Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân KNTT (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính giá trị biểu thức

    Cho hàm số f(x) thỏa mãn \int_{0}^{3}\left\lbrack 2x\ln(x + 1) + xf'(x)
ightbrack dx = 0f(3) =
1. Biết \int_{0}^{3}{f(x)}dx =\frac{a + b\ln2}{2} với a;b \in
\mathbb{R}^{+}. Giá trị của biểu thức a + b là:

    Hướng dẫn:

    Tính I = \int_{0}^{3}{2x\ln(x +
1)}dx

    Đặt \left\{ \begin{matrix}u = \ln(x + 1) \\dv = 2xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x + 1}dx \\v = x^{2} \\\end{matrix} ight. khi đó:

    I = \left. \ x^{2}\ln(x + 1)
ight|_{0}^{3} - \int_{0}^{3}{\frac{x^{2}}{x + 1}dx}

    = 9ln4 - \left. \ \left( \frac{x^{2}}{2}
- x + \ln|x + 1| ight) ight|_{0}^{3} = 16ln2 -
\frac{3}{2}

    Tính J =
\int_{0}^{3}{xf'(x)}dx.

    Đặt \left\{ \begin{matrix}
u_{J} = x \\
dv_{J} = f'(x)dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du_{J} = dx \\
v_{J} = f(x) \\
\end{matrix} ight. khi đó

    J = \int_{0}^{3}{xf'(x)}dx = \left.
\ xf(x) ight|_{0}^{3} - \int_{0}^{3}{f(x)}dx

    \int_{0}^{3}\left\lbrack 2x\ln(x + 1)
+ xf'(x) ightbrack dx = 0

    \Rightarrow I + J = 0 \Rightarrow 16\ln2- \frac{3}{2} + 3 - \int_{0}^{3}{f(x)}dx = 0

    \Rightarrow \int_{0}^{3}{f(x)}dx = 16\ln2+ \frac{3}{2} = \frac{3 + 32\ln2}{2}

    \Rightarrow \left\{ \begin{matrix}
a = 3 \\
b = 32 \\
\end{matrix} ight.\  \Rightarrow a + b = 35

  • Câu 2: Thông hiểu
    Tìm giá trị tích phân I

    Tích phân I = \int_{1}^{e}{x\left(
ln^{2}x + \ln x \right)dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{1}^{e}{x\left(
ln^{2}x + \ln x ight)dx}

    Ta biến đổi: I = \int_{1}^{e}{x\left(
ln^{2}x + \ln x ight)dx} = \int_{1}^{e}{x\ln x\left( \ln x + 1
ight)dx}.

    Đặt t = x\ln x \Rightarrow dt = \left(
\ln x + 1 ight)dx.

    Đổi cận\left\{ \begin{matrix}
x = 1 \Rightarrow t = 0 \\
x = e \Rightarrow t = e \\
\end{matrix} ight..

    \Rightarrow I = \int_{0}^{e}{dt} =
e.

    Đáp án đúng là I = e.

  • Câu 3: Thông hiểu
    Tìm giá trị tham số a thỏa mãn điều kiện

    Cho \int_{0}^{1}{\frac{x^{2}}{x^{3} +
1}dx} = \frac{1}{3}\ln a,a là các số hữu tỉ. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    \int_{0}^{1}{\frac{x^{2}}{x^{3} + 1}dx} =
... = \int_{1}^{2}{\frac{1}{3t}dt} = \frac{1}{3}\left. \ \left( \ln|t|
ight) ight|_{1}^{2} = \frac{1}{3}ln2 \Rightarrow a = 2.

  • Câu 4: Thông hiểu
    Tìm số nghiệm nguyên dương của phương trình

    Số nghiệm dương của phương trình: x^{3} +
ax + 2 = 0, với a =
\int_{0}^{1}{2xdx}, ab là các số hữu tỉ là:

    Hướng dẫn:

    Ta có: a = \int_{0}^{1}{2xdx} = \left. \
\left( x^{2} ight) ight|_{0}^{1} = 1 \Rightarrow x^{3} + x - 2 =
0

    \Leftrightarrow (x - 1)\left( x^{2} + x
+ 2 ight) = 0 \Leftrightarrow x = 1

    Số nghiệm dương của phương trình: x^{3} +
ax - 2 = 0, với a =
\int_{0}^{1}{2xdx} là: 1

  • Câu 5: Vận dụng
    Tìm quãng đường vật đi được

    Giả sử một vật từ trạng thái nghỉ khi t =
0 (s) chuyển động thẳng với vận tốc v(t) = t(5 - t) (m/s). Tìm quãng đường vật đi được cho đến khi nó dừng lại.

    Hướng dẫn:

    Ta có: S = \int_{}^{}{v(t)}dt =
\int_{}^{}{t(5 - t)}dt \Rightarrow S = \frac{5t^{2}}{2} -
\frac{t^{3}}{3}

    Khi vật dừng lại \Rightarrow v = t(5 - t)
= 0 \Rightarrow t = 5

    Khi đó S = \frac{5.5^{2}}{2} -
\frac{5^{3}}{3} = \frac{125}{6}(m)

  • Câu 6: Vận dụng
    Xét tính đúng sai của mỗi ý hỏi

    Một người điều khiển ô tô đang ở đường dẫn muốn nhập làn vào đường cao tốc. Khi ô tô cách điểm nhập làn 200 m, tốc độ của ô tô là 36\ km/h. Hai giây sau đó, ô tô bắt đầu tăng tốc với tốc độ v(t) = at + b(a,b \in
\mathbb{R,}a > 0), trong đó t là thời gian tính bẳng giây kể từ khi bắt đầu tăng tốc. Biết rằng ô tô nhập làn cao tốc sau 12 giây và duy trì sự tăng tốc trong 24 giây kể từ khi bắt đầu tăng tốc.

    a) Quãng đường ô tô đi được từ khi bắt đầu tăng tốc đến khi nhập làn là 180 m. Đúng||Sai

    b) Giá trị của b là 10. Đúng||Sai

    c) Quãng đường S(t) (đơn vị: mét) mà ô tô đi được trong thời gian t giây (0
\leq t \leq 24) kể từ khi tăng tốc được tính theo công thức S(t) = \int_{0}^{24}{v(t)dt} . Sai||Đúng

    d) Sau 24 giây kể từ khi tăng tốc, tốc độ của ô tô không vượt quá tốc độ tối đa cho phép là 100\ km/h. Sai||Đúng

    Đáp án là:

    Một người điều khiển ô tô đang ở đường dẫn muốn nhập làn vào đường cao tốc. Khi ô tô cách điểm nhập làn 200 m, tốc độ của ô tô là 36\ km/h. Hai giây sau đó, ô tô bắt đầu tăng tốc với tốc độ v(t) = at + b(a,b \in
\mathbb{R,}a > 0), trong đó t là thời gian tính bẳng giây kể từ khi bắt đầu tăng tốc. Biết rằng ô tô nhập làn cao tốc sau 12 giây và duy trì sự tăng tốc trong 24 giây kể từ khi bắt đầu tăng tốc.

    a) Quãng đường ô tô đi được từ khi bắt đầu tăng tốc đến khi nhập làn là 180 m. Đúng||Sai

    b) Giá trị của b là 10. Đúng||Sai

    c) Quãng đường S(t) (đơn vị: mét) mà ô tô đi được trong thời gian t giây (0
\leq t \leq 24) kể từ khi tăng tốc được tính theo công thức S(t) = \int_{0}^{24}{v(t)dt} . Sai||Đúng

    d) Sau 24 giây kể từ khi tăng tốc, tốc độ của ô tô không vượt quá tốc độ tối đa cho phép là 100\ km/h. Sai||Đúng

    a) Ta có 36km/h = 10m/s.

    Sau 2s quãng đường ô tô đi được lúc chưa tăng tốc là: 2.10 = 20(m)

    Quãng đường ô tô đi được từ khi bắt đầu tăng tốc đến khi nhập làn là

    200 - 20 = 180(m)

    Do đó, a đúng

    b) Tại thời điểm lúc ô tô bắt đầu tăng tốc (t = 0) thì vận tốc của ô tô vẫn đang là 10(m/s) nên v(0) = 10 \Rightarrow a.0 + b = 10 \Rightarrow b =
10.

    Do đó, b đúng

    c) Quãng đường S(t) (đơn vị: mét) mà ô tô đi được trong thời gian t giây (0 \leq t \leq 24) kể từ khi tăng tốc được tính theo công thức S =
\int_{0}^{t}{v(t)dt}.

    Do đó, c sai

    d) Ta có: v(t) = at +
10(m/s).

    Quãng đường ô tô đi được từ khi bắt đầu tăng tốc đến khi nhập làn là 180(m) đi trong thời gian 12s nên ta có:

    S(12) = \int_{0}^{12}{v(t)dt} = 180
\Leftrightarrow \int_{0}^{12}{(at + 10)dt} = 180

    \Leftrightarrow a\int_{0}^{12}{tdt} +
\int_{0}^{12}{10dt} = 180

    \Leftrightarrow 72a + 120 = 180
\Rightarrow a = \frac{5}{6}

    Suy ra v(t) = \frac{5}{6}t +
10(m/s)

    Vậy sau 24 giây kể từ khi tăng tốc, tốc độ của ô tô là:

    v(24) = 30(m/s) = 108(km/h) >
100(km/h)

    Do đó, d sai

  • Câu 7: Thông hiểu
    Tính giá trị tích phân I

    Tích phân \int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{2}}{\dfrac{\cos^{3}x}{\sin
x}dx} bằng

    Hướng dẫn:

    Ta có:

    Cách 1: Thử nghiệm

    Cách 2: Đặt \sin x = t.

    Đáp án cần tìm - \frac{1}{4} +\ln\sqrt{2}

  • Câu 8: Thông hiểu
    Tính vận tốc của chất điểm

    Một chất điểm chuyển động với gia tốc a(t) = 6t^{2} + 2t\left( m/s^{2} ight). Vận tốc ban đầu của chất điểm là 2(m/s). Hỏi vận tốc của chất điểm sau khi chuyển động với gia tốc đó được 2 giây bằng bao nhiêu?

    Hướng dẫn:

    Ta có: v(2) - v(0) =
\int_{0}^{2}{a(t)dt}

    \Rightarrow v(2) = \int_{0}^{2}{\left(
6t^{2} + 2t ight)dt} + v(0)

    \Rightarrow v(2) = \left. \ \left(
2t^{3} + t^{2} ight) ight|_{0}^{2} + 2 = 22

  • Câu 9: Thông hiểu
    Chọn đáp án đúng

    Tích phân I = \int_{1}^{e}{\left(
\frac{1}{x} + x \right)\ln xdx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{1}^{e}{\left(
\frac{1}{x} + x ight)\ln xdx} có giá trị là:

    I = \int_{1}^{e}{\left( \frac{1}{x} + x
ight)\ln xdx} = \int_{1}^{e}{\frac{1}{x}\ln xdx} + \int_{1}^{e}{x\ln
xdx}

    = \int_{0}^{1}{d\left( \ln x ight)} +
\left. \ \left( \frac{x^{2}}{2}\ln x ight) ight|_{1}^{e} -
\frac{1}{2}\int_{1}^{e}{xdx}

    = 1 + \frac{e^{2}}{2} - \left. \ \left(
\frac{1}{4}x^{2} ight) ight|_{1}^{e} = \frac{e^{2} +
5}{4}

    Đáp án đúng là I = \frac{e^{2} +
5}{4}.

  • Câu 10: Nhận biết
    Tính giá trị biểu thức

    Cho hàm số g(x) có đạo hàm trên đoạn \lbrack - 1;1brack. Có g( - 1) = 3 và tích phân I = \int_{- 1}^{1}{g'(x)dx} = - 2. Tính g(1).

    Hướng dẫn:

    Ta có:

    I = \int_{- 1}^{1}{g'(x)dx} = - 2
\Leftrightarrow g(1) - g( - 1) = - 2

    \Rightarrow g(1) = - 2 + g( - 1) = - 2 +
3 = 1

  • Câu 11: Thông hiểu
    Chọn khẳng định đúng

    Trong các khẳng định sau đây, khẳng định nào đúng?

    Hướng dẫn:

    Ta có: x^{4} - x^{2} + 1 = \left( x^{2} -
\frac{1}{2} ight)^{2} + \frac{3}{4} > 0;\forall x\mathbb{\in
R}

    Do \int_{- 1}^{2018}{\left| x^{4} - x^{2}
+ 1 ight|^{3}dx} = \int_{- 1}^{2018}{\left( x^{4} - x^{2} + 1
ight)^{3}dx}

  • Câu 12: Nhận biết
    Chọn khẳng định sai

    Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Ta có: \int_{a}^{b}{f(x)dx} = -
\int_{b}^{a}{f(x)dx} nên khẳng định \int_{a}^{b}{f(x)dx} =
\int_{b}^{a}{f(x)dx} sai.

  • Câu 13: Nhận biết
    Tính gia tốc của chuyển động

    Cho chuyển động thẳng xác định bởi phương trình S = 2t^{3} - t + 1, trong đó t được tính bằng giây và S được tính bằng mét. Gia tốc của chuyển động khi t = 2s là:

    Hướng dẫn:

    v = s' = 6{t^2} - 1

    a = v'' = 12t

    Khi t = 2 \Rightarrow a = 24\left( {m/{s^2}} ight)

  • Câu 14: Thông hiểu
    Xác định tích phân I

    Tích phân I = \int_{- 1}^{1}\left( ax^{3}
+ \frac{b}{x + 2} \right)dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{- 1}^{1}\left( ax^{3}
+ \frac{b}{x + 2} ight)dx có giá trị là:

    I = \int_{- 1}^{1}\left( ax^{3} +
\frac{b}{x + 2} ight)dx = \left. \ \left( \frac{a}{4}x^{4} + b\ln|x +
2| ight) ight|_{- 1}^{1} = bln3.

    Đáp án đúng là I = bln3.

  • Câu 15: Thông hiểu
    Tìm khẳng định sai

    Cho I =\int_{0}^{\frac{\pi}{3}}{\frac{\sin x}{(\cos2x + 1)^{2}}dx} và đặt t = \cos x. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Ta có: I =\int_{0}^{\frac{\pi}{3}}{\frac{\sin x}{(\cos2x + 1)^{2}}dx} =\frac{1}{4}\int_{0}^{\frac{\pi}{3}}{\frac{\sin x}{\cos^{4}x}dx}

    Đặt t = \cos x \Rightarrow dt = - \sin
xdx

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 1 \\x = \dfrac{\pi}{3} \Rightarrow t = \dfrac{1}{2} \\\end{matrix} ight. từ đó ta có:

    I = \int_{0}^{\frac{\pi}{3}}{\frac{\sin x}{(\cos2x + 1)^{2}}dx} =\frac{1}{4}\int_{\frac{1}{2}}^{1}\frac{dt}{t^{4}} = \left. \  -\frac{1}{12}t^{- 3} ight|_{\frac{1}{2}}^{1} = -\frac{7}{16}

    Vậy khẳng định sai là: I =
\frac{7}{12}.

  • Câu 16: Thông hiểu
    Tìm tất cả các giá trị tham số a

    Có bao nhiêu số a \in (0;20\pi) sao cho \int_{0}^{a}{sin^{5}x.sin2xdx} =
\frac{2}{7}.

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{a}{sin^{5}x.sin2xdx} =
2\int_{0}^{a}{sin^{6}x.cosxdx}

    = 2\int_{0}^{a}{sin^{6}x.d\left( \sin x
ight)} = \left. \ 2.\frac{sin^{7}x}{7} ight|_{0}^{a} =
\frac{2sin^{7}a}{7}

    I = \frac{2}{7} \Rightarrow \sin a = 1
\Rightarrow a = \frac{\pi}{2} + k2\pi

    a > 0 \Leftrightarrow \frac{\pi}{2} +
k2\pi > 0 \Rightarrow k2\pi > - \frac{\pi}{2} \Rightarrow k > -
\frac{1}{4}

    a < 20\pi \Rightarrow \frac{1}{2} + 2k
< 20 \Rightarrow k < \frac{39}{4}

    \Rightarrow k =
0;1;2;3;4;5;6;7;8;9 \Rightarrow Có 10 giá trị của a.

  • Câu 17: Thông hiểu
    Tính tích phân I

    Tích phân I = \int_{-
1}^{0}{\frac{ax}{ax^{2} + 2}dx},với a eq - 2 có giá trị là:

    Hướng dẫn:

    Xét tích phân I = \int_{-
1}^{0}{\frac{ax}{ax^{2} + 2}dx}, với a eq - 2

    Ta nhận thấy: \left( ax^{2} + 2
ight)' = 2ax.

    Ta dùng đổi biến số.

    Đặt t = ax^{2} + 2 \Rightarrow dt =
2axdx.

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 2 \\
x = - 1 \Rightarrow t = a + 2 \\
\end{matrix} ight..

    Ta có:

    I = \int_{a + 2}^{2}{\frac{1}{2t}dt
=}\frac{1}{2}\left. \ \left( \ln|t| ight) ight|_{a + 2}^{2} =
\frac{1}{2}\left( ln2 - \ln|a + 2| ight).

  • Câu 18: Nhận biết
    Chọn kết luận đúng

    Tích phân \int_{a}^{b}{f(x)}dx được phân tích thành:

    Hướng dẫn:

    Ta có: \int_{a}^{b}{f(x)}dx =
\int_{c}^{b}{f(x)}dx + \int_{a}^{c}{f(x)}dx = \int_{c}^{b}{f(x)}dx -
\int_{c}^{a}{f(x)}dx.

    Đáp án đúng là \int_{c}^{b}{f(x)} +
\int_{c}^{a}{- f(x)}dx.

  • Câu 19: Nhận biết
    Tính tích phân

    Cho \int_{0}^{1}{f(x)dx = 2}\int_{0}^{1}{g(x)dx = 5}, khi đó \int_{0}^{1}{\left\lbrack f(x) - 2g(x)
\right\rbrack dx} bằng

    Hướng dẫn:

    Ta có:

    \int_{0}^{1}{\left\lbrack f(x) - 2g(x)
ightbrack dx}

    = \int_{0}^{1}{f(x)dx} -
2\int_{0}^{1}{g(x)dx}

    = 2 - 2.5 = - 8.

  • Câu 20: Thông hiểu
    Chọn mệnh đề đúng

    Cho \int_{1}^{e}{\left( 1 + x\ln x
\right)dx = ae^{2} + be + c.} với a, b, c là các số hữu tỉ. Mệnh đề nào sau đây đúng.

    Hướng dẫn:

    Ta có \int_{1}^{e}{\left( 1 + x\ln x
ight)dx = ae^{2} + be + c}

    = \int_{1}^{e}{1dx} + \int_{1}^{e}{x\ln
xdx} = e - 1 + \int_{1}^{e}{x\ln xdx}

    Tính J = \int_{1}^{e}{x\ln
xdx}

    Đặt \left\{ \begin{matrix}
u = \ln x \\
dv = xdx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = \frac{1}{x}dx \\
v = \frac{x^{2}}{2}dx \\
\end{matrix} ight.

    Suy ra J = \left. \ \frac{x^{2}}{2}\ln x
ight|_{1}^{e} - \int_{1}^{e}{\frac{x}{2}dx = \frac{e^{2}}{2} - \left.
\ \frac{x^{2}}{4} ight|_{1}^{e}}

    = \frac{e^{2}}{2} - \frac{e^{2}}{4} + \frac{1}{4}
= \frac{e^{2}}{4} + \frac{1}{4}

    Vậy \int_{1}^{e}{\left( 1 + x\ln x
ight)dx =}e - 1 + \int_{1}^{e}{x\ln xdx} = e - 1 + \frac{e^{2}}{4} + \frac{1}{4} =
\frac{e^{2}}{4} + e - \frac{3}{4}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo