Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CTST Xác suất có điều kiện (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xét tính đúng sai của các phương án

    Ông Bình hằng ngày đi làm bằng xe máy hoặc xe buýt. Nếu hôm nay ông đi làm bằng xe buýt thì xác suất để hôm sau ông đi làm bằng xe máy là 0,4. Nếu hôm nay ông đi làm bằng xe máy thì xác suất để hôm sau ông đi làm bằng xe buýt là 0,7. Xét một tuần mà thứ Hai ông Bình đi làm bằng xe buýt.

    Gọi A là biến cố: “Thứ Ba, ông Bình đi làm bằng xe máy” và B là biến cố: “Thứ Tư, ông Bình đi làm bằng xe máy”.

    a) Xác suất để thứ Ba, ông Bình đi làm bằng xe buýt là \frac{7}{10}. Sai||Đúng

    b) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba, ông An đi làm bằng xe máy là \frac{3}{10}. Đúng||Sai

    c) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba ông Bình đi làm bằng xe buýt là \frac{4}{10}. Đúng||Sai

    d) Xác suất để thứ Tư trong tuần đó, ông Bình đi làm bằng xe máy nếu thứ Hai ông Bình đi làm bằng xe buýt là \frac{9}{25}. Đúng||Sai

    Đáp án là:

    Ông Bình hằng ngày đi làm bằng xe máy hoặc xe buýt. Nếu hôm nay ông đi làm bằng xe buýt thì xác suất để hôm sau ông đi làm bằng xe máy là 0,4. Nếu hôm nay ông đi làm bằng xe máy thì xác suất để hôm sau ông đi làm bằng xe buýt là 0,7. Xét một tuần mà thứ Hai ông Bình đi làm bằng xe buýt.

    Gọi A là biến cố: “Thứ Ba, ông Bình đi làm bằng xe máy” và B là biến cố: “Thứ Tư, ông Bình đi làm bằng xe máy”.

    a) Xác suất để thứ Ba, ông Bình đi làm bằng xe buýt là \frac{7}{10}. Sai||Đúng

    b) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba, ông An đi làm bằng xe máy là \frac{3}{10}. Đúng||Sai

    c) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba ông Bình đi làm bằng xe buýt là \frac{4}{10}. Đúng||Sai

    d) Xác suất để thứ Tư trong tuần đó, ông Bình đi làm bằng xe máy nếu thứ Hai ông Bình đi làm bằng xe buýt là \frac{9}{25}. Đúng||Sai

    Từ giả thiết của bài toán ta có sơ đồ hình cây như sau:

    a) Dựa vào sơ đồ cây ta có xác suất để thứ Ba, ông Bình đi làm bằng xe buýt là 0,6 (nhánh O\overline{A}).

    b) Dựa vào sơ đồ cây ta có xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba, ông Bình đi làm bằng xe máy là 0,3 = \frac{3}{10} (nhánh \overline{A}B).

    c) Dựa vào sơ đồ cây ta có xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba ông Bình đi làm bằng xe buýt 0,4 = \frac{4}{10} (nhánh AB)

    d) Xác suất để thứ Tư trong tuần đó, ông Bình đi làm bằng xe máy nếu thứ Hai ông Bình đi làm bằng xe buýt là:

    P(B) = 0,4.0,3 + 0,6.0,4 =
0,36(nhánh OAB và nhánh O\overline{A}B).

  • Câu 2: Vận dụng
    Chọn đáp án đúng

    Bạn T quên mất số cuối cùng trong số điện thoại cần gọi (số điện thoại gồm 6 chữ số) và T chọn số cuối cùng này một cách ngẫu nhiên. Tính xác suất để T gọi đúng số điện thoại này mà không phải thử quá 3 lần. Nếu biết số cuối cùng là số lẻ thì xác suất này là bao nhiêu?

    Hướng dẫn:

    Gọi Ai: “gọi đúng ở lần thứ i” (i = 1, 2, 3)

    Khi đó, biến cố “gọi đúng khi không phải thử quá ba lần” là:

    A = A_{1} + \overline{A_{1}}A_{2} +
\overline{A_{1}}\overline{A_{2}}A_{3}

    Ta có:

    P(A) = P\left( A_{1} ight) + P\left(
\overline{A_{1}}A_{2} ight) + P\left(
\overline{A_{1}}\overline{A_{2}}A_{3} ight)

    = P\left( A_{1} ight) + P\left(
\overline{A_{1}} ight)P\left( A_{2}|\overline{A_{1}} ight) + P\left(
\overline{A_{1}} ight)P\left( \overline{A_{2}}|\overline{A_{1}}
ight)P\left( A_{3}|\overline{A_{1}}\overline{A_{2}}
ight)

    Khi đã biết số cuối cùng là số lẻ thì khi đó các số để chọn quay chỉ còn giới hạn lại trong 5 trường hợp (số lẻ) nên:

    P(A) = \frac{1}{5} +
\frac{4}{5}.\frac{1}{4} + \frac{4}{5}.\frac{3}{4}.\frac{1}{3} =
0,6

  • Câu 3: Thông hiểu
    Tính xác suất có điều kiện

    Gieo hai con xúc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4chấm.

    Hướng dẫn:

    Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4chấm”

    Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xác xắc bằng 6”.

    Khi con xúc xắc thứ nhất đã xuất hiện mặt 4chấm thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì P\left( B\left| A \right.\  \right) =
\frac{1}{6}

  • Câu 4: Vận dụng
    Xét tính đúng sai của các khẳng định

    Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6 và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ bạn được 0,1 điểm, làm đúng mỗi câu trung bình bạn được 0,25 điểm và làm đúng mỗi câu khó bạn được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Đáp án là:

    Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6 và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ bạn được 0,1 điểm, làm đúng mỗi câu trung bình bạn được 0,25 điểm và làm đúng mỗi câu khó bạn được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Gọi A là biến cố Bình làm đúng câu dễ

    B là biến cố Bình làm đúng câu trung bình

    C là biến cố Bình làm đúng câu khó.

    Khi đó A, B, C độc lập với nhau.

    a) Xác suất để Bình làm ba câu thuộc ba loại trên và đúng cả ba câu là

    P = P(A).P(B).P(C) = 0,072 =
7,2\%.

    Khẳng định sai.

    b) Xác suất để Bình làm đúng 2 trong số 3 câu là

    P\left( \overline{A} ight).P(B).P(C) +
P(A).P\left( \overline{B} ight).P(C) + P(A).P(B).P\left( \overline{C}
ight)

    = 0,2.0,6.0,15 + 0,8.0,4.0,15 + 0,8.0,6.0,85 = 0,474

    Khẳng định sai.

    c) Xác suất để Bình làm đúng 3 câu đủ ba loại là:

    P = P(A).P(B).P(C) = 0,072 =
7,2\%

    Xác suất Bình làm sai 3 câu mức độ trung bình. (0,4)^{3} = 0,064.

    Khẳng định đúng.

    d) Để Bình làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:

    TH1: Đúng 4 câu khó và câu còn lại sai

    (0,15)^{4}(0,2 + 0,4 + 0,85) =
7,34.10^{- 4}

    TH2: Đúng 3 câu khó và đúng 2 câu trung bình

    (0,15)^{3}.(0,6)^{2} = 1,215.10^{-
3}

    Vậy xác suất cần tìm là 0,1949\%

    Khẳng định sai.

  • Câu 5: Nhận biết
    Tìm giá trị xác suất

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( \overline{B}|A ight)?

    Hướng dẫn:

    Ta có:

    P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight)

    = 1 - \frac{P(A \cap B)}{P(A)} = 1 -
\frac{0,3}{0,6} = \frac{1}{2}.

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Cho hai biến cố A;BP(A) = 0,2;P(B) = 0,6;P\left( A|B ight) =
0,3. Xác định P\left( \overline{A}B
ight)?

    Hướng dẫn:

    Theo công thức tính xác suất có điều kiện ta có:

    P\left( A|B ight) = \frac{P(AB)}{P(B)}\Rightarrow P(AB) = P\left( A|B ight)P(B) = 0,3.0,6 =0,18

    \overline{A}BAB là hai biến cố xung khắc và \overline{A}B \cup AB = B nên theo tính chất của xác suất ta có:

    P\left( \overline{A}B ight) + P(AB) =
P(B)

    \Rightarrow P\left( \overline{A}B
ight) = P(B) - P(AB) = 0,6 - 0,18 = 0,42

  • Câu 7: Nhận biết
    Chọn kết quả xác suất đúng

    Cho hai biến cố A,\ BP(A) = \frac{7}{15};P(AB) =
\frac{23}{145}. Kết quả của xác suất sau P(B \mid A) bằng bao nhiêu?

    Hướng dẫn:

    Ta có: P(AB) = P(A).P(B \mid
A)

    \Leftrightarrow P(B \mid A) =
\frac{P(AB)}{P(A)} = \frac{23}{145}:\frac{7}{15} =
\frac{69}{203}.

  • Câu 8: Vận dụng
    Chọn kết quả đúng

    Một học sinh làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là 0,7. Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ hai là 0,8. Nhưng nếu làm sai bài thứ nhất thì khả năng làm đúng bài thứ hai là 0,2. Tính xác suất học sinh đó làm đúng cả hai bài?

    Hướng dẫn:

    Gọi A: “Làm đúng bài thứ nhất”.

    Và B: “Làm đúng bài thứ hai”

    Khi đó biến cố: “làm đúng cả hai bài” là AB

    Theo bài ta có: P(A) = 0,7;P\left( B|A
ight) = 0,8;P\left( B|\overline{A} ight) = 0,2

    Do đó:

    P\left( \overline{A} ight) = 1 - P(A)
= 0,3

    P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight) = 1 - 0,8 = 0,2

    P\left( \overline{B}|\overline{A}
ight) = 1 - P\left( B|\overline{A} ight) = 1 - 0,2 =
0,8

    Ta có sơ đồ hình cây như sau:

    Vậy P(AB) = 0,8.0,7 = 0,56

  • Câu 9: Vận dụng
    Tính xác suất của biến cố

    Một công ty may mặc có hai hệ thống máy chạy độc lập với nhau. Xác suất để hệ thống máy thứ nhất hoạt động tốt là 95%, xác suất để hệ thống máy thứ hai hoạt động tốt là 85%. Công ty chỉ có thể hoàn thành đơn hàng đúng hạn nếu ít nhất một trong hai hệ thống máy hoạt động tốt. Xác suất để công ty hoàn thành đúng hạn là

    Gợi ý:

    Gọi A là biến cố: "Hệ thống máy thứ nhất hoạt động tốt".

           B là biến cố: "Hệ thống máy thứ hai hoạt động tốt".

           C là biến cố: "Công ty hoàn thành đúng hạn".

    Sử dụng quy tắc nhân xác suất.

    Hướng dẫn:

    Gọi A là biến cố: "Hệ thống máy thứ nhất hoạt động tốt".

    B là biến cố: "Hệ thống máy thứ hai hoạt động tốt".

    C là biến cố: "Công ty hoàn thành đúng hạn".

    Ta có \overline{A} là biến cố: "Hệ thống máy thứ nhất hoạt động không tốt".

    \overline{B} là biến cố: "Hệ thống máy thứ hai hoạt động không tốt".

    \overline{C} là biến cố: "Công ty hoàn thành không đúng hạn".

    P(A) = 0,95;P(B) = 0,85;P(\overline{A})
= 0,05;P(\overline{B}) = 0,15

    AB là hai biến cố độc lập nên \overline{A}\overline{B} là hai biến cố độc lập

    \overline{C} =
\overline{A.B}

    P(\overline{C}) =
P(\overline{A}.\overline{B}) = P(\overline{A}).P(\overline{B}) =
0,0075.

    \Rightarrow P(C) = 1 - P(\overline{C}) =
0,9925.

  • Câu 10: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A,B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) AB là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai||Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai||Đúng

    Đáp án là:

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A,B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) AB là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai||Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai||Đúng

    Đề bài: P(A) = 0,5 \Rightarrow P\left(
\overline{A} ight) = 0,5;P(B) = 0,6 \Rightarrow P\left( \overline{B}
ight) = 0,4

    P(A \cap B) = 0,4

    a) A,B độc lập \Leftrightarrow P(A \cap B) =
P(A).P(B)

    0,4 eq 0,5.0,6 nên A,B không độc lập

    b) Gọi C là biến cố thắng thầu đúng 1 dự án

    P(C) = P\left( A \cap \overline{B}
ight) + P\left( \overline{A} \cap B ight) = P(A) - P(A \cap B) +
P(B) - P(A \cap B) = P(A) + P(B) -
2P(A \cap B) = 0,5 + 0,6 - 2.0,4 = 0,3

    c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1

    P(D) = P\left( B|A ight) = \frac{P(B
\cap A)}{P(A)} = \frac{0,4}{0,5} = 0,8

    d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”

    P(E) = P\left( B|\overline{A} ight) =
\frac{P\left( B \cap \overline{A} ight)}{P\left( \overline{A}
ight)}

    = \frac{P(B) - P(A \cap B)}{P\left(
\overline{A} ight)} = \frac{0,6 - 0,4}{0,5} = 0,4

  • Câu 11: Thông hiểu
    Chọn đáp án đúng

    Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng bi. Giả sử lần đầu tiên lấy được bi trắng. Xác định xác suất lần thứ hai lấy được bi đỏ.

    Hướng dẫn:

    Gọi A là biến cố lần một lấy được bi trắng.

    Gọi B là biến cố lần hai lấy được bi đỏ.

    Xác suất lần 2 lấy được bi đỏ khi lần 1 đã lấy được bi trắng làP\left( B|A ight).

    Ta có: \left\{ \begin{matrix}P(A) = \dfrac{8.9}{10.9} = \dfrac{4}{5} \\P(A \cap B) = \dfrac{8.2}{10.9} = \dfrac{8}{45} \\\end{matrix} ight. khi đó:

    P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{8}{45}}{\dfrac{4}{5}} = \dfrac{2}{9}.

  • Câu 12: Vận dụng
    Tính xác suất theo yêu cầu

    Theo thống kê xác suất để hai ngày liên tiếp có mưa ở một thành phố vào mùa hè là 0,5; còn không mưa là 0,3. Biết các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng. Tính xác suất để ngày thứ hai có mưa, biết ngày đầu không mưa?

    Hướng dẫn:

    Gọi A là "ngày đầu mưa" và B là "ngày thứ hai mưa" thì ta có:

    P(AB) = 0,5;P\left(
\overline{A}\overline{B} ight) = 0,3

    Vì các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng nên

    P\left( A\overline{B} ight) = P\left(
\overline{A}B ight) = \frac{1 - 0,5 - 0,3}{2} = 0,1

    Xác suất cần tính là P\left(
\overline{B}|A ight) có:

    P\left( \overline{B}|A ight) =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A} ight)} =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A}\overline{B}
ight) + P\left( \overline{A}B ight)}

    = \frac{0,1}{0,1 + 0,3} = 0,25 =
25\%

  • Câu 13: Thông hiểu
    Ghi đáp án đúng vào ô trống

    Một bình đựng 30 viên bi kích thước, chất liệu như nhau, trong đó có 20 viên bi xanh và 10 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai. (Làm tròn kết quả đến hàng phần trăm)

    Đáp án: 0,23

    Đáp án là:

    Một bình đựng 30 viên bi kích thước, chất liệu như nhau, trong đó có 20 viên bi xanh và 10 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai. (Làm tròn kết quả đến hàng phần trăm)

    Đáp án: 0,23

    Gọi A: “Lấy được một viên bi xanh ở lần thứ nhất”

    B: “Lấy được một viên bi trắng ở lần thứ hai”.

    Ta cần tính P(A \cap B)

    Vì 20 viên bi xanh trong tổng số 30 viên bi nên P(A) = \frac{20}{30} = \frac{2}{3}

    Do A xảy ra, tức là 1 viên bi xanh đã được lấy ra và còn có 29 viên bi trong đó có 10 viên bi trắng nên P\left( B\left| A ight.\  ight) =
\frac{10}{29}.

    Vậy xác suất cần tìm là P(A \cap B) =
P(A).P\left( B\left| A ight.\  ight) = \frac{2}{3}.\frac{10}{29} =
\frac{20}{87} \approx 0,23.

  • Câu 14: Thông hiểu
    Xét tính đúng sai của các phương án

    Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.

    a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng \frac{2}{5}.Đúng||Sai

    b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng \frac{8}{23}. Đúng||Sai

    c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng \frac{15}{23}. Sai||Đúng

    d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng \frac{3}{5}.Sai||Đúng

    Đáp án là:

    Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.

    a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng \frac{2}{5}.Đúng||Sai

    b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng \frac{8}{23}. Đúng||Sai

    c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng \frac{15}{23}. Sai||Đúng

    d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng \frac{3}{5}.Sai||Đúng

    Gọi A : “Học sinh được chọn giỏi môn Toán”

    B: “Học sinh được chọn giỏi môn Văn”

    Gọi C : “Học sinh được chọn không giỏi môn Toán”

    D: “Học sinh được chọn không giỏi môn Văn”

    Số học sinh giỏi cả 2 môn là: 23 + 20 -
35 = 8

    a) Trong số 23 học sinh giỏi Toán, chỉ có đúng 8 học sinh giỏi Văn nên xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn là:

    P\left( A|B ight) = \frac{8}{20} =
\frac{2}{5}

    b) Trong số 20 học sinh giỏi Văn, chỉ có đúng 8 học sinh giỏi Toán nên xác suất để học sinh được chọn giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán là:

    P\left( B|A ight) =
\frac{8}{23}

    c) Trong số 20 học sinh giỏi Văn, có đúng 8 học sinh giỏi cả Văn và Toán, nên số học sinh giỏi Văn mà không giỏi Toán là 12.

    Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" là:

    P\left( C|B ight) = \frac{12}{20} =
\frac{3}{5}

    d) Trong số 23 học sinh giỏi Toán, có đúng 8 học sinh giỏi cả Toán và Văn nên số học sinh không giỏi Văn mà giỏi Toán là 23 - 8 = 15

    Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" là: P\left( D|A ight) =
\frac{15}{23}

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Cho hai biến cố AB, với P(A) =
0,8; P(B) = 0,65; P\left( A \cap \overline{B} \right) =
0,55.

    Tính P(A \cap B).

    Hướng dẫn:

    Ta có P\left( A \cap \overline{B} \right)
+ P(A \cap B) = P(A)

    \Rightarrow P(A \cap B) = P(A) - P\left(
A \cap \overline{B} \right) = 0,8 - 0,55 = 0,25

  • Câu 16: Nhận biết
    Tính xác suất của biến cố

    Cho hai biến cố A,B với P(A) = 0,6; P(B) = 0,8 P(A \cap B) = 0,4. Tính xác suất của P(A|B).

    Hướng dẫn:

    Xác suất của biến cố là:

    P(A|B) = \frac{P(A \cap B)}{P(B)} =
\frac{0,4}{0,8} = 0,5.

  • Câu 17: Thông hiểu
    Tính xác suất của biến cố

    Một thùng hàng có 30 sản phẩm, trong đó có 4 chất lượng thấp. Lấy liên tiếp hai sản phẩm trong thùng sản phẩm trên, trong đó sản phẩm lấy ra ở lần thứ nhất không được bỏ lại vào thùng. Tính xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp?

    Hướng dẫn:

    Gọi A: “Sản phẩm lấy ra ở lần thứ nhất có chất lượng thấp”

    Và B: “Sản phẩm lấy ra ở lần thứ hai có chất lượng thấp”.

    Khi đó, xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp chính là: P\left( B|A
ight)

    Từ bài ra ta có:

    n(\Omega) = 30.29 = 870

    n(B) = 4.29 = 116 \Rightarrow P(B) =
\frac{116}{870} = \frac{2}{15}

    n(AB) = 4.3 = 12 \Rightarrow P(AB) =
\frac{12}{870} = \frac{2}{145}

    P\left( A|B ight) = \frac{P(AB)}{P(B)}
= \frac{2}{145}:\frac{2}{15} = \frac{3}{29}

  • Câu 18: Nhận biết
    Tính xác suất có điều kiện

    Một mảnh đất chia thành hai khu vườn. Khu A có 150 cây ăn quả, khu B có 200 cây ăn quả. Trong đó, số cây Táo ở khu A và khu B lần lượt là 50 cây và 100 cây. Chọn ngẫu nhiên 1 cây trong mảnh đất. Xác suất cây được chọn là cây Táo , biết rằng cây đó ở khu B, là :

    Hướng dẫn:

    Xét các biến cố : E: “Cây chọn được là cây Táo”, F: “Cây chọn được ở khu B”

    Ta có: P\left( E\left| F
\right.\  \right) = \frac{n(E \cap F)}{n(F)} = \frac{100}{200} =
\frac{1}{2}.

    Vậy xác suất cây được chọn là cây Táo, biết rằng cây đó ở Khu B, là \frac{1}{2}.

  • Câu 19: Thông hiểu
    Tìm xác suất có điều kiện

    Gieo đồng thời hai con xúc sắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc sắc là 7, biết rằng có ít nhất một con xúc sắc xuất hiện mặt 5 chấm.

    Hướng dẫn:

    Gọi A là biến cố “Tổng số chấm xuất hiện trên hai con xúc sắc là 7” và B là biến cố “Có ít nhất một con xúc sắc xuất hiện mặt 5 chấm”.

    Ta có

    P(B) = 1 - P\left( \overline{B} \right) =
1 - \frac{25}{36} = \frac{11}{36};

    A \cap B = \left\{ (2;5),\ \ (5;2)
\right\} \Rightarrow P(A \cap B) = \frac{2}{36}.

    Suy ra P\left( A\left| B
\right.\  \right) = \frac{P(A \cap B)}{P(B)} =
\frac{2}{11}.

  • Câu 20: Nhận biết
    Tính xác suất của biến cố

    Cho hai biến cố A,B sao cho P(B) = 0,7P(AB) = 0,2. Tính P(A|B).

    Hướng dẫn:

    Ta có P(A|B) = \frac{P(AB)}{P(B)} =
\frac{0,2}{0,7} = \frac{2}{7}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo