Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 3 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm tiệm cận của đồ thị hàm số

    Số đường tiệm cận của đồ thị hàm số y =
\frac{\sqrt{x - 1}}{x^{2} - 2x} là:

    Hướng dẫn:

    Điều kiện xác định x \geq 1;x eq
2

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow + \infty}\frac{\sqrt{x - 1}}{x^{2} - 2x} =
0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 2^{+}}y = \lim_{x
ightarrow 2^{+}}\frac{\sqrt{x - 1}}{x^{2} - 2x} = + \infty nên đồ thị hàm số có 1 tiệm cận đứng x =
2.

    Vậy đồ thị hàm số có 2 đường tiệm cận.

  • Câu 2: Thông hiểu
    Chọn đáp án chính xác

    Đồ thị hàm số y = \frac{\sqrt{1 -
x^{2}}}{x^{2} + 2x} có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Tập xác định D = \lbrack -
1;1brack\backslash\left\{ 0 ight\}

    Vì tập xác định của hàm số không chứa -
\infty+ \infty nên đồ thị hàm số không có đường tiệm cận ngang.

    Lại có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}} =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}} =  + \infty  \hfill \\ 
\end{gathered}  ight.. Vậy đồ thị hàm số có 1 đường tiệm cận đứng x = 0.

  • Câu 3: Vận dụng
    Ghi đáp án vào ô trống

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Vận dụng
    Tìm tiệm cận của đồ thị hàm số

    Số đường tiệm cận của đồ thị hàm số y =
\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3} là:

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;3 ight\}

    \lim_{x ightarrow +\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow +\infty}\dfrac{x^{2}\left( \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 -\dfrac{2}{x} - \dfrac{3}{x^{2}}} = 2 suy ra y = 2 là tiệm cận ngang.

    \lim_{x ightarrow -\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow -\infty}\dfrac{x^{2}\left( - \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = 0 suy ra y =
0 là tiệm cận ngang.

    \lim_{x ightarrow - 1}\left\lbrack\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3}ightbrack= \lim_{x ightarrow - 1}\frac{x\left( \sqrt{x^{2} + 3} +x - 1 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}{\left( x^{2} - 2x- 3 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x(x +
1)}{(x - 3)(x + 1)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x}{(x -
3)\left( \sqrt{x^{2} + 3} - x + 1 ight)} = \frac{- 2}{16} =
\frac{1}{8}

    Vậy x = - 1 không là tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
3 là tiệm cận đứng của đồ thị hàm số đã cho

    Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.

  • Câu 5: Vận dụng
    Tìm số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x^{2} + 1}{x^{2}
- |x| - 2} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Ta có \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{x^{2} + 1}{x^{2} - |x| - 2} =
1\overset{}{ightarrow}y = 1 là TCN.

    Xét phương trình x^{2} - |x| - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = - 2 \\
\end{matrix} ight.\ .

    \left\{ \begin{matrix}
\lim_{x ightarrow 2^{+}}y = \lim_{x ightarrow 2^{+}}\frac{x^{2} +
1}{x^{2} - |x| - 2} = + \infty \\
\lim_{x ightarrow 2^{-}}y = \lim_{x ightarrow 2^{-}}\frac{x^{2} +
1}{x^{2} - |x| - 2} = - \infty \\
\end{matrix} ight.\ \overset{}{ightarrow}x = 2 là TCĐ;

    \left\{ \begin{matrix}
\lim_{x ightarrow - 2^{+}}y = \lim_{x ightarrow - 2^{+}}\frac{x^{2}
+ 1}{x^{2} - |x| - 2} = - \infty \\
\lim_{x ightarrow - 2^{-}}y = \lim_{x ightarrow - 2^{-}}\frac{x^{2}
+ 1}{x^{2} - |x| - 2} = + \infty \\
\end{matrix} ight.\ \overset{}{ightarrow}x = - 2 là TCĐ.

    Vậy đồ thị hàm số đã cho có ba đường tiệm cận.

  • Câu 6: Vận dụng
    Số tiệm cận đứng của đồ thị hàm số

    Cho hàm số xác định trên và có bảng biến thiên như hình vẽ:

    Số tiệm cận đứng của đồ thị hàm số

    Số đường tiệm cận đứng của đồ thị hàm số y = \frac{{x - 2}}{{{f^2}\left( x ight) - 5f\left( x ight) + 4}} là:

    Gợi ý:

    Đường thẳng x = {x_0} là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f\left( x ight) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Hướng dẫn:

    Ta có: {f^2}\left( x ight) - 5f\left( x ight) + 4 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 4} \\   {f\left( x ight) = 1} \end{array}} ight.

    Phương trình f\left( x ight) = 4 có 3 nghiệm phân biệt khác 2.

    Phương trình f\left( x ight) = 1 có một nghiệm kép là x = 2 (do vậy mẫu số có dạng {\left( {x - 2} ight)^2} nên x = 2 vẫn là TCĐ của đồ thị hàm số

    => Đồ thị hàm số y = \frac{{x - 2}}{{{f^2}\left( x ight) - 5f\left( x ight) + 4}} có 4 đường tiệm cận đứng.

  • Câu 7: Vận dụng
    Xác định số TCĐ và TCN của đồ thị hàm số

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d;\left( {a,b,c,d \in \mathbb{R}} ight) có đồ thị như hình vẽ dưới đây.

    Xác định số TCĐ và TCN của đồ thị hàm số

    Đồ thị hàm số g\left( x ight) = \frac{1}{{f\left( {4 - {x^2}} ight) - 3}} có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.

    Hướng dẫn:

    Đặt t = 4 - {x^2} khi đó x \to  \pm \infty thì t \to \infty

    Khi đó \mathop {\lim }\limits_{x \to  \pm \infty } g\left( x ight) = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{1}{{f\left( t ight) - 3}} = 0

    => y = 0 là tiệm cận ngang của đồ thị hàm số g(x)

    Mặt khác

    \begin{matrix}  f\left( {4 - {x^2}} ight) - 3 = 0 \hfill \\   \Leftrightarrow f\left( {4 - {x^2}} ight) = 3 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {4 - {x^2} =  - 2} \\   {4 - {x^2} = 4} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm \sqrt 6 } \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Đồ thị hàm số g(x) có ba đường tiệm cận đứng.

    Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

    Hướng dẫn:

    Từ bảng biến thiên ta có:

    + Tiệm cận ngang y = - 5

    + Tiệm cận đứng x = 2.

  • Câu 9: Vận dụng
    Tìm m để khoảng cách nhỏ nhất

    Cho hàm số y = \frac{x - m}{x +
1} (C) với m là tham số thực. Gọi M là điểm thuộc (C) sao cho tổng khoảng cách từ M đến hai đường tiệm cận của (C) nhỏ nhất. Tìm tất cả các giá trị của m để giá trị nhỏ nhất đó bằng 2.

    Hướng dẫn:

    Áp dụng công thức giải nhanh:

    Điểm M\left( x_{0};y_{0} = \frac{ax_{0} +
b}{cx_{0} + d} ight) thuộc đồ thị hàm số y = \frac{ax + b}{cx + d}.

    Đồ thị hàm số có TCĐ \Delta_{1}:x +
\frac{d}{c} = 0; TCN \Delta_{2}:y -
\frac{a}{c} = 0.

    Ta có \left\{ \begin{matrix}
d_{1} = d\left\lbrack M,\Delta_{1} ightbrack = \left| x_{0} +
\frac{d}{c} ight| = \left| \frac{cx_{0} + d}{c} ight| \\
d_{2} = d\left\lbrack M,\Delta_{2} ightbrack = \left| y_{0} -
\frac{a}{c} ight| = \left| \frac{ad - bc}{c\left( cx_{0} + d ight)}
ight| \\
\end{matrix} ight..

    Khi đó d_{1} + d_{2} \geq
2\sqrt{\frac{|ad - bc|}{c^{2}}}.

    Áp dụng: Ycbt \Leftrightarrow
\sqrt{\frac{|ad - bc|}{c^{2}}} = 1

    \Leftrightarrow \frac{|ad - bc|}{c^{2}} =
1 \Leftrightarrow |1 + m| = 1 \Leftrightarrow \left\lbrack
\begin{matrix}
m = 0 \\
m = - 2 \\
\end{matrix} ight.

  • Câu 10: Vận dụng
    Tìm m để đồ thị có 1 tiệm cận ngang

    Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{x - 3}{x + \sqrt{mx^{2} + 4}} có đúng một tiệm cận ngang.

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{x - 3}{x + \sqrt{mx^{2} + 4}} = \frac{1}{1 +
\sqrt{m}} với m \geq
0;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{x - 3}{x + \sqrt{mx^{2} + 4}} = \frac{1}{1 -
\sqrt{m}} với m \geq 0,m eq
1.

    Nếu m = 1 thì \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{(x - 3)\left( \sqrt{x^{2} + 4} - x
ight)}{4}= \lim_{x ightarrow - \infty}x^{2}.\frac{\left( 1 -
\frac{3}{x} ight)\left( - \sqrt{1 + \frac{4}{x^{2}}} - 1 ight)}{4} =
- \infty suy ra hàm số chỉ có đúng một TCN là y = \frac{1}{2} (Do\lim_{x ightarrow + \infty}y =
\frac{1}{2} khi m = 1)

    Do đó giá trị m = 1 thỏa yêu cầu bài toán.

    Nếu \left\{ \begin{matrix}
m \geq 0 \\
m eq 1 \\
\end{matrix} ight., để đồ thị hàm số có một tiệm cận ngang \Leftrightarrow \frac{1}{1 + \sqrt{m}} =
\frac{1}{1 - \sqrt{m}} \Leftrightarrow m = 0.

    Vậy m = 0,m = 1 thỏa mãn yêu cầu bài toán.

  • Câu 11: Thông hiểu
    Tìm tổng số tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là

    Hướng dẫn:

    Ta có \lim_{x ightarrow + \ \infty}f(x)= 3\lim_{x ightarrow - \infty}f(x) = 0 nên đồ thị hàm số có 2 tiệm cận ngang là các đường thẳng có phương trình y = 3y = 0.

    \lim_{x ightarrow 0^{+}}f(x) = + \infty nên hàm số có 1 tiệm cận đứng là đường thẳng có phương trình x = 0.

  • Câu 12: Vận dụng
    Tìm giá trị của m để hàm số có hai tiệm cận đứng

    Cho hàm số y = \frac{{{x^2} + x - 2}}{{{x^2} - 2x + m}}. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai tiệm cận đứng.

    Hướng dẫn:

    Ta có: y = \frac{{{x^2} + x - 2}}{{{x^2} - 2x + m}} = \frac{{\left( {x - 1} ight)\left( {x + 2} ight)}}{{{x^2} - 2x + m}}

    Đồ thị hàm số có hai tiệm cận đứng khi và chỉ khi phương trình f\left( x ight) = {x^3} - 2x + m = 0 có hai nghiệm phân biệt thỏa mãn

    \left\{ {\begin{array}{*{20}{c}}  {x e 1} \\   {x e  - 2} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  \Delta ' > 0 \hfill \\  f\left( 1 ight) e 0 \hfill \\ \end{gathered}  \\   {f\left( { - 2} ight) e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  1 - m > 0 \hfill \\  m - 1 e 0 \hfill \\ \end{gathered}  \\   {m + 8 e 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m < 1} \\   {m e  - 8} \end{array}} ight.

  • Câu 13: Vận dụng
    Tìm m để đồ thị hàm số có tiệm cận theo yêu cầu

    Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{x + 2}{x^{2} - 4x + m} có đúng một tiệm cận ngang và đúng một tiệm cận đứng.

    Hướng dẫn:

    Ta có \lim_{x ightarrow \pm
\infty}\frac{x + 2}{x^{2} - 4x + m} = 0 ightarrow y = 0 là tiệm cận ngang với mọi m.

    Để đồ thị hàm số y = \frac{x + 2}{x^{2} -
4x + m} có đúng một tiệm cận ngang và đúng một tiệm cận đứng \Leftrightarrow Phương trình x^{2} - 4x + m = 0 có nghiệm kép hoặc có hai nghiệm phân biệt trong đó có một nghiệm bằng - 2

    \Leftrightarrow \left\lbrack
\begin{matrix}
\Delta' = 4 - m = 0 \\
\left\{ \begin{matrix}
\Delta' = 4 - m > 0 \\
( - 2)^{2} - 4( - 2) + m = 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 4 \\
m = - 12 \\
\end{matrix} ight.

  • Câu 14: Vận dụng
    Tìm tổng các đường tiệm cận

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{1}{2f(x) - 1} là:

    Hướng dẫn:

    Điều kiện xác định của hàm số y =
\frac{1}{2f(x) - 1}2f(x) - 1
eq 0 \Leftrightarrow f(x) eq \frac{1}{2}

    Từ bảng biến thiên ta có: f(x) =
\frac{1}{2} \Leftrightarrow \left\lbrack \begin{matrix}
x = x_{1} \in ( - \infty; - 0,5) \\
x = x_{2} \in ( - 0,5; - \infty) \\
\end{matrix} ight.

    Tập xác định \mathbb{R}\backslash\left\{
x_{1};x_{2} ight\}

    Ta có:

    \lim_{x ightarrow -
\infty}\frac{1}{2f(x) - 1} = \frac{1}{2.1 - 1} = 1 suy ra đồ thị hàm số có tiệm cận ngang y =
1.

    \lim_{x ightarrow +
\infty}\frac{1}{2f(x) - 1} = \frac{1}{2.1 - 1} = 1 suy ra đồ thị hàm số có tiệm cận ngang y =
1.

    \lim_{x ightarrow
{x_{1}}^{\pm}}\frac{1}{2f(x) - 1} = \mp \infty suy ra đồ thị hàm số có tiệm cận đứng x =
x_{1}.

    \lim_{x ightarrow
{x_{2}}^{\pm}}\frac{1}{2f(x) - 1} = \pm \infty suy ra đồ thị hàm số có tiệm cận đứng x =
x_{2}.

    Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{1}{2f(x) - 1}3.

  • Câu 15: Vận dụng
    Chọn đáp án đúng:

    Đường thẳng y = kx + m vừa là tiếp tuyến của đường cong y = \frac{x+2}{2x+3}, vừa cắt hai trục toạ độ A, B sao cho tam giác OAB cân tại gốc tạo độ O. Tính giá trị của biểu thức S = m + k

  • Câu 16: Thông hiểu
    Chọn câu đúng

    Chọn khẳng định đúng trong các khẳng định sau:

    Hướng dẫn:

    “Đồ thị hàm số y = f(x) có tiệm cận ngang y = 1 khi và chỉ khi \lim_{x ightarrow + \infty}f(x) =
1\lim_{x ightarrow -
\infty}f(x) = 1“ sai vì chỉ cần một trong hai giới hạn \lim_{x ightarrow - \infty}f(x) = 1 hoặc \lim_{x ightarrow + \infty}f(x) =
1 tồn tại thì đã suy ra được tiệm cận ngang là y = 1.

    “Nếu hàm số y = f(x) không xác định tại x_{0} thì đồ thị hàm số y = f(x) có tiệm cận đứng x = x_{0}“ sai, ví dụ hàm số y = \sqrt{x^{3} - 1} không xác định tại x = - 2 nhưng \lim_{x ightarrow \ ( - 2)^{-}}f(x)\lim_{x ightarrow \ ( -
2)^{+}}f(x) không tiến đến vô cùng nên x = - 2 không phải là tiệm cận đứng của đồ thị hàm số.

    “Đồ thị hàm số y = f(x) có tiệm cận đứng x = 2 khi và chỉ khi \lim_{x ightarrow 2^{+}}f(x) = + \infty\lim_{x ightarrow 2^{-}}f(x) = +
\infty“ sai vì chỉ cần tồn tại một trong bốn giới hạn sau:

    \lim_{x ightarrow 2^{-}}f(x) = -
\infty,\lim_{x ightarrow 2^{-}}f(x) = + \infty,\lim_{x ightarrow \
2^{+}}f(x) = - \infty,\lim_{x ightarrow \ 2^{+}}f(x) = +
\infty.

    “Đồ thị hàm số y = f(x) bất kì có nhiều nhất hai đường tiệm cận ngang.“ đúng vì chỉ có hai giới hạn \lim_{x ightarrow - \infty}f(x),\ \
\lim_{x ightarrow + \infty}f(x).

  • Câu 17: Vận dụng
    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = \frac{x + 2}{x^{2} - 4x + m} có tiệm cận ngang mà không có tiệm cận đứng.

    Hướng dẫn:

    Ta có \lim_{x ightarrow \pm
\infty}\frac{x + 2}{x^{2} - 4x + m} = 0y = 0 là tiệm cận ngang với mọi m.

    Do đó để đồ thị hàm số có tiệm cận ngang mà không có tiệm cận đứng thì phương trình x^{2} - 4x + m = 0 vô nghiệm \Leftrightarrow \ \ \Delta'
< 0\ \  \Leftrightarrow \ \ m > 4.

    Nhận xét.

    Bạn đọc dễ nhầm lẫn mà xét thêm trường hợp mẫu thức x^{2} - 4x + m = 0 có nghiệm x = - 2 ightarrow m = - 12.Điều này là sai, vì với m = - 12 thì hàm số trở thành y = \frac{1}{x - 6}. Đồ thị này vẫn còn tiệm cận đứng là x =
6.

  • Câu 18: Vận dụng
    Tìm m để đồ thị hàm số có 1 tiệm cận đứng

    Tìm tất cả các giá trị thực của tham số a để đồ thị hàm số y = \frac{x^{2} + 1}{3x^{2} - 2ax + a} có đúng một tiệm cận đứng.

    Hướng dẫn:

    Để đồ thị hàm số y = \frac{x^{2} +
1}{3x^{2} - 2ax + a} có đúng một tiệm cận đứng \Leftrightarrow 3x^{2} - 2ax + a = 0 có nghiệm duy nhất

    \Leftrightarrow \Delta' = a^{2} - 3a
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
a = 0 \\
a = 3 \\
\end{matrix} ight..

  • Câu 19: Vận dụng
    Tìm m để đồ thị hàm số có 2 tiệm cận ngang

    Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số y = \frac{x + 1}{\sqrt{mx^{2} + 1}} có hai tiệm cận ngang.

    Hướng dẫn:

    Khi m > 0, ta có:

    \lim_{x ightarrow + \infty}\frac{x +
1}{\sqrt{mx^{2} + 1}} = \lim_{x ightarrow + \infty}\frac{1 +
\frac{1}{x}}{\sqrt{m + \frac{1}{x^{2}}}} = \frac{1}{\sqrt{m}}ightarrow y = \frac{1}{\sqrt{m}} là TCN ;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{x\left( 1 + \frac{1}{x} ight)}{|x|\sqrt{m +
\frac{1}{x^{2}}}} = \frac{- 1 - \frac{1}{x}}{\sqrt{m + \frac{1}{x^{2}}}}
= - \frac{1}{\sqrt{m}}ightarrow y = - \frac{1}{\sqrt{m}} là TCN.

    Với m = 0 suy y = \frac{x + 1}{1} suy ra đồ thị hàm số không có tiệm cận.

    Với m < 0 thì hàm số có TXĐ là một đoạn nên đồ thị hàm số không có TCN.

    Vậy với m > 0 thì đồ thị hàm số có hai tiệm cận ngang.

  • Câu 20: Vận dụng cao
    Xác định m để đồ thị hàm số có 4 tiệm cận thỏa mãn điều kiện

    Tìm giá trị của tham số m để đồ thị hàm số y = f\left( x ight) = \frac{{2x + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} có hai đường tiệm cận đứng và hai đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2.

    Hướng dẫn:

    Tập xác định D = \left( { - \infty ; - 1} ight) \cup \left( {0; + \infty } ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{m - \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \dfrac{1}{x}}}{{ - \sqrt {{1^2} + \dfrac{1}{x}} }} = 1 - m \hfill \\  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{m + \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \frac{1}{x}}}{{\sqrt {{1^2} + \dfrac{1}{x}} }} = m + 1 \hfill \\ \end{matrix}

    => Để đồ thị hàm số có 2 đường tiệm cận ngang thì m + 1 e 1 - m \Leftrightarrow m e 0

    \begin{matrix}  \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} =  + \infty  \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} = \left\{ {\begin{array}{*{20}{c}}  { + \infty {\text{  khi m  <  1}}} \\   { - \infty {\text{  khi m  >  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy khi m e 0;m e 1 thì đồ thị hàm số có 2 đường tiệm cận ngang là y = m + 1; y = - m và 2 đường tiệm cận đứng là x = 0 và x = -1

    Để hai đường tiệm cận đứng và 2 đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2 thì 1.2\left| m ight| = 2 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {m = 1\left( L ight)} \\   {m =  - 1\left( {tm} ight)} \end{array}} ight.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo