Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường phẳng (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm điều kiện để hai đường thẳng song song

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M, nhận vectơ \overrightarrow{a} làm vectơ chỉ phương và đường thẳng d' đi qua điểm M', nhận vectơ \overrightarrow{a'} làm vectơ chỉ phương. Điều kiện để đường thẳng d song song với d' là:

    Hướng dẫn:

    Điều kiện để d//d' là: \left\{ \begin{matrix}
\overrightarrow{a} = k.\overrightarrow{a'};(k eq 0) \\
M otin d' \\
\end{matrix} ight..

  • Câu 2: Thông hiểu
    Chọn đáp án đúng

    Viết phương trình tổng quát của đường thẳng (D) qua A(4,2,1) và song song với đường thẳng (d):x + 2y - z = 0;x - 3y + z - 6 =
0.

    Hướng dẫn:

    \overrightarrow{n_{1}} = (1,2, - 1);\ \
\overrightarrow{n_{2}} = (1, - 3,1)

    Một vecto chỉ phương của (d):\overrightarrow{a} = \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right\rbrack = -
(1,2,5)

    Phương trình chính tắc của (D):x - 4 =
\frac{y - 2}{2} = \frac{z - 1}{5}

    \Rightarrow (D)\left\{ \begin{matrix}
2x - y - 6 = 0 \\
5x - z - 19 = 0 \\
\end{matrix} \right.\  \vee \left\{ \begin{matrix}
2x - y - 6 = 0 \\
5y - 2z - 8 = 0 \\
\end{matrix} \right.

  • Câu 3: Nhận biết
    Viết phương trình đường trung tuyến AM

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A\left( { - 1;3;2} \right),B\left( {2;0;5} \right),C\left( {0; - 2;1} \right). Phương trình đường trung tuyến AM của tam giác ABC là.

    Hướng dẫn:

    M là trung điểm BC => M(1;-1;3)

    AM đi qua điểm A và có vectơ chỉ phương \overrightarrow {AM}  = \left( {2; - 4;1} ight)

    Vậy phương trình chính tắc của AM\frac{x
+ 1}{2} = \frac{y - 3}{- 4} = \frac{z - 2}{1}

  • Câu 4: Nhận biết
    Hai đường thẳng chéo nhau

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} , \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) chéo nhau khi và chỉ khi:

    Hướng dẫn:

     Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ;\,\overrightarrow b } ight].\,\overrightarrow {AB} \, e \,\,0

    Suy ra (D) và (d) chéo nhau.

  • Câu 5: Thông hiểu
    Tính khoảng cách giữa d và trục Ox

    Trong không gian với hệ tọa độ Oxyz, tính khoảng cách giữa đường thẳng d:\frac{x - 1}{2} = \frac{y + 2}{- 4} =
\frac{z - 4}{3} và trục Ox.

    Hướng dẫn:

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u_{d}} = (2; - 4;3) và đi qua điểm M(1; - 2;4)

    Trục Ox có vectơ chỉ phương \overrightarrow{u_{Ox}} = (1;0;0) và đi qua điểm N(1;0;0)

    Khoảng cách giữa đường thẳng d và trục Ox là:

    d(d;Ox) = \frac{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{Ox}}
ightbrack.\overrightarrow{MN} ight|}{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{Ox}} ightbrack ight|} =
\frac{\left| (0;3;4).(0;2; - 4) ight|}{\left| (0;3;4) ight|} =
2

  • Câu 6: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, cho mặt phẳng (P):x - 2y - 3z - 2 = 0. Đường thẳng d vuông góc với mặt phẳng (P) có một vectơ chỉ phương có tọa độ là:

    Hướng dẫn:

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 2; -
3).

    Do d\bot(P) nên vectơ \overrightarrow{n} = (1; - 2; - 3) cũng là một vectơ chỉ phương của d.

  • Câu 7: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, đường thẳng d:\frac{x - 1}{3} = \frac{y + 2}{- 4} = \frac{z -
3}{- 5} đi qua điểm nào sau đây?

    Hướng dẫn:

    Thay tọa độ điểm (1; - 2;3) vào phương trình đường thẳng d ta được \frac{0}{3} = \frac{0}{- 4} = \frac{0}{-
5}, do đó điểm này thuộc đường thẳng d.

  • Câu 8: Nhận biết
    Chọn mệnh đề đúng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d):\frac{x - 1}{2} = \frac{y + 1}{- 3} = \frac{z
- 5}{4} và mặt phẳng (P):x - 3y +
2z - 5 = 0. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có: d có vectơ chỉ phương là \overrightarrow{u} = (2; - 3;4), (P) có véc-tơ pháp tuyến là \overrightarrow{n} = (1; - 3;2).

    Do \overrightarrow{u} không cùng phương \overrightarrow{n} nên d cắt (P).

    Mặt khác \overrightarrow{u}.\overrightarrow{n} = 19 eq
0 nên d không vuông góc (P).

    Vậy d cắt nhưng không vuông góc với (P).

  • Câu 9: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, trục Oxcó phương trình tham số

    Hướng dẫn:

    Trục Oxđi qua O(0;0;0) và có véctơ chỉ phương \overrightarrow{i}(1;0;0)nên có phương trình tham số là: \left\{ \begin{matrix}
x = 0 + 1.t \\
y = 0 + 0.t \\
z = 0 + 0.t \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = t \\
y = 0 \\
z = 0 \\
\end{matrix} \right.\ .

  • Câu 10: Nhận biết
    Viết phương trình tham số của đường thẳng

    Trong không gian Oxyz, cho đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2). Phương trình tham số của đường thẳng \Delta

    Hướng dẫn:

    đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{u} = (2; - 3;1) nên có phương trình tham số \left\{
\begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 11: Nhận biết
    Tìm tham số m để hai đường thẳng vuông góc

    Trong không gian với hệ tọa độ Oxyz, cho 2 đường thẳng d_{1}:\frac{x + 1}{2} = \frac{y - 1}{- m} =\frac{z - 2}{- 3};d_{2}:\frac{x - 3}{1} = \frac{y}{1} = \frac{z -1}{1}. Tìm tất cả giá trị thực của m để d_{1} vuông góc với d_{2}?

    Hướng dẫn:

    Vectơ chỉ phương của d_{1};d_{2} lần lượt là: \overrightarrow{u_{1}} = (2; -
m; - 3),\overrightarrow{u_{2}} = (1;1;1).

    Để d_{1}\bot d_{2} thì \overrightarrow{u_{1}}.\overrightarrow{u_{2}} = 0
\Leftrightarrow 2 - m - 3 = 0 \Leftrightarrow m = - 1

  • Câu 12: Thông hiểu
    Tìm tọa độ điểm H

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(3;4;5) và mặt phẳng (P):x - y + 2z - 3 = 0. Gọi H là hình chiếu vuông góc của M lên (P). Tìm tọa độ điểm H?

    Hướng dẫn:

    Vì H là hình chiếu vuông góc của M lên (P) nên H(3 + t;4 - t;5 + 2t)

    Điểm H thuộc mặt phẳng (P) nên ta có phương trình:

    (3 + t) - (4 - t) + 2(5 + 2t) - 3 =
0

    \Leftrightarrow t = - 1 \Leftrightarrow
H = (2;5;3)

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho điểm A( - 4; -
2;4) và đường thẳng d:\frac{x +
3}{2} = \frac{y - 1}{- 1} = \frac{z + 1}{4}. Viết phương trình đường thẳng \Delta đi qua A, cắt và vuông góc với đường thẳng d.

    Hướng dẫn:

    Gọi B\left( x_{B};y_{B};z_{B}
\right) là giao điểm của (d) với (\Delta). Khi đó, ta có:

    \frac{x_{B} + 3}{2} = \frac{y_{B} - 1}{-
1} = \frac{z_{B} + 1}{4} = k

    \Rightarrow B(2k - 3; - k + 1;4k -
1)

    \Rightarrow \overrightarrow{AB} = (2k +
1; - k + 3:4k - 5);\overrightarrow{u_{d}} = (2; - 1;4)

    AB\bot(d) \Leftrightarrow
\overrightarrow{AB}.\overrightarrow{u_{d}} = 0

    \Leftrightarrow 2(2k + 1) - ( - k + 3) +
4.(4k - 5) = 0

    \Leftrightarrow k = \frac{21}{21} = 1
\Rightarrow B( - 1;0;3);(3;2; - 1)

    Phương trình (\Delta) chính là phương trình AB và là:

    \Delta:\frac{x + 4}{3} = \frac{y + 2}{2}
+ \frac{z - 4}{- 1}

  • Câu 14: Thông hiểu
    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d):\frac{x - 3}{- 2} = \frac{y}{- 1} = \frac{z -
1}{1} và điểm A(2; - 1;0). Khoảng cách từ điểm A đến đường thẳng (d) bằng

    Hướng dẫn:

    Gọi M(3;0;1) \in d.

    \overrightarrow{AM}(1;1;1);\overrightarrow{u_{d}}(
- 2; - 1;1) \Rightarrow \left\lbrack
\overrightarrow{AM};\overrightarrow{u_{d}} \right\rbrack = (2; -
3;1)

    \Rightarrow \left| \left\lbrack
\overrightarrow{AM};\overrightarrow{u_{d}} \right\rbrack \right| =
\sqrt{14}

    Vậy khoảng cách từ điểm A đến đường thẳng (d) bằng d(A,d) = \frac{\left| \left\lbrack
\overrightarrow{AM};\overrightarrow{u_{d}} \right\rbrack \right|}{\left|
\overrightarrow{u_{d}} \right|} = \frac{\sqrt{14}}{\sqrt{6}} =
\frac{\sqrt{21}}{3}

  • Câu 15: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;2),B(2; - 1;3). Viết phương trình đường thẳng AB?

    Hướng dẫn:

    Vectơ chỉ phương của đường thẳng AB\overrightarrow{AB} = (1; - 2;1). Suy ra phương trình đường thẳng AB là:

    AB:\frac{x - 1}{1} = \frac{y - 1}{- 2} =
\frac{z - 2}{1}

  • Câu 16: Nhận biết
    Tìm điểm thuộc đường thẳng

    Trong hệ tọa độ Oxyz, điểm nào dưới đây thuộc đường thẳng d:\frac{x - 1}{2}
= \frac{y + 1}{- 1} = \frac{z - 2}{3}?

    Hướng dẫn:

    Dựa vào phương trình đường thẳng ta thấy đường thẳng đã cho đi qua điểm N(1; - 1;2).

  • Câu 17: Nhận biết
    Tìm vectơ chỉ phương của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, vectơ \overrightarrow{u} = (1;2; - 5) là vectơ chỉ phương của đường thẳng nào sau đây?

    Hướng dẫn:

    Đường thẳng d:\left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{v} = ( -
1; - 2;5) cùng phương với vectơ \overrightarrow{u} = (1;2; - 5). Vậy \overrightarrow{u} = (1;2; - 5) là một vectơ chỉ phương của đường thẳng \left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 18: Nhận biết
    Viết PT tham số

    Viết phương trình tham số của đường thẳng d qua hai điểm: A\left( { - 1,3, - 2} ight);B\left( {2, - 3,4} ight)

    Gợi ý:

    Để viết PT Tham số của một đường thẳng, ta cần 1 vecto chỉ phương và 1 điểm bất kỳ nằm trên đường thẳng đó.

    Hướng dẫn:

     Đường thẳng d đi qua hai điểm A và B nên VTCP của đường thẳng d chính là \overrightarrow {AB} hay ta có: \overrightarrow {AB}  = \left( {3, - 6,6} ight) = 3\left( {1, - 2,2} ight) =  - 3\left( { - 1,2, - 2} ight)

    \begin{array}{l} \Rightarrow \left( d ight)\left\{ \begin{array}{l}x = 3t - 1\\y = 3 - 6t\\z = 6t - 2\end{array} ight.\,\,;t \in \mathbb{R},\,\\hay\,\,\left( d ight)\left\{ \begin{array}{l}x = 2 + m\\y =  - 3 - 2m\\z = 4 + 2m\end{array} ight.\,\,;m \in \mathbb{R}\\\hay\,\,\left( d ight)\,\left\{ \begin{array}{l}x =  - 1 - \tan t\\y = 3 + 2\tan t\\z =  - 2 - 2\tan t\end{array} ight.\,\,;t \in\mathbb{R}\end{array}

     

  • Câu 19: Nhận biết
    Tìm tọa độ hình chiếu vuông góc của điểm A

    Trong không gian Oxyz, hình chiếu vuông góc của điểm A(3;2;1) trên trục Oxcó tọa độ là:

    Hướng dẫn:

    Trong không gian Oxyz, hình chiếu vuông góc của điểm A(3;2;1) trên trục Oxcó tọa độ là: (3;0;0)

  • Câu 20: Nhận biết
    Tìm vecto chỉ phương của đường thẳng

    Trong không gian Oxyz, cho đường thẳng (d)\ :\ \left\{ \begin{matrix}
x = 1 - 2t \\
y = - 3 \\
z = 4 + 5t \\
\end{matrix} \right.\ \ ;\ \ \ \ \ \left( t\mathbb{\in R}
\right). Vectơ nào dưới đây là một vectơ chỉ phương của (d) ?

    Hướng dẫn:

    Ta có: \overrightarrow{u} = ( -
2;0;5).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo