Cho các hàm số có đạo hàm cấp một, đạo hàm cấp hai liên tục trên
và thỏa mãn
. Giá trị của biểu thức
bằng:
Đặt
Ta có:
Ta có:
Vậy
Cho các hàm số có đạo hàm cấp một, đạo hàm cấp hai liên tục trên
và thỏa mãn
. Giá trị của biểu thức
bằng:
Đặt
Ta có:
Ta có:
Vậy
Tích phân có giá trị là:
Tích phân có giá trị là:
Ta biến đổi: .
Nhận thấy:. Ta dùng đổi biến số.
Đặt .
Đổi cận.
.
Đáp án đúng là .
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
.Đúng||Sai
b) .Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là giây.Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
.Đúng||Sai
b) .Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là giây.Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Do nên quãng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
.
Ta có: với
là hằng số. Khi đó, ta gọi hàm số
.
Do
nên
.
Suy ra .
Xe ô tô dừng hẳn khi
hay
. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.
Ta có xe ô tô đang chạy với tốc độ
.
Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: .
Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: .
Do nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
.Đúng||Sai
b) . Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là giây.Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
.Đúng||Sai
b) . Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là giây.Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Do nên quãng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
.
Ta có: với
là hằng số. Khi đó, ta gọi hàm số
.
Do nên
. Suy ra
.
Xe ô tô dừng hẳn khi hay
.
Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.
Ta có xe ô tô đang chạy với tốc độ .
Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: .
Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: .
Do nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.
Cho hàm số có đạo hàm trên
thỏa mãn
với
ta có:
. Tính tích phân
?
Ta có:
Lấy nguyên hàm hai vế ta được:
Theo bài ra ta có:
Vì nên nhận
Vậy
Một người chạy trong thời gian 1 giờ, vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường thẳng parabol với và trục đối xứng song song với trục tung như hình bên. Tính quãng đường s người đó chạy được trong khoảng thời gian 45 phút, kể từ khi bắt đầu chạy
Ta tìm được phương trình của parabol là
Quãng đường s mà người đó chạy được trong khoảng thời gian 0,75 (h) là:
Một ô tô đang chạy đều với vận tốc 15 m/s thì phía trước xuất hiện chướng ngại vật nên người lái đạp phanh gấp. Kể từ thời điểm đó, ô tô chuyển động chậm dần đều với gia tốc m/s2. Biết ô tô chuyển động thêm được 20 m thì dừng hẳn. Hỏi a thuộc khoảng nào dưới đây:
Từ giả thiết ta có
Mà
Ô tô chuyển động được 20m thì dừng tại thời điểm
Suy ra
Tích phân có giá trị là:
Ta có:
Đáp án đúng là .
Tổng tất cả các giá trị của tham số m thỏa mãn bằng:
Ta có:
Phương trình trên là phương trình bậc hai đối với biến m, với các hệ số.
Áp dụng hệ thứ Vi- et
Giá trị của bằng
Giải toán bằng hai cách như sau:
Cách 1: Thử bằng máy tính
Lấy giá trị n càng lớn càng tốt. Giả sử .
Nhập biểu thức
Máy tính cho kết quả .
Cách 2: Giải chi tiết
Ta luôn có
Tích phân với
. Giá trị của
bằng:
Ta có:
Tích phân . Giá trị của a là:
Ta có:
.
Xét
Xét .
Theo đề bài: .
Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật
, trong đó
(phút) là thời gian tính từ lúc bắt đầu chuyển động,
được tính theo đơn vị mét/phút
. Nếu như vậy thì khi bắt đầu tiếp đất vận tốc
của khí cầu là:
Khi bắt đầu tiếp đất vật chuyển động được quãng đường là
Ta có: (với
là thời điểm vật tiếp đất)
Cho (Do
)
Khi đó vận tốc của vật là: .
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Gọi phương trình parabol .
Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho ( P) có đỉnh I ∈ Oy (như hình vẽ)
Ta có hệ phương trình:
Vậy
Dựa vào đồ thị, diện tích cửa parabol là:
Số tiền phải trả là đồng.
Cho hàm số thỏa mãn
và
. Biết
với
. Giá trị của biểu thức
là:
Tính
Đặt khi đó:
Tính .
Đặt khi đó
Mà
Biết . Khi đó
có giá trị bằng:
Ta có:
Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường parabol có đỉnh và trục đối xứng song song với trục tung như hình dưới. Tính quãng đường s mà vật di chuyển được trong 3 giờ đó.
Ta tìm được phương trình của parabol là
Như vậy, quãng đường s mà vật di chuyển được trong 3 giờ là:
Tích phân có giá trị là:
Xét tích phân
Ta biến đổi:.
Đặt.
Đổi cận .
Tích phân có giá trị là:
Ta có: và
.
Xét .
Đặt .
Đổi cận .
.
Xét .
Đặt .
Đổi cận.
.
.
Một ca nô đang chạy trên Hồ Tây với vận tốc 20 m/s thì hết xăng. Từ thời điểm đó, ca nô chuyển động chậm dần đều với vận tốc m/s, trong đó t là khoảng thời gian tính bằng giây, kể từ lúc hết xăng. Hỏi từ lúc hết xăng đến lúc dừng hẳn, ca nô đi được bao nhiêu mét?
Khi dừng hẳn .
Phương trình quãng đường đi được của ca - nô từ khi hết xăng
Tại
Suy ra: ca - nô đi được 40 mét
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: