Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 3 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tìm m để đồ thị hàm số có 1 tiệm cận đứng

    Tìm tất cả các giá trị thực của tham số a để đồ thị hàm số y = \frac{x^{2} + 1}{3x^{2} - 2ax + a} có đúng một tiệm cận đứng.

    Hướng dẫn:

    Để đồ thị hàm số y = \frac{x^{2} +
1}{3x^{2} - 2ax + a} có đúng một tiệm cận đứng \Leftrightarrow 3x^{2} - 2ax + a = 0 có nghiệm duy nhất

    \Leftrightarrow \Delta' = a^{2} - 3a
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
a = 0 \\
a = 3 \\
\end{matrix} ight..

  • Câu 2: Vận dụng
    Tính giá trị biểu thức T

    Cho hàm số y = \frac{{ax + 2}}{{cx + b}} có đồ thị (C) như hình vẽ bên. Tính tổng T = a + 2b + 3c

    Tính giá trị biểu thức T
    Gợi ý:

    Dựa vào đồ thị hàm số để xác định nghiệm của mẫu số và tử số từ đó suy ra các đường tiệm cận đứng của đồ thị hàm số.

    Tìm các giới hạn \mathop {\lim }\limits_{x \to  \pm \infty } y để tìm các đường tiệm cận ngang của đồ thị hàm số.

    Hướng dẫn:

    Từ đồ thị hàm số ta có nhận xét như sau:

    Đường thẳng x = 2 là tiệm cận đứng của đồ thị (C)

    => x = \frac{{ - b}}{c} = 2 \Rightarrow b =  - 2c

    Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số (C)

    => y = \frac{a}{c} = 1 \Rightarrow a = c

    Điểm có tọa độ (0; -1) thuộc đồ thị hàm số (C)

    => y(0) = -1 => \frac{2}{b} =  - 1 \Rightarrow b =  - 2

    => \left\{ {\begin{array}{*{20}{c}}  {b =  - 2} \\   {b =  - 2c} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  a = 1 \hfill \\  b =  - 2 \hfill \\ \end{gathered}  \\   {c = 1} \end{array}} ight. \Rightarrow T = a + 2b + 3c = 0

  • Câu 3: Vận dụng
    Tìm m để khoảng cách nhỏ nhất

    Cho hàm số y = \frac{x - m}{x +
1} (C) với m là tham số thực. Gọi M là điểm thuộc (C) sao cho tổng khoảng cách từ M đến hai đường tiệm cận của (C) nhỏ nhất. Tìm tất cả các giá trị của m để giá trị nhỏ nhất đó bằng 2.

    Hướng dẫn:

    Áp dụng công thức giải nhanh:

    Điểm M\left( x_{0};y_{0} = \frac{ax_{0} +
b}{cx_{0} + d} ight) thuộc đồ thị hàm số y = \frac{ax + b}{cx + d}.

    Đồ thị hàm số có TCĐ \Delta_{1}:x +
\frac{d}{c} = 0; TCN \Delta_{2}:y -
\frac{a}{c} = 0.

    Ta có \left\{ \begin{matrix}
d_{1} = d\left\lbrack M,\Delta_{1} ightbrack = \left| x_{0} +
\frac{d}{c} ight| = \left| \frac{cx_{0} + d}{c} ight| \\
d_{2} = d\left\lbrack M,\Delta_{2} ightbrack = \left| y_{0} -
\frac{a}{c} ight| = \left| \frac{ad - bc}{c\left( cx_{0} + d ight)}
ight| \\
\end{matrix} ight..

    Khi đó d_{1} + d_{2} \geq
2\sqrt{\frac{|ad - bc|}{c^{2}}}.

    Áp dụng: Ycbt \Leftrightarrow
\sqrt{\frac{|ad - bc|}{c^{2}}} = 1

    \Leftrightarrow \frac{|ad - bc|}{c^{2}} =
1 \Leftrightarrow |1 + m| = 1 \Leftrightarrow \left\lbrack
\begin{matrix}
m = 0 \\
m = - 2 \\
\end{matrix} ight.

  • Câu 4: Vận dụng
    Chọn đáp án đúng:

    Tồn tại đúng một điểm M(a,b) trên đường cong y = \frac{1}{x-1} sao cho tiếp tuyến của đường cong tại M tạo với hai trục toạ độ một tam giác có diện tích bằng 2. Tính 4a + b + 10.

  • Câu 5: Thông hiểu
    Chọn phương án đúng

    Đồ thị hàm số y = \frac{\sqrt{2 - x^{2}}
- 1}{x^{2} - 3x + 2} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    TXĐ: D = \left\lbrack - \sqrt{2};\sqrt{2}
ightbrack\backslash\left\{ 1 ight\} suy ra không tồn tại \lim_{x ightarrow - \infty}y\lim_{x ightarrow + \infty}y. Suy ra đồ thị hàm số không có tiệm cận ngang.

    Ta có \left\{ \begin{matrix}
\lim_{x ightarrow \ 1^{+}}\frac{\sqrt{2 - x^{2}} - 1}{x^{2} - 3x + 2}
= 0 \\
\lim_{x ightarrow 1^{-}}\frac{\sqrt{2 - x^{2}} - 1}{x^{2} - 3x + 2} =
0 \\
\end{matrix} ight.. Do đó đồ thị hàm số không có tiệm cận đứng.

    Vậy đồ thị hàm số không có tiệm cận.

  • Câu 6: Vận dụng
    Tính a + b

    Cho hàm số y = \frac{{ax + b}}{{x + 1}}. Biết đồ thị hàm số đã cho đi qua điểm A\left( {0; - 1} ight) và có đường tiệm cận ngang là y = 1. Giá trị a + b bằng:

    Gợi ý:

     Để tồn tại các đường tiệm cận của đồ thị hàm số y = \frac{{ax + b}}{{cx + d}} thì \left\{ {\begin{array}{*{20}{c}}  {c e 0} \\   {ad - bc e 0} \end{array}} ight.

    Khi đó phương trình đường tiệm cận ngang là y = \frac{a}{c}

    Hướng dẫn:

    Điều kiện để đồ thị hàm số có tiệm cận là a - b e 0

    => Đồ thị hàm số đi qua điểm A\left( {0; - 1} ight) nên b =  - 1

    Đồ thị hàm số có đường tiệm cận ngang là y = a \Rightarrow a = 1 (thỏa mãn)

    Vậy a + b = 0

  • Câu 7: Vận dụng
    Xác định tham số m thỏa mãn bài toán

    Tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{1 + \sqrt{x + 1}}{x^{2} - 2x -
m} có đúng hai tiệm cận đứng?

    Hướng dẫn:

    Điều kiện xác định x \geq -
1

    1 + \sqrt{x + 1} > 0;\forall x \geq
- 1 nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình x^{2} - 2x = m\ \ (*) phải có hai nghiệm phân biệt lớn hơn -
1.

    Xét hàm số f(x) = x^{2} - 2x trên \lbrack - 1; + \infty) có:

    f'(x) = 2x - 2 = 0 \Rightarrow x =
1

    Bảng biến thiên

    Phương trình (*) có hai nghiệm phân biệt lớn hơn - 1 khi - 1
< m \leq 3.

    Vậy đáp án cần tìm là m \in ( -
1;3brack.

  • Câu 8: Vận dụng
    Tìm tổng các đường tiệm cận

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{1}{2f(x) - 1} là:

    Hướng dẫn:

    Điều kiện xác định của hàm số y =
\frac{1}{2f(x) - 1}2f(x) - 1
eq 0 \Leftrightarrow f(x) eq \frac{1}{2}

    Từ bảng biến thiên ta có: f(x) =
\frac{1}{2} \Leftrightarrow \left\lbrack \begin{matrix}
x = x_{1} \in ( - \infty; - 0,5) \\
x = x_{2} \in ( - 0,5; - \infty) \\
\end{matrix} ight.

    Tập xác định \mathbb{R}\backslash\left\{
x_{1};x_{2} ight\}

    Ta có:

    \lim_{x ightarrow -
\infty}\frac{1}{2f(x) - 1} = \frac{1}{2.1 - 1} = 1 suy ra đồ thị hàm số có tiệm cận ngang y =
1.

    \lim_{x ightarrow +
\infty}\frac{1}{2f(x) - 1} = \frac{1}{2.1 - 1} = 1 suy ra đồ thị hàm số có tiệm cận ngang y =
1.

    \lim_{x ightarrow
{x_{1}}^{\pm}}\frac{1}{2f(x) - 1} = \mp \infty suy ra đồ thị hàm số có tiệm cận đứng x =
x_{1}.

    \lim_{x ightarrow
{x_{2}}^{\pm}}\frac{1}{2f(x) - 1} = \pm \infty suy ra đồ thị hàm số có tiệm cận đứng x =
x_{2}.

    Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{1}{2f(x) - 1}3.

  • Câu 9: Vận dụng
    Ghi đáp án vào ô trống

    Gọi S là tập hợp các giá trị m để tiệm cận xiên của đồ thị hàm số y = \frac{mx^{2} + x - 3}{x - 1} tạo với hai trục hệ tọa độ Oxy một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi S là tập hợp các giá trị m để tiệm cận xiên của đồ thị hàm số y = \frac{mx^{2} + x - 3}{x - 1} tạo với hai trục hệ tọa độ Oxy một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Vận dụng
    Tìm số đường tiệm cận của hàm số

    Cho hàm số y = f\left( x ight) có bảng biến thiên như hình vẽ dưới đây.

    Tìm số đường tiệm cận của hàm số

    Số đường tiệm cận của đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} là:

    Gợi ý:

    Đường thẳng x = {x_0} là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f\left( x ight) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = {y_0} là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f\left( x ight) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Phương trình f\left( x ight) = 2018 có 2 nghiệm phân biệt

    => Đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} có 2 đường tiệm cận đứng.

    Khi x \to  - \infty thì y \to 5 \Rightarrow y = \frac{2}{{f\left( x ight) - 2018}} \to \frac{2}{{ - 2013}}

    Khi x \to  + \infty thì y \to 5 \Rightarrow y = \frac{2}{{f\left( x ight) - 2018}} \to \frac{2}{{ - 2013}}

    Vậy đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} có 1 tiệm cận ngang.

     

  • Câu 11: Vận dụng
    Tìm m để đồ thị có 1 tiệm cận ngang

    Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{x - 3}{x + \sqrt{mx^{2} + 4}} có đúng một tiệm cận ngang.

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{x - 3}{x + \sqrt{mx^{2} + 4}} = \frac{1}{1 +
\sqrt{m}} với m \geq
0;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{x - 3}{x + \sqrt{mx^{2} + 4}} = \frac{1}{1 -
\sqrt{m}} với m \geq 0,m eq
1.

    Nếu m = 1 thì \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{(x - 3)\left( \sqrt{x^{2} + 4} - x
ight)}{4}= \lim_{x ightarrow - \infty}x^{2}.\frac{\left( 1 -
\frac{3}{x} ight)\left( - \sqrt{1 + \frac{4}{x^{2}}} - 1 ight)}{4} =
- \infty suy ra hàm số chỉ có đúng một TCN là y = \frac{1}{2} (Do\lim_{x ightarrow + \infty}y =
\frac{1}{2} khi m = 1)

    Do đó giá trị m = 1 thỏa yêu cầu bài toán.

    Nếu \left\{ \begin{matrix}
m \geq 0 \\
m eq 1 \\
\end{matrix} ight., để đồ thị hàm số có một tiệm cận ngang \Leftrightarrow \frac{1}{1 + \sqrt{m}} =
\frac{1}{1 - \sqrt{m}} \Leftrightarrow m = 0.

    Vậy m = 0,m = 1 thỏa mãn yêu cầu bài toán.

  • Câu 12: Thông hiểu
    Xác định đường tiệm cận

    Tìm các đường tiệm cận của đồ thị hàm số y = \frac{\sqrt{x^{2} - 4}}{x - 1}.

    Gợi ý:

    Tìm tiệm cận ngang của đồ thị hàm số.

    Hướng dẫn:

    Tập xác định của hàm số: D = ( - \infty;
- 2brack \cup \lbrack 2; + \infty).

    +) Ta có: \lim_{x ightarrow
1^{+}}y\lim_{x ightarrow
1^{-}}y không tồn tại nên đồ thị hàm số không có đường tiệm cận đứng.

    +) Ta có: \lim_{x ightarrow + \infty}y
= \lim_{x ightarrow + \infty}\frac{\sqrt{x^{2} - 4}}{x - 1} = \lim_{x
ightarrow + \infty}\frac{\sqrt{1 - \frac{4}{x^{2}}}}{1 - \frac{1}{x}}
= 1

    \lim_{x ightarrow - \infty}y =\lim_{x ightarrow - \infty}\frac{\sqrt{x^{2} - 4}}{x - 1}= \lim_{xightarrow - \infty}\frac{- \sqrt{1 - \frac{4}{x^{2}}}}{1 -\frac{1}{x}} = - 1 \Rightarrow y = 1,y = - 1 là các đường tiệm cận ngang của đồ thị hàm số.

  • Câu 13: Thông hiểu
    Chọn phương án thích hợp

    Đồ thị hàm số y = \frac{x +
1}{\sqrt{x^{2} - 1}} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    TXĐ: D = ( - \infty\ ; - 1) \cup (1\ ; +
\infty).Ta có:

    \lim_{x ightarrow + \infty}y =
1\overset{}{ightarrow}\ \ y = 1 là tiệm cận ngang và \lim_{x ightarrow - \infty}f(x) = - 1
ightarrow y = - 1 là tiệm cận ngang

    \lim_{x ightarrow \ ( - 1)^{-}}y =
\lim_{x ightarrow \ ( - 1)^{-}}\frac{- ( - x - 1)}{\sqrt{( - x - 1)(1
- x)}}= \lim_{x ightarrow \ ( - 1)^{-}}\frac{- \sqrt{- x -1}}{\sqrt{1 - x}} = 0 ightarrow x = - 1 không là tiệm cận đứng

    \lim_{x ightarrow \ 1^{+}}y = \lim_{x
ightarrow \ 1^{+}}\frac{x + 1}{\sqrt{x^{2} - 1}} = +
\infty\overset{}{ightarrow}\ \ x = 1 là tiệm cận đứng.

    Vậy đồ thị hàm số có đúng ba tiệm cận.

  • Câu 14: Thông hiểu
    Xác định số tiệm cận của hàm số

    Số tiệm cận của hàm số y = \frac{{\sqrt {{x^2} + 1}  - x}}{{\sqrt {{x^2} - 9}  - 4}} là:

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Tập xác định: \left\{ {\begin{array}{*{20}{c}}  {{x^2} - 9 \geqslant 0} \\   {\sqrt {{x^2} - 9}  e 4} \end{array}} ight. \Rightarrow x \in \left( { - \infty ; - 3} ight] \cup \left[ {3; + \infty } ight)\backslash \left\{ { \pm 5} ight\}

    Khi đó \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = 0;\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = 2

    => Đồ thị hàm số có hai tiệm cận ngang

    Mặt khác \mathop {\lim }\limits_{x \to  \pm {5^ + }} f\left( x ight) =  \mp \infty ;\mathop {\lim }\limits_{x \to  \pm {5^ - }} f\left( x ight) =  \pm \infty

    => Đồ thị hàm số có hai tiệm cận đứng

    Vậy đồ thị hàm số đã cho có 4 đường tiệm cận.

  • Câu 15: Vận dụng
    Tìm m để đồ thị hàm số có tiệm cận ngang

    Tìm giá trị của tham số m sao cho đồ thị hàm số y = 2x + \sqrt {m{x^2} - x + 1}  + 1 có tiệm cận ngang.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \left( {2x + 1} ight) + \sqrt {m{x^2} - x + 1}  \hfill \\   \Rightarrow y = \dfrac{{4{x^2} + 4x + 1 - \left( {m{x^2} - x + 1} ight)}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\   \Rightarrow y = \dfrac{{\left( {4 - m} ight){x^2} + 5x}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\ \end{matrix}

    Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số

    Đồng thời \mathop {\lim }\limits_{x \to \infty } y = {y_0} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4 - m = 0} \end{array} \Rightarrow m = 4} ight.

  • Câu 16: Vận dụng
    Số tiệm cận đứng của đồ thị hàm số

    Cho hàm số xác định trên và có bảng biến thiên như hình vẽ:

    Số tiệm cận đứng của đồ thị hàm số

    Số đường tiệm cận đứng của đồ thị hàm số y = \frac{{x - 2}}{{{f^2}\left( x ight) - 5f\left( x ight) + 4}} là:

    Gợi ý:

    Đường thẳng x = {x_0} là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f\left( x ight) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Hướng dẫn:

    Ta có: {f^2}\left( x ight) - 5f\left( x ight) + 4 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 4} \\   {f\left( x ight) = 1} \end{array}} ight.

    Phương trình f\left( x ight) = 4 có 3 nghiệm phân biệt khác 2.

    Phương trình f\left( x ight) = 1 có một nghiệm kép là x = 2 (do vậy mẫu số có dạng {\left( {x - 2} ight)^2} nên x = 2 vẫn là TCĐ của đồ thị hàm số

    => Đồ thị hàm số y = \frac{{x - 2}}{{{f^2}\left( x ight) - 5f\left( x ight) + 4}} có 4 đường tiệm cận đứng.

  • Câu 17: Vận dụng
    Ghi đáp án vào ô trống

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng cao
    Xác định m để đồ thị hàm số có 4 tiệm cận thỏa mãn điều kiện

    Tìm giá trị của tham số m để đồ thị hàm số y = f\left( x ight) = \frac{{2x + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} có hai đường tiệm cận đứng và hai đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2.

    Hướng dẫn:

    Tập xác định D = \left( { - \infty ; - 1} ight) \cup \left( {0; + \infty } ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{m - \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \dfrac{1}{x}}}{{ - \sqrt {{1^2} + \dfrac{1}{x}} }} = 1 - m \hfill \\  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{m + \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \frac{1}{x}}}{{\sqrt {{1^2} + \dfrac{1}{x}} }} = m + 1 \hfill \\ \end{matrix}

    => Để đồ thị hàm số có 2 đường tiệm cận ngang thì m + 1 e 1 - m \Leftrightarrow m e 0

    \begin{matrix}  \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} =  + \infty  \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} = \left\{ {\begin{array}{*{20}{c}}  { + \infty {\text{  khi m  <  1}}} \\   { - \infty {\text{  khi m  >  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy khi m e 0;m e 1 thì đồ thị hàm số có 2 đường tiệm cận ngang là y = m + 1; y = - m và 2 đường tiệm cận đứng là x = 0 và x = -1

    Để hai đường tiệm cận đứng và 2 đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2 thì 1.2\left| m ight| = 2 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {m = 1\left( L ight)} \\   {m =  - 1\left( {tm} ight)} \end{array}} ight.

  • Câu 19: Thông hiểu
    Tìm số đường tiệm cận đứng của đồ thị hàm số

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số g(x) =
\frac{2020}{2f(x) + 1} có bao nhiêu đường tiệm cận đứng?

    Hướng dẫn:

    Số đường tiệm cận đứng là số nghiệm của phương trình f(x) = - \frac{1}{2}

    Nhìn vào đồ thị ta thấy phương trình trên có 4 nghiệm tương ứng với 4 đường tiệm cận đứng.

  • Câu 20: Vận dụng
    Tìm m để hàm số có tiệm cận đứng

    Tìm tập hợp các giá trị thực của m để đồ thị hàm số y = \frac{{x - 1}}{{mx - 1}} có tiệm cận đứng là:

    Gợi ý:

    Để tồn tại các đường tiệm cận của đồ thị hàm số y = \frac{{ax + b}}{{cx + d}} thì \left\{ {\begin{array}{*{20}{c}}  {c e 0} \\   {ad - bc e 0} \end{array}} ight.

    Khi đó phương trình đường tiệm cận đứng là y =  - \frac{d}{c}

    Hướng dẫn:

     Điều kiện để đồ thị hàm số có tiệm cận là \left\{ {\begin{array}{*{20}{c}}  {m e 0} \\   { - 1 + m e 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m e 0} \\   {m e 1} \end{array}} ight.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo