Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Biểu thức tọa độ của các phép toán vectơ (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Định tọa độ trọng tâm tam giác

    Xác định tọa độ trọng tâm G của tam giác ABC, biết rằng A(1;3;4),B(2; - 1;0),C(3;1;2)?

    Hướng dẫn:

    Tọa độ trọng tâm G của tam giác được xác định như sau:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = \dfrac{1 + 2 + 3}{3} = 2 \\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = \dfrac{3 - 1 + 1}{3} = 1 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = \dfrac{4 + 0 + 2}{3} = 2 \\\end{matrix} ight.\  \Rightarrow G(2;1;2)

  • Câu 2: Nhận biết
    Tìm tọa độ tổng hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1; -
4;0);\overrightarrow{v} = ( - 1; - 2;1). Tìm tọa độ vectơ \overrightarrow{u} +
3\overrightarrow{v}?

    Hướng dẫn:

    Ta có: 3\overrightarrow{v} = ( - 3; -
6;3) do đó \overrightarrow{u} +
3\overrightarrow{v} = ( - 2; - 10;3)

    Vậy đáp án cần tìm là ( - 2; -
10;3).

  • Câu 3: Nhận biết
    Tìm ba điểm thẳng hàng trong 4 điểm đã cho

    Trong không gian Oxyz, cho bốn điểm A( - 1;\ 2;\ 0), B(3;\ 1;\ 0), C(0;\ 2;\ 1)D(1;\ 2;\ 2). Trong đó có ba điểm thẳng hàng là

    Hướng dẫn:

    Ta có: \overrightarrow{AC} = (1;\ 0;\
1), \overrightarrow{AD} = (2;\ 0;\
2)

    \overrightarrow{AC} \land
\overrightarrow{AD} = \overrightarrow{0}, nên hai vecto \overrightarrow{AC}, \overrightarrow{AD} cùng phương, hay ba điểm \mathbf{A}\mathbf{,}\mathbf{C}\mathbf{,}\mathbf{D} thẳng hàng.

    Nhận xét: Có thể vẽ phát họa lên hệ tọa độ Oxyz để nhìn nhận dễ dàng hơn.

  • Câu 4: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 5, giao điểm của hai đường chéo ACBD trùng với gốc tọa độ O. Các véc tơ \overrightarrow{OB},\overrightarrow{OC}, \overrightarrow{OS} lần lượt cùng hướng với các véc tơ \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}OA = 3, OS =
2. Gọi M là trung điểm cạnh SB. Tọa độ của véc tơ \overrightarrow{OM}

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có OB = \sqrt{AB^{2} - OA^{2}} =
\sqrt{5^{2} - 3^{2}} = 4.

    Khi đó \overrightarrow{OB} = (4;0;0),\ \
\ \overrightarrow{OS} = (0;0;2).

    M là trung điểm của SB nên ta có

    \overrightarrow{OM} = \frac{1}{2}\left(
\overrightarrow{OS} + \overrightarrow{OB} ight) =
(2;0;1).

  • Câu 5: Nhận biết
    Xác định tọa độ trung điểm

    Tìm tọa độ trung điểm M của đoạn thẳng AB. Biết tọa độ hai điểm A(1;2;3)B(3; - 1;4).

    Hướng dẫn:

    Ta có: M là trung điểm của AB nên tọa độ điểm M là:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 3 \\\end{matrix} ight.\  \Rightarrow M(2;1;3)

    Vậy đáp án đúng là: M(2;1;3).

  • Câu 6: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} =
(1;2;1);\overrightarrow{b} = ( - 1;3;0). Vectơ \overrightarrow{c} = 2\overrightarrow{a} +
\overrightarrow{b} có tọa độ là:

    Hướng dẫn:

    Ta có: 2\overrightarrow{a} =
(2;4;2). Khi đó \overrightarrow{c}
= 2\overrightarrow{a} + \overrightarrow{b} = \left( 2 + ( - 1);4 + 3;2 +
0 ight) = (1;7;2)

    Vậy \overrightarrow{c} =
(1;7;2)

  • Câu 7: Nhận biết
    Xác định tích vô hướng

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (1; - 2;3)\overrightarrow{b} = ( - 2;1;2). Xác định tích vô hướng \left( \overrightarrow{a} +
\overrightarrow{b} ight).\overrightarrow{b}?

    Hướng dẫn:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1; - 1;5) nên \left( \overrightarrow{a} + \overrightarrow{b}
ight).\overrightarrow{b} = - 1.( - 2) + ( - 1).1 + 5.2 =
11

  • Câu 8: Nhận biết
    Xác định tọa độ vectơ

    Cho A(1;\ \ 1;\  - 2)B(2;\ \  - 1;\ \ 0). Hãy xác định tọa độ của \overrightarrow{AB}?

    Hướng dẫn:

    Ta có:

    \overrightarrow{AB} = (1;\  - \ 2;\ \
2)

  • Câu 9: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình x - y - z - 3 = 0 và hai điểm A(1; - 3; - 4),\ B(1;2;1). Khi đó:

    a) [NB] Mặt phẳng (P)có vec tơ pháp tuyến \overrightarrow{n} = (1; - 1; -
1).Đúng||Sai

    b) [TH] \overrightarrow{AB} = (0;5;5). Đúng||Sai

    c) [TH] Khoảng cách từ điểm A đến (P)\frac{5\sqrt{3}}{3}. Đúng||Sai

    d) [VD] Cho điểm M di động trên (P). Khi đó giá trị nhỏ nhất của biểu thức MA^{2} + 4MB^{2}bằng 56. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình x - y - z - 3 = 0 và hai điểm A(1; - 3; - 4),\ B(1;2;1). Khi đó:

    a) [NB] Mặt phẳng (P)có vec tơ pháp tuyến \overrightarrow{n} = (1; - 1; -
1).Đúng||Sai

    b) [TH] \overrightarrow{AB} = (0;5;5). Đúng||Sai

    c) [TH] Khoảng cách từ điểm A đến (P)\frac{5\sqrt{3}}{3}. Đúng||Sai

    d) [VD] Cho điểm M di động trên (P). Khi đó giá trị nhỏ nhất của biểu thức MA^{2} + 4MB^{2}bằng 56. Sai||Đúng

    a) Đúng.

    Ta có: {\overrightarrow{n}}_{p} = (1; -
1; - 1).

    b) Đúng.

    Ta có: \overrightarrow{AB} =
(0;5;5).

    c) Đúng.

    Khoảng cách từ điểm A đến (P)là:

    d\left( A;(P) ight) = \frac{\left| 1 -
( - 3) - ( - 4) - 3 ight|}{\sqrt{1^{2} + ( - 1)^{2} + ( - 1)^{2}}} =
\frac{5\sqrt{3}}{3}.

    d) Sai.

    Gọi I là điểm sao cho \overrightarrow{IA} + 4\overrightarrow{IB} =
\overrightarrow{0} ta có \left\{
\begin{matrix}
x_{I} = \frac{x_{A} + 4x_{B}}{5} = 1 \\
y_{I} = \frac{y_{A} + 4y_{B}}{5} = 1 \\
z_{I} = \frac{z_{A} + 4z_{B}}{5} = 0 \\
\end{matrix} ight.\  \Rightarrow I(1;1;0).

    Ta có:

    MA^{2} + 4MB^{2} =
{\overrightarrow{MA}}^{2} + 4{\overrightarrow{MB}}^{2}

    = \left( \overrightarrow{IA} -
\overrightarrow{IM} ight)^{2} + 4\left( \overrightarrow{IB} -
\overrightarrow{IM} ight)^{2}

    = 5IM^{2} - 2\overrightarrow{IM}\left(
\overrightarrow{IA} + 4\overrightarrow{IB} ight) + MA^{2} +
4MB^{2}

    \Rightarrow MA^{2} + 4MB^{2} = 5IM^{2} +
IA^{2} + 4IB^{2}

    \Rightarrow MA^{2} + 4MB^{2} nhỏ nhất khi IM nhỏ nhất \Leftrightarrow M là hình chiếu vuông góc của I lên mặt phẳng (P).

    \Rightarrow IM = d\left( I;(P) ight) =
\sqrt{3}

    \Rightarrow giá trị nhỏ nhất của biểu thức MA^{2} + 4MB^{2} là:

    MA^{2} + 4MB^{2} = 5IM^{2} + IA^{2} +
4IB^{2} = 15 + 32 + 8 = 55.

  • Câu 10: Nhận biết
    Tìm điều kiện tham số m thỏa mãn yêu cầu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (2; -
1;1)\overrightarrow{v} = (0; -
3; - m). Xác định giá trị tham số m để \overrightarrow{u}.\overrightarrow{v} =
1?

    Hướng dẫn:

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1
\Leftrightarrow 3 - m = 1 \Leftrightarrow m = 2

    Vậy m = 2 là giá trị cần tìm.

  • Câu 11: Nhận biết
    Chọn mệnh đề sai

    Trong không gian Oxyz, cho tọa độ các vectơ \overrightarrow{a} = ( -
1;1;0); \overrightarrow{b} =
(1;1;0)\overrightarrow{c} =
(1;1;1). Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Ta có: \overrightarrow{c}.\overrightarrow{b} = 1.1 + 1.1
+ 1.0 = 2 eq 0 suy ra “\overrightarrow{c}\bot\overrightarrow{b}” là mệnh đề sai.

  • Câu 12: Nhận biết
    Tính giá trị biểu thức

    Trong không gian Oxyz, cho hai vecto \overrightarrow{a}, \overrightarrow{b}cùng có độ dài bằng 2. Biết rằng góc giữa hai vecto đó bằng 120^{0}, giá trị của biểu thức P = \left( \overrightarrow{a} -
2\overrightarrow{b} ight)^{2}

    Hướng dẫn:

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.cos\left( \overrightarrow{a},\overrightarrow{b} ight) =
2.2.cos120^{0} = 2.2.\left( - \frac{1}{2} ight) = - 2

    Do đó:

    P = \left( \overrightarrow{a} -
2\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} -
4\overrightarrow{.a}.\overrightarrow{b} +
4{\overrightarrow{b}}^{2}

    = 4 - 4.( - 2) + 4.4 = 28.

  • Câu 13: Nhận biết
    Tính cosin góc giữa hai vecto

    Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (2;1;0)\overrightarrow{b} = ( - 1;0; - 2). Tính \cos\left(
\overrightarrow{a},\overrightarrow{b} \right).

    Hướng dẫn:

    Ta có: \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{-
2}{\sqrt{5}.\sqrt{5}} = - \frac{2}{5}.

  • Câu 14: Nhận biết
    Tìm số thực m thỏa mãn điều kiện

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{u} = (2; - 1;1)\overrightarrow{v} = (0; - 3; - m). Tìm số thực m sao cho tích vô hướng \overrightarrow{u}.\overrightarrow{v} =
1.

    Hướng dẫn:

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1
\Leftrightarrow 3 - m = 1 \Leftrightarrow m = 2.

  • Câu 15: Nhận biết
    Tính góc giữa hai vectơ

    Trong không gian Oxyz, góc giữa hai vectơ \overrightarrow{i}\overrightarrow{u} = \left( - \sqrt{3};\ \
0;\ \ 1 \right)

    Hướng dẫn:

    Ta có \overrightarrow{i} = (1;\ \ 0;\ \
0).

    Khi đó:

    \cos\left( \overrightarrow{i},\ \
\overrightarrow{u} ight) =
\frac{\overrightarrow{i}.\overrightarrow{u}}{\left| \overrightarrow{i}
ight|.\left| \overrightarrow{u} ight|} = \frac{1.\left( - \sqrt{3}
ight) + 0.0 + 0.1}{1.\sqrt{\left( - \sqrt{3} ight)^{2} + 0^{2} +
1^{2}}}

    =\frac{- \sqrt{3}}{2}
\Rightarrow \left( \overrightarrow{i},\ \ \overrightarrow{u} ight) =
150{^\circ}.

  • Câu 16: Nhận biết
    Tính tích vô hướng hai vectơ

    Trong không gian Oxyz, cho các điểm A(2;1;4),B( - 2;2;6),C(6;0; -
1). Tích \overrightarrow{AB}.\overrightarrow{AC} bằng:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 4;1; - 10) \\
\overrightarrow{AC} = (4; - 1; - 5) \\
\end{matrix} ight.. Khi đó \overrightarrow{AB}.\overrightarrow{AC} =
33.

  • Câu 17: Thông hiểu
    Tính độ dài vectơ

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{u} = ( - 2;3;0)\overrightarrow{v} = (2; - 2;1). Tính độ dài vectơ \overrightarrow{w} =
\overrightarrow{u} - 2\overrightarrow{v}?

    Hướng dẫn:

    Ta có: \overrightarrow{w} =
\overrightarrow{u} - 2\overrightarrow{v} = ( - 2;3;0) - 2(2; - 2;1) = (
- 6;7; - 2)

    Khi đó \left| \overrightarrow{w} ight|
= \sqrt{89}

  • Câu 18: Thông hiểu
    Tính tọa độ điểm M

    Trong không gian Oxyz có điểm A(4;2;1),B( - 2; - 1;4). Tìm tọa độ điểm M thỏa mãn đẳng thức \overrightarrow{AM} =
2\overrightarrow{MB}?

    Hướng dẫn:

    Ta có: M(x;y;z). Khi đó \overrightarrow{AM} =
2\overrightarrow{MB}

    \overrightarrow{AM} =
2\overrightarrow{MB} \Leftrightarrow \left\{ \begin{matrix}
x - 4 = 2( - 2 - x) \\
y - 2 = 2( - 1 - y) \\
z - 1 = 2(4 - z) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = 3 \\
\end{matrix} ight.\  \Rightarrow M(0;0;3)

    Vậy giá trị cần tìm là M(0;0;3).

  • Câu 19: Thông hiểu
    Chọn phương án đúng

    Trong không gian với hệ tọa độ Oxyz, cho véc tơ \overrightarrow{u} = (1;1; - 2),\ \
\overrightarrow{v} = (1;0;m). Tìm tất cả giá trị của m để góc giữa \overrightarrow{u}, \overrightarrow{v} bằng 45^{{^\circ}}.

    Hướng dẫn:

    Ta có:

    \left(
\overrightarrow{u},\overrightarrow{v} ight) = 45{^\circ}
\Leftrightarrow \cos\left( \overrightarrow{u},\overrightarrow{v} ight)
= \frac{\sqrt{2}}{2}

    \Leftrightarrow
\frac{\overrightarrow{u}.\overrightarrow{v}}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{v} ight|} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{1 -
2m}{\sqrt{6}.\sqrt{1 + m^{2}}} = \frac{1}{\sqrt{2}}

    \Leftrightarrow \sqrt{3\left( m^{2} + 1
ight)} = 1 - 2m

    \Leftrightarrow \left\{ \begin{matrix}
1 - 2m \geq 0 \\
3m^{2} + 3 = 1 - 4m + 4m^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \leq \frac{1}{2} \\
m^{2} - 4m - 2 = 0 \\
\end{matrix} ight. \Leftrightarrow m = 2 - \sqrt{6}.

  • Câu 20: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} =
(2;3;2);\overrightarrow{b} = (1;1; - 1). Khi đó tọa độ vectơ \overrightarrow{a} -
\overrightarrow{b} là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{a} - \overrightarrow{b}
= (2 - 1;3 - 1;2 + 1) = (1;2;3)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo