Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Biểu thức tọa độ của các phép toán vectơ (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm các khẳng định sai

    Trong không gian Oxyz, cho tọa độ các điểm A(1;2;0),B(2;1;1),C(0;3; -
1). Cho các khẳng định sau:

    (I) BC = 2AB.

    (II) B \in AC.

    (III) Ba điểm A;B;C tạo thành một tam giác.

    (IV) Ba điểm A;B;C thẳng hàng.

    Trong các khẳng định trên, khẳng định nào sai?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1;1) \\
\overrightarrow{AC} = ( - 1;1; - 1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{AC} = -
\overrightarrow{AB} nên A là trung điểm của BC và ba điểm A;B;C thẳng hàng

    Vậy các khẳng định sai là: (II);(III).

  • Câu 2: Nhận biết
    Tìm tọa độ trung điểm I

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(2; - 4;3)B(2;2;7). Xác định tọa độ trung điểm I của AB?

    Hướng dẫn:

    Ta có: I là trung điểm của AB nên tọa độ điểm I là:

    \left\{ \begin{matrix}x_{I} = \dfrac{x_{A} + x_{B}}{2} = 1 \\y_{I} = \dfrac{y_{A} + y_{B}}{2} = 0 \\z_{I} = \dfrac{z_{A} + z_{B}}{2} = 4 \\\end{matrix} ight.\  \Rightarrow I(1;0;4)

    Vậy đáp án đúng là: I(1;0;4).

  • Câu 3: Nhận biết
    Tính tích vô hướng

    Cho hai véc tơ \overrightarrow{a} = (1; -
2;3), \overrightarrow{b} = ( -
2;1;2). Khi đó, tích vô hướng \left( \overrightarrow{a} + \overrightarrow{b}
\right).\overrightarrow{b} bằng

    Hướng dẫn:

    Ta có:

    \overrightarrow{a} + \overrightarrow{b} =
( - 1; - 1;5)

    \Rightarrow \left(
\overrightarrow{a} + \overrightarrow{b} ight).\overrightarrow{b} = -
1.( - 2) + ( - 1).1 + 5.2 = 11.

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = ( - 2;2;0);\overrightarrow{b}
= (2;2;0);\overrightarrow{c} = (2;2;2). Khi đó giá trị của \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| bằng bao nhiêu?

    Hướng dẫn:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} = ( - 2 + 2 + 2;2 + 2 + 2;0 + 0
+ 2) = (2;6;2).

    Khi đó \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| = \sqrt{2^{2} + 6^{2} +
2^{2}} = 2\sqrt{11}

    Vậy đáp án cần tìm là: 2\sqrt{11}

  • Câu 5: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{x} = (2;1; - 3);\overrightarrow{y}
= (1;0; - 1). Tìm tọa độ vectơ \overrightarrow{a} = \overrightarrow{x} +
2\overrightarrow{y}?

    Hướng dẫn:

    Ta có: 2\overrightarrow{y} = (2;0; -
2). Khi đó \overrightarrow{a} =
\overrightarrow{x} + 2\overrightarrow{y} = (2 + 2;1 + 0; - 3 - 2) =
(4;1; - 5).

    Vậy \overrightarrow{a} = (4;1; -
5)

  • Câu 6: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (2; - 3;3);\overrightarrow{b}
= (0;2; - 1);\overrightarrow{c} = (3; - 1;5). Tìm tọa độ vectơ \overrightarrow{u} = 2\overrightarrow{a} +
3\overrightarrow{b} - 2\overrightarrow{c}?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
2\overrightarrow{a} = (4; - 6;6) \\
3\overrightarrow{b} = (0;6; - 3) \\
- 2\overrightarrow{c} = ( - 6;2; - 10) \\
\end{matrix} ight.. Khi đó \overrightarrow{u} = 2\overrightarrow{a} +
3\overrightarrow{b} - 2\overrightarrow{c} = ( - 2;2; - 7)

    Vậy \overrightarrow{u} = ( - 2;2; -
7)

  • Câu 7: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian tọa độ Oxyz, cho vectơ \overrightarrow{a} = (1;0; -
2). Trong các vectơ dưới đây, vectơ nào không cùng phương với \overrightarrow{a}?

    Hướng dẫn:

    Ta có: \overrightarrow{0} =
(0;0;0) cùng phương với mọi vectơ

    Lại có \left\{ \begin{matrix}\overrightarrow{c} = (2;0; - 4) = 2\overrightarrow{a} \\\overrightarrow{d} = \left( - \dfrac{1}{2};0;1 ight) = -\dfrac{1}{2}\overrightarrow{a} \\\end{matrix} ight.

    Vậy vectơ không cùng phương với \overrightarrow{a}\overrightarrow{b} = (1;0;2).

  • Câu 8: Nhận biết
    Tính cosin góc giữa hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = ( -
3;4;0)\overrightarrow{b} =
(5;0;12). Tính \cos\left(
\overrightarrow{a};\overrightarrow{b} ight)?

    Hướng dẫn:

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 15}{\sqrt{( -
3)^{2} + 4^{2} + 0^{2}}.\sqrt{5^{2} + 0^{2} + 12^{2}}} = -
\frac{3}{13}

  • Câu 9: Nhận biết
    Chọn khẳng định sai

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (1; -
2;0)\overrightarrow{b} = ( -
2;3;1). Khẳng định nào sau đây sai?

    Hướng dẫn:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1;1;1) suy ra “\overrightarrow{a} + \overrightarrow{b} = ( - 1;1;
- 1)” là khẳng định sai.

  • Câu 10: Thông hiểu
    Chọn đẳng thức đúng

    Trong không gian hệ trục tọa độ Oxyz, cho các vectơ \overrightarrow{a} = (2;3;1),\overrightarrow{b} =
( - 1;5;2),\overrightarrow{c} = (4; - 1;3),\overrightarrow{x} = ( -
3;22;5). Đẳng thức nào dưới đây đúng?

    Hướng dẫn:

    Đặt \overrightarrow{x} =
m\overrightarrow{a} + n\overrightarrow{b} + p\overrightarrow{c};\left(
m;n;p\mathbb{\in R} ight)

    \Rightarrow ( - 3;22;5) = m(2;3;1) + n(
- 1;5;2) + p(4; - 1;3)

    \Rightarrow \left\{ \begin{matrix}
2m - m + 4p = - 3 \\
3m + 5m - p = 22 \\
m + 2m + 3p = 5 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
m = 2 \\
n = 3 \\
p = - 1 \\
\end{matrix} ight.

    Vậy \overrightarrow{x} =
2\overrightarrow{a} + 3\overrightarrow{b} - \overrightarrow{c} là đẳng thức đúng.

  • Câu 11: Nhận biết
    Tính góc giữa hai vectơ

    Trong không gian Oxyz, góc giữa hai vectơ \overrightarrow{i}\overrightarrow{u} = \left( - \sqrt{3};\ \
0;\ \ 1 \right)

    Hướng dẫn:

    Ta có \overrightarrow{i} = (1;\ \ 0;\ \
0).

    Khi đó:

    \cos\left( \overrightarrow{i},\ \
\overrightarrow{u} ight) =
\frac{\overrightarrow{i}.\overrightarrow{u}}{\left| \overrightarrow{i}
ight|.\left| \overrightarrow{u} ight|} = \frac{1.\left( - \sqrt{3}
ight) + 0.0 + 0.1}{1.\sqrt{\left( - \sqrt{3} ight)^{2} + 0^{2} +
1^{2}}}

    =\frac{- \sqrt{3}}{2}
\Rightarrow \left( \overrightarrow{i},\ \ \overrightarrow{u} ight) =
150{^\circ}.

  • Câu 12: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} =
(2;3;2);\overrightarrow{b} = (1;1; - 1). Khi đó tọa độ vectơ \overrightarrow{a} -
\overrightarrow{b} là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{a} - \overrightarrow{b}
= (2 - 1;3 - 1;2 + 1) = (1;2;3)

  • Câu 13: Nhận biết
    Xét tính đúng sai của mỗi ý hỏi

    Các thiên thạch có đường kính lớn hơn 140m và có thể lại gần Trái Đất ở khoảng cách nhỏ hơn 7500000 km được coi là những vật thể có khả năng va chạm gáy nguy hiểm cho Trái Đất. Để theo đõi những thiên thạch này, người ta đã thiết lập các trạm quan sát các vật thể bay gần Trái Đất. Giả sử có một hệ thống quan sát có khả năng theo dõi các vật thể ở độ cao khồng vượt quả 6600 km so với mực nước biển. Coi Trái Đất là khối cầu có bán kính 6400 km. Chọn hệ trục tọa độ Oxyz trong không gian có gốc O tại tâm Trái Đất và đơn vị độ dài trên mỗi trục tọa độ là 1000 km. Một thiên thạch (coi như một hạt) chuyển động với tốc độ không đổi theo một đường thẳng từ điểm M(6;20;0) đến điểm N( - 6; - 12;16).

    a) Đường thẳng MN có phương trình tham số là \left\{ \begin{matrix}
x = 6 + 3t \\
y = 20 + 8t,\left( t \in \mathbb{R} \right) \\
z = - 4t \\
\end{matrix} \right.. Đúng||Sai

    b) Vị trí đầu tiên thiên thạch di chuyển vào phạm vi theo dỡi của hệ thống quan sát lả điểm A( - 3; -
4;12). Sai||Đúng

    c) Khoảng cách giữa vị trí đầu tiên và vị trỉ cuối cùng mả thiên thạch di chuyển trong phạm vi theo dõi của hệ thống quan sát là 18900 km (kết quả làm tròn đến hàng trăm theo đơn vị ki-lô-mét). Đúng||Sai

    d) Nếu thời gian di chuyển của thiên thạch trong phạm vi theo dõi của hệ thống quan sát là 3 phút thì thời gian nó di chuyển từ M đến N là 6 phút. Đúng||Sai

    Đáp án là:

    Các thiên thạch có đường kính lớn hơn 140m và có thể lại gần Trái Đất ở khoảng cách nhỏ hơn 7500000 km được coi là những vật thể có khả năng va chạm gáy nguy hiểm cho Trái Đất. Để theo đõi những thiên thạch này, người ta đã thiết lập các trạm quan sát các vật thể bay gần Trái Đất. Giả sử có một hệ thống quan sát có khả năng theo dõi các vật thể ở độ cao khồng vượt quả 6600 km so với mực nước biển. Coi Trái Đất là khối cầu có bán kính 6400 km. Chọn hệ trục tọa độ Oxyz trong không gian có gốc O tại tâm Trái Đất và đơn vị độ dài trên mỗi trục tọa độ là 1000 km. Một thiên thạch (coi như một hạt) chuyển động với tốc độ không đổi theo một đường thẳng từ điểm M(6;20;0) đến điểm N( - 6; - 12;16).

    a) Đường thẳng MN có phương trình tham số là \left\{ \begin{matrix}
x = 6 + 3t \\
y = 20 + 8t,\left( t \in \mathbb{R} \right) \\
z = - 4t \\
\end{matrix} \right.. Đúng||Sai

    b) Vị trí đầu tiên thiên thạch di chuyển vào phạm vi theo dỡi của hệ thống quan sát lả điểm A( - 3; -
4;12). Sai||Đúng

    c) Khoảng cách giữa vị trí đầu tiên và vị trỉ cuối cùng mả thiên thạch di chuyển trong phạm vi theo dõi của hệ thống quan sát là 18900 km (kết quả làm tròn đến hàng trăm theo đơn vị ki-lô-mét). Đúng||Sai

    d) Nếu thời gian di chuyển của thiên thạch trong phạm vi theo dõi của hệ thống quan sát là 3 phút thì thời gian nó di chuyển từ M đến N là 6 phút. Đúng||Sai

    a) Ta có: M(6;20;0),N( - 6; -
12;16)

    \Rightarrow \overrightarrow{MN}( - 12; -
32;16) = - 4.(3;8; - 4)

    Chọn \overrightarrow{u_{MN}} = (3;8; -
4).

    Khi đó, phương trình MN:\left\{
\begin{matrix}
x = 6 + 3t \\
y = 20 + 8t(t \in R) \\
z = - 4t \\
\end{matrix} ight.

    Do đó, a đúng

    b) Phạm vi theo dõi của hệ thống ra đa là mặt cầu (O):x^{2} + y^{2} + z^{2} = 13^{2}.

    Tọa độ giao điểm của MN và (O) là nghiệm của phương trình

    (6 + 3t)^{2} + (20 + 8t)^{2} + ( -
4t)^{2} = 13^{2}

    \Leftrightarrow 89t^{2} + 356t - 267 =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = - 1 \Rightarrow A(3;12;4) \\
t = - 3 \Rightarrow B( - 3; - 4;12) \\
\end{matrix} ight.

    Ta có \overrightarrow{MA}( - 3; -
8;4),\overrightarrow{MB}( - 9; - 24;12)

    \Rightarrow \overrightarrow{MB} =
3\overrightarrow{MA}

    Điểm gặp đầu tiên là A(3;12;4)

    Do đó, b sai

    c) AB = \sqrt{( - 3 - 3)^{2} + ( - 4 -
12)^{2} + (12 - 4)^{2}} = \sqrt{356}

    Đơn vị độ dài trên mỗi trục là 1000 km nên khoảng cách AB \approx 18900(km)

    Do đó, c đúng

    d) AB = 2\sqrt{89},MN =
4\sqrt{89}

    \Rightarrow t_{MN} = 2t_{AB} = 2.3 =
6 (phút)

    Do đó, d đúng

  • Câu 14: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho \overrightarrow{a} = (1;2;3),\overrightarrow{b} =
( - 2;0;1),\overrightarrow{c} = ( - 1;0;1). Tọa độ vectơ \overrightarrow{n} = \overrightarrow{a} +
\overrightarrow{b} + 2\overrightarrow{c} - 3\overrightarrow{i} là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{n} = \overrightarrow{a}
+ \overrightarrow{b} + 2\overrightarrow{c} -
3\overrightarrow{i}

    \Rightarrow \overrightarrow{n} = (1;2;3)
+ ( - 2;0;1) + 2( - 1;0;1) - 3(1;0;0)

    \Rightarrow \overrightarrow{n} = ( -
6;2;6)

  • Câu 15: Thông hiểu
    Tính bán kính đường tròn nội tiếp tam giác

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC, biết A(5;3; - 1),B(2;3; - 4), C(3;1; - 2). Bán kính đường tròn nội tiếp tam giác ABC bằng:

    Hướng dẫn:

    Ta có AC^{2} + BC^{2} = 9 + 9 = AB^{2}
\Rightarrow Tam giác ABC vuông tại C.

    Suy ra: r = \frac{S_{ABC}}{p} =
\frac{\frac{1}{2}CA.CB}{\frac{1}{2}(AB + BC + CA)}=
\frac{3.3\sqrt{2}}{3\sqrt{2} + \sqrt{3} + \sqrt{3}} = 9 -
3\sqrt{6}

  • Câu 16: Nhận biết
    Tính tích vô hướng của hai vecto

    Trong không gian với hệ tọa độ Oxyz, cho vectơ \overrightarrow{u} = (3\ ;\ 0\ ;\ 1)\overrightarrow{v} = (2\ ;\ 1\ ;\
0). Tính tích vô hướng \overrightarrow{u}.\overrightarrow{v}.

    Hướng dẫn:

    Ta có \overrightarrow{u}.\overrightarrow{v} = 3.2 + 0.1
+ 1.0 = 6.

  • Câu 17: Nhận biết
    Tìm tọa độ tổng hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1; -
4;0);\overrightarrow{v} = ( - 1; - 2;1). Tìm tọa độ vectơ \overrightarrow{u} +
3\overrightarrow{v}?

    Hướng dẫn:

    Ta có: 3\overrightarrow{v} = ( - 3; -
6;3) do đó \overrightarrow{u} +
3\overrightarrow{v} = ( - 2; - 10;3)

    Vậy đáp án cần tìm là ( - 2; -
10;3).

  • Câu 18: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    Đáp án là:

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    a) \overrightarrow{n_{\left( P_{1}
ight)}} = (1;2; - 1) nên mệnh đề sai

    b) \overrightarrow{n_{\left( P_{1}
ight)}} = ( - 2;1;1) nên mệnh đề đúng

    c) \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) = \frac{1.( - 2) +
2.1 + ( - 1)1}{\sqrt{6}\sqrt{6}} = - \frac{1}{6} mệnh đề đúng

    d) Góc hai mặt phẳng không thể tù nên mệnh đề sai

  • Câu 19: Thông hiểu
    Tìm tọa độ điểm M thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho ba điểm A(3;1; - 4),B(2;1; - 2),C(1;1; - 3). Tìm điểm M \in Ox sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} ight| đạt giá trị nhỏ nhất?

    Hướng dẫn:

    M \in Ox suy ra M(m;0;0). Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (3 - m;1; - 4) \\
\overrightarrow{MB} = (2 - m;1; - 2) \\
\overrightarrow{MC} = (1 - m;1; - 3) \\
\end{matrix} ight.

    Theo bài ra:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| = \sqrt{(6 - 3m)^{2} +
3^{2} + ( - 9)^{2}}

    = \sqrt{9m^{2} - 36m + 126} = \sqrt{9(m
- 2)^{2} + 90} \geq 3\sqrt{10};\forall m\mathbb{\in R}

    Vậy \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| nhỏ nhất bằng 3\sqrt{10} khi m - 2 = 0 \Leftrightarrow m = 2. Hay M(2;0;0)

  • Câu 20: Nhận biết
    Xác định tích vô hướng

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (1; - 2;3)\overrightarrow{b} = ( - 2;1;2). Xác định tích vô hướng \left( \overrightarrow{a} +
\overrightarrow{b} ight).\overrightarrow{b}?

    Hướng dẫn:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1; - 1;5) nên \left( \overrightarrow{a} + \overrightarrow{b}
ight).\overrightarrow{b} = - 1.( - 2) + ( - 1).1 + 5.2 =
11

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo