Trong không gian , cho hai vectơ
và
. Toạ độ của vectơ
là:
Ta có .
Trong không gian , cho hai vectơ
và
. Toạ độ của vectơ
là:
Ta có .
Trên hệ trục tọa độ , cho
,
, tích
bằng
Ta có
Trong không gian , cho điểm
. Tính độ dài đoạn thẳng
?
Ta có:
Trong không gian , cho tọa độ ba điểm
. Tọa độ trọng tâm
của tam giác
là:
Tọa độ trọng tâm G của tam giác ABC bằng:
Vậy trọng tâm G tìm được là .
Trong không gian , cho tọa độ các vectơ
;
và
. Mệnh đề nào sau đây sai?
Ta có: suy ra “
” là mệnh đề sai.
Trong không gian , cho bốn điểm
,
,
và
. Trong đó có ba điểm thẳng hàng là
Ta có: ,
Mà , nên hai vecto
,
cùng phương, hay ba điểm
thẳng hàng.
Nhận xét: Có thể vẽ phát họa lên hệ tọa độ để nhìn nhận dễ dàng hơn.
Trong không gian với hệ trục tọa độ , cho ba vectơ
. Khi đó giá trị của
bằng bao nhiêu?
Ta có: .
Khi đó
Vậy đáp án cần tìm là:
Biết rằng vectơ và
. Tìm tọa độ vectơ
?
Ta có:
Trong không gian với hệ trục tọa độ , cho hai điểm
. Tìm giá trị tham số
để
?
Theo bài ra ta có:
Vậy đáp án cần tìm là .
Trong không gian , cho hai vectơ
. Có tất cả bao nhiêu giá trị nguyên dương của tham số
để góc giữa hai vectơ
là góc tù?
Ta có:
Góc giữa hai vectơ là góc tù khi và chỉ khi
Mà
Suy ra có 2 giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán.
Vậy đáp án cần tìm là .
Trong không gian , cho hai vectơ
và
. Tính tích vô hướng
?
Ta có:
Trong không gian , cho hai vectơ
. Vectơ
có tọa độ là:
Ta có: . Khi đó
Vậy
Trong không gian , cho hai vectơ
. Tìm tọa độ vectơ
?
Ta có: do đó
Vậy đáp án cần tìm là .
Sự chuyển động của máy bay A được thể hiện trong không gian như sau: Máy bay khởi hành từ
chuyển động thẳng đều (Tính theo phút) với vận tốc được biểu thị theo véc tơ
. Sau khi khởi hành được 30 phút, máy bay ở vị trí
. Tính
Đáp án: 362
Sự chuyển động của máy bay A được thể hiện trong không gian như sau: Máy bay khởi hành từ
chuyển động thẳng đều (Tính theo phút) với vận tốc được biểu thị theo véc tơ
. Sau khi khởi hành được 30 phút, máy bay ở vị trí
. Tính
Đáp án: 362
Ta có:
Quãng đường máy bay di chuyển là:
Khi đó:
Trong không gian , cho hai vectơ
và
. Xác định giá trị tham số
để
?
Ta có:
Vậy m = 2 là giá trị cần tìm.
Trong không gian với hệ trục tọa độ , cho hai vectơ
và
. Tính
.
Ta có: .
Trong không gian tọa độ , cho vectơ
. Trong các vectơ dưới đây, vectơ nào không cùng phương với
?
Ta có: cùng phương với mọi vectơ
Lại có
Vậy vectơ không cùng phương với là
.
Trong không gian hệ trục tọa độ , cho hai vectơ
và
. Tính độ dài vectơ
?
Ta có:
Khi đó
Trong hệ trục tọa độ Oxyz, cho điểm . Gọi các điểm
lần lượt ở trên các trục tọa độ
sao cho
là trực tâm của tam giác
. Khi đó hoành độ điểm
là:
Giả sử .
Khi đó mặt phẳng
Ta có:
Vì là trực tâm của tam giác
nên
Vậy
Trong không gian , cho hai vectơ
và
. Khẳng định nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: