Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân KNTT (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính giá trị của biểu thức

    Cho \int_{0}^{\frac{\pi}{2}}{f(x)dx =
6}. Tính I =\int_{0}^{\frac{\pi}{2}}{\lbrack 3f(x) - 2sinxbrack dx}.

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{\frac{\pi}{2}}{\lbrack
3f(x) - 2sinxbrack dx}

    = 3\int_{0}^{\frac{\pi}{2}}{f(x)dx} -
2\int_{0}^{\frac{\pi}{2}}{\sin xdx} = 3.6 - 2 = 16.

  • Câu 2: Thông hiểu
    Tìm đáp án đúng

    Tích phân I =
\int_{0}^{1}{\frac{a^{2}x^{3} + ax}{\sqrt{ax^{2} + 1}}dx}, với a \geq 0 có giá trị là:

    Hướng dẫn:

    Xét tích phân I =
\int_{0}^{1}{\frac{a^{2}x^{3} + ax}{\sqrt{ax^{2} + 1}}dx}, với a \geq 0

    Ta biến đổi:

    I =
\int_{0}^{1}{\frac{a^{2}x^{3} + ax}{\sqrt{ax^{2} + 1}}dx} =
\int_{0}^{1}{\frac{ax\left( ax^{2} + 1 ight)}{\sqrt{ax^{2} + 1}}dx} =
\int_{0}^{1}{\left( ax\sqrt{ax^{2} + 1} ight)dx}.

    Ta nhận thấy: \left( ax^{2} + 1
ight)' = 2ax. Ta dùng đổi biến số.

    Đặt t = ax^{2} + 1 \Rightarrow dt =
2axdx.

    Đổi cận\left\{ \begin{matrix}
x = 0 \Rightarrow t = 1 \\
x = 1 \Rightarrow t = a + 1 \\
\end{matrix} ight..

    Ta có:

    I = {\int_{1}^{a + 1}{\frac{1}{2}tdt =
\left. \ \left( \frac{1}{4}t^{2} ight) ight|}}_{1}^{a + 1} =
\frac{1}{4}a(a + 2).

  • Câu 3: Vận dụng
    Xét tính đúng sai của các khẳng định

    Một xe ô tô đang chạy đều với vận tốc x(\
m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(\ m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(\
m/s).Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s.Sai||Đúng

    c) \int( - 5t + 20)dt = \frac{-
5t^{2}}{2} + 20t + C.Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m.Sai||Đúng

    Đáp án là:

    Một xe ô tô đang chạy đều với vận tốc x(\
m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(\ m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(\
m/s).Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s.Sai||Đúng

    c) \int( - 5t + 20)dt = \frac{-
5t^{2}}{2} + 20t + C.Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m.Sai||Đúng

    Để giải bài toán này, chúng ta cần làm rõ từng phần. Ô tô đang chuyển động chậm dần đều với vận tốc v = - 5t +
20v (m/s), trong đó t là thời gian tính từ lúc bắt đầu đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. (Đúng).

    Để tìm thời gian mà ô tô dừng lại, ta đặt v=0 nghĩa là: −5t+20=0 hay t=4 (s)

    Vậy khi t=4, vận tốc là 0 m/s, điều này cho thấy ô tô đã dừng lại.

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5 s.

    Điều này không chính xác. Từ phần (a), chúng ta đã xác định thời gian để ô tô dừng lại là 4 giây, không phải 5 giây.

    c) \int( - 5t + 20)dt = \frac{-
5t^{2}}{2} + 20t + C

    Công thức tích phân này là chính xác, vì:

    \int( - 5t + 20)dt = \frac{- 5t^{2}}{2} +
20t + C Với C là hằng số tích phân.

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400 m.

    Để tính quãng đường, chúng ta cần tích phân hàm vận tốc để tìm quãng đường đi được. Quãng đường s từ t = 0 đến t=4 giây được tính bằng:

    s = \int_{0}^{4}{( - 5t + 20)dt} =
\left. \ \left( - \frac{5}{2}t^{2} - 20t \right) \right|_{0}^{4} =
40(m)

    Do đó, quãng đường ô tô đi được là 40 m, không phải 400 m.

    Tóm lại:

    (a) Đúng.

    (b) Sai, thời gian là 4 giây.

    (c) Đúng.

    (d) Sai, quãng đường là 40 m.

  • Câu 4: Thông hiểu
    Tính tích phân

    Giá trị của H = \int_{0}^{1}{\left(
\frac{1}{2x + 1} + 3\sqrt{x} ight)dx}?

    Hướng dẫn:

    Ta có:

    H = \int_{0}^{1}{\left( \frac{1}{2x + 1}
+ 3\sqrt{x} ight)dx} = \left. \ \left( \frac{1}{2}\ln|2x + 1| +
2x^{\frac{3}{2}} ight) ight|_{0}^{1} = 2 + \ln\sqrt{3}

  • Câu 5: Thông hiểu
    Chọn đẳng thức đúng

    Cho I = \int_{0}^{\frac{\pi}{4}}{(x -1)\sin2xdx}. Tìm đẳng thức đúng.

    Hướng dẫn:

    Đặt \left\{ \begin{matrix}
sin2xdx = dv \\
x - 1 = u \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
- \frac{1}{2}cos2x = v \\
dx = du \\
\end{matrix} ight.

    I = \int_{0}^{\frac{\pi}{4}}{(x -
1)sin2xdx} = \int_{0}^{\frac{\pi}{4}}{udv} = \left. \ uv
ight|_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}}{vdu}

    = \left. \  - \frac{1}{2}(x - 1)cos2x
ight|_{0}^{\frac{\pi}{4}} +
\frac{1}{2}\int_{0}^{\frac{\pi}{4}}{cos2xdx}

  • Câu 6: Thông hiểu
    Chọn phương án thích hợp

    Tích phân I = \int_{1}^{a}{\left(
\frac{a}{x} + \frac{x}{a} \right)dx},với a \neq 0 có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{1}^{a}{\left(
\frac{a}{x} + \frac{x}{a} ight)dx}, với a eq 0 có giá trị là:

    I = \int_{1}^{a}{\left( \frac{a}{x} +
\frac{x}{a} ight)dx} = \left. \ \left( a\ln|x| + \frac{x^{2}}{2a}
ight) ight|_{1}^{a}

    = a\ln|a| + \frac{a}{2} - \frac{1}{2a} =
a\ln|a| + \frac{a^{2} - 1}{2a}

    Đáp án đúng là I = a\ln|a| + \frac{a^{2}
- 1}{2a}.

  • Câu 7: Thông hiểu
    Tìm số nghiệm nguyên dương của phương trình

    Số nghiệm dương của phương trình: x^{3} +
ax + 2 = 0, với a =
\int_{0}^{1}{2xdx}, ab là các số hữu tỉ là:

    Hướng dẫn:

    Ta có: a = \int_{0}^{1}{2xdx} = \left. \
\left( x^{2} ight) ight|_{0}^{1} = 1 \Rightarrow x^{3} + x - 2 =
0

    \Leftrightarrow (x - 1)\left( x^{2} + x
+ 2 ight) = 0 \Leftrightarrow x = 1

    Số nghiệm dương của phương trình: x^{3} +
ax - 2 = 0, với a =
\int_{0}^{1}{2xdx} là: 1

  • Câu 8: Nhận biết
    Chọn đáp án đúng

    Một chiếc máy bay di chuyển với vận tốc là v(t) = 3t^{2} + 5(m/s). Hỏi quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 bằng bao nhiêu?

    Hướng dẫn:

    Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:

    S = \int_{4}^{10}{v(t)dt} =
\int_{4}^{10}{\left( 3t^{2} + 5 ight)dt}

    = \left. \ \left( t^{3} + 5t ight)
ight|_{4}^{10} = 996(m)

  • Câu 9: Thông hiểu
    Chọn đáp án thích hợp

    Tính tích phân I = \int_{0}^{\pi}{\left|
\cos x \right|dx}

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{\pi}{\left| \cos x
ight|dx} = \int_{0}^{\frac{\pi}{2}}{\left| \cos x ight|dx} +
\int_{\frac{\pi}{2}}^{\pi}{\left| \cos x ight|dx}

    = \int_{0}^{\frac{\pi}{2}}{\cos xdx} -
\int_{\frac{\pi}{2}}^{\pi}{\cos xdx} = \left. \ \sin x
ight|_{0}^{\frac{\pi}{2}} - \left. \ \sin x
ight|_{\frac{\pi}{2}}^{\pi}

  • Câu 10: Thông hiểu
    Xác định quãng đường ô tô di chuyển

    Một ô tô đang dừng và bắt đầu chuyển động theo một đường thẳng với gia tốc a(t) = 6 - 2t\left( m/s^{2}
ight), trong đó t là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là bao nhiêu mét?

    Hướng dẫn:

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{(6 - 2t)dt} = 6t - t^{2} + C

    Khi đó v_{\max} \Leftrightarrow t =
3 do ban đầu ô tô đang dừng nên v(0) = 0 \Rightarrow C = 0

    Quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là: S =
\int_{0}^{3}{\left( 6t - t^{2} ight)dt} = 18m.

  • Câu 11: Thông hiểu
    Tính giá trị tích phân

    Tích phân \int_{\frac{\pi}{6}}^{\frac{\pi}{4}}{\cot
x.dx} có giá trị bằng

    Hướng dẫn:

    Cách 1: Thử bằng máy tính

    Cách 2: Đặt \sin x = t \Rightarrow I =
\int_{\frac{1}{2}}^{\frac{\sqrt{2}}{2}}{\frac{1}{t}dt}

  • Câu 12: Thông hiểu
    Tìm tỉ số a và b

    Biết I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{x\cos2xdx} = a\pi\sqrt{3} +
b\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\sin2xdx}, ab là các số hữu tỉ. Giá trị của \frac{a}{b} là:

    Hướng dẫn:

    Ta có:

    I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{x\cos2xdx} = \left. \ \left(
\frac{1}{2}x\sin2x ight) ight|_{\frac{\pi}{6}}^{\frac{\pi}{2}} -
\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\sin2xdx}

    = - \frac{\pi\sqrt{3}}{24} -
\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\sin2xdx}

    \Rightarrow \left\{ \begin{matrix}
a = - \dfrac{1}{24} \\
b = - \dfrac{1}{2} \\
\end{matrix} ight.\  \Rightarrow \dfrac{a}{b} =
\frac{1}{12}

  • Câu 13: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có một nguyên hàm là hàm số F(x). Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Theo định nghĩa tích phân ta có: \int_{a}^{b}{f(x)dx} = F(b) - F(a).

  • Câu 14: Thông hiểu
    Tính giá trị biểu thức S

    Biết I = \int_{0}^{4}{x\ln(2x + 1)dx} =
\frac{a}{b}ln3 - c, trong đó a, b, c là các số nguyên dương và \frac{b}{c} là phân số tối giản. Tính S = a + b + c.

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{4}{x\ln(2x +
1)dx}

    Đặt \left\{ \begin{matrix}
\ln(2x + 1) = u \\
xdx = dv \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\dfrac{2}{2x + 1}dx = du \\
\dfrac{x^{2}}{2} - \dfrac{1}{8} = v \\
\end{matrix} ight.

    I = \int_{0}^{4}{udv} = \left. \ uv
ight|_{0}^{4} - \int_{0}^{4}{vdu}

    = \left. \ \left( \frac{x^{2}}{2} -
\frac{1}{8} ight)\ln|2x + 1| ight|_{0}^{4} - \int_{0}^{4}{\left(
\frac{x^{2}}{2} - \frac{1}{8} ight).\frac{2}{2x + 1}dx}

    = \frac{63}{8}ln9 -
\int_{0}^{4}{\frac{4x^{2} - 1}{4(2x + 1)}dx} = \frac{63}{8}ln9 -
\frac{1}{4}\int_{0}^{4}{(2x - 1)dx}

    = \frac{63}{8}ln9 - \left. \
\frac{1}{4}\left( x^{2} - x ight) ight|_{0}^{4} = \frac{63}{4}ln3 -
3

    \Rightarrow a = 63;b = 4;c = 3
\Rightarrow S = 63 + 4 + 3 = 70

  • Câu 15: Thông hiểu
    Chọn phương án thích hợp

    Tích phân I =
\int_{0}^{\frac{\pi}{2}}{\left( \cos x - 1 \right)cos^{2}x}dx có giá trị là:

    Hướng dẫn:

    Ta biến đổi: I =
\int_{0}^{\frac{\pi}{2}}{\left( \cos x - 1
ight)cos^{2}x}dx

    = \int_{0}^{\frac{\pi}{2}}{\cos x\left(
1 - sin^{2}x ight)}dx -
\int_{0}^{\frac{\pi}{2}}{cos^{2}x}dx

    = \left. \ \left( t - \frac{t^{3}}{3}
ight) ight|_{0}^{1} - \frac{1}{2}\left. \ \left( x +
\frac{1}{2}sin2x ight) ight|_{0}^{\frac{\pi}{2}} = \frac{2}{3} -
\frac{\pi}{4}, với t = \sin
x.

    Đáp án đúng là I =  - \frac{\pi }{4} + \frac{2}{3}.

  • Câu 16: Vận dụng
    Tính tích phân I

    Tích phân I =
\int_{0}^{\frac{\pi}{4}}{\frac{2x - \sin x}{2 - 2cosx}dx} có giá trị là:

    Hướng dẫn:

    Ta biến đổi:

    I =
\int_{\frac{\pi}{3}}^{\frac{\pi}{4}}{\frac{2x - \sin x}{2 - 2cosx}dx} =
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{x}{1 - \cos x}dx} -
\frac{1}{2}\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{\sin x}{1 - \cos
x}dx}.

    Xét I_{1} =
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{x}{1 - \cos x}dx} =
\frac{1}{2}\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{x}{sin^{2}\frac{x}{2}}dx}.

    Đặt \left\{ \begin{matrix}
u = x \\
dv = \frac{1}{sin^{2}\frac{x}{2}}dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = - 2cot\frac{x}{2} \\
\end{matrix} ight..

    \Rightarrow I_{1} =
\frac{1}{2}\left\lbrack \left. \ \left( - 2x.cot\frac{x}{2} ight)
ight|_{\frac{\pi}{3}}^{\frac{\pi}{2}} +
2\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\cot\frac{x}{2}dx} ightbrack

    =
\frac{1}{2}\left\lbrack - \pi + \frac{2\pi\sqrt{3}}{3} + 4ln\sqrt{2}
ightbrack.

    Xét I_{2} =
\frac{1}{2}\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{\sin x}{1 - \cos
x}dx}.

    Đặt t = 1 - \cos x \Rightarrow dt = \sin xdx.

    Đổi cận \left\{ \begin{matrix}
x = \frac{\pi}{3} \Rightarrow t = \frac{1}{2} \\
x = \frac{\pi}{2} \Rightarrow t = 1 \\
\end{matrix} ight..

    \Rightarrow I_{2} =
\frac{1}{2}{\int_{\frac{1}{2}}^{1}{\frac{1}{t}dt = \frac{1}{2}\left. \
\left( \ln|t| ight) ight|}}_{\frac{1}{2}}^{1} =
\frac{1}{2}ln2.

    I = I_{1} - I_{2} = \frac{1}{2}\left( -
\pi + \frac{2\pi\sqrt{3}}{3} + 4ln\sqrt{2} - ln2 ight).

  • Câu 17: Nhận biết
    Tính tích phân I

    Giá trị tích phân I =
\int_{1}^{2}{\frac{1}{x^{6}}dx} bằng:

    Hướng dẫn:

    Ta có:

    I = \int_{1}^{2}{\frac{1}{x^{6}}dx} =
\int_{1}^{2}{x^{- 6}dx} = \left. \ \frac{x^{- 5}}{- 5} ight|_{1}^{2} =
\frac{31}{125}

  • Câu 18: Nhận biết
    Chọn phương án đúng

    Tích phân I = \int_{- 1}^{1}{\left( x^{3}
+ 3x + 2 \right)dx}có giá trị là:

    Hướng dẫn:

    Thực hiện giải toán theo hai bước sau:

    Cách 1: I = \int_{- 1}^{1}{\left( x^{3} +
3x + 2 ight)dx} = \left. \ \left( \frac{1}{4}x^{4} + \frac{3}{2}x^{2}
+ 2x ight) ight|_{- 1}^{1} = 4.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 19: Nhận biết
    Tìm khẳng định sai

    Cho các hàm số y = f(x)y = g(x) liên tục trên \lbrack a;bbrack và số k tùy ý. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Khẳng định sai là: \int_{a}^{b}{x.f(x)dx}
= x\int_{a}^{b}{f(x)dx}

  • Câu 20: Vận dụng
    Chọn đáp án chính xác

    Cho hàm số y = f(x) có đạo hàm trên khoảng (0; + \infty) thỏa mãn f(x) = x.\ln\left\lbrack\frac{x^{3}}{xf'(x) - f(x)} ightbrack và f(1) = 0. Giá trị tích phân D = \int_{1}^{5}{f(x)dx} bằng:

    Hướng dẫn:

    Từ giả thiết ta có:

    f(x) = x.\ln\left\lbrack\frac{x^{3}}{xf'(x) - f(x)} ightbrack

    \Leftrightarrow \frac{f(x)}{x} =
\ln\left\lbrack \frac{x^{3}}{xf'(x) - f(x)}
ightbrack

    \Leftrightarrow e^{\frac{f(x)}{x}} =
\frac{x^{3}}{xf'(x) - f(x)}

    \Leftrightarrow \frac{xf'(x) -
f(x)}{x^{2}}.e^{\frac{f(x)}{x}} = x

    \Leftrightarrow \left\lbrack
\frac{f(x)}{x} ightbrack'.e^{\frac{f(x)}{x}} = x(*)

    Lấy nguyên hàm hai vế của (*) suy ra e^{\frac{f(x)}{x}} = \frac{x^{2}}{2} +
C

    f(1) = 0 \Rightarrow C =
\frac{1}{2} nên e^{\frac{f(x)}{x}}
= \frac{x^{2}}{2} + \frac{1}{2} \Rightarrow f(x) = x\ln\frac{x^{2} +
1}{2};\forall x \in (0; + \infty)

    D = \int_{1}^{5}{f(x)dx} =\int_{1}^{5}{x.\ln\frac{x^{2} + 1}{2}dx}(**)

    Đặt \left\{ \begin{matrix}u = \ln\dfrac{x^{2} + 1}{2} \\dv = xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{2x}{x^{2} + 1}dx \\v = \dfrac{x^{2} + 1}{2} \\\end{matrix} ight.

    Theo công thức tích phân từng phần ta được:

    D = \left. \ \left( \frac{x^{2} +1}{2}.\ln\frac{x^{2} + 1}{2} ight) ight|_{1}^{5} - \int_{1}^{5}{xdx}= 13\ln13 - \left. \ \frac{x^{2}}{2} ight|_{1}^{5} = 13\ln13 -12

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo