Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân KNTT (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Tích phân \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = a - \ln b với a;b\mathbb{\in Z}. Giá trị của a + b bằng:

    Hướng dẫn:

    Ta có: \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = \int_{0}^{1}{\left( 1 - \frac{2x}{x^{2} + 1}
ight)dx}

    = \left. \ x ight|_{0}^{1} - \left. \
\ln\left( x^{2} + 1 ight) ight| = 1 - ln2

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
\end{matrix} ight.\  \Rightarrow a + b = 3

  • Câu 2: Vận dụng
    Chọn đáp án đúng

    Tích phân I = \int_{-
1}^{1}{\frac{x}{\sqrt{x + 1} - 1}dx} có giá trị là:

    Hướng dẫn:

    Ta có:

    \frac{x}{\sqrt{x + 1} - 1} = \sqrt{x +
1} + 1

    \Rightarrow I = \int_{-
1}^{1}\frac{x}{\sqrt{x + 1} - 1}dx = \int_{- 1}^{1}\left( \sqrt{x + 1} +
1 ight)dx

    = \left. \ \left\lbrack \frac{2}{3}(x +
1)^{\frac{3}{2}} + x ightbrack ight|_{- 1}^{1} =
\frac{4\sqrt{2}}{3} + 2

    Đáp án đúng là I = \frac{4\sqrt{2}}{3} +
2.

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Cho \int_{1}^{2}{\frac{1}{\sqrt{x^{2} +
1}}dx} = \ln\frac{2 + \sqrt{a}}{1 + \sqrt{b}},ab là các số hữu tỉ.. Giá trị \frac{a}{b} là:

    Hướng dẫn:

    Ta đặt: t = x + \sqrt{x^{2} + 1}\Rightarrow \frac{dt}{t} = \frac{dx}{\sqrt{x^{2} + 1}}.

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 + \sqrt{2} \\
x = 2 \Rightarrow t = 2 + \sqrt{5} \\
\end{matrix} ight..

    Ta có:

    \int_{1 + \sqrt{2}}^{2 +
\sqrt{5}}\frac{dt}{t} = \left. \ \left( \ln|t| ight) ight|_{1 +
\sqrt{2}}^{2 + \sqrt{5}}\ln\frac{2 + \sqrt{5}}{1 +
\sqrt{2}}.

  • Câu 4: Thông hiểu
    Tính giá trị biểu thức S

    Cho biết \int_{1}^{2}{\ln\left( 9 - x^{2}
ight)dx} = aln5 + bln2 + c với a;b;c\mathbb{\in Z}. Tính S = |a| + |b| + |c|?

    Hướng dẫn:

    Xét trên đoạn \lbrack 1;2brack ta có:

    \ln\left( 9 - x^{2} ight) = \ln(3 - x)
+ \ln(3 + x)

    Xét I_{1} = \int_{1}^{2}{\ln(3 -
x)dx}. Đặt \left\{ \begin{matrix}u = \ln(3 - x) \\dv = dx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x - 3}dx \\v = x \\\end{matrix} ight.

    \Rightarrow I_{1} = \left. \ x\ln(3 - x)
ight|_{1}^{2} - \int_{1}^{2}{\frac{x}{x - 3}dx}

    \Rightarrow I_{1} = \left. \ x\ln(3 - x)ight|_{1}^{2} - \left. \ \left\lbrack x + 3\ln(3 - x) ightbrackight|_{1}^{2} = 2\ln2 - 1

    Xét I_{2} = \int_{1}^{2}{\ln(3 +
x)dx}. Đặt \left\{ \begin{matrix}u = \ln(3 + x) \\dv = dx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x + 3}dx \\v = x \\\end{matrix} ight.

    \Rightarrow I_{2} = \left. \ x\ln(3 + x)
ight|_{1}^{2} - \int_{1}^{2}{\frac{x}{x + 3}dx}

    \Rightarrow I_{2} = \left. \ x\ln(3 + x)ight|_{1}^{2} - \left. \ \left\lbrack x + 3\ln(3 + x) ightbrackight|_{1}^{2} = 5\ln5 - 8\ln2 - 1

    Vậy \int_{1}^{2}{\ln\left( 9 - x^{2}ight)dx} = I_{1} + I_{2} = 5\ln5 - 6\ln2 - 2 \Rightarrow S =13.

  • Câu 5: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có một nguyên hàm là hàm số F(x). Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Theo định nghĩa tích phân ta có: \int_{a}^{b}{f(x)dx} = F(b) - F(a).

  • Câu 6: Thông hiểu
    Tính quãng đường vật đi được

    Một vật chuyển động với vận tốc 10(m/s) thì tăng tốc với gia tốc a(t) = 3t + t^{2}\left( m/s^{2}
ight)Tính quãng đường vật đi được trong khoảng thời gian 10 giây kể từ lúc bắt đầu tăng tốc.

    Hướng dẫn:

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{\left( 3t + t^{2} ight)dt} = \frac{t^{3}}{3} +
\frac{3}{2}t^{2} + C

    Do khi bắt đầu tăng tốc v_{0} = 10
\Rightarrow v_{(t = 0)} = 10 \Rightarrow C = 10

    \Rightarrow v(t) = \frac{t^{3}}{3} +
\frac{3}{2}t^{2} + 10

    Khi đó quãng đường đi được bằng

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{\left( \frac{t^{3}}{3} + \frac{3}{2}t^{2} + 10 ight)dt}
= \frac{4300}{3}(m)

  • Câu 7: Vận dụng
    Tính giá trị của tích phân

    Tích phân I = \int_{0}^{a}{x\sqrt{x +
1}}dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{0}^{a}{x\sqrt{x +
1}}dx có giá trị là:

    I = \int_{0}^{a}{x\sqrt{x + 1}}dx =
\int_{0}^{a}{(x + 1)\sqrt{x + 1}}dx - \int_{0}^{a}\sqrt{x +
1}dx

    = \int_{0}^{a}(x + 1)^{\frac{3}{2}}dx -
\int_{0}^{a}(x + 1)^{\frac{1}{2}}dx

    = \left. \ \left\lbrack \frac{2}{5}(x +
1)^{\frac{5}{2}} ightbrack ight|_{0}^{a} - \left. \ \left\lbrack
\frac{2}{3}(x + 1)^{\frac{3}{2}} ightbrack ight|_{0}^{a}

    \  = \frac{2}{5}\sqrt{(x + 1)^{5}} -
\frac{2}{3}\sqrt{(x + 1)^{3}} + \frac{4}{15}

    Đáp án đúng là I = \frac{{2\sqrt {{{\left( {a + 1} ight)}^5}} }}{5} - \frac{{2\sqrt {{{\left( {a + 1} ight)}^3}} }}{3} + \frac{4}{{15}}.

  • Câu 8: Nhận biết
    Chọn đáp án chính xác

    Một ô tô đang chạy thì người lái đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) =
- 12t + 24(m/s) trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?

    Hướng dẫn:

    Khi dừng hẳn v(t) = - 12t + 24 = 0
\Rightarrow t = 2(s)

    Do đó từ lúc đạp phanh đến khi dừng hẳn, ô tô đi được:

    S = \int_{0}^{2}{v(t)dt} =
\int_{0}^{2}{( - 12t + 24)dt} = 24m

  • Câu 9: Thông hiểu
    Tìm giá trị tích phân

    Cho \int_{1}^{2}{f(x)dx} = 2. Hãy tính \int_{1}^{4}{\frac{f\left( \sqrt{x}
ight)}{\sqrt{x}}dx}?

    Hướng dẫn:

    Đặt t = \sqrt{x} \Rightarrow dt =
\frac{1}{2\sqrt{x}}dx \Rightarrow 2dt =
\frac{1}{\sqrt{x}}dx

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 \\
x = 4 \Rightarrow t = 2 \\
\end{matrix} ight. ta có:

    2\int_{1}^{2}{f(t)dt} =
2\int_{1}^{2}{f(x)dx} = 2.2 = 4

    Vậy \int_{1}^{4}{\frac{f\left( \sqrt{x}
ight)}{\sqrt{x}}dx} = 4

  • Câu 10: Thông hiểu
    Tìm giá trị biểu thức

    Cho \int_{0}^{3}{\frac{e^{\sqrt{x +
1}}}{\sqrt{x + 1}}dx} = ae^{2} + be + c với a;b;c\mathbb{\in Z}. Tính S = a + b + c?

    Hướng dẫn:

    Ta có:

    \int_{0}^{3}{\frac{e^{\sqrt{x +
1}}}{\sqrt{x + 1}}dx} = 2\int_{0}^{3}{e^{\sqrt{x + 1}}d\left( \sqrt{x +
1} ight)} = \left. \ \left( 2e^{\sqrt{x + 1}} ight) ight|_{0}^{3}
= 2e^{2} - 2e

    Vậy a = 2;b = - 2;c = 0 \Rightarrow S =
0

  • Câu 11: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s).Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s.Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s).Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s.Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Mệnh đề đúng

    b) Cho v = 0 \Leftrightarrow - 5t + 20 =
0 \Leftrightarrow t\  = \ 4\ (s). Mệnh đề sai

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Mệnh đề đúng

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là S = \int_{0}^{4}{( - 5t + 20)dt} = 40\
(m). Mệnh đề sai

  • Câu 12: Nhận biết
    Tìm tích phân I

    Tích phân I =
\int_{1}^{2}{2x.dx} có giá trị là:

    Hướng dẫn:

    Tích phân I =
\int_{1}^{2}{2x.dx} có giá trị là:

    I = \int_{1}^{2}{2x.dx} =
2.\int_{1}^{2}{x.dx} = \left. \ \left( 2.\frac{x^{2}}{2} ight)
ight|_{1}^{2} = 3.

  • Câu 13: Thông hiểu
    Tính tích phân I

    Tích phân I = \int_{- 1}^{0}\left( x^{3}
+ ax + 2 \right)dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{- 1}^{0}\left( x^{3}
+ ax + 2 ight)dx có giá trị là:

    I = \int_{- 1}^{0}\left( x^{3} + ax + 2
ight)dx

    = \left. \ \left( \frac{1}{4}x^{4} +
\frac{a}{2}x^{2} + 2x ight) ight|_{- 1}^{0} = \frac{7}{4} -
\frac{a}{2}.

    Đáp án đúng là I\mathbf{=}\frac{\mathbf{7}}{\mathbf{4}}\mathbf{-}\frac{\mathbf{a}}{\mathbf{2}}.

  • Câu 14: Nhận biết
    Tính tích phân

    Cho các hàm số f(x)F(x) liên tục trên \mathbb{R} thỏa mãn F'(x) = f(x) với \forall x\mathbb{\in R}. Tính I = \int_{0}^{1}{f(x)dx}, biết rằng F(0) = 2;F(1) = 5?

    Hướng dẫn:

    Ta có: I = \int_{0}^{1}{f(x)dx} = F(1) -
F(0) = 3.

  • Câu 15: Thông hiểu
    Chọn khẳng định đúng

    Trong các khẳng định sau đây, khẳng định nào đúng?

    Hướng dẫn:

    Ta có: x^{4} - x^{2} + 1 = \left( x^{2} -
\frac{1}{2} ight)^{2} + \frac{3}{4} > 0;\forall x\mathbb{\in
R}

    Do \int_{- 1}^{2018}{\left| x^{4} - x^{2}
+ 1 ight|^{3}dx} = \int_{- 1}^{2018}{\left( x^{4} - x^{2} + 1
ight)^{3}dx}

  • Câu 16: Thông hiểu
    Xác định giá trị nguyên của tham số a

    Tích phân I = \int_{1}^{2}\frac{ax -
2}{\sqrt{ax^{2} - 4x}}dx = 2\sqrt{3} - 1. Giá trị nguyên của a là:

    Hướng dẫn:

    Ta có: \left( ax^{2} - 4x ight)' =
2ax - 4 = 2(ax - 2).

    \Rightarrow I =
\frac{1}{2}\int_{1}^{2}\frac{2ax - 4}{\sqrt{ax^{2} -
4x}}dx.

    Đặt t = ax^{2} - 4x \Rightarrow dt = (2ax
- 4)dx.

    Đổi cận \left\{ \begin{matrix}
x = 2 \Rightarrow t = 4a - 8 \\
x = 1 \Rightarrow t = a - 4 \\
\end{matrix} ight..

    Ta có:

    I = \frac{1}{2}\int_{a - 4}^{4a -
8}\frac{1}{\sqrt{t}}dt = \left. \ \left( \sqrt{t} ight) ight|_{a -
4}^{4a - 8} = \sqrt{4a - 8} - \sqrt{a - 4}

    Theo đề bài:

    I = 2\sqrt{3} - 1
\Leftrightarrow \sqrt{4a - 8} - \sqrt{a - 4} = 2\sqrt{3} -
1

    \Leftrightarrow ..... \Leftrightarrow a =
5.

  • Câu 17: Thông hiểu
    Tính tích phân

    Tính tích phân \int_{\frac{\pi}{6}}^{\frac{\pi}{4}}{\frac{1 -
sin^{3}x}{sin^{2}x}dx}

    Hướng dẫn:

    Ta có:

    \int_{\frac{\pi}{6}}^{\frac{\pi}{4}}{\left(
\frac{1}{sin^{2}x} - \sin x ight)dx} = - \left. \ \cot x
ight|_{\frac{\pi}{6}}^{\frac{\pi}{4}} + \left. \ \cos x
ight|_{\frac{\pi}{6}}^{\frac{\pi}{4}}

    = \frac{- 2 + \sqrt{2}}{2} +
\frac{\sqrt{3}}{2} = \frac{\sqrt{3} + \sqrt{2} - 2}{2}.

  • Câu 18: Thông hiểu
    Tính giá trị của tham số a

    Tích phân I = \int_{0}^{1}{\frac{2ax}{x +
1}dx} = ln2. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{1}{\frac{2ax}{x + 1}dx} =
2a\int_{0}^{1}{\left( 1 - \frac{1}{x + 1} ight)dx}

    = 2a\left. \ \left( x - \ln|x + 1| ight)
ight|_{0}^{1} = 2a(1 - ln2).

    I = ln2 \Leftrightarrow 2a(1 - ln2) =
ln2 \Leftrightarrow a =
\frac{ln2}{2 - 2ln2}

  • Câu 19: Nhận biết
    Tìm giá trị tích phân lượng giác

    Tích phân I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{6}}{(\sin2x - \cos3x)dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{6}}{(\sin2x - \cos3x)dx} có giá trị là:

    Cách 1:I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{6}}{(\sin2x - \cos3x)dx}= \left. \ \left( -
\frac{1}{2}\cos2x - \frac{1}{3}\sin3x ight) ight|_{-
\frac{\pi}{2}}^{\frac{\pi}{6}} = - \frac{3}{4}.

    Đáp án đúng là I = -
\frac{3}{4}.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 20: Vận dụng
    Tính quãng đường chuyển động

    Một ô tô đang chạy với vận tốc 10m/s thì tài xế đạp phanh; từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) = - 5t + 10(m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?

    Hướng dẫn:

    Nguyên hàm của hàm vận tốc chính là quãng đường s(t) mà ô tô đi được sau quãng đường t giây kể từ lúc tài xế đạp phanh xe.

    Vào thời điểm người lái xe bắt đầu đạp phanh ứng với t = 0.

    Thời điểm ô tô dừng lại ứng với t_{1}, khi đó v\left( t_{1} ight) = 0 \Leftrightarrow t_{1} =
2.

    Vậy từ lúc đạp phanh đến khi dừng lại quãng đường ô tô đi được là:

    S = \int_{0}^{2}( - 5t + 10)dt = \left(
- \frac{5}{2}t^{2} + 10t ight)|_{0}^{2} = 10(m)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo