có :

    \overrightarrow{MA}.\overrightarrow{MB} =
0 \Leftrightarrow \left( \overrightarrow{MI} + \overrightarrow{IA}
ight).\left( \overrightarrow{MI} + \overrightarrow{IB} ight) =
0

    \Leftrightarrow \left(
\overrightarrow{MI} + \overrightarrow{IA} ight).\left(
\overrightarrow{MI} - \overrightarrow{IA} ight) = 0

    \Leftrightarrow MI^{2} - IA^{2} = 0
\Leftrightarrow MI^{2} = IA^{2} \Leftrightarrow MI = \frac{1}{2}AB =
\frac{1}{2}.|5 - 1| = 2.

    Suy ra tập hợp điểm M trong không gian là mặt cầu tâm I, bán kính bằng 2.

    Vậy (H) là một mặt cầu có bán kính bằng 2.

  • Câu 12: Thông hiểu
    Chọn phương án đúng

    Cho hình chóp S.ABCDABCD là hình chữ nhật có AB = 3,AD = 4, SA\bot(ABCD),SA = 5; giá trị của \overrightarrow{SA}.\overrightarrow{BC}

    Hướng dẫn:

    SA \bot \left( {ABCD} ight) \Rightarrow \overrightarrow {SA}  \bot \overrightarrow {BC}  \Rightarrow \overrightarrow {SA} .\overrightarrow {BC}  = 0

  • Câu 13: Thông hiểu
    Chọn mệnh đề đúng

    Trong không gian Oxyz, cho các vectơ \overrightarrow{a}(2;m - 1;3)\overrightarrow{b}(1;3; - 2n). Xác định giá trị của m;n để hai vectơ đã cho có cùng hướng?

    Hướng dẫn:

    Ta có: Hai vectơ \overrightarrow{a}(2;m -
1;3)\overrightarrow{b}(1;3; -
2n) cùng hướng nên

    \overrightarrow{a} =k.\overrightarrow{b};(k > 0) \Leftrightarrow \left\{ \begin{matrix}2 = k \\m - 1 = 3k \\3 = k( - 2n) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2 = k \\m = 7 \ = - \dfrac{3}{4} \\\end{matrix} ight.

    Vậy m = 7;n = - \frac{3}{4} là đáp án cần tìm.

  • Câu 14: Thông hiểu
    Xác định tọa độ trọng tâm tam giác

    Trong không gian Oxyz, cho \overrightarrow{OA} = \overrightarrow{i} -
2\overrightarrow{j} + 3\overrightarrow{k}, điểm B(3\ ;\  - 4\ ;\ 1) và điểm C(2\ ;\ 0\ ;\  - 1). Tọa độ trọng tâm tam giác ABC

    Hướng dẫn:

    Từ \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k}
\Rightarrow A(1\ ;\  - 2\ ;\ 3)

    Tọa độ trọng tâm G của tam giác ABC\left\{ \begin{matrix}
x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = 2 \\
y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = - 2 \\
z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = 1 \\
\end{matrix} ight.

    Vậy tọa độ trọng tâm (2\ ;\  - 2\ ;\
1).

  • Câu 15: Thông hiểu
    Chọn khẳng định đúng

    Cho lăng trụ đứng ABC.A'B'C', điểm M trên CC' sao cho \overrightarrow{MC} = -
\frac{1}{3}\overrightarrow{MC'}. Đặt \overrightarrow{AB} = \overrightarrow{a},\ \
\overrightarrow{AC} = \overrightarrow{b},\ \ \overrightarrow{AA'} =
\overrightarrow{c}. Khẳng định nào dưới đây là đúng ?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có

    \overrightarrow{A'M} =
\overrightarrow{A'C} + \overrightarrow{CM}

    = \overrightarrow{A'A} +
\overrightarrow{A'C'} +
\frac{1}{4}\overrightarrow{AA'}

    = - \overrightarrow{AA'} +\overrightarrow{AC} + \frac{1}{4}\overrightarrow{AA'}

    = \overrightarrow{AC} -
\frac{3}{4}\overrightarrow{AA'} = \overrightarrow{b} -
\frac{3}{4}\overrightarrow{c}

  • Câu 16: Thông hiểu
    Tìm hoành độ điểm A

    Trong hệ trục tọa độ Oxyz, cho điểm H(2;1;1). Gọi các điểm A,\ B,\ C lần lượt ở trên các trục tọa độ Ox,\ Oy,\ Oz sao cho H là trực tâm của tam giác ABC. Khi đó hoành độ điểm A là:

    Hướng dẫn:

    Giả sử A(a;0;0);B(0;b;0);C(0;0;c).

    Khi đó mặt phẳng (ABC):\frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AH} = (2 - a;1;1);\ \ \overrightarrow{BH} = (2;1 - b;1)
\\
\overrightarrow{BC} = (0; - b;c)\ ;\ \ \ \overrightarrow{AC} = ( -
a;0;c) \\
\end{matrix} ight.

    H là trực tâm của tam giác ABCnên \left\{ \begin{matrix}
H \in (ABC) \\
\overrightarrow{AH}.\overrightarrow{BC} = 0 \\
\overrightarrow{BH}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\dfrac{2}{a} + \dfrac{1}{b} + \dfrac{1}{c} = 1 \\
- b + c = 0 \\
- 2a + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 6 \\
c = 6 \\
\end{matrix} ight.

    Vậy A(3;\ 0;\ 0)

  • Câu 17: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian hệ trục tọa độ Oxyz, cho M(2;1;4)M'(a;b;c) là điểm đối xứng cới điểm M qua Oy. Khi đó a
+ b + c bằng:

    Hướng dẫn:

    Gọi H là hình chiếu của M trên Oy ta có H(0;1;0). Do M' đối xứng với M qua Oy, khi đó H là trung điểm của M'M

    Suy ra M'( - 2;1; - 4) từ đó a + b + c = - 5.

  • Câu 18: Thông hiểu
    Xác định tọa độ điểm A’

    Trong không gian Oxyz, cho hình hộp ABCD.A'B'C'D' biết A(1;0;1), B(2;1;2), D(1; - 1;1), C'(4;5; - 5). Tọa độ của điểm A' là:

    Hướng dẫn:

    Gọi A'(a;b;c)

    ABCD.A'B'C'D' là hình hộp \Rightarrow
\overrightarrow{AC'} = \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'}

    \Leftrightarrow \overrightarrow{AA'}
= \overrightarrow{AC'} - \overrightarrow{AB} -
\overrightarrow{AD}

    \overrightarrow{AB} = (1;1;1), \overrightarrow{AD} = (0; - 1;0), \overrightarrow{AC'} = (3;5; -
6)

    \overrightarrow{AC'} -
\overrightarrow{AB} - \overrightarrow{AD} = (2;5; - 7)

    \overrightarrow{AA'} = (a - 1;b;c -
1)

    (1) \Leftrightarrow \left\{
\begin{matrix}
a - 1 = 2 \\
b = 5 \\
c - 1 = - 7 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 5 \\
c = - 6 \\
\end{matrix} ight.. Vậy: A'(3;5; - 6).

  • Câu 19: Thông hiểu
    Xác định tọa độ tổng hai vectơ

    Trong không gian Oxyz, cho ba điểm A(5;1;5),B(4;3;2),C( - 3; -
2;1) và điểm I(a;b;c) là tâm đường tròn ngoại tiếp tam giác ABC. Tính giá trị biểu thức H = a + 2b + c?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;2; - 3) \\
\overrightarrow{BC} = ( - 7; - 5; - 1) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{BC} = 0 nên tam giác ABC vuông tại B

    Suy ra tâm I của đường tròn ngoại tiếp của tam giác ABC là trung điểm của cạnh huyền AC.

    \Rightarrow I\left( 1; - \frac{1}{2};3ight) \Rightarrow \left\{ \begin{matrix}a = 1 \\b = - \dfrac{1}{2} \\c = 3 \\\end{matrix} ight.\  \Rightarrow H = a + 2b + c = 3

    Vậy đáp án cần tìm là H = 3

  • Câu 20: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = ( - 1;\ 2;\
0)\overrightarrow{v} = (1;\  -
2;\ 3). Toạ độ của vectơ \overrightarrow{u} + \overrightarrow{v} là:

    Hướng dẫn:

    Ta có \overrightarrow{u} +
\overrightarrow{v} = ( - 1 + 1;\ 2 - 2;\ 0 + 3) = (0;\ 0;\
3).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo