Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường phẳng (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Đường thẳng song song với 2 mặt phẳng

    Cho hai mặt phẳng \left( P ight):x - 2y + 3z - 5 = 0;\,\,\left( Q ight):3x + 4y - z + 3 = 0. Đường thẳng (D) qua M (1, -2, 3) song song với (P) và (Q):

    Hướng dẫn:

     Vì (D) song song với (P) và (Q)

    => Một vectơ chỉ phương của (D) là:

    \overrightarrow {{a_P}}  = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } ight] = 10\left( { - 1,1,1} ight) \Rightarrow \overrightarrow a  = \left( { - 1,1,1} ight)

    Xét vecto pháp tuyến của (R), có:

    \overrightarrow {{n_R}}  = \left( {3,1,2} ight) \Rightarrow \overrightarrow a .\overrightarrow {{n_R}}  =  - 3 + 1 + 2 = 0 \Rightarrow \left( D ight)//\left( R ight)

    Xét đáp án có điểm N

    \overrightarrow {NM}  = \left( { - 2,2,2} ight) = 2\left( { - 1,1,1} ight) = 2\overrightarrow a  \Rightarrow \left( D ight)qua\,\,N\left( {3, - 4,1} ight)

    \overrightarrow {{n_s}}  = \left( {2, - 2, - 2} ight) \Rightarrow \frac{2}{{ - 1}} = \frac{{ - 2}}{1} = \frac{{ - 2}}{1} =  - 2 \Rightarrow \overrightarrow acùng phương với \overrightarrow {{n_s}}

    => (D) vuông góc với (S).

  • Câu 2: Nhận biết
    Tìm mặt phẳng (P)

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x + 3}{1} = \frac{y - 2}{- 1} = \frac{z -
1}{2}. Viết phương trình mặt phẳng (P) đi qua điểm M(2;0; - 1) và vuông góc với d.

    Hướng dẫn:

    Phương trình mặt phẳng (P):

    1(x - 2) - 1(y - 0) + 2(z + 1) =
0

    \Leftrightarrow x - y + 2z =
0

  • Câu 3: Nhận biết
    Xác định phương trình đường thẳng d

    Trong không gian Oxyz, cho đường thẳng d đi qua điểm M(2;2;1) và có một vecto chỉ phương \overrightarrow{u} = (5;2; - 3). Phương trình của d là:

    Hướng dẫn:

    Đường thẳng d đi qua điểm M(2;2;1) và có một vectơ chỉ phương \overrightarrow{u} = (5;2; - 3), phương trình của d\left\{ \begin{matrix}
x = 2 + 5t \\
y = 2 + 2t \\
z = 1 - 3t \\
\end{matrix} \right.

  • Câu 4: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):x - 2z - 6 = 0 và đường thẳng d:\left\{ \begin{matrix}
x = 1 + t \\
y = 3 + t \\
z = - 1 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Viết phương trình đường thẳng \Delta nằm trong mặt phẳng (\alpha) cắt đồng thời vuông góc với d?

    Hướng dẫn:

    Giao điểm I của d và (α) là nghiệm của hệ phương trình: \left\{ \begin{matrix}
x - 2z - 6 = 0 \\
x = 1 + t \\
y = 3 + t \\
z = - 1 - t \\
\end{matrix} ight.\  \Rightarrow I(2;4; - 2)

    Mặt phẳng (α) có một vectơ pháp tuyến \overrightarrow{n} = (1;0; - 2), đường thẳng d có một vectơ chỉ phương \overrightarrow{u} = (1;1; - 1)

    Khi đó đường thẳng ∆ có một vectơ chỉ phương là \left\lbrack \overrightarrow{n};\overrightarrow{u}
ightbrack = (2; - 1;1)

    Đường thẳng ∆ qua điểm I (2; 4; −2) và có một vectơ chỉ phương \left\lbrack \overrightarrow{n};\overrightarrow{u}
ightbrack = (2; - 1;1) nên có phương trình chính tắc: \frac{x - 2}{2} = \frac{y - 4}{- 1} = \frac{z +
2}{1}

  • Câu 5: Nhận biết
    Xác định phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz. Phương trình tham số của đường thẳng đi qua điểm M(1; 3; 4) và song song với trục hoành là.

    Hướng dẫn:

    Gọi d là đường thẳng cần tìm.

    Vì d song song với trục hoành nên d có vectơ chỉ phương \overrightarrow {{a_i}}  = \overrightarrow i  = \left( {1;0;0} ight)

    d đi qua M và có vectơ chỉ phương \overrightarrow {{a_d}}

    Vậy phương trình tham số của d là \left\{ \begin{matrix}
x = 1 + t \\
y = 3 \\
y = 4 \\
\end{matrix} ight.\ .

     

  • Câu 6: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + z - 3 = 0 và điểm A(1;2;0). Viết phương trình đường thẳng qua A và vuông góc với (P).

    Hướng dẫn:

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; -
2;1) nên đường thẳng cần tìm có vectơ chỉ phương là \overrightarrow{n} = (1; - 2;1).

    Vậy phương trình đường thẳng đi qua A và vuông góc với (P) là: \frac{x - 1}{1} = \frac{y - 2}{- 2} =
\frac{z}{1}

  • Câu 7: Thông hiểu
    Xét tính đúng sai của nhận định

    Trong không gian Oxyz, cho hai đường thẳng d:\left\{ \begin{matrix}
x = 2 - 2t \\
y = 3 - 2t \\
z = 1 - 3t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)d':\left\{ \begin{matrix}
x = 6 + 2t' \\
y = 3 + 2t' \\
z = 7 + 9t'
\end{matrix} \right.\ ;\left( t'\mathbb{\in R} \right).

    a) Đường thẳng d đi qua điểm A(2;3;1). Đúng||Sai

    b) Đường thẳng d’ đi qua điểm B(6;3;7). Đúng||Sai

    c) Hai đường thẳng d và d’ cắt nhau. Sai||Đúng

    d) Cosin góc giữa hai đường thẳng d và d’ bằng \frac{35}{\sqrt{1513}}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hai đường thẳng d:\left\{ \begin{matrix}
x = 2 - 2t \\
y = 3 - 2t \\
z = 1 - 3t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)d':\left\{ \begin{matrix}
x = 6 + 2t' \\
y = 3 + 2t' \\
z = 7 + 9t'
\end{matrix} \right.\ ;\left( t'\mathbb{\in R} \right).

    a) Đường thẳng d đi qua điểm A(2;3;1). Đúng||Sai

    b) Đường thẳng d’ đi qua điểm B(6;3;7). Đúng||Sai

    c) Hai đường thẳng d và d’ cắt nhau. Sai||Đúng

    d) Cosin góc giữa hai đường thẳng d và d’ bằng \frac{35}{\sqrt{1513}}. Đúng||Sai

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

    Phương án a) đúng: Khi t = 0 thì \left\{ \begin{matrix}
x = 2 \\
y = 3 \\
z = 1
\end{matrix} \right. nên đường thẳng d đi qua điểm A(2;3;1).

    Phương án b) đúng: Khi t' =
0 thì \left\{ \begin{matrix}
x = 6 \\
y = 3 \\
z = 7
\end{matrix} \right. nên đường thẳng d’ đi qua điểm B(6;3;7).

    Phương án c) sai:

    d đi qua điểm A(2;3;1), có vtcp \overrightarrow{a} = ( - 2; - 2; -
3).

    d’ đi qua điểm B(6;3;7), có vtcp \overrightarrow{b} = (2; 2;9).

    Ta có: \left\lbrack
\overrightarrow{a};\overrightarrow{b} \right\rbrack = ( -
12;12;0);\overrightarrow{AB} = (4;0;6)

    \left\lbrack
\overrightarrow{a};\overrightarrow{b} \right\rbrack.\overrightarrow{AB}
= - 48 \neq 0 nên d và d’ chéo nhau.

    Phương án d) đúng: \cos(d;d') =
\frac{\left| \overrightarrow{a}.\overrightarrow{b} \right|}{\left|
\overrightarrow{a} \right|.\left| \overrightarrow{b} \right|} =
\frac{35}{\sqrt{1513}}

  • Câu 8: Thông hiểu
    Viết phương trình đường thẳng

    Cho mặt phẳng (P):x + y + z + 3 =
0 và đường thẳng d:\frac{x - 1}{3}
= \frac{y + 1}{- 1} = \frac{z}{- 1}. Phương trình đường thẳng \Delta nằm trong mặt phẳng (P), cắt đường thẳng d và vuông góc với \overrightarrow{u}(1;2;3)

    Hướng dẫn:

    Gọi M là giao điểm của \Deltad.

    Khi đó M(3m + 1; - m - 1; - m). Do \Delta \subset (P) nên M \in (P)

    \Rightarrow M(3m + 1; - m - 1; -
m);(P):x + y + z + 3 = 0

    (3m + 1) + ( - m - 1) - m + 3 = 0
\Leftrightarrow m = - 3

    \Rightarrow M( - 8;2;3)

    Giả sử \Delta đi qua N(a;b;c) khác M. Ta có:

    \left\{ \begin{matrix}
N \in (P) \\
\overrightarrow{MN}.\overrightarrow{u} = 0 \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
a + b + c + 3 = 0 \\
(a + 8) + 2(b - 2) + 3(c - 3) = 0 \\
\end{matrix} \right.

    c = 1 \Rightarrow \left\{ \begin{matrix}
a = - 10 \\
b = 6 \\
\end{matrix} \right.\  \Rightarrow N( - 10;6;1)

    \Rightarrow \overrightarrow{MN} = ( -
2;4; - 2)

    \Rightarrow (\Delta):\frac{x+ 8}{- 2} =\frac{y - 2}{4} = \frac{z - 3}{- 2}

    \Rightarrow (\Delta):\frac{x + 8}{1} =
\frac{y - 2}{- 2} = \frac{z - 3}{1}

  • Câu 9: Nhận biết
    Tìm phương trình chính tắc

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 - t \\
y = 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Phương trình nào sau đây là phương trình chính tắc của d?

    Hướng dẫn:

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u} = ( - 1;1;1) và đi qua điểm M(2;1;0). Do đó phương trình chính tắc của d là: \frac{x - 2}{- 1} = \frac{y - 1}{1} =
\frac{z}{1}

  • Câu 10: Nhận biết
    Viết phương trình đường thẳng d

    Trong không gian Oxyz, cho đường thẳng d đi qua điểm A(4; - 1;3) và có một vecto chỉ phương \overrightarrow{u} = (2;5; - 6). Phương trình của d là:

    Hướng dẫn:

    Đường thẳng d đi qua điểm A(4; - 1;3) và có một vectơ chỉ phương \overrightarrow{u} = (2;5; - 6), phương trình của d\left\{ \begin{matrix}
x = 4 + 2t \\
y = - 1 + 5t \\
z = 3 - 6t \\
\end{matrix} \right.

  • Câu 11: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, đường thẳng d:\frac{x - 1}{3} = \frac{y + 2}{- 4} = \frac{z -
3}{- 5} đi qua điểm nào sau đây?

    Hướng dẫn:

    Thay tọa độ điểm (1; - 2;3) vào phương trình đường thẳng d ta được \frac{0}{3} = \frac{0}{- 4} = \frac{0}{-
5}, do đó điểm này thuộc đường thẳng d.

  • Câu 12: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = - 1 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm nào sau đây không thuộc đường thẳng d?

    Hướng dẫn:

    Thay M(1;2; - 1) vào d ta được: \left\{ \begin{matrix}
1 = 1 - t \\
2 = 2 + 2t \\
- 1 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 0 \Rightarrow M \in
d

    Thay N(6; - 8;9) vào d ta được: \left\{ \begin{matrix}
6 = 1 - t \\
- 8 = 2 + 2t \\
9 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = - 5 \Rightarrow N \in
d

    Thay P( - 6;16; - 14) vào d ta được: \left\{ \begin{matrix}
- 6 = 1 - t \\
16 = 2 + 2t \\
- 14 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 7 \\
t = 7 \\
t = \frac{13}{2} \\
\end{matrix} ight. hệ vô nghiệm nên P otin d.

    Thay Q( - 19;42; - 41) vào d ta được: \left\{ \begin{matrix}
19 = 1 - t \\
42 = 2 + 2t \\
- 41 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 20 \Rightarrow Q \in
d

  • Câu 13: Thông hiểu
    Định m để đường thẳng và mặt phẳng song song

    Trong không gian với hệ trục toạ độ Oxyz, tìm tất cả giá trị tham số m để đường thẳng d:\frac{x - 1}{1} = \frac{y}{2} = \frac{z -
1}{1} song song với mặt phẳng (P):2x + y - m^{2}z + m = 0.

    Hướng dẫn:

    Ta có:

    d qua điểm M(1; 0; 1) và có VTCP là \overrightarrow{u} = (1;2;1)

    (P) có VTPT là \overrightarrow{n} =
\left( 2;1; - m^{2} ight)

    Vì d // (P) nên \overrightarrow{u}\bot\overrightarrow{n}
\Rightarrow \overrightarrow{u}.\overrightarrow{n} = 0 \Leftrightarrow m
= \pm 2

    Với m = 2, (P): 2x + y − 4z + 2 = 0 ⇒ M ∈ (P) (loại).

    Với m = −2, (P): 2x + y − 4z − 2 = 0\Rightarrow M otin (P) (thỏa mãn).

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz. Điểm nào sau đây là hình chiếu vuông góc của điểm A(1;4;2) trên mặt phẳng Oxy?

    Hướng dẫn:

    Ta có hình chiếu của A(1;4;2) trên mặt phẳng Oxy(1;4;0).

  • Câu 15: Nhận biết
    Tìm điểm thuộc đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho phương trình đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng \Delta?

    Hướng dẫn:

    Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:

    \left\{ \begin{matrix}
- 1 = 1 + 2t \\
- 4 = - 1 + 3t \\
3 = 2 - t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 \Rightarrow M( - 1; -
4;3) \in \Delta.

  • Câu 16: Nhận biết
    Vị trí tương đối của hai đường thẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d:\left\{ \begin{matrix}
x = - 1 + 3t \\
y = - t \\
z = 1 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d':\frac{x - 1}{- 3} = \frac{y - 2}{1} =
\frac{z - 3}{2}. Vị trí tương đối của dd'

    Hướng dẫn:

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u_{d}} = (3; - 1; - 2) và đi qua điểm M(−1; 0; 1).

    Đường thẳng d’ có vectơ chỉ phương \overrightarrow{u_{d'}} = ( -
3;1;2).

    Hai vectơ \overrightarrow{u_{d}}\overrightarrow{u_{d'}} cùng phương và điểm M không thuộc đường thẳng d’.

    Do đó hai đường thẳng d và d’ song song với nhau.

  • Câu 17: Nhận biết
    Chọn mệnh đề đúng

    Trong hệ tọa độ Oxyz, cho đường thẳng d có vectơ chỉ phương \overrightarrow{u} và mặt phẳng (P) có vectơ pháp tuyến \overrightarrow{n}. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    \overrightarrow{u} vuông góc \overrightarrow{n} thì d có thể nằm trong (P).

    d song song (P) thì \overrightarrow{u} vuông góc \overrightarrow{n}.

    d vuông góc (P) thì \overrightarrow{u} cùng phương \overrightarrow{n}.

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz. Viết phương trình đường thẳng \Delta đi qua điểm A( - 2;2;1) cắt trục tung tại B sao cho OB
= 2OA.

    Hướng dẫn:

    B \in Oy \Rightarrow
B(0;b;0)

    OB = 2OA \Leftrightarrow \left\lbrack
\begin{matrix}
b = 6 \\
b = - 6 \\
\end{matrix} ight. \Rightarrow
\left\lbrack \begin{matrix}
B(0;6;0),\ \overrightarrow{AB} = (2;4; - 1) \\
B(0; - 6;0),\ \overrightarrow{AB} = (2; - 8; - 1) \\
\end{matrix} ight.

    \Delta đi qua điểm B và có vectơ chỉ phương \overrightarrow{AB}

    Vậy phương trình của \Delta\frac{x}{2} = \frac{y - 6}{4} = \frac{z}{-
1}\frac{x}{2} = \frac{y + 6}{-
8} = \frac{z}{- 1}.

  • Câu 19: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\frac{{x + 2}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 3}}{3}. Đường thẳng d đi qua điểm M và có vectơ chỉ phương \overrightarrow{a_{d}} có tọa độ là:

    Hướng dẫn:

    A(2;3;3) đi qua điểm \overrightarrow{AB} = (0; - 1; - 1) và có vectơ chỉ phương \Delta

  • Câu 20: Nhận biết
    Tìm tọa độ hình chiếu của A

    Trong không gian Oxyz, tìm tọa độ hình chiếu vuông góc của điểm A(1; 2; 5) trên trục Ox?

    Hướng dẫn:

    Hình chiếu vuông góc của điểm A(1;2;5) trên trục Ox có tọa độ là (1;0;0).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo