Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Biểu thức tọa độ của các phép toán vectơ (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính độ dài vectơ

    Trong không gian Oxyz, cho A(1;1; - 3), B(3; - 1;1). Gọi G là trọng tâm tam giác OAB, vectơ \overrightarrow{OG} có độ dài bằng:

    Hướng dẫn:

    Vì G là trọng tâm tam giác OAB nên tọa độ G\left( \frac{4}{3};0;\frac{-
2}{3} ight).

    Ta có: \Leftrightarrow \left\{ \begin{matrix}
2 = k \\
m - 1 = 3k \\
3 = k( - 2n) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = 2 \\
m = 7 \\
n = - \dfrac{3}{4} \\
\end{matrix} ight.

  • Câu 2: Thông hiểu
    Xác định tọa độ điểm A’

    Trong không gian Oxyz, cho hình hộp ABCD.A'B'C'D' biết A(1;0;1), B(2;1;2), D(1; - 1;1), C'(4;5; - 5). Tọa độ của điểm A' là:

    Hướng dẫn:

    Gọi A'(a;b;c)

    ABCD.A'B'C'D' là hình hộp \Rightarrow
\overrightarrow{AC'} = \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'}

    \Leftrightarrow \overrightarrow{AA'}
= \overrightarrow{AC'} - \overrightarrow{AB} -
\overrightarrow{AD}

    \overrightarrow{AB} = (1;1;1), \overrightarrow{AD} = (0; - 1;0), \overrightarrow{AC'} = (3;5; -
6)

    \overrightarrow{AC'} -
\overrightarrow{AB} - \overrightarrow{AD} = (2;5; - 7)

    \overrightarrow{AA'} = (a - 1;b;c -
1)

    (1) \Leftrightarrow \left\{
\begin{matrix}
a - 1 = 2 \\
b = 5 \\
c - 1 = - 7 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 5 \\
c = - 6 \\
\end{matrix} ight.. Vậy: A'(3;5; - 6).

  • Câu 3: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian Oxyz, cho các điểm M( - 2;6;1),M'(a;b;c) đối xứng nhau qua mặt phẳng (Oyz). Tính giá trị biểu thức S = 7a - 2b + 2017c -
1?

    Hướng dẫn:

    Gọi H là hình chiếu của M trên mặt phẳng (Oyz) suy ra H(0; 6; 1)

    Do M’ đối xứng với M qua (Oyz) nên MM’ nhận H làm trung điểm suy ra M’(2; 6; 1) suy ra a = 2; b = 6; c = 1

    Vậy S = 7a - 2b + 2017c - 1 =
2018.

  • Câu 4: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} =
(2;3;2);\overrightarrow{b} = (1;1; - 1). Khi đó tọa độ vectơ \overrightarrow{a} -
\overrightarrow{b} là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{a} - \overrightarrow{b}
= (2 - 1;3 - 1;2 + 1) = (1;2;3)

  • Câu 5: Nhận biết
    Tìm m thỏa mãn điều kiện

    Trong không gian Oxyz cho 2 véc tơ \overrightarrow{a} = (2;1; - 1); \overrightarrow{b} = (1;3;m). Tìm m để \left(
\overrightarrow{a};\overrightarrow{b} \right) = 90{^\circ}.

    Hướng dẫn:

    Ta có:

    \left(
\overrightarrow{a};\overrightarrow{b} ight) = 90{^\circ}
\Leftrightarrow \overrightarrow{a}.\overrightarrow{b} = 0

    \Leftrightarrow 5 - m = 0 \Leftrightarrow
m = 5.

  • Câu 6: Nhận biết
    Xác định tọa độ hiệu hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;3; -
2);\overrightarrow{v} = (2;1; - 1). Vectơ \overrightarrow{u} - \overrightarrow{v} có tọa độ là:

    Hướng dẫn:

    Ta có: \overrightarrow{u} -
\overrightarrow{v} = (1 - 2;3 - 1; - 2 + 1) = ( - 1;2; - 1)

    Vậy đáp án cần tìm là ( - 1;2 -
1).

  • Câu 7: Thông hiểu
    Tính độ dài đoạn thẳng AM

    Trong không gian (Oxyz), cho \Delta ABC\overrightarrow{AB} = (4; - 1; -
5),\overrightarrow{BC} = (2; - 4; - 2), gọi M là trung điểm BC. Độ dài đoạn AM là:

    Hướng dẫn:

    Ta có

    \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{BC} = (6; - 5; - 7)

    \overrightarrow{AM} = \frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AC} ight) = (5; - 3; -
6)

    Suy ra: AM = \sqrt{25 + 9 + 36} =
\sqrt{70}

  • Câu 8: Nhận biết
    Định tọa độ trọng tâm tam giác

    Xác định tọa độ trọng tâm G của tam giác ABC, biết rằng A(1;3;4),B(2; - 1;0),C(3;1;2)?

    Hướng dẫn:

    Tọa độ trọng tâm G của tam giác được xác định như sau:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = \dfrac{1 + 2 + 3}{3} = 2 \\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = \dfrac{3 - 1 + 1}{3} = 1 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = \dfrac{4 + 0 + 2}{3} = 2 \\\end{matrix} ight.\  \Rightarrow G(2;1;2)

  • Câu 9: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, cho hai điểm A(2; - 4;3)B(2;2;7). Trung điểm của đoạn thẳng AB có tọa độ là:

    Hướng dẫn:

    Gọi M\left( x_{M};y_{M};z_{M}
ight) là trung điểm của đoạn thẳng AB, ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = \dfrac{2 + 2}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = \dfrac{- 4 + 2}{2} = - 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = \dfrac{3 + 7}{2} = 5 \\\end{matrix} ight.\  \Rightarrow M(2; - 1;5)

    Vậy tọa độ trung điểm của AB là: (2; -
1;5).

  • Câu 10: Nhận biết
    Xác định tọa độ tổng hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1; -
2;3);\overrightarrow{v} = ( - 1;2;0). Vectơ \overrightarrow{u} + \overrightarrow{v} có tọa độ là:

    Hướng dẫn:

    Ta có: \overrightarrow{u} +
\overrightarrow{v} = \left( 1 + ( - 1); - 2 + 2;3 + 0 ight) =
(0;0;3)

    Vậy đáp án cần tìm là (0;0;3)

  • Câu 11: Nhận biết
    Tìm vectơ cùng phương với vectơ đã cho

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} = (1;3;4). Hãy chọn vectơ cùng phương với \overrightarrow{a}?

    Hướng dẫn:

    Ta có: \overrightarrow{b} cùng phương với \overrightarrow{a} khi \overrightarrow{b} =
k.\overrightarrow{a};\left( k\mathbb{\in R} ight). Khi đó đáp án cần tìm là \overrightarrow{b} = ( - 2; -
6; - 8) (vì \overrightarrow{b} = -2(1;3;4) = - 2\overrightarrow{a}).

  • Câu 12: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho \overrightarrow{a} = (1;2;3),\overrightarrow{b} =
( - 2;0;1),\overrightarrow{c} = ( - 1;0;1). Tọa độ vectơ \overrightarrow{n} = \overrightarrow{a} +
\overrightarrow{b} + 2\overrightarrow{c} - 3\overrightarrow{i} là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{n} = \overrightarrow{a}
+ \overrightarrow{b} + 2\overrightarrow{c} -
3\overrightarrow{i}

    \Rightarrow \overrightarrow{n} = (1;2;3)
+ ( - 2;0;1) + 2( - 1;0;1) - 3(1;0;0)

    \Rightarrow \overrightarrow{n} = ( -
6;2;6)

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Trong không gian hệ trục tọa độ Oxyz, cho A(a;0;0),B(0;b;0),C(0;0;c). Gọi G là trọng tâm tam giác ABC. Tính độ dài đoạn thẳng OG?

    Hướng dẫn:

    G là trọng tâm tam giác ABC nên tọa độ điểm G\left( \frac{a}{3};\frac{b}{3};\frac{c}{3}
ight) hay \overrightarrow{OG} =
\left( \frac{a}{3};\frac{b}{3};\frac{c}{3} ight)

    Vậy OG = \frac{1}{3}\sqrt{a^{2} + b^{2} +
c^{2}}.

  • Câu 14: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian tọa độ Oxyz, cho hai điểm A( - 1;5;3),M(2;1; -
2). Tìm tọa độ điểm B sao cho M là trung điểm của AB?

    Hướng dẫn:

    Gọi tọa độ điểm B\left( x_{B};y_{B};z_{C}
ight). Vì M là trung điểm của AB nên ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} \\y_{M} = \dfrac{y_{A} + y_{B}}{2} \\z_{M} = \dfrac{z_{A} + z_{B}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2 = \dfrac{- 1 + x_{B}}{2} \\1 = \dfrac{5 + y_{B}}{2} \\- 2 = \dfrac{3 + z_{B}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{B} = 5 \\y_{B} = - 3 \\z_{C} = - 7 \\\end{matrix} ight.

    Vậy tọa độ điểm B cần tìm là B(5; - 3; -
7).

  • Câu 15: Nhận biết
    Tìm ba điểm thẳng hàng trong 4 điểm đã cho

    Trong không gian Oxyz, cho bốn điểm A( - 1;\ 2;\ 0), B(3;\ 1;\ 0), C(0;\ 2;\ 1)D(1;\ 2;\ 2). Trong đó có ba điểm thẳng hàng là

    Hướng dẫn:

    Ta có: \overrightarrow{AC} = (1;\ 0;\
1), \overrightarrow{AD} = (2;\ 0;\
2)

    \overrightarrow{AC} \land
\overrightarrow{AD} = \overrightarrow{0}, nên hai vecto \overrightarrow{AC}, \overrightarrow{AD} cùng phương, hay ba điểm \mathbf{A}\mathbf{,}\mathbf{C}\mathbf{,}\mathbf{D} thẳng hàng.

    Nhận xét: Có thể vẽ phát họa lên hệ tọa độ Oxyz để nhìn nhận dễ dàng hơn.

  • Câu 16: Nhận biết
    Tính giá trị biểu thức

    Trên hệ trục tọa độ Oxyz, cho \overrightarrow{a} = (3; - 1;2), \overrightarrow{b} = ( - 2;1;3), tích \overrightarrow{a}.\overrightarrow{b} bằng

    Hướng dẫn:

    Ta có \overrightarrow{a}.\overrightarrow{b} = 3.( - 2) +
( - 1).1 + 2.3 = - 6 - 1 + 6 = - 1

  • Câu 17: Nhận biết
    Xác định tích vô hướng

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (1; - 2;3)\overrightarrow{b} = ( - 2;1;2). Xác định tích vô hướng \left( \overrightarrow{a} +
\overrightarrow{b} ight).\overrightarrow{b}?

    Hướng dẫn:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1; - 1;5) nên \left( \overrightarrow{a} + \overrightarrow{b}
ight).\overrightarrow{b} = - 1.( - 2) + ( - 1).1 + 5.2 =
11

  • Câu 18: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian hệ trục tọa độ Oxyz, cho M(2;1;4)M'(a;b;c) là điểm đối xứng cới điểm M qua Oy. Khi đó a
+ b + c bằng:

    Hướng dẫn:

    Gọi H là hình chiếu của M trên Oy ta có H(0;1;0). Do M' đối xứng với M qua Oy, khi đó H là trung điểm của M'M

    Suy ra M'( - 2;1; - 4) từ đó a + b + c = - 5.

  • Câu 19: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = ( - 1;\ 2;\
0)\overrightarrow{v} = (1;\  -
2;\ 3). Toạ độ của vectơ \overrightarrow{u} + \overrightarrow{v} là:

    Hướng dẫn:

    Ta có \overrightarrow{u} +
\overrightarrow{v} = ( - 1 + 1;\ 2 - 2;\ 0 + 3) = (0;\ 0;\
3).

  • Câu 20: Nhận biết
    Xét tính đúng sai của mỗi ý hỏi

    Các thiên thạch có đường kính lớn hơn 140m và có thể lại gần Trái Đất ở khoảng cách nhỏ hơn 7500000 km được coi là những vật thể có khả năng va chạm gáy nguy hiểm cho Trái Đất. Để theo đõi những thiên thạch này, người ta đã thiết lập các trạm quan sát các vật thể bay gần Trái Đất. Giả sử có một hệ thống quan sát có khả năng theo dõi các vật thể ở độ cao khồng vượt quả 6600 km so với mực nước biển. Coi Trái Đất là khối cầu có bán kính 6400 km. Chọn hệ trục tọa độ Oxyz trong không gian có gốc O tại tâm Trái Đất và đơn vị độ dài trên mỗi trục tọa độ là 1000 km. Một thiên thạch (coi như một hạt) chuyển động với tốc độ không đổi theo một đường thẳng từ điểm M(6;20;0) đến điểm N( - 6; - 12;16).

    a) Đường thẳng MN có phương trình tham số là \left\{ \begin{matrix}
x = 6 + 3t \\
y = 20 + 8t,\left( t \in \mathbb{R} \right) \\
z = - 4t \\
\end{matrix} \right.. Đúng||Sai

    b) Vị trí đầu tiên thiên thạch di chuyển vào phạm vi theo dỡi của hệ thống quan sát lả điểm A( - 3; -
4;12). Sai||Đúng

    c) Khoảng cách giữa vị trí đầu tiên và vị trỉ cuối cùng mả thiên thạch di chuyển trong phạm vi theo dõi của hệ thống quan sát là 18900 km (kết quả làm tròn đến hàng trăm theo đơn vị ki-lô-mét). Đúng||Sai

    d) Nếu thời gian di chuyển của thiên thạch trong phạm vi theo dõi của hệ thống quan sát là 3 phút thì thời gian nó di chuyển từ M đến N là 6 phút. Đúng||Sai

    Đáp án là:

    Các thiên thạch có đường kính lớn hơn 140m và có thể lại gần Trái Đất ở khoảng cách nhỏ hơn 7500000 km được coi là những vật thể có khả năng va chạm gáy nguy hiểm cho Trái Đất. Để theo đõi những thiên thạch này, người ta đã thiết lập các trạm quan sát các vật thể bay gần Trái Đất. Giả sử có một hệ thống quan sát có khả năng theo dõi các vật thể ở độ cao khồng vượt quả 6600 km so với mực nước biển. Coi Trái Đất là khối cầu có bán kính 6400 km. Chọn hệ trục tọa độ Oxyz trong không gian có gốc O tại tâm Trái Đất và đơn vị độ dài trên mỗi trục tọa độ là 1000 km. Một thiên thạch (coi như một hạt) chuyển động với tốc độ không đổi theo một đường thẳng từ điểm M(6;20;0) đến điểm N( - 6; - 12;16).

    a) Đường thẳng MN có phương trình tham số là \left\{ \begin{matrix}
x = 6 + 3t \\
y = 20 + 8t,\left( t \in \mathbb{R} \right) \\
z = - 4t \\
\end{matrix} \right.. Đúng||Sai

    b) Vị trí đầu tiên thiên thạch di chuyển vào phạm vi theo dỡi của hệ thống quan sát lả điểm A( - 3; -
4;12). Sai||Đúng

    c) Khoảng cách giữa vị trí đầu tiên và vị trỉ cuối cùng mả thiên thạch di chuyển trong phạm vi theo dõi của hệ thống quan sát là 18900 km (kết quả làm tròn đến hàng trăm theo đơn vị ki-lô-mét). Đúng||Sai

    d) Nếu thời gian di chuyển của thiên thạch trong phạm vi theo dõi của hệ thống quan sát là 3 phút thì thời gian nó di chuyển từ M đến N là 6 phút. Đúng||Sai

    a) Ta có: M(6;20;0),N( - 6; -
12;16)

    \Rightarrow \overrightarrow{MN}( - 12; -
32;16) = - 4.(3;8; - 4)

    Chọn \overrightarrow{u_{MN}} = (3;8; -
4).

    Khi đó, phương trình MN:\left\{
\begin{matrix}
x = 6 + 3t \\
y = 20 + 8t(t \in R) \\
z = - 4t \\
\end{matrix} ight.

    Do đó, a đúng

    b) Phạm vi theo dõi của hệ thống ra đa là mặt cầu (O):x^{2} + y^{2} + z^{2} = 13^{2}.

    Tọa độ giao điểm của MN và (O) là nghiệm của phương trình

    (6 + 3t)^{2} + (20 + 8t)^{2} + ( -
4t)^{2} = 13^{2}

    \Leftrightarrow 89t^{2} + 356t - 267 =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = - 1 \Rightarrow A(3;12;4) \\
t = - 3 \Rightarrow B( - 3; - 4;12) \\
\end{matrix} ight.

    Ta có \overrightarrow{MA}( - 3; -
8;4),\overrightarrow{MB}( - 9; - 24;12)

    \Rightarrow \overrightarrow{MB} =
3\overrightarrow{MA}

    Điểm gặp đầu tiên là A(3;12;4)

    Do đó, b sai

    c) AB = \sqrt{( - 3 - 3)^{2} + ( - 4 -
12)^{2} + (12 - 4)^{2}} = \sqrt{356}

    Đơn vị độ dài trên mỗi trục là 1000 km nên khoảng cách AB \approx 18900(km)

    Do đó, c đúng

    d) AB = 2\sqrt{89},MN =
4\sqrt{89}

    \Rightarrow t_{MN} = 2t_{AB} = 2.3 =
6 (phút)

    Do đó, d đúng

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo