Cho hai mặt phẳng Đường thẳng (D) qua M (1, -2, 3) song song với (P) và (Q):
Vì (D) song song với (P) và (Q)
=> Một vectơ chỉ phương của (D) là:
Xét vecto pháp tuyến của (R), có:
Xét đáp án có điểm N
cùng phương với
=> (D) vuông góc với (S).
Cho hai mặt phẳng Đường thẳng (D) qua M (1, -2, 3) song song với (P) và (Q):
Vì (D) song song với (P) và (Q)
=> Một vectơ chỉ phương của (D) là:
Xét vecto pháp tuyến của (R), có:
Xét đáp án có điểm N
cùng phương với
=> (D) vuông góc với (S).
Trong không gian với hệ tọa độ , cho đường thẳng
. Viết phương trình mặt phẳng
đi qua điểm
và vuông góc với
.
Phương trình mặt phẳng (P):
Trong không gian , cho đường thẳng
đi qua điểm
và có một vecto chỉ phương
. Phương trình của
là:
Đường thẳng đi qua điểm
và có một vectơ chỉ phương
, phương trình của
là
Trong không gian với hệ tọa độ , cho mặt phẳng
và đường thẳng
. Viết phương trình đường thẳng
nằm trong mặt phẳng
cắt đồng thời vuông góc với
?
Giao điểm I của d và (α) là nghiệm của hệ phương trình:
Mặt phẳng (α) có một vectơ pháp tuyến , đường thẳng d có một vectơ chỉ phương
Khi đó đường thẳng ∆ có một vectơ chỉ phương là
Đường thẳng ∆ qua điểm I (2; 4; −2) và có một vectơ chỉ phương nên có phương trình chính tắc:
Trong không gian với hệ tọa độ . Phương trình tham số của đường thẳng đi qua điểm M(1; 3; 4) và song song với trục hoành là.
Gọi là đường thẳng cần tìm.
Vì d song song với trục hoành nên d có vectơ chỉ phương
d đi qua M và có vectơ chỉ phương
Vậy phương trình tham số của d là
Trong không gian với hệ tọa độ , cho mặt phẳng
và điểm
. Viết phương trình đường thẳng qua
và vuông góc với
.
Mặt phẳng có vectơ pháp tuyến là
nên đường thẳng cần tìm có vectơ chỉ phương là
.
Vậy phương trình đường thẳng đi qua và vuông góc với
là:
Trong không gian Oxyz, cho hai đường thẳng và
.
a) Đường thẳng d đi qua điểm . Đúng||Sai
b) Đường thẳng d’ đi qua điểm . Đúng||Sai
c) Hai đường thẳng d và d’ cắt nhau. Sai||Đúng
d) Cosin góc giữa hai đường thẳng d và d’ bằng . Đúng||Sai
Trong không gian Oxyz, cho hai đường thẳng và
.
a) Đường thẳng d đi qua điểm . Đúng||Sai
b) Đường thẳng d’ đi qua điểm . Đúng||Sai
c) Hai đường thẳng d và d’ cắt nhau. Sai||Đúng
d) Cosin góc giữa hai đường thẳng d và d’ bằng . Đúng||Sai
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
Phương án a) đúng: Khi thì
nên đường thẳng d đi qua điểm
.
Phương án b) đúng: Khi thì
nên đường thẳng d’ đi qua điểm
.
Phương án c) sai:
d đi qua điểm , có vtcp
.
d’ đi qua điểm , có vtcp
.
Ta có:
nên d và d’ chéo nhau.
Phương án d) đúng:
Cho mặt phẳng và đường thẳng
. Phương trình đường thẳng
nằm trong mặt phẳng
, cắt đường thẳng d và vuông góc với
là
Gọi M là giao điểm của và d.
Khi đó Do
nên
Giả sử đi qua
khác M. Ta có:
Trong không gian với hệ tọa độ , cho đường thẳng
. Phương trình nào sau đây là phương trình chính tắc của
?
Đường thẳng d có vectơ chỉ phương và đi qua điểm
. Do đó phương trình chính tắc của
là:
Trong không gian , cho đường thẳng
đi qua điểm
và có một vecto chỉ phương
. Phương trình của
là:
Đường thẳng đi qua điểm
và có một vectơ chỉ phương
, phương trình của
là
Trong không gian với hệ tọa độ , đường thẳng
đi qua điểm nào sau đây?
Thay tọa độ điểm vào phương trình đường thẳng
ta được
, do đó điểm này thuộc đường thẳng
.
Trong không gian , cho đường thẳng
. Điểm nào sau đây không thuộc đường thẳng
?
Thay vào
ta được:
Thay vào
ta được:
Thay vào
ta được:
hệ vô nghiệm nên
.
Thay vào
ta được:
Trong không gian với hệ trục toạ độ , tìm tất cả giá trị tham số
để đường thẳng
song song với mặt phẳng
.
Ta có:
qua điểm
và có VTCP là
(P) có VTPT là
Vì d // (P) nên
Với (loại).
Với (thỏa mãn).
Trong không gian . Điểm nào sau đây là hình chiếu vuông góc của điểm
trên mặt phẳng
?
Ta có hình chiếu của trên mặt phẳng
là
.
Trong không gian với hệ tọa độ , cho phương trình đường thẳng
. Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng
?
Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:
.
Trong không gian với hệ trục tọa độ , cho hai đường thẳng
và
. Vị trí tương đối của
và
là
Đường thẳng d có vectơ chỉ phương và đi qua điểm M(−1; 0; 1).
Đường thẳng d’ có vectơ chỉ phương .
Hai vectơ và
cùng phương và điểm M không thuộc đường thẳng d’.
Do đó hai đường thẳng d và d’ song song với nhau.
Trong hệ tọa độ , cho đường thẳng
có vectơ chỉ phương
và mặt phẳng
có vectơ pháp tuyến
. Mệnh đề nào dưới đây đúng?
vuông góc
thì d có thể nằm trong
.
song song
thì
vuông góc
.
vuông góc
thì
cùng phương
.
Trong không gian với hệ tọa độ . Viết phương trình đường thẳng
đi qua điểm
cắt trục tung tại
sao cho
đi qua điểm
và có vectơ chỉ phương
Vậy phương trình của là
và
Trong không gian với hệ tọa độ cho đường thẳng
. Đường thẳng d đi qua điểm M và có vectơ chỉ phương
có tọa độ là:
đi qua điểm
và có vectơ chỉ phương
Trong không gian Oxyz, tìm tọa độ hình chiếu vuông góc của điểm A(1; 2; 5) trên trục Ox?
Hình chiếu vuông góc của điểm A(1;2;5) trên trục Ox có tọa độ là (1;0;0).
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: