Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CTST Xác suất có điều kiện (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Bạn An đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để An hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ An được 0,1 điểm, làm đúng mỗi câu trung bình An được 0,25 điểm và làm đúng mỗi câu khó An được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi An làm 3 câu thuộc 3 loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi An làm 3 câu thì xác suất để An làm đúng 3 câu đủ ba loại cao hơn xác suất An làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để An làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Đáp án là:

    Bạn An đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để An hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ An được 0,1 điểm, làm đúng mỗi câu trung bình An được 0,25 điểm và làm đúng mỗi câu khó An được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi An làm 3 câu thuộc 3 loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi An làm 3 câu thì xác suất để An làm đúng 3 câu đủ ba loại cao hơn xác suất An làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để An làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Gọi A là biến cố An làm đúng câu dễ

    B là biến cố An làm đúng câu trung bình

    C là biến cố An làm đúng câu khó.

    Khi đó A, B, C độc lập với nhau.

    a) Xác suất để An làm ba câu thuộc ba loại trên và đúng cả ba câu là:

    P = P(A).P(B).P(C) = 0,072 = 7,2\%. Khẳng định Sai.

    b) Xác suất để An làm đúng 2 trong số 3 câu là:

    P\left( \overline{A} ight).P(B).P(C) +
P(A).P\left( \overline{B} ight).P(C). + P(A).P(B).P\left( \overline{C}
ight)

    = 0,2.0,6.0,15 + 0,8.0,4.0,15 +
0,8.0,6.0,85 = 0,474

    Khẳng định Sai.

    c) Xác suất để An làm đúng 3 câu đủ ba loại là:

    P = P(A).P(B).P(C) = 0,072 = 7,2\%

    Xác suất An làm sai 3 câu mức độ trung bình. (0,4)^{3} = 0,064.

    Khẳng định Đúng.

    d) Để An làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:

    TH1: Đúng 4 câu khó và câu còn lại sai

    (0,15)^{4}(0,2 + 0,4 + 0,85) =
7,34.10^{- 4}

    TH2: Đúng 3 câu khó và đúng 2 câu trung bình

    (0,15)^{3}.(0,6)^{2} = 1,215.10^{-
4}

    Vậy xác suất cần tìm là 0,1949\%

    Khẳng định Sai.

  • Câu 2: Thông hiểu
    Tính xác suất có điều kiện

    Một nhóm học sinh có 30 học sinh, trong đó có 16 em học khá môn Toán, 25 em học khá môn Hóa học, 12 em học khá cả hai môn Toán và Hóa học. Chọn ngẫu nhiên một học sinh trong số đó. Tính xác suất để học sinh đó học khá môn Toán biết rằng học sinh đó học khá môn Hóa học?

    Hướng dẫn:

    Gọi A: “Học sinh đó học khá môn Toán”

    Và B: “Học sinh đó học khá môn Hóa học”

    Theo bài ra ta có:

    P(A) = \frac{16}{30};P(B) =
\frac{25}{30};P(AB) = \frac{12}{30}

    \Rightarrow P\left( A|B ight) =
\frac{P(AB)}{P(B)} = \frac{12}{25} = 0,48

  • Câu 3: Vận dụng
    Tính xác suất theo yêu cầu

    Theo thống kê xác suất để hai ngày liên tiếp có mưa ở một thành phố vào mùa hè là 0,5; còn không mưa là 0,3. Biết các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng. Tính xác suất để ngày thứ hai có mưa, biết ngày đầu không mưa?

    Hướng dẫn:

    Gọi A là "ngày đầu mưa" và B là "ngày thứ hai mưa" thì ta có:

    P(AB) = 0,5;P\left(
\overline{A}\overline{B} ight) = 0,3

    Vì các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng nên

    P\left( A\overline{B} ight) = P\left(
\overline{A}B ight) = \frac{1 - 0,5 - 0,3}{2} = 0,1

    Xác suất cần tính là P\left(
\overline{B}|A ight) có:

    P\left( \overline{B}|A ight) =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A} ight)} =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A}\overline{B}
ight) + P\left( \overline{A}B ight)}

    = \frac{0,1}{0,1 + 0,3} = 0,25 =
25\%

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Cho một hộp kín có 6 thẻ ngân hàng của BIDV và 4 thẻ ngân hàng của Techcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ngân hàng của Techcombank nếu biết lần thứ nhất đã lấy được thẻ ngân hàng của BIDV

    Hướng dẫn:

    Gọi A là biến cố “lần thứ hai lấy được thẻ ngân hàng Techcombank“, B là biến cố “lần thứ nhất lấy được thẻ ngân hàng của BIDV “.

    Ta cần tìm P\left( A|B ight) Sau khi lấy lần thứ nhất (biến cố B đã xảy ra) trong hộp còn lại 9 thẻ (trong đó 4 thẻ Techcombank) nên P\left( A|B
ight) = \frac{4}{9}.

  • Câu 5: Nhận biết
    Tính xác suất của biến cố B

    Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.

    Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"

    Và B: "Viên bi lấy ra lần thứ hai là bi trắng".

    Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?

    Hướng dẫn:

    Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.

    Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.

    Do đó, xác suất của biến cố B là: P(B) =
\frac{1}{2}.

  • Câu 6: Vận dụng
    Tính xác suất của biến cố

    Chọn ngẫu nhiên lần lượt các số a, b phân biệt thuộc tập hợp \left\{ 3^{k} \mid k \in N,1 \leq k \leq 10
ight\}. Tính xác suất để \log_{a}b là một số nguyên dương.

    Gợi ý:

    Sử dụng công thức tính xác suất xảy ra biến cố A:P(A) = \frac{n_{A}}{n_{\Omega}}.

    Hướng dẫn:

    Phép thử: "Chọn ngẫu nhiên lần lượt các số a, b phân biệt thuộc tập hợp \left\{ 3^{k} \mid k \in N,1
\leq k \leq 10 ight\}

    Biến cố A: "\log_{a}b là một số nguyên dương".

    \Rightarrow n_{\Omega} = 10.9 =
90

    + Giả sử a = 3^{k_{1}},b =
3^{k_{2}}\left( k_{1} eq k_{2} ight) \Rightarrow log_{a}b =
log_{3^{k_{1}}}\left( 3^{k_{2}} ight) = \frac{k_{2}}{k_{1}} là một số nguyên dương

    k_{2}

    10

    9

    8

    7

    6

    5

    4

    3

    2

    k_{1} 1;2;5 1;3 1;2;4

    1

    1;2;3

    1

    1;2

    1

    1

    \Rightarrow n_{A} = 17 \Rightarrow P(A)
= \frac{n_{A}}{n_{\Omega}} = \frac{17}{90}.

  • Câu 7: Thông hiểu
    Ghi lời giải bài toán vào chỗ trống

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng
    Tính xác suất theo yêu cầu

    Giả sử trong một nhóm người có 91\% người là không nhiễm bệnh. Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm đó. Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là 85\%, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là 7\%. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.

    Hướng dẫn:

    Cách 1: Sơ đồ hình cây

    Gọi A: “Người được chọn ra không nhiễm bệnh”.

    B: “Người được chọn ra có phản ứng dương tính”

    Theo bài ta có: \ P(A) = 0,91;P\left( B|A
\right) = 0,07;P\left( B|\overline{A} \right) = 0,85

    Do đó:

    \ P\left( \overline{A} \right) = 1 -P(A) = 1 - 0,91 = 0,09;P\left( \overline{B}|A \right) = 1 - P\left( B|A\right) = 1 - 0,07 = 0,93

    \ P\left( \overline{B}|\overline{A}
\right) = 1 - P\left( B|\overline{A} \right) = 1 - 0,85 =
0,15

    Ta có sơ đồ hình cây như sau:

    Vậy: \ P\left( A\overline{B} \right) =
0,91.0,93 = 0,8463.

    Cách 2: Sử dụng công thức

    \ P\left( A\overline{B} \right) = P(A) -P(AB)= P(A) - P(A)P\left( B|A \right)= 0,91 - 0,91.0,07 =0,8463

  • Câu 9: Vận dụng
    Tìm xác suất của biến cố

    Bốn quả bóng giống nhau được đánh số 1, 2, 3 và 4 rồi cho vào hộp. Một quả bóng được rút ngẫu nhiên ra khỏi hộp và không được trả lại vào hộp. Quả bóng thứ hai sau đó được rút ngẫu nhiên từ chiếc hộp. Xác suất để số đầu tiên được rút ra là số 2 nếu biết số đó tổng số ghi trê 2 quả lấy ra ít nhất là 4 bằng

    Hướng dẫn:

    Gọi A là biến cố quả thứ 2 rút ra mang số 2.

    Gọi B là biến cố để tổng các số trên 2 quả lấy ra ít nhất là 4.

    Ta có: P\left( A\left| B
\right.\  \right) = \frac{P(A \cap B)}{P(B)}.

    Lại có: các cặp số có tổng ít nhất bằng 4 là:

    (1,3);(1,4);(2,3);(2,4);(3,4);(3,2);(3,1);(4,1);(4,2);(4,3)

    Các cặp số có tổng ít nhất bằng 4 nhưng quả thứ 2 mang số 2 là (3,2);(4,2)

    Do đó: P(B) = \frac{1}{4}.\frac{1}{3}.10
= \frac{5}{6}; P(A \cap B) =
\frac{1}{4}.\frac{1}{3}.2 = \frac{1}{6}.

    Vậy P\left( A\left| B \right.\  \right) =
\frac{P(A \cap B)}{P(B)} = \frac{1}{5}.

  • Câu 10: Nhận biết
    Xác định đáp án đúng

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024;P(B) = 0,2025. Tính P\left( A|B ight)?

    Hướng dẫn:

    Hai biến cố AB là hai biến cố độc lập nên P\left( A|B ight) = P(A) = 0,2024.

  • Câu 11: Thông hiểu
    Tìm xác suất có điều kiện

    Gieo đồng thời hai con xúc sắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc sắc là 7, biết rằng có ít nhất một con xúc sắc xuất hiện mặt 5 chấm.

    Hướng dẫn:

    Gọi A là biến cố “Tổng số chấm xuất hiện trên hai con xúc sắc là 7” và B là biến cố “Có ít nhất một con xúc sắc xuất hiện mặt 5 chấm”.

    Ta có

    P(B) = 1 - P\left( \overline{B} \right) =
1 - \frac{25}{36} = \frac{11}{36};

    A \cap B = \left\{ (2;5),\ \ (5;2)
\right\} \Rightarrow P(A \cap B) = \frac{2}{36}.

    Suy ra P\left( A\left| B
\right.\  \right) = \frac{P(A \cap B)}{P(B)} =
\frac{2}{11}.

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Cho hai biến cố A;BP(A) = 0,2;P(B) = 0,6;P\left( A|B ight) =
0,3. Xác định P\left( \overline{A}B
ight)?

    Hướng dẫn:

    Theo công thức tính xác suất có điều kiện ta có:

    P\left( A|B ight) = \frac{P(AB)}{P(B)}\Rightarrow P(AB) = P\left( A|B ight)P(B) = 0,3.0,6 =0,18

    \overline{A}BAB là hai biến cố xung khắc và \overline{A}B \cup AB = B nên theo tính chất của xác suất ta có:

    P\left( \overline{A}B ight) + P(AB) =
P(B)

    \Rightarrow P\left( \overline{A}B
ight) = P(B) - P(AB) = 0,6 - 0,18 = 0,42

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Có 6 khẩu súng cũ và 4 khẩu súng mới, trong đó xác suất trúng khi bắn bằng súng cũ là 0,8, còn súng mới là 0,95. Thực hiện bắn bằng một khẩu súng vào một mục tiêu thì thấy trúng. Hỏi sử dụng loại súng nào khả năng bắn trúng cao hơn?

    Hướng dẫn:

    Gọi M là biến cố "bắn bằng khẩu mới" thì \overline{M} là biến cố "bắn bằng khẩu cũ".

    Có P(M) = 0,4 và P( \overline{M} ) = 0,6.

    Gọi T là biến cố "bắn trúng" thì theo đề bài, ta có:

    P(T | M) = 0,95; P(T |  \overline{M} ) = 0,8.

    Áp dụng công thức xác suất điều kiện suy ra

    P\left( M|T ight) = \frac{P(M).P\left(
T|M ight)}{P(T)} = \frac{0,38}{P(T)}

    P\left( \overline{M}|T ight) =
\frac{P\left( \overline{M} ight).P\left( T|\overline{M} ight)}{P(T)}
= \frac{0,48}{P(T)}

    Suy ra bắn bằng khẩu cũ có khả năng xảy ra cao hơn.

  • Câu 14: Thông hiểu
    Tìm xác suất P

    Áo sơ mi May10 trước khi xuất khẩu sang phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98\% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95\% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để 1 chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu?

    Hướng dẫn:

    Gọi A là biến cố ”Qua được lần kiểm tra đầu tiên” \Rightarrow P(A) = 0,98

    Gọi B là biên cố “Qua được lần kiểm tra thứ 2” \Rightarrow P\left( B|A ight) =
0,95

    Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên hay ta đi tính P(A \cap B)

    Ta có:

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)}

    \Rightarrow P(A \cap B) = P\left( B|A
ight).P(A) = 0,95.0,98 = \frac{931}{1000}.

  • Câu 15: Nhận biết
    Chọn phương án thích hợp

    Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.

    Hướng dẫn:

    Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”

    Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.

    Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì P\left( B|A \right) = \frac{1}{6}

  • Câu 16: Vận dụng
    Tính xác suất người không nhiễm bệnh

    Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm người (trong đó 91\% người không nhiễm bệnh). Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là 85\%, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là 7\%. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.

    Hướng dẫn:

    Gọi A: “Người được chọn ra không nhiễm bệnh”.

    Và B: “Người được chọn ra có phản ứng dương tính”

    Theo bài ta có: P(A) = 0,91;P\left( B|A
ight) = 0,07;P\left( B|\overline{A} ight) = 0,85

    P\left( \overline{A} ight) = 1 - P(A)
= 0,09

     

    P\left( \overline{B}|\overline{A}
ight) = 1 - P\left( B|\overline{A} ight) = 1 - 0,85 =
0,15

    Ta có sơ đồ hình cây như sau:

    Vậy P\left( A\overline{B} ight) =
0,91.0,93 = 0,8463

  • Câu 17: Thông hiểu
    Tính xác suất của biến cố

    Cho một hộp kín có 6 thẻ ATM của ACB và 4 thẻ ATM của Vietcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ATM của Vietcombank nếu biết lần thứ nhất đã lấy được thẻ ATM của ACB.

    Hướng dẫn:

    Gọi A là biến cố “lần thứ hai lấy được thẻ ATM Vietcombank”, B là biến cố “lần thứ nhất lấy được thẻ ATM của ACB”.

    Ta cần tìm Ρ\left( A|B
\right).

    Sau khi lấy lần thứ nhất (biến cố B xảy ra) trong hộp còn lại 9 thẻ (trong đó có 4 thẻ Vietcombank) nên Ρ\left( A|B \right) = \frac{4}{9}.

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Cho hai biến cố ABP(A) =
0,2;\ \ \ P(B) = 0,8P\left( A|B
\right) = 0,5. Tính P\left(
\overline{A}B \right) có kết quả là

    Hướng dẫn:

    Theo công thức nhân xác xuất, ta có:

    P(AB) = P(B).P\left( A|B \right) =
0,8.0,5 = 0,4

    AB\overline{A}B là hai biến cố xung khắc nên: AB \cup \overline{A}B = B

    \Rightarrow P\left( \overline{A}B \right)
= 1 - P(AB) = 1 - 0,4 = 0,6.

  • Câu 19: Nhận biết
    Chọn kết quả đúng

    Cho hai biến cố A,B có xác suất Ρ(A) = 0,4;Ρ(B) = 0,3;Ρ\left( A|B \right) =
0,25. Tính xác suất Ρ\left( B|A
\right).

    Hướng dẫn:

    Theo định nghĩa xác suất có điều kiện, ta có Ρ\left( A|B \right) =
\frac{Ρ(AB)}{Ρ(B)}.

    Do đó Ρ(AB) = Ρ\left( A|B \right).Ρ(B) =
0,3.0,25 = 0,075.

    Từ đó suy ra Ρ\left( B|A \right) =
\frac{Ρ(AB)}{Ρ(A)} = \frac{0,075}{0,4} = 0,1875.

  • Câu 20: Thông hiểu
    Tính xác suất có điều kiện

    Gieo hai con xúc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4chấm.

    Hướng dẫn:

    Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4chấm”

    Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xác xắc bằng 6”.

    Khi con xúc xắc thứ nhất đã xuất hiện mặt 4chấm thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì P\left( B\left| A \right.\  \right) =
\frac{1}{6}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo