Trong không gian , cho hai điểm
và
. Trung điểm
của
có tọa độ là:
Ta có: M là trung điểm của AB nên tọa độ điểm M là:
Vậy đáp án đúng là: .
Trong không gian , cho hai điểm
và
. Trung điểm
của
có tọa độ là:
Ta có: M là trung điểm của AB nên tọa độ điểm M là:
Vậy đáp án đúng là: .
Cho tam giác có
. Tọa độ của trọng tâm
của tam giác
là:
Với G là trọng tâm tam giác ABC:
Vậy tọa độ trọng tâm tam giác có tọa độ là .
Trong không gian , cho điểm
. Tính độ dài đoạn thẳng
?
Ta có:
Trong không gian , góc giữa hai vectơ
và
là
Ta có .
Khi đó:
=.
Trong không gian với hệ trục tọa độ , cho hai điểm
và
. Xác định tọa độ trung điểm
của
?
Ta có: I là trung điểm của AB nên tọa độ điểm I là:
Vậy đáp án đúng là: .
Trong không gian, với mọi vectơ ta có
Công thức tích vô hướng của hai vectơ .
Trong không gian với hệ trục tọa độ cho hai điểm
. Hình chiếu vuông góc của trung điểm I của đoạn AB trên mặt phẳng
là điểm nào dưới đây?
Vì I là trung điểm của đoạn AB nên .
Khi đó hình chiếu của I lên là
.
Trong không gian , cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Trong không gian với hệ trục tọa độ , cho ba vectơ
. Khi đó giá trị của
bằng bao nhiêu?
Ta có: .
Khi đó
Vậy đáp án cần tìm là:
Trong không gian , cho hai vectơ
và
. Phát biểu nào sau đây sai?
Dễ thấy từ đo suy ra hai vectơ
và
ngược hướng và
.
Lại có
Vậy phát biểu sai là: .
Trong không gian , cho hai vectơ
và
. Khẳng định nào sau đây sai?
Ta có: suy ra “
” là khẳng định sai.
Trên hệ trục tọa độ , cho
,
, tích
bằng
Ta có
Trong không gian , cho hai vectơ
và
. Tính
?
Ta có:
Cho tứ diện đều cạnh
Tính
theo
Hình vẽ minh họa
Gọi là trọng tâm của
Do đó
Ta có
Mà là tứ diện đều nên
Suy ra
Vậy
Trong không gian hệ trục tọa độ , cho tam giác
có tọa các điểm
và tam giác đó nhận điểm
làm trọng tâm. Xác định giá trị biểu thức
?
Vì tam giác ABC nhận điểm G làm trọng tâm nên ta có hệ phương trình:
Trong không gian với hệ trục tọa độ , cho ba vectơ
. Tọa độ vectơ
là:
Ta có:
Vậy
Trong không gian với hệ tọa độ , cho vectơ
và
. Tính tích vô hướng
.
Ta có .
Trong không gian với hệ trục tọa độ , cho hai vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
.
Vậy
Trong không gian hệ trục tọa độ , cho hai điểm
. Tìm tọa độ điểm
sao cho
?
Gọi tọa độ độ điểm .
Ta có:
Lại có:
Vậy đáp án cần tìm là: .
Trong không gian tọa độ , cho hai mặt phẳng
và
a) Vectơ có tọa độ là một vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
b) Vectơ có toạ độ là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
c) Côsin của góc giữa hai vectơ và
bằng
. Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
Trong không gian tọa độ , cho hai mặt phẳng
và
a) Vectơ có tọa độ là một vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
b) Vectơ có toạ độ là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
c) Côsin của góc giữa hai vectơ và
bằng
. Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
a) nên mệnh đề sai
b) nên mệnh đề đúng
c) mệnh đề đúng
d) Góc hai mặt phẳng không thể tù nên mệnh đề sai
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: