Trong không gian , cho hai vectơ
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án cần tìm là .
Trong không gian , cho hai vectơ
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án cần tìm là .
Trong không gian với hệ trục tọa độ , cho ba vectơ
,
và
. Chọn mệnh đề đúng?
Ta có: là mệnh đề đúng.
Cho tứ diện đều cạnh
Tính
theo
Hình vẽ minh họa
Gọi là trọng tâm của
Do đó
Ta có
Mà là tứ diện đều nên
Suy ra
Vậy
Trong không gian tọa độ , cho hai mặt phẳng
và
a) Vectơ có tọa độ là một vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
b) Vectơ có toạ độ là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
c) Côsin của góc giữa hai vectơ và
bằng
. Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
Trong không gian tọa độ , cho hai mặt phẳng
và
a) Vectơ có tọa độ là một vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
b) Vectơ có toạ độ là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
c) Côsin của góc giữa hai vectơ và
bằng
. Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
a) nên mệnh đề sai
b) nên mệnh đề đúng
c) mệnh đề đúng
d) Góc hai mặt phẳng không thể tù nên mệnh đề sai
Trong không gian với hệ trục tọa độ , cho các điểm
. Xác định tọa độ điểm
sao cho
?
Ta có:
Mà
Vậy đáp án cần tìm là: hoặc
Trong không gian , cho hai điểm
,
. Điểm
thuộc đoạn
sao cho
, tọa độ điểm
là
Gọi .
Vì điểm thuộc đoạn
sao cho
Vậy .
Trong không gian, với mọi vectơ ta có
Công thức tích vô hướng của hai vectơ .
Trong không gian , cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Trong không gian , cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Ta có .
Suy ra .
.
Vậy
Trong không gian cho các điểm
,
,
. Điểm
là tâm đường tròn ngoại tiếp tam giác
. Tính
?
Ta có: ,
.
Gọi ,
lần lượt là trung điểm
,
.
Gọi là véc tơ pháp tuyến của mặt phẳng
.
.
là tâm đường tròn ngoại tiếp tam giác
.
Vậy .
Trong không gian với hệ tọa độ , cho
,
,
. Tìm tọa độ điểm
, biết
vuông góc với
, mặt cầu ngoại tiếp tứ diện
có bán kính bằng
và
có cao độ âm.
Hình vẽ minh họa
Ta có ,
Do vuông góc với nên một VTCP của đường thẳng
được chọn là
Đường thẳng qua
và có VTCP
nên có phương trình tham số là:
.
Do vuông tại
.
Gọi là trung điểm
khi đó
là tâm đường tròn ngoại tiếp tam giác
. Gọi
là đường thẳng qua
và song song với
nên
, suy ra
là trục đường tròn ngoại tiếp
.
Trong mặt phẳng vẽ đường trung trực của
cắt
tại
và cắt
tại
.
Mặt phẳng qua
và có một VTPT
nên có phương trình tổng quát là:
.
Ta có .
Do nên
, mà
, mà cao độ của
âm nên
thỏa mãn.
Trong không gian tọa độ , cho hai điểm
,
. Gọi
là tập hợp các điểm
trong không gian thỏa mãn
. Khẳng định nào sau đây là đúng?
Gọi là trung điểm
.
Ta có :
.
Suy ra tập hợp điểm trong không gian là mặt cầu tâm
, bán kính bằng 2.
Vậy là một mặt cầu có bán kính bằng
.
Cho hình chóp có
là hình chữ nhật có
,
; giá trị của
là
Vì
Trong không gian , cho các vectơ
và
. Xác định giá trị của
để hai vectơ đã cho có cùng hướng?
Ta có: Hai vectơ và
cùng hướng nên
Vậy là đáp án cần tìm.
Trong không gian , cho
, điểm
và điểm
. Tọa độ trọng tâm tam giác
là
Từ
Tọa độ trọng tâm của tam giác
là
Vậy tọa độ trọng tâm .
Cho lăng trụ đứng , điểm
trên
sao cho
Đặt
Khẳng định nào dưới đây là đúng ?
Hình vẽ minh họa
Ta có
Trong hệ trục tọa độ Oxyz, cho điểm . Gọi các điểm
lần lượt ở trên các trục tọa độ
sao cho
là trực tâm của tam giác
. Khi đó hoành độ điểm
là:
Giả sử .
Khi đó mặt phẳng
Ta có:
Vì là trực tâm của tam giác
nên
Vậy
Trong không gian hệ trục tọa độ , cho
và
là điểm đối xứng cới điểm
qua
. Khi đó
bằng:
Gọi là hình chiếu của M trên
ta có
. Do
đối xứng với
qua
, khi đó
là trung điểm của
Suy ra từ đó
.
Trong không gian , cho hình hộp
biết
,
,
,
. Tọa độ của điểm
là:
Gọi
là hình hộp
,
,
⇒
. Vậy:
.
Trong không gian , cho ba điểm
và điểm
là tâm đường tròn ngoại tiếp tam giác
. Tính giá trị biểu thức
?
Ta có: nên tam giác ABC vuông tại B
Suy ra tâm I của đường tròn ngoại tiếp của tam giác ABC là trung điểm của cạnh huyền AC.
Vậy đáp án cần tìm là
Trong không gian , cho hai vectơ
và
. Toạ độ của vectơ
là:
Ta có .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: