Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có ba đường tiệm cận.
Ta có là tiệm cận ngang với mọi
.
Do đó ycbt tương đương với phương trình có hai nghiệm phân biệt khác
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có ba đường tiệm cận.
Ta có là tiệm cận ngang với mọi
.
Do đó ycbt tương đương với phương trình có hai nghiệm phân biệt khác
Đồ thị hàm số nào sau đây có đúng hai tiệm cận ngang?
Xét
Xét
Xét
Xét
Ta có: và
có thể loại trừ vì TXĐ không chứa
và
.
Đường thẳng y = kx + m vừa là tiếp tuyến của đường cong , vừa cắt hai trục toạ độ A, B sao cho tam giác OAB cân tại gốc tạo độ O. Tính giá trị của biểu thức S = m + k
Cho hàm số có bảng biến thiên như hình vẽ dưới đây.

Số đường tiệm cận của đồ thị hàm số là:
Đường thẳng là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số
nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số
nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Phương trình có 2 nghiệm phân biệt
=> Đồ thị hàm số có 2 đường tiệm cận đứng.
Khi thì
Khi thì
Vậy đồ thị hàm số có 1 tiệm cận ngang.
Tìm trên đồ thị hàm số những điểm
sao cho khoảng cách từ
đến tiệm cận đứng bằng ba lần khoảng cách từ
đến tiệm cận ngang của đồ thị.
Gọi với
là điểm thuộc đồ thị.
Đường tiệm cận đứng đường tiệm cận ngang
.
Ycbt
.
Áp dụng công thức giải nhanh.
Với .
Suy ra .
Cho hàm số có bảng biến thiên như sau:
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Hàm số có tập xác định:
Ta có:
Không tồn tại tiệm cận ngang khi
vậy hàm số
có tiệm cận ngang
;
Đồ thị hàm số có tiệm cận đứng
Vậy tổng số tiệm cận đứng và ngang là 2.
Cho hàm số với
là tham số thực và
Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận?
Khi thì phương trình
vô nghiệm nên đồ thị hàm số không có tiệm cận đứng.
Ta có là TCN;
là TCN.
Vậy đồ thị hàm số có đúng hai tiệm cận.
Tìm tất cả các giá trị của tham số để đồ thị hàm số
có tiệm cận ngang mà không có tiệm cận đứng.
Ta có là tiệm cận ngang với mọi
.
Do đó để đồ thị hàm số có tiệm cận ngang mà không có tiệm cận đứng thì phương trình vô nghiệm
.
Nhận xét.
Bạn đọc dễ nhầm lẫn mà xét thêm trường hợp mẫu thức có nghiệm
.Điều này là sai, vì với
thì hàm số trở thành
. Đồ thị này vẫn còn tiệm cận đứng là
.
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
không có tiệm cận đứng.
TXĐ: .
Ta có
Để đồ thị hàm số không có tiệm cận đứng thì các giới hạn tồn tại hữu hạn
Cách 2. (Chỉ áp dụng cho mẫu thức là bậc nhất)
Từ yêu cầu bài toán suy ra phương trình có một nghiệm là
.
Cho hàm số bậc ba có đồ thị như hình vẽ dưới đây.

Đồ thị hàm số có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.
Đặt khi đó
thì
Khi đó
=> y = 0 là tiệm cận ngang của đồ thị hàm số g(x)
Mặt khác
=> Đồ thị hàm số g(x) có ba đường tiệm cận đứng.
Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.
Đồ thị hàm số nào sau đây có ba đường tiệm cận?
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Ta có: Đồ thị hàm số có 3 đường tiệm cận trong đó
Tiệm cận đứng là x = 2 và x = -2
Tiệm cận ngang là y = 0
Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
Ta có là TCN.
Xét phương trình
là TCĐ;
là TCĐ.
Vậy đồ thị hàm số đã cho có ba đường tiệm cận.
Cho hàm số có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số . Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai tiệm cận đứng.
Ta có:
Đồ thị hàm số có hai tiệm cận đứng khi và chỉ khi phương trình có hai nghiệm phân biệt thỏa mãn
Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
TXĐ: không tồn tại
và
Suy ra đồ thị hàm số không có tiệm cận ngang.
Ta có là TCĐ.
Vậy đồ thị hàm số có đúng một tiệm cận.
Đường tiệm cận xiên của đồ thị hàm số là đường thẳng có phương trình
Tập xác định: .
Phương trình đường tiệm cận xiên có dạng: .
Trong đó,
.
Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng
Cho hàm số xác định trên và có bảng biến thiên như hình vẽ:

Số đường tiệm cận đứng của đồ thị hàm số là:
Đường thẳng là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số
nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Ta có:
Phương trình có 3 nghiệm phân biệt khác 2.
Phương trình có một nghiệm kép là x = 2 (do vậy mẫu số có dạng
nên x = 2 vẫn là TCĐ của đồ thị hàm số
=> Đồ thị hàm số có 4 đường tiệm cận đứng.
Cho hàm số xác định trên
liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:
Số đường tiệm cận của đồ thị hàm số bằng:
Dựa vào bảng biến thiên ta thấy có 4 nghiệm phân biệt nên đồ thị hàm số
có 4 đường tiệm cận đứng.
Ngoài ra nên đồ thị hàm số
có hai đường tiệm cận ngang.
Vậy số đường tiệm cận của đồ thị hàm số bằng 6.
Cho hàm số y = f(x) là hàm số bậc 2. Đồ thị hàm số y = f’(x) như hình vẽ dưới đây và f(-1) < 20

Đồ thị hàm số (m là tham số thực) có bốn tiệm cận khi và chỉ khi:
Điều kiện
Từ đồ thị hàm số f’(x) ta có bảng biến thiên hàm số f(x) là:

Nếu m = 20 thì đồ thị hàm số không có đủ bốn tiệm cận
Nếu thì
=> y = 1 là tiệm cận ngang của đồ thị hàm số
Ta có phương trình f(x) = 20 có một nghiệm x = a > 3 vì f(-1) < 20
=> Đồ thị hàm số g(x) có bốn tiệm cận khi phương trình f(x) = m có ba nghiệm phân biệt khác a
=> f(3) < m < f(-1)
Gọi là tập hợp các giá trị
để tiệm cận xiên của đồ thị hàm số
tạo với hai trục hệ tọa độ
một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của
bằng bao nhiêu?
Gọi là tập hợp các giá trị
để tiệm cận xiên của đồ thị hàm số
tạo với hai trục hệ tọa độ
một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của
bằng bao nhiêu?
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: