Trong không gian với hệ tọa độ , cho đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương và đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương. Điều kiện để đường thẳng
song song với
là:
Điều kiện để là:
.
Trong không gian với hệ tọa độ , cho đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương và đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương. Điều kiện để đường thẳng
song song với
là:
Điều kiện để là:
.
Viết phương trình tổng quát của đường thẳng qua
và song song với đường thẳng
Một vecto chỉ phương của
Phương trình chính tắc của
Trong không gian với hệ tọa độ cho tam giác ABC có
. Phương trình đường trung tuyến AM của tam giác ABC là.
M là trung điểm BC => M(1;-1;3)
AM đi qua điểm A và có vectơ chỉ phương
Vậy phương trình chính tắc của là
Cho hai đường thẳng trong không gian Oxyz: ,
. Với
. Gọi
và
. (D) và (d) chéo nhau khi và chỉ khi:
Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:
Suy ra (D) và (d) chéo nhau.
Trong không gian với hệ tọa độ , tính khoảng cách giữa đường thẳng
và trục
.
Đường thẳng d có vectơ chỉ phương và đi qua điểm
Trục Ox có vectơ chỉ phương và đi qua điểm
Khoảng cách giữa đường thẳng d và trục Ox là:
Trong không gian , cho mặt phẳng
. Đường thẳng
vuông góc với mặt phẳng
có một vectơ chỉ phương có tọa độ là:
Mặt phẳng có một vectơ pháp tuyến là
.
Do nên vectơ
cũng là một vectơ chỉ phương của
.
Trong không gian với hệ tọa độ , đường thẳng
đi qua điểm nào sau đây?
Thay tọa độ điểm vào phương trình đường thẳng
ta được
, do đó điểm này thuộc đường thẳng
.
Trong không gian với hệ tọa độ , cho đường thẳng
và mặt phẳng
. Mệnh đề nào sau đây đúng?
Ta có: có vectơ chỉ phương là
,
có véc-tơ pháp tuyến là
.
Do không cùng phương
nên
cắt
.
Mặt khác nên
không vuông góc
.
Vậy cắt nhưng không vuông góc với
.
Trong không gian , trục
có phương trình tham số
Trục đi qua
và có véctơ chỉ phương
nên có phương trình tham số là:
Trong không gian , cho đường thẳng
đi qua điểm
và có vectơ chỉ phương
. Phương trình tham số của đường thẳng
là
đường thẳng đi qua điểm
và có vectơ chỉ phương
nên có phương trình tham số
.
Trong không gian với hệ tọa độ , cho 2 đường thẳng
. Tìm tất cả giá trị thực của
để
vuông góc với
?
Vectơ chỉ phương của lần lượt là:
.
Để thì
Trong không gian với hệ trục tọa độ , cho điểm
và mặt phẳng
. Gọi
là hình chiếu vuông góc của
lên
. Tìm tọa độ điểm
?
Vì H là hình chiếu vuông góc của M lên (P) nên
Điểm H thuộc mặt phẳng (P) nên ta có phương trình:
Trong không gian với hệ tọa độ Oxyz, cho điểm và đường thẳng
. Viết phương trình đường thẳng
đi qua A, cắt và vuông góc với đường thẳng d.
Gọi là giao điểm của
với
. Khi đó, ta có:
Phương trình chính là phương trình AB và là:
Trong không gian với hệ tọa độ , cho đường thẳng
và điểm
. Khoảng cách từ điểm
đến đường thẳng
bằng
Gọi .
Vậy khoảng cách từ điểm đến đường thẳng
bằng
Trong không gian với hệ tọa độ , cho hai điểm
. Viết phương trình đường thẳng
?
Vectơ chỉ phương của đường thẳng là
. Suy ra phương trình đường thẳng
là:
Trong hệ tọa độ , điểm nào dưới đây thuộc đường thẳng
?
Dựa vào phương trình đường thẳng ta thấy đường thẳng đã cho đi qua điểm .
Trong không gian với hệ tọa độ , vectơ
là vectơ chỉ phương của đường thẳng nào sau đây?
Đường thẳng có một vectơ chỉ phương là
cùng phương với vectơ
. Vậy
là một vectơ chỉ phương của đường thẳng
Viết phương trình tham số của đường thẳng d qua hai điểm:
Để viết PT Tham số của một đường thẳng, ta cần 1 vecto chỉ phương và 1 điểm bất kỳ nằm trên đường thẳng đó.
Đường thẳng d đi qua hai điểm A và B nên VTCP của đường thẳng d chính là hay ta có:
Trong không gian , hình chiếu vuông góc của điểm
trên trục
có tọa độ là:
Trong không gian , hình chiếu vuông góc của điểm
trên trục
có tọa độ là:
Trong không gian , cho đường thẳng
. Vectơ nào dưới đây là một vectơ chỉ phương của
?
Ta có: .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: