Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường phẳng (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho điểm M( - 1;1;2) và hai đường thẳng d:\frac{x - 2}{3} = \frac{y + 3}{2} = \frac{z -
1}{1},d^{'}:\frac{x + 1}{1} = \frac{y}{3} = \frac{z}{- 2}. Phương trình nào dưới đây là phương trình đường thẳng đi qua điểm M, cắt d và vuông góc với d^{'}.

    Hướng dẫn:

    Gọi \Delta là đường thẳng đi qua điểm M, cắt d và vuông góc với d^{'}.
    Giả sử \Delta \cap d = A \Rightarrow A(2 +
3t; - 3 + 2t;1 + t).

    \overrightarrow{AM} = (3 + 3t; - 4 + 2t;
- 1 + t)

    \Delta\bot d^{'} \Rightarrow
\overrightarrow{AM} \cdot \overrightarrow{u_{d^{'}}} = 0
\Leftrightarrow 3 + 3t + 3( - 4 + 2t) - 2( - 1 + t) = 0

    \Leftrightarrow 7t = 7 \Leftrightarrow t
= 1

    \Rightarrow A(5; -
1;2),\overrightarrow{AM} = (6; - 2;0) = 2(3; - 1;0).

    \Delta:\left\{ \begin{matrix}x = - 1 + 3t \\y = 1 - t \\z = 2 \\\end{matrix} ight.

  • Câu 2: Nhận biết
    Vecto chỉ phương của đường thẳng

    Cho đường thẳng \left( D ight):\left\{ \begin{array}{l}2x - y + 4z - 1 = 0\\2x + 4y - z + 5 = 0\end{array} ight. có một vec-tơ chỉ phương là:

    Hướng dẫn:

     Ta có vectơ pháp tuyến của hai mặt phẳng

    \left( P ight):2x - y + 4z - 1 = 0\left( Q ight):2x + 4y - z + 5 = 0 lần lượt là  \overrightarrow {{n_1}}  = \left( {2, - 1,4} ight);\overrightarrow {{n_2}}  = \left( {2,4, - 1} ight).

    Ta có vectơ chỉ phương của (D) là tích có hướng của 2 vecto pháp tuyến của 2 mặt phẳng:

    \overrightarrow {{a_D}}  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] =  - 5\left( {3, - 2, - 2} ight) = 5\left( { - 3,2,2} ight)

    \Rightarrow \overrightarrow a  = \left( {3, - 2, - 2} ight) \vee \overrightarrow a  = \left( { - 3,2,2} ight)

  • Câu 3: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình chính tắc của đường thẳng?

    Hướng dẫn:

    Phương trình chính tắc của đường thẳng có dạng:

    \frac{x - x_{0}}{a} = \frac{y - y_{0}}{b}
= \frac{z - z_{0}}{c} với a.b.c
eq 0.

    Vậy đáp án đúng là : \frac{x - 6}{3} =
\frac{y - 3}{4} = \frac{z - 5}{3}

  • Câu 4: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian Oxyz, phương trình đường thẳng d đi qua hai điểm A(0;1;2),B(1;3;4) là:

    Hướng dẫn:

    Ta có \overrightarrow{AB} =
(1;2;2) là một vectơ chỉ phương của đường thẳng d.

    d đi qua điểm B(1;3;4), nên có phương trình là: \left\{ \begin{matrix}
x = 1 + t \\
y = 3 + 2t \\
z = 4 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 5: Nhận biết
    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian Oxyz, cho điểm A(2;1;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z -
3}{- 2}. Tính khoảng cách từ A đến đường thẳng d.

    Hướng dẫn:

    Gọi M(1;\ 2;\ 3) \in d

    \Rightarrow AM = ( - 1;1;2) \Rightarrow
\left\lbrack \overrightarrow{AM};\overrightarrow{u} ightbrack = ( -
6;0; - 3)

    Ta có d(A;d) = \frac{\left| \left\lbrack
\overrightarrow{AM};\overrightarrow{u} ightbrack ight|}{\left|
\overrightarrow{u} ight|} = \frac{3\sqrt{5}}{3} =
\sqrt{5}.

  • Câu 6: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ toạ độ Oxyz, phương trình đường thẳng đi qua hai điểm A( - 2;3;2)B(5;4; - 1)

    Hướng dẫn:

    Vectơ chỉ phương của đường thẳng cần tìm là \overrightarrow{AB} = (7;1; - 3) và đường thẳng đi qua điểm A( - 2;3;2).

    Vậy phương trình đường thẳng cần tìm là: \frac{x + 2}{7} = \frac{y - 3}{1} = \frac{z - 2}{-
3}.

  • Câu 7: Nhận biết
    Chọn phương trình đường thẳng thích hợp

    Trong không gian Oxyz, đường thẳng đi qua A(2; - 1;3) và nhận \overrightarrow{a} = (1;1; - 1) làm vectơ chỉ phương có phương trình là:

    Hướng dẫn:

    Đường thẳng đi qua A(2; - 1;3) và nhận \overrightarrow{a} = (1;1; -
1) làm vectơ chỉ phương có phương trình là \left\{ \begin{matrix}
x = 2 + t \\
y = - 1 + t \\
z = 3 - t \\
\end{matrix} ight..

  • Câu 8: Nhận biết
    Chọn mệnh đề đúng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d):\frac{x - 1}{2} = \frac{y + 1}{- 3} = \frac{z
- 5}{4} và mặt phẳng (P):x - 3y +
2z - 5 = 0. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có: d có vectơ chỉ phương là \overrightarrow{u} = (2; - 3;4), (P) có véc-tơ pháp tuyến là \overrightarrow{n} = (1; - 3;2).

    Do \overrightarrow{u} không cùng phương \overrightarrow{n} nên d cắt (P).

    Mặt khác \overrightarrow{u}.\overrightarrow{n} = 19 eq
0 nên d không vuông góc (P).

    Vậy d cắt nhưng không vuông góc với (P).

  • Câu 9: Nhận biết
    Xác định tọa độ hình chiếu của A lên mặt phẳng

    Trong không gian Oxyz, cho điểm A(3; - 1;1). Hình chiếu vuông góc của điểm a trên mặt phẳng (Oyz) là điểm

    Hướng dẫn:

    Khi chiếu vuông góc một điểm trong không gian lên mặt phẳng (Oyz), ta giữ lại các thành phần tung độ và cao độ nên hình chiếu của A(3; -
1;1) lên (Oyz) là điểm N(0; - 1;1).

  • Câu 10: Nhận biết
    Chọn mệnh đề đúng

    Trong hệ tọa độ Oxyz, cho đường thẳng d có vectơ chỉ phương \overrightarrow{u} và mặt phẳng (P) có vectơ pháp tuyến \overrightarrow{n}. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    \overrightarrow{u} vuông góc \overrightarrow{n} thì d có thể nằm trong (P).

    d song song (P) thì \overrightarrow{u} vuông góc \overrightarrow{n}.

    d vuông góc (P) thì \overrightarrow{u} cùng phương \overrightarrow{n}.

  • Câu 11: Thông hiểu
    Tìm tọa độ giao điểm

    Tìm tọa độ giao điểm của đường thẳng d:\frac{x - 12}{4} = \frac{y - 9}{3} = \frac{z -
1}{1} và mặt phẳng (P):3x + 5y - z
- 2 = 0?

    Hướng dẫn:

    Gọi I là giao điểm của d và (P).

    Ta có I \in d \Leftrightarrow I(4t +
12;3t + 9;t + 1)

    I \in (P) \Leftrightarrow 3(4t + 12) +
5(3t + 9) - (t + 1) - 2 = 0

    \Leftrightarrow 26t = - 78
\Leftrightarrow t = - 3

    Suy ra I(0;0; - 2)

  • Câu 12: Nhận biết
    Viết phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, đường thẳng đi qua điểm M(1;2;3) và song song với trục Oy có phương trình tham số là:

    Hướng dẫn:

    Gọi d là đường thẳng cần tìm.

    Ta có d//Oy nên d có vectơ chỉ phương là \overrightarrow{u} = (0;1;0).

    Do đó \left\{ \begin{matrix}
x = 1 \\
y = 2 + t \\
z = 3 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 13: Nhận biết
    Xác định phương trình chính tắc

    Trong không gian với hệ tọa độ Oxyz,cho đường thẳng d:\left\{ \begin{matrix}
x = 3 - t \\
y = - 1 + 2t \\
z = - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Phương trình nào dưới đây là phương trình chính tắc của đường thẳng (d)?

    Hướng dẫn:

    Đường thẳng (d) đi qua điểm M(3; - 1;0) và nhận \overrightarrow{u} = ( - 1;2; - 3) làm vectơ chỉ phương.

    Phương trình chính tắc của (d):\frac{x -
3}{- 1} = \frac{y + 1}{2} = \frac{z}{- 3}

  • Câu 14: Thông hiểu
    Xác định vị trí tương đối của hai đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{2} = \frac{y - 7}{1} = \frac{z
- 3}{4}d_{2} là giao tuyến của hai mặt phẳng 2x + 3y - 9 = 0,y +
2z + 5 = 0. Vị trí tương đối của hai đường thẳng là:

    Hướng dẫn:

    Xét hệ phương trình \left\{
\begin{matrix}
2x + 3y - 9 = 0 \\
y + 2z + 5 = 0 \\
\end{matrix} ight.

    Cho y = 1 \Rightarrow \left\{
\begin{matrix}
x = 3 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A(3;1; - 3) \in d_{2\ }

    Cho y = 3 \Rightarrow \left\{
\begin{matrix}
x = 0 \\
z = - 4 \\
\end{matrix} ight.\  \Rightarrow B(0;3; - 4) \in d_{2}

    Đường thẳng d1 đi qua M (1; 7; 3) và có vectơ chỉ phương \overrightarrow{u_{1}} =
(2;1;4)

    Đường thẳng d2 đi qua A (3; 1; −3) và có vectơ chỉ phương \overrightarrow{u_{2}} = ( - 3;2; - 1) =
\overrightarrow{AB};\overrightarrow{AM} = (2; - 6; - 6)

    Ta có \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = ( - 9; -
10;7)

    \Rightarrow \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack\overrightarrow{AM} = - 2.9 + 6.10 - 6.7 = 0

    Do đó vị trí tương đối của hai đường thẳng là cắt nhau.

  • Câu 15: Thông hiểu
    Tìm tham số m để hai đường thẳng cắt nhau

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + mt \\
y = t \\
z = - 1 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\left\{ \begin{matrix}
x = 1 - t' \\
y = 2 + 2t' \\
z = 3 - t' \\
\end{matrix} ight.\ ;\left( t'\mathbb{\in R} ight). Giá trị của m để hai đường thẳng d_{1}d_{2} cắt nhau là

    Hướng dẫn:

    Đường thẳng d_{1} đi qua A(1; 0; −1), có vectơ chỉ phương \overrightarrow{u_{1}} = (m;1;2)

    Đường thẳng d_{2} đi qua B(1; 2; 3), có vectơ chỉ phương \overrightarrow{u_{2}} = ( - 1;2; -
1)

    Ta có \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = ( - 5;m -
2;2m + 1)\overrightarrow{AB} =
(0;2;4)

    Hai đường thẳng d và d 0 cắt nhau \Rightarrow \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{AB} = 0 \Leftrightarrow m = 0

  • Câu 16: Nhận biết
    Xác định điểm không thuộc đường thẳng

    Trong không gian Oxyz, đường thẳng \Delta:\frac{x - 1}{2} = \frac{y +
2}{1} = \frac{z}{- 1} không đi qua điểm nào dưới đây?

    Hướng dẫn:

    Ta có \frac{- 1 - 1}{2} eq \frac{2 +
2}{1} eq \frac{0}{- 1} nên điểm (
- 1;2;0) không thuộc đường thẳng \Delta.

  • Câu 17: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 1;3),B( - 3;0; - 4). Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm AB?

    Hướng dẫn:

    Ta có \overrightarrow{BA} = (4; -
1;7) là vectơ chỉ phương của đường thẳng AB. Phương trình chính tắc của đường thẳng AB là: \frac{x + 3}{4} = \frac{y}{- 1} = \frac{z +
4}{7}.

  • Câu 18: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\frac{{x + 2}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 3}}{3}. Đường thẳng d đi qua điểm M và có vectơ chỉ phương \overrightarrow{a_{d}} có tọa độ là:

    Hướng dẫn:

    A(2;3;3) đi qua điểm \overrightarrow{AB} = (0; - 1; - 1) và có vectơ chỉ phương \Delta

  • Câu 19: Nhận biết
    Chọn phương án thích hợp

    Đường thẳng d đi qua H(3; -
1;0) và vuông góc với (Oxz) có phương trình là

    Hướng dẫn:

    Nhận thấy đáp án là \left\{\begin{matrix}x = 3 \\y = - 1+ t \\z = 0 \\\end{matrix} \right.\ \left( t\mathbb{\in R} \right) vì nó vuông góc với (Oxz).

  • Câu 20: Thông hiểu
    Xác định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{2} = \frac{y}{3} = \frac{z +
1}{- 1}d_{2}:\left\{
\begin{matrix}
x = 1 + t \\
y = 3 - 2t \\
z = 5 - 2t \\
\end{matrix} \right.. Phương trình đường thẳng \Delta đi qua điểm A(2;3; - 1) và vuông góc với hai đường thẳng d_{1},\ d_{2}

    Hướng dẫn:

    d_{1} có vectơ chỉ phương \overrightarrow{a_{1}} = (2;3; - 1)

    d_{2} có vectơ chỉ phương \overrightarrow{a_{2}} = (1; - 2; -
2)

    Gọi \overrightarrow{a_{\Delta}} là vectơ chỉ phương của \Delta

    \left\{ \begin{matrix}
\Delta\bot d_{1} \\
\Delta\bot d_{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\overrightarrow{a_{\Delta}}\bot\overrightarrow{a_{1}} \\
\overrightarrow{a_{\Delta}}\bot\overrightarrow{a_{2}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{a_{\Delta}} =
\left\lbrack \overrightarrow{a_{1}};\overrightarrow{a_{2}} ightbrack
= ( - 8;3; - 7)

    Vậy phương trình tham số của \Delta\left\{ \begin{matrix}
x = 2 - 8t \\
y = 3 + 3t \\
z = - 1 - 7t \\
\end{matrix} ight.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo