Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân CTST (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn mệnh đề đúng

    Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x}. Biết rằng giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3}. Chọn mệnh đề đúng trong các mệnh đề sau?

    Hướng dẫn:

    Ta có:

    F(x) = \int_{}^{}{f(x)dx} =\int_{}^{}{\frac{2\cos x}{\sin^{2}x}dx} -\int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = \int_{}^{}{\frac{2}{\sin^{2}x}d\left(\sin x ight)} - \int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = - \frac{2}{\sin x} + \cot x +
C

    Suy ra F'(x) = f(x) = \frac{2\cos x -1}{\sin^{2}x}

    Trên khoảng (0;\pi) ta có:

    F'(x) = 0 \Leftrightarrow 2\cos x - 1= 0 \Leftrightarrow x = \frac{\pi}{3}

    Ta có bảng biến thiên

    Giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3} nên t s có:

    F\left( \frac{\pi}{3} ight) = \sqrt{3}
\Leftrightarrow - \frac{3\sqrt{3}}{3} + C = \sqrt{3} \Leftrightarrow C =
2\sqrt{3}

    Vậy F(x) = - \frac{2}{\sin x} + \cot x +
2\sqrt{3} \Rightarrow F\left( \frac{\pi}{6} ight) = 3\sqrt{3} -
4.

  • Câu 2: Thông hiểu
    Tìm tích phân I

    Tích phân I =
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{\sin x}{\sin x + \cos
x}dx} có giá trị là:

    Hướng dẫn:

    Tích phân I =
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{\sin x}{\sin x + \cos
x}dx} có giá trị là:

    Xét I_{1} =
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{\cos x}{\sin x + \cos
x}dx}

    Ta có: \left\{ \begin{matrix}
I_{2} = I + I_{1} = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{dx} \\
I_{3} = I_{1} - I = \int_{\frac{1}{2} +
\frac{\sqrt{3}}{2}}^{1}{\frac{1}{t}dt} \\
\end{matrix} ight.

    \Rightarrow I = \frac{I_{2} - I_{3}}{2}
= \frac{\pi}{12} - \frac{\ln\frac{1 + \sqrt{3}}{2}}{2},\ t = \sin x +
\cos x

    Đáp án đúng là I = \frac{\pi }{{12}} - \frac{{\ln \left( {\frac{{\sqrt 3  + 1}}{2}} ight)}}{2}.

  • Câu 3: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian t(s)a(t)
= 2t - 7\ \ \left( m/s^{2} \right). Biết vận tốc ban đầu bằng 6\ \ (m/s). Xét tính đúng sai của các mệnh đề sau:

    a) [NB] Phương trình vận tốc của chất điểm tại tời điểm t được xác định bởi công thức v(t) = \int_{}^{}{a(t)}dt. Đúng||Sai

    b) [TH] Tại thời điểm t
= 7\ \ (s), vận tốc của chất điểm là 6\ \ (m/s). Đúng||Sai

    c) [VD] Độ dịch chuyển của vật trong khoảng thời gian 1 \leq t \leq 718m. Sai||Đúng

    d) [VDC] Trong 8 giây đầu tiên, thời điểm chất điểm xa nhất về phía bên phải là t = 7\ \
(s). Sai||Đúng

    Đáp án là:

    Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian t(s)a(t)
= 2t - 7\ \ \left( m/s^{2} \right). Biết vận tốc ban đầu bằng 6\ \ (m/s). Xét tính đúng sai của các mệnh đề sau:

    a) [NB] Phương trình vận tốc của chất điểm tại tời điểm t được xác định bởi công thức v(t) = \int_{}^{}{a(t)}dt. Đúng||Sai

    b) [TH] Tại thời điểm t
= 7\ \ (s), vận tốc của chất điểm là 6\ \ (m/s). Đúng||Sai

    c) [VD] Độ dịch chuyển của vật trong khoảng thời gian 1 \leq t \leq 718m. Sai||Đúng

    d) [VDC] Trong 8 giây đầu tiên, thời điểm chất điểm xa nhất về phía bên phải là t = 7\ \
(s). Sai||Đúng

    a) [NB] Phương trình vận tốc của chất điểm tại thời điểm t được xác định bởi công thức v(t) = \int_{}^{}{a(t)}dt.

    b) [TH] Tại thời điểm t = 7\ \
(s), vận tốc của chất điểm là 6\ \
(m/s).

    Ta có v(t) = \int_{}^{}{a(t)}dt =
\int_{}^{}(2t - 7)dt = t^{2} - 7t + C.

    v(0) = 6 \Rightarrow C = 6 \Rightarrow
v(t) = t^{2} - 7t + 6.

    Vậy v(7) = 7^{2} - 7.7 + 6 = 6\ \
(m/s).

    c) [VD] Độ dịch chuyển của vật trong khoảng thời gian 1 \leq t \leq 718m.

    Độ dịch chuyển của vật trong khoảng thời gian 1 \leq t \leq 7

    S = \int_{1}^{7}{v(t)}dt =
\int_{1}^{7}\left( t^{2} - 7t + 6 ight)dt= \left. \ \left(\frac{t^{3}}{3} - \frac{7t^{2}}{2} + 6t ight) ight|_{1}^{7} = -
18.

    d) [VD] Trong 8 giây đầu tiên, thời điểm chất điểm xa nhất về phía bên phải là t = 7\ \ (s).

    Vị trí của chất điểm so với vị trí ban đầu tại thời điểm t

    s(t) = \int_{}^{}{v(t)dt} =\int_{}^{}{\left( t^{2} - 7t + 6 ight)dt}= \frac{t^{3}}{3} -\frac{7t^{2}}{2} + 6t + C

    Ta cần tìm giá trị lớn nhất của s(t) với t
\in \lbrack 0;\ 8brack.

    Do s'(t) = v(t) nên s'(t) = 0 \Leftrightarrow v(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = 6 \\
\end{matrix} ight..

    Lại có s(0) = C, s(1) = \frac{17}{6} + C, s(6) = - 18 + C, s(8) = - \frac{16}{3} + C.

    Vậy giá trị lớn nhất của s(t) với t \in \lbrack 0;\ 8brack đạt được khi t = 1.

  • Câu 4: Vận dụng
    Xét tính đúng sai của các khẳng định

    Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau t năm được xác định bởi hàm số S(t) (đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho bởi S'(t) = 1,2698e^{0,014t}, với t là số năm kể từ năm 2014, S'(t) tính bằng triệu người / năm.

    a) S(t) là một nguyên hàm của S'(t).Đúng||Sai

    b) S(t) = 90,7e^{0,014t} +
90,7.Sai||Đúng

    c) Theo công thức trên, tốc độ tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người / năm) khoảng 1,7triệu người /năm. Đúng||Sai

    d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoẳng 120triệu người. Đúng||Sai

    Đáp án là:

    Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau t năm được xác định bởi hàm số S(t) (đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho bởi S'(t) = 1,2698e^{0,014t}, với t là số năm kể từ năm 2014, S'(t) tính bằng triệu người / năm.

    a) S(t) là một nguyên hàm của S'(t).Đúng||Sai

    b) S(t) = 90,7e^{0,014t} +
90,7.Sai||Đúng

    c) Theo công thức trên, tốc độ tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người / năm) khoảng 1,7triệu người /năm. Đúng||Sai

    d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoẳng 120triệu người. Đúng||Sai

    Ta có S(t) là một nguyên hàm của S'(t)

    \int_{}^{}{S'(t)dt
=}\int_{}^{}{1,2698e^{0,014t}dt} = 1,2698\int_{}^{}\left( e^{0,014t}
\right)^{t}dt

    = \frac{1,2698e^{0,014t}}{0,014} =
90,7e^{0,014t} + C.

    S(0) = 90,7 nên C = 0. Suy ra S(t) = 90,7e^{0,014t}.

    Tốc độ tăng dân số ở nước ta năm 2034 là:

    S'(20) = 1,2698e^{0,014.20} \approx
1,7 (triệu người/năm).

    Dân số nước ta năm 2034 là: S(20) =
90,7e^{0,014.20} \approx 120 (triệu người).

  • Câu 5: Vận dụng
    Chọn kết luận đúng

    Cho hàm số f(x) liên tục và có đạo hàm trên \left( 0;\frac{\pi}{2}
ight) thỏa mãn f(x) + \tan xf'(x) = \frac{x}{\cos^{3}x}. Biết rằng \sqrt{3}f\left( \frac{\pi}{3} ight) - f\left(
\frac{\pi}{6} ight) = a\pi\sqrt{3} + bln3 trong đó a;b\mathbb{\in R}. Kết luận nào sau đây đúng?

    Hướng dẫn:

    Ta có: f(x) + \tan xf'(x) =\frac{x}{\cos^{3}x}

    \Leftrightarrow \cos xf(x) + \sin xf'(x) = \frac{x}{\cos^{2}x}

    \Leftrightarrow \left\lbrack \sin xf(x)ightbrack' = \frac{x}{\cos^{2}x}

    \Rightarrow \int_{}^{}{\left\lbrack \sin xf(x) ightbrack'dx} =\int_{}^{}{\frac{x}{\cos^{2}x}dx}

    \Rightarrow \sin xf(x) =\int_{}^{}{\frac{x}{\cos^{2}x}dx}.

    Tính I =
\int_{}^{}{\frac{x}{cos^{2}x}dx}. Đặt \left\{ \begin{matrix}u = x \\dv = \dfrac{dx}{\cos^{2}x} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \tan x \\\end{matrix} ight. khi đó:

    I = x\tan x - \int_{}^{}{\tan xdx} =
x\tan x - \int_{}^{}\frac{d\left( \cos x ight)}{\cos x}

    = x\tan x + \ln\left| \cos x
ight|

    \Rightarrow f(x) = \frac{x\tan x +
\ln\left| \cos x ight|}{\sin x} = \frac{x}{\cos x} + \frac{\ln\left|
\cos x ight|}{\sin x}

    Theo bài ra ta có:

    \Rightarrow \sqrt{3}f\left(\frac{\pi}{3} ight) - f\left( \frac{\pi}{6} ight) = \sqrt{3}\left(\frac{2\pi}{3} - \dfrac{2\ln2}{\sqrt{3}} ight)- \left(\frac{\pi\sqrt{3}}{9} + 2\ln\dfrac{\sqrt{3}}{2} ight) =\dfrac{5\pi\sqrt{3}}{9}\ln3

    \Rightarrow \left\{ \begin{matrix}a = \dfrac{5}{9} \\b = - 1 \\\end{matrix} ight.\  \Rightarrow a + b = - \frac{4}{9}

  • Câu 6: Vận dụng
    Xét tính đúng sai của các nhận định

    Một vật chuyển động với gia tốc a(t) =
2cost\left( \ m/s^{2} \right).

    a) Tại thời điểm bắt đầu chuyển động, vật có vận tốc bằng 0. Khi đó, vận tốc của vật được biểu diễn bởi hàm số v(t) = 2sint\ (\
m/s).Đúng||Sai

    b) Vận tốc của vật tại thời điểm t =
\frac{\pi}{2}1\
m/s.Sai||Đúng

    c) Quãng đường vật đi được từ thời điểm t
= 0\ \ (\ s) đến thời điểm t = \pi\
(s)4\ m. Đúng||Sai

    d) Quãng đường vật đi được từ thời điểm t
= \frac{\pi}{2} (s) đến thời điểm t
= \frac{3\pi}{4} (s) là 2\
m. Sai||Đúng

    Đáp án là:

    Một vật chuyển động với gia tốc a(t) =
2cost\left( \ m/s^{2} \right).

    a) Tại thời điểm bắt đầu chuyển động, vật có vận tốc bằng 0. Khi đó, vận tốc của vật được biểu diễn bởi hàm số v(t) = 2sint\ (\
m/s).Đúng||Sai

    b) Vận tốc của vật tại thời điểm t =
\frac{\pi}{2}1\
m/s.Sai||Đúng

    c) Quãng đường vật đi được từ thời điểm t
= 0\ \ (\ s) đến thời điểm t = \pi\
(s)4\ m. Đúng||Sai

    d) Quãng đường vật đi được từ thời điểm t
= \frac{\pi}{2} (s) đến thời điểm t
= \frac{3\pi}{4} (s) là 2\
m. Sai||Đúng

    a) Ta có v(t) = \int_{}^{}a(t)dt =
\int_{}^{}2\cos t\ dt = 2sint + C.

    Mà tại thời điểm bắt đầu chuyển động, vật có vận tốc bằng 0 nên ta có v(0) = 0 hay C = 0. Vậy v(t) = 2sint

    Suy ra đúng.

    b) Vận tốc của vật tại thời điểm t =
\frac{\pi}{2}v\left(
\frac{\pi}{2} \right) = 2sin\frac{\pi}{2} = 2(\ m/s).

    Suy ra sai.

    c) Quãng đường vật đi được từ thời điểm t
= 0\ \ (\ s) đến thời điểm t = \pi\
(s)

    \int_{0}^{\pi}v(t)dt =
\int_{0}^{\pi}2\sin t\ dt = - \left. \ 2cost \right|_{0}^{\pi} = -
2cos\pi - ( - 2cos0) = 4\ (\ m).

    Suy ra đúng.

    d) Quãng đường vật đi được từ thời điểm t
= \frac{\pi}{2} (s) đến thời điểm t
= \frac{3\pi}{4} (s) là

    \int_{\frac{\pi}{2}}^{\frac{3\pi}{4}}{v(t)dt} =
\int_{\frac{\pi}{2}}^{\frac{3\pi}{4}}{2sintdt} = - \left. \ 2cost
\right|_{\frac{\pi}{2}}^{\frac{3\pi}{4}} = - 2cos\frac{3\pi}{4} - \left(
- 2cos\frac{\pi}{2} \right) = \sqrt{2}\ (\ m).

    Suy ra Sai.

  • Câu 7: Vận dụng cao
    Chọn phương án thích hợp

    Tích phân I = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}{\frac{\sin x}{\left( \cos x +
\sqrt{3}\sin x \right)^{2}}dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{-
\frac{\pi}{3}}^{\frac{\pi}{3}}{\frac{\sin x}{\left( \cos x +
\sqrt{3}\sin x ight)^{2}}dx} có gái trị là:

    Ta có:

    I = \int_{-
\frac{\pi}{3}}^{\frac{\pi}{3}}{\frac{\sin x}{\left( \cos x +
\sqrt{3}\sin x ight)^{2}}dx} = \int_{-
\frac{\pi}{3}}^{\frac{\pi}{3}}{\frac{\sin x}{4\left( \frac{1}{2}\cos x +
\frac{\sqrt{3}}{2}\sin x ight)^{2}}dx}

    Suy ra I = \int_{-
\frac{\pi}{3}}^{\frac{\pi}{3}}{\frac{\sin x}{4\left\lbrack \sin\left( x
+ \frac{\pi}{6} ight) ightbrack^{2}}dx}.

    Đặt u = x + \frac{\pi}{6} \Rightarrow x =
u - \frac{\pi}{6} \Rightarrow dx = du.

    Đổi cận\left\{ \begin{matrix}
x = - \frac{\pi}{3} \Rightarrow u = - \frac{\pi}{6} \\
x = \frac{\pi}{3} \Rightarrow u = \frac{\pi}{2} \\
\end{matrix} ight.

    I = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\sin\left( u - \frac{\pi}{6}
ight)}{4sin^{2}u}du} = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\sin u.cos\frac{\pi}{6} -
\sin\frac{\pi}{6}\cos u}{4sin^{2}u}du}

    = \frac{1}{8}\int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\sqrt{3}.sinu - \cos
u}{sin^{2}u}du} = \frac{1}{8}\left( \int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\sqrt{3}\sin u}{1 - cos^{2}u}du -
\int_{- \frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\cos u}{sin^{2}u}du}}
ight)

    Xét I_{1} = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\sqrt{3}\sin u}{1 -
cos^{2}u}du}.

    Đặt t = \cos u,u \in \lbrack 0;\pibrack
\Rightarrow dt = - \sin udu.

    Đổi cận \left\{ \begin{matrix}u = - \dfrac{\pi}{6} \Rightarrow t = \dfrac{\sqrt{3}}{2} \\u = \dfrac{\pi}{2} \Rightarrow t = 0 \\\end{matrix} ight..

    \Rightarrow I_{1} =
\int_{\frac{\sqrt{3}}{2}}^{0}\frac{\sqrt{3}dt}{1 - t^{2}} =
\frac{\sqrt{3}}{2}\int_{\frac{\sqrt{3}}{2}}^{0}\left( \frac{1}{1 - t} +
\frac{1}{1 + t} ight)dt

    = \frac{\sqrt{3}}{2}\left. \ \left(
ln\left| \frac{t + 1}{t - 1} ight| ight)
ight|_{\frac{\sqrt{3}}{2}}^{0} = - \frac{\sqrt{3}}{2}\ln\left(
\frac{\sqrt{3} + 2}{- \sqrt{3} + 2} ight).

    Xét I_{2} = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\cos u}{sin^{2}u}du}.

    Đặt t = \sin u,u \in \left\lbrack -
\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dt = \cos
udu.

    Đổi cận \left\{ \begin{matrix}
u = - \frac{\pi}{6} \Rightarrow t = - \frac{1}{2} \\
u = \frac{\pi}{2} \Rightarrow t = 1 \\
\end{matrix} ight..

    I_{2} = \int_{-
\frac{1}{2}}^{1}{\frac{1}{t^{2}}du} = \left. \ \left( - \frac{1}{t}
ight) ight|_{- \frac{1}{2}}^{1} = - 3.

    \Rightarrow I = \frac{1}{8}\left( I_{1} -
I_{2} ight) = - \frac{\sqrt{3}}{16}\ln\left( \frac{\sqrt{3} + 2}{-
\sqrt{3} + 2} ight) + \frac{3}{8}.

    Đáp án đúng là I = -
\frac{\sqrt{3}}{16}\ln\left( \frac{\sqrt{3} + 2}{- \sqrt{3} + 2} ight)
+ \frac{3}{8}

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Cho tích phân I = \int_{0}^{4}{f(x)dx} =
32. Tính tích phân H =
\int_{0}^{2}{f(2x)dx}?

    Hướng dẫn:

    Đặt t = 2x \Rightarrow dt = 2dx
\Rightarrow dx = \frac{dt}{2}

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 0 \\
x = 2 \Rightarrow t = 4 \\
\end{matrix} ight.

    Khi đó H =
\frac{1}{2}\int_{0}^{4}{f(t)dt} = \frac{1}{2}.32 = 16

  • Câu 9: Vận dụng
    Tính giá trị của tích phân

    Tích phân I = \int_{0}^{a}{x\sqrt{x +
1}}dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{0}^{a}{x\sqrt{x +
1}}dx có giá trị là:

    I = \int_{0}^{a}{x\sqrt{x + 1}}dx =
\int_{0}^{a}{(x + 1)\sqrt{x + 1}}dx - \int_{0}^{a}\sqrt{x +
1}dx

    = \int_{0}^{a}(x + 1)^{\frac{3}{2}}dx -
\int_{0}^{a}(x + 1)^{\frac{1}{2}}dx

    = \left. \ \left\lbrack \frac{2}{5}(x +
1)^{\frac{5}{2}} ightbrack ight|_{0}^{a} - \left. \ \left\lbrack
\frac{2}{3}(x + 1)^{\frac{3}{2}} ightbrack ight|_{0}^{a}

    \  = \frac{2}{5}\sqrt{(x + 1)^{5}} -
\frac{2}{3}\sqrt{(x + 1)^{3}} + \frac{4}{15}

    Đáp án đúng là I = \frac{{2\sqrt {{{\left( {a + 1} ight)}^5}} }}{5} - \frac{{2\sqrt {{{\left( {a + 1} ight)}^3}} }}{3} + \frac{4}{{15}}.

  • Câu 10: Vận dụng
    Xác định tham số a thỏa mãn điều kiện

    Tích phân I =
\int_{2}^{3}{\frac{a^{2}x^{2} + 2x}{ax}dx} có giá trị nhỏ nhất khi số thực dương a có giá trị là:

    Hướng dẫn:

    Tích phân I =
\int_{2}^{3}{\frac{a^{2}x^{2} + 2x}{ax}dx} có giá trị nhỏ nhất khi số thực dương a có giá trị là:

    I = \int_{2}^{3}{\frac{a^{2}x^{2} +
2x}{ax}dx} = \int_{2}^{3}{\left( ax + \frac{2}{a}
ight)dx}

    = \left. \ \left( \frac{a}{2}x^{2} +
\frac{2}{a}x ight) ight|_{2}^{3} = \frac{5a}{2} +
\frac{2}{a}

    Vì a là số thực dương nên I =
\frac{5a}{2} + \frac{2}{a} \geq 2\sqrt{\frac{5a}{2}.\frac{2}{a}} =
2\sqrt{5}.

    Đáp án đúng là 2\sqrt 5.

  • Câu 11: Vận dụng cao
    Tính giá trị của tham số a

    Biết I = \int_{0}^{1}{\frac{\sqrt{ln^{3}x
+ 3x}\left( ln^{2}x + \frac{1}{3}x \right)}{x}dx} = \frac{2}{9}\left(
\sqrt{1 + ae + 27e^{2} + 27e^{3}} - 3\sqrt{3} \right), a là các số hữu tỉ. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int_{1}^{e}{\frac{\sqrt{ln^{3}x +
3x}\left( ln^{2}x + \frac{1}{3}x ight)}{x}dx}

    =
\frac{1}{3}\int_{1}^{e}{\frac{\sqrt{ln^{3}x + 3x}\left( 3ln^{2}x + x
ight)}{x}dx}

    Đặt t = ln^{3}x + 3x \Rightarrow dt =
\frac{3}{x}ln^{2}x + 1

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 3 \\
x = e \Rightarrow t = 1 + 3e \\
\end{matrix} ight..

    \Rightarrow I = \int_{3}^{1 +
3e}\sqrt{t}dt = \frac{2}{3}\left. \ \left( \sqrt{t^{3}} ight)
ight|_{3}^{1 + 3e} = \frac{2}{3}\left( \sqrt{(1 + 3e)^{3}} - 3\sqrt{3}
ight).

    = \frac{2}{9}\left( \sqrt{1 + 9e +
27e^{2} + 27e^{3}} - 3\sqrt{3} ight) \Rightarrow a = 9

  • Câu 12: Vận dụng
    Chọn đáp án đúng

    Cho hai hàm số f(x)f( - x) liên tục trên tập số thực và thỏa mãn 2f(x) + 3f( - x) = \frac{1}{4 +
x^{2}}. Tính tích phân I = \int_{-
2}^{2}{f(x)dx}?

    Hướng dẫn:

    Đặt t = - x \Rightarrow dt = -
dx

    Đổi cận \left\{ \begin{matrix}
x = - 2 \Rightarrow t = 2 \\
x = 2 \Rightarrow t = - 2 \\
\end{matrix} ight.\  \Rightarrow I = - \int_{2}^{- 2}{f( - t)dt} =
\int_{- 2}^{2}{f( - x)dx}

    Theo bài ra ta có:

    2f(x) + 3f( - x) = \frac{1}{4 +
x^{2}}

    \Leftrightarrow 2\int_{- 2}^{2}{f(x)dx}
+ 3\int_{- 2}^{2}{f( - x)dx} = \int_{- 2}^{2}\frac{1}{4 +
x^{2}}dx

    \Leftrightarrow 2I + 3I = \int_{-
2}^{2}\frac{1}{4 + x^{2}}dx

    \Leftrightarrow I = \frac{1}{5}\int_{-
2}^{2}\frac{1}{4 + x^{2}}dx

    Đặt x = 2\tan u \Rightarrow dx =2.\frac{1}{\cos^{2}u}du = 2\left( 1 + \tan^{2}u ight)du

    Đổi cận \left\{ \begin{matrix}x = - 2 \Rightarrow u = - \dfrac{\pi}{4} \\x = 2 \Rightarrow u = \dfrac{\pi}{4} \\\end{matrix} ight.\Rightarrow I = \dfrac{1}{5}\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}{\frac{2\left( 1 + u^{2} ight)}{4 +4\tan^{2}u}du} = \frac{1}{10}\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}{du}

    = \left. \ \frac{1}{10}u ight|_{-
\frac{\pi}{4}}^{\frac{\pi}{4}} = \frac{1}{10}\left( \frac{\pi}{4} +
\frac{\pi}{4} ight) = \frac{\pi}{20}

  • Câu 13: Vận dụng
    Chọn phương án đúng

    Tích phân I = \int_{0}^{1}{\frac{3 +
4x}{\sqrt{3 + 2x - x^{2}}}dx} có giá trị là:

    Hướng dẫn:

    Ta có: \left( 3 + 3x - x^{2} ight)'
= 3 - 2x3 + 4x = 9 - 2(3 -
2x)

    \Rightarrow I = \int_{0}^{1}{\frac{3 +
4x}{\sqrt{3 + 2x - x^{2}}}dx} = \int_{0}^{1}{\frac{7 - 2(2 -
2x)}{\sqrt{3 + 2x - x^{2}}}dx}

    = \int_{0}^{1}{\frac{7}{\sqrt{3 + 2x -
x^{2}}}dx} - \int_{0}^{1}{\frac{2(2 - 2x)}{\sqrt{3 + 2x -
x^{2}}}dx}.

    Xét I_{1} = \int_{0}^{1}{\frac{7}{\sqrt{3
+ 2x - x^{2}}}dx} = \int_{0}^{1}{\frac{7}{\sqrt{4 - (x -
1)^{2}}}dx}.

    Đặt x - 1 = 2sint,t \in \left\lbrack -
\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =
2costdt.

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = - \frac{\pi}{6} \\
x = 1 \Rightarrow t = 0 \\
\end{matrix} ight..

    \Rightarrow I_{1} = \int_{-\frac{\pi}{6}}^{0}{\frac{14cost}{\sqrt{4 - 4\sin^{2}t}}dt} =\frac{7\pi}{6}.

    Xét I_{2} = \int_{0}^{1}{\frac{2(2 -
2x)}{\sqrt{3 + 2x - x^{2}}}dx}.

    Đặt t = 3 + 2x - x^{2} \Rightarrow dt =
(2 - 2x)dx.

    Đổi cận\left\{ \begin{matrix}
x = 0 \Rightarrow t = 3 \\
x = 1 \Rightarrow t = 4 \\
\end{matrix} ight..

    \Rightarrow I_{2} =
\int_{3}^{4}{\frac{2}{\sqrt{t}}dt} = 4\left. \ \left( t^{\frac{1}{2}}
ight) ight|_{3}^{4} = 4\left( 2 - \sqrt{3} ight).

    I = I_{1} - I_{2} = \frac{7\pi}{6} +
4\sqrt{3} - 8.

  • Câu 14: Vận dụng cao
    Tính tích phân I

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 6;5brack có đồ thị gồm hai đoạn thẳng và nửa đường tròn như hình vẽ:

    Tính giá trị I = \int_{-
6}^{5}{\left\lbrack f(x) + 2 ightbrack dx}?

    Hướng dẫn:

    Hình vẽ minh họa

    Dựa vào đồ thị ta có: A( - 6; - 1),B( -
2;1) suy ra phương trình đường thẳng AB:y = \frac{1}{2}x + 2

    \Rightarrow I_{1} = \int_{0}^{-
2}{\left\lbrack \frac{1}{2}x + 2 + 2 ightbrack dx} = 8

    Phương trình đường tròn (C): x^{2} + (y - 1)^{2} = 4 \Rightarrow y = 1 +
\sqrt{4 - x^{2}}

    \Rightarrow I_{2} = \int_{-
2}^{2}{\left\lbrack 1 + \sqrt{4 - x^{2}} + 2 ightbrack dx} = 12 +
2\pi

    Điểm C(2;1),D(5;3) nên phương trình đường thẳng CD là: y = \frac{2}{3}x - \frac{1}{3}

    \Rightarrow I_{3} =
\int_{2}^{5}{\left\lbrack \frac{2}{3}x - \frac{1}{3} + 2 ightbrack
dx} = 12

    Vậy I = I_{1} + I_{2} + I_{3} = 32 +
2\pi

  • Câu 15: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn điều kiện f(0) = 2\sqrt{2};f(x) > 0 với \forall x\mathbb{\in R}f(x).f'(x) = (2x + 1)\sqrt{1 +f^{2}(x)} với \forall x\mathbb{\inR}. Tính giá trị f(1)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn điều kiện f(0) = 2\sqrt{2};f(x) > 0 với \forall x\mathbb{\in R}f(x).f'(x) = (2x + 1)\sqrt{1 +f^{2}(x)} với \forall x\mathbb{\inR}. Tính giá trị f(1)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng
    Xét tính đúng sai của các mệnh đề

    Một xe ô tô đang chạy với vận tốc 65 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 50\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 10t + 20\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t).Đúng||Sai

    b) s(t) = - 5t^{2} + 20t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 20 giây.Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Đáp án là:

    Một xe ô tô đang chạy với vận tốc 65 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 50\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 10t + 20\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t).Đúng||Sai

    b) s(t) = - 5t^{2} + 20t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 20 giây.Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Do s'(t) = v(t) nên quãng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t).

    Ta có: \int_{}^{}{( - 10t + 20)}dt = -
5t^{2} + 20t + C với C là hằng số. Khi đó, ta gọi hàm số s(t) = -
5t^{2} + 20t + C.

    Do s(0) = 0 nên C = 0. Suy ra s(t) = - 5t^{2} + 20t.

    Xe ô tô dừng hẳn khi v(t) = 0 hay - 10t + 20 = 0 \Leftrightarrow t =
2.

    Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.

    Ta có xe ô tô đang chạy với tốc độ 65\
km/h \approx 18\ m/s.

    Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: s(2) = - 5 \cdot 2^{2} +
20 \cdot 2 = 20\ (\ m).

    Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 18 + 20 \approx 38\ (\ m).

    Do 38 < 50 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.

  • Câu 17: Vận dụng
    Tìm quãng đường vật đi được

    Giả sử một vật từ trạng thái nghỉ khi t =
0 (s) chuyển động thẳng với vận tốc v(t) = t(5 - t) (m/s). Tìm quãng đường vật đi được cho đến khi nó dừng lại.

    Hướng dẫn:

    Ta có: S = \int_{}^{}{v(t)}dt =
\int_{}^{}{t(5 - t)}dt \Rightarrow S = \frac{5t^{2}}{2} -
\frac{t^{3}}{3}

    Khi vật dừng lại \Rightarrow v = t(5 - t)
= 0 \Rightarrow t = 5

    Khi đó S = \frac{5.5^{2}}{2} -
\frac{5^{3}}{3} = \frac{125}{6}(m)

  • Câu 18: Vận dụng
    Tính tích phân

    Cho hàm số f(x) đồng biến và có đạo hàm cấp hai trên đoạn \lbrack
0;2brack và thỏa mãn 2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0 với \forall x \in \lbrack
0;2brack. Biết rằng f(0) = 1;f(2)
= e^{6} khi đó tích phân M =
\int_{- 2}^{0}{(2x + 1)f(x)dx} bằng:

    Hướng dẫn:

    Ta có:

    2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0

    \Leftrightarrow f(x).f''(x) -
\left\lbrack f'(x) ightbrack^{2} = 2\left\lbrack f(x)
ightbrack^{2}

    \Leftrightarrow
\frac{f(x).f''(x) - \left\lbrack f'(x)
ightbrack^{2}}{\left\lbrack f(x) ightbrack^{2}} = 2

    \Leftrightarrow \left\lbrack
\frac{f'(x)}{f(x)} ightbrack' = 2 \Leftrightarrow
\int_{}^{}{\left\lbrack \frac{f'(x)}{f(x)} ightbrack'dx} =
\int_{}^{}{2dx}

    \Leftrightarrow \frac{f'(x)}{f(x)} =
2x + C_{1} \Leftrightarrow \ln\left| f(x) ight| = x^{2} + C_{1}x +
C_{2}

    Theo bài ra ta có:

    \left\{ \begin{matrix}
f(0) = 1 \\
f(2) = e^{6} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
ln1 = C_{2} \\
4 + 2C_{1} = 6 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
C_{2} = 0 \\
C_{1} = 1 \\
\end{matrix} ight.

    \Rightarrow \ln\left| f(x) ight| =
x^{2} + x \Rightarrow f(x) = e^{x^{2} + x}

    \Rightarrow M = \int_{- 2}^{0}{(2x +
1)e^{x^{2} + x}dx} = \left. \ e^{x^{2} + x} ight|_{- 2}^{0} = 1 -
e^{2}

  • Câu 19: Thông hiểu
    Tính tích phân

    Tính tích phân I =\int_{0}^{\pi}{\cos^{3}x.\sin xdx}?

    Hướng dẫn:

    Đặt x = \pi - t. Ta có:

    I = - \int_{\pi}^{0}{\cos^{3}(\pi -t).\sin(\pi - t)dt} = - \int_{0}^{\pi}{\cos^{3}t.\sin tdt} suy ra 2I = 0 \Rightarrow I = 0.

  • Câu 20: Vận dụng cao
    Tìm giá trị của tích phân I

    Tích phân I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\left( x^{3} + 2x \right)\cos
x + xcos^{2}x}{\cos x}dx} có giá trị là:

    Hướng dẫn:

    Tích phân I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\left( x^{3} + 2x ight)\cos
x + xcos^{2}x}{\cos x}dx}

    Ta có:

    I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\left( x^{3} + 2x ight)\cos
x + xcos^{2}x}{\cos x}dx}

    Xét I_{1} =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{x\cos xdx}.

    Đặt \left\{ \begin{matrix}
u = x \\
dv = \cos xdx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = \sin x \\
\end{matrix} ight..

    \Rightarrow I_{1} = \left. \ \left( x\sin
x ight) ight|_{\frac{\pi}{6}}^{\frac{\pi}{2}} -
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\sin xdx} = \frac{\pi}{4} -
\frac{\sqrt{3}}{2}.

    \Rightarrow I = \left. \ \left(
\frac{1}{4}x^{4} + x^{2} ight) ight|_{\frac{\pi}{6}}^{\frac{\pi}{2}}
+ I_{1} = \frac{5\pi^{4}}{324} + \frac{2\pi^{2}}{9} + \frac{\pi}{4} -
\frac{\sqrt{3}}{2}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo