Có bao nhiêu giá trị nguyên của tham số thực thuộc đoạn
để hàm số
có hai tiệm cận đứng.
Để hàm số có hai tiệm cận đứng
có hai nghiệm phân biệt khác
Mà
.
Vậy có tất cả giá trị nguyên thỏa mãn.
Có bao nhiêu giá trị nguyên của tham số thực thuộc đoạn
để hàm số
có hai tiệm cận đứng.
Để hàm số có hai tiệm cận đứng
có hai nghiệm phân biệt khác
Mà
.
Vậy có tất cả giá trị nguyên thỏa mãn.
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đường tiệm cận ngang.
Đồ thị hàm số có đường tiệm cận ngang khi và chỉ khi các giới hạn
và
tồn tại hữu hạn.
Ta có:
Với .
Khi đó suy ra đồ thị không có tiệm cận ngang.
Với , khi đó hàm số có tập xác định:
nên ta không xét trường hợp
hay
được.
Do đó hàm số không có tiệm cận ngang.
Với , khi đó hàm số có tập xác định
và
là TCN.
Đồ thị hàm số nào trong các hàm số dưới đây có tiệm cận đứng?
Nhận thấy các đáp án ;
;
là các hàm số có TXĐ:
nên không có TCĐ.
Dùng phương pháp loại trừ thì đúng.
(Thật vậy; hàm số có
là TCĐ)
Cho hàm số y = f(x) liên tục trên tập số thực và . Có bao nhiêu giá trị nguyên của tham số m thuộc [-2020; 2020] để đồ thị hàm số
có tiệm cận ngang nằm bên dưới đường thẳng y = -1.
Điều kiện
Do
Từ đó
Khi đó hàm số g(x) có tiệm cận ngang là đường thẳng
Để tiệm cận ngang tìm được ở trên nằm dưới đường thẳng y = - thì
Vì
Tìm tất cả các giá trị của tham số để đồ thị hàm số
có tiệm cận ngang mà không có tiệm cận đứng.
Ta có là tiệm cận ngang với mọi
.
Do đó để đồ thị hàm số có tiệm cận ngang mà không có tiệm cận đứng thì phương trình vô nghiệm
.
Nhận xét.
Bạn đọc dễ nhầm lẫn mà xét thêm trường hợp mẫu thức có nghiệm
.Điều này là sai, vì với
thì hàm số trở thành
. Đồ thị này vẫn còn tiệm cận đứng là
.
Đường tiệm cận xiên của đồ thị hàm số là đường thẳng có phương trình
Tập xác định: .
Phương trình đường tiệm cận xiên có dạng: .
Trong đó,
.
Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng một tiệm cận đứng?
Đồ thị hàm số có đúng một tiệm cận đứng khi và chỉ khi phương trình
có đúng một nghiệm
Ta có:
Xét hàm số ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra
Mà nên
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Tìm m để đồ thị hàm số không có tiệm cận đứng.
Cho hàm số
với
là tham số thực. Gọi
là điểm thuộc
sao cho tổng khoảng cách từ
đến hai đường tiệm cận của
nhỏ nhất. Tìm tất cả các giá trị của
để giá trị nhỏ nhất đó bằng
Áp dụng công thức giải nhanh:
Điểm thuộc đồ thị hàm số
.
Đồ thị hàm số có TCĐ ; TCN
.
Ta có .
Khi đó
Áp dụng: Ycbt
Cho hàm số xác định trên
liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:
Số đường tiệm cận của đồ thị hàm số bằng:
Dựa vào bảng biến thiên ta thấy có 4 nghiệm phân biệt nên đồ thị hàm số
có 4 đường tiệm cận đứng.
Ngoài ra nên đồ thị hàm số
có hai đường tiệm cận ngang.
Vậy số đường tiệm cận của đồ thị hàm số bằng 6.
Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
TXĐ: suy ra không tồn tại
và
Suy ra đồ thị hàm số không có tiệm cận ngang.
Ta có . Do đó đồ thị hàm số không có tiệm cận đứng.
Vậy đồ thị hàm số không có tiệm cận.
Cho hàm số . Tìm
để khoảng cách từ gốc
đến tiệm cận xiên hoặc ngang là nhỏ nhất.
Cho hàm số . Tìm
để khoảng cách từ gốc
đến tiệm cận xiên hoặc ngang là nhỏ nhất.
Cho hàm số có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Tồn tại đúng một điểm M(a,b) trên đường cong sao cho tiếp tuyến của đường cong tại M tạo với hai trục toạ độ một tam giác có diện tích bằng 2. Tính 4a + b + 10.
Tìm giá trị thực của tham số để đồ thị hàm sô
có đường tiệm cận đứng đi qua điểm
TXĐ: .
Ta có là TCĐ.
Do đó yêu cầu bài toán .
Cho hàm số . Biết đồ thị hàm số đã cho đi qua điểm
và có đường tiệm cận ngang là
. Giá trị
bằng:
Để tồn tại các đường tiệm cận của đồ thị hàm số thì
Khi đó phương trình đường tiệm cận ngang là
Điều kiện để đồ thị hàm số có tiệm cận là
=> Đồ thị hàm số đi qua điểm nên
Đồ thị hàm số có đường tiệm cận ngang là (thỏa mãn)
Vậy
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng một tiệm cận ngang.
Ta có:
với
;
với
Nếu thì
suy ra hàm số chỉ có đúng một TCN là
(Do
khi
)
Do đó giá trị thỏa yêu cầu bài toán.
Nếu , để đồ thị hàm số có một tiệm cận ngang
Vậy thỏa mãn yêu cầu bài toán.
Cho hàm số | ![]() |
Dựa vào đồ thị hàm số để xác định nghiệm của mẫu số và tử số từ đó suy ra các đường tiệm cận đứng của đồ thị hàm số.
Tìm các giới hạn để tìm các đường tiệm cận ngang của đồ thị hàm số.
Từ đồ thị hàm số ta có nhận xét như sau:
Đường thẳng x = 2 là tiệm cận đứng của đồ thị (C)
=>
Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số (C)
=>
Điểm có tọa độ (0; -1) thuộc đồ thị hàm số (C)
=> y(0) = -1 =>
=>
Số đường tiệm cận của đồ thị hàm số là:
Tập xác định
suy ra
là tiệm cận ngang.
suy ra
là tiệm cận ngang.
Vậy không là tiệm cận đứng của đồ thị hàm số đã cho.
suy ra
là tiệm cận đứng của đồ thị hàm số đã cho
Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.
Cho hàm số . Mệnh đề nào sau đây là đúng?
TXĐ: . Ta có:
là TCN;
là TCĐ;
là TCĐ.
Vậy hàm số có hai tiệm cận đứng và một tiệm cận ngang.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: