Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng một tiệm cận đứng.
Để đồ thị hàm số có đúng một tiệm cận đứng
có nghiệm duy nhất
.
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng một tiệm cận đứng.
Để đồ thị hàm số có đúng một tiệm cận đứng
có nghiệm duy nhất
.
Cho hàm số | ![]() |
Dựa vào đồ thị hàm số để xác định nghiệm của mẫu số và tử số từ đó suy ra các đường tiệm cận đứng của đồ thị hàm số.
Tìm các giới hạn để tìm các đường tiệm cận ngang của đồ thị hàm số.
Từ đồ thị hàm số ta có nhận xét như sau:
Đường thẳng x = 2 là tiệm cận đứng của đồ thị (C)
=>
Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số (C)
=>
Điểm có tọa độ (0; -1) thuộc đồ thị hàm số (C)
=> y(0) = -1 =>
=>
Cho hàm số
với
là tham số thực. Gọi
là điểm thuộc
sao cho tổng khoảng cách từ
đến hai đường tiệm cận của
nhỏ nhất. Tìm tất cả các giá trị của
để giá trị nhỏ nhất đó bằng
Áp dụng công thức giải nhanh:
Điểm thuộc đồ thị hàm số
.
Đồ thị hàm số có TCĐ ; TCN
.
Ta có .
Khi đó
Áp dụng: Ycbt
Tồn tại đúng một điểm M(a,b) trên đường cong sao cho tiếp tuyến của đường cong tại M tạo với hai trục toạ độ một tam giác có diện tích bằng 2. Tính 4a + b + 10.
Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
TXĐ: suy ra không tồn tại
và
Suy ra đồ thị hàm số không có tiệm cận ngang.
Ta có . Do đó đồ thị hàm số không có tiệm cận đứng.
Vậy đồ thị hàm số không có tiệm cận.
Cho hàm số . Biết đồ thị hàm số đã cho đi qua điểm
và có đường tiệm cận ngang là
. Giá trị
bằng:
Để tồn tại các đường tiệm cận của đồ thị hàm số thì
Khi đó phương trình đường tiệm cận ngang là
Điều kiện để đồ thị hàm số có tiệm cận là
=> Đồ thị hàm số đi qua điểm nên
Đồ thị hàm số có đường tiệm cận ngang là (thỏa mãn)
Vậy
Tập hợp tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng hai tiệm cận đứng?
Điều kiện xác định
Vì nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình
phải có hai nghiệm phân biệt lớn hơn
.
Xét hàm số trên
có:
Bảng biến thiên
Phương trình (*) có hai nghiệm phân biệt lớn hơn khi
.
Vậy đáp án cần tìm là .
Cho hàm số có bảng biến thiên như sau:
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số là:
Điều kiện xác định của hàm số là
Từ bảng biến thiên ta có:
Tập xác định
Ta có:
suy ra đồ thị hàm số có tiệm cận ngang
.
suy ra đồ thị hàm số có tiệm cận ngang
.
suy ra đồ thị hàm số có tiệm cận đứng
.
suy ra đồ thị hàm số có tiệm cận đứng
.
Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là
.
Gọi là tập hợp các giá trị
để tiệm cận xiên của đồ thị hàm số
tạo với hai trục hệ tọa độ
một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của
bằng bao nhiêu?
Gọi là tập hợp các giá trị
để tiệm cận xiên của đồ thị hàm số
tạo với hai trục hệ tọa độ
một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của
bằng bao nhiêu?
Cho hàm số có bảng biến thiên như hình vẽ dưới đây.

Số đường tiệm cận của đồ thị hàm số là:
Đường thẳng là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số
nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số
nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Phương trình có 2 nghiệm phân biệt
=> Đồ thị hàm số có 2 đường tiệm cận đứng.
Khi thì
Khi thì
Vậy đồ thị hàm số có 1 tiệm cận ngang.
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng một tiệm cận ngang.
Ta có:
với
;
với
Nếu thì
suy ra hàm số chỉ có đúng một TCN là
(Do
khi
)
Do đó giá trị thỏa yêu cầu bài toán.
Nếu , để đồ thị hàm số có một tiệm cận ngang
Vậy thỏa mãn yêu cầu bài toán.
Tìm các đường tiệm cận của đồ thị hàm số .
Tìm tiệm cận ngang của đồ thị hàm số.
Tập xác định của hàm số: .
+) Ta có: và
không tồn tại nên đồ thị hàm số không có đường tiệm cận đứng.
+) Ta có:
và là các đường tiệm cận ngang của đồ thị hàm số.
Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
TXĐ: Ta có:
là tiệm cận ngang và
là tiệm cận ngang
không là tiệm cận đứng
là tiệm cận đứng.
Vậy đồ thị hàm số có đúng ba tiệm cận.
Số tiệm cận của hàm số là:
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Tập xác định:
Khi đó
=> Đồ thị hàm số có hai tiệm cận ngang
Mặt khác
=> Đồ thị hàm số có hai tiệm cận đứng
Vậy đồ thị hàm số đã cho có 4 đường tiệm cận.
Tìm giá trị của tham số m sao cho đồ thị hàm số có tiệm cận ngang.
Ta có:
Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số
Đồng thời
Cho hàm số xác định trên và có bảng biến thiên như hình vẽ:

Số đường tiệm cận đứng của đồ thị hàm số là:
Đường thẳng là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số
nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Ta có:
Phương trình có 3 nghiệm phân biệt khác 2.
Phương trình có một nghiệm kép là x = 2 (do vậy mẫu số có dạng
nên x = 2 vẫn là TCĐ của đồ thị hàm số
=> Đồ thị hàm số có 4 đường tiệm cận đứng.
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Tìm giá trị của tham số m để đồ thị hàm số có hai đường tiệm cận đứng và hai đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2.
Tập xác định
Ta có:
=> Để đồ thị hàm số có 2 đường tiệm cận ngang thì
Vậy khi thì đồ thị hàm số có 2 đường tiệm cận ngang là y = m + 1; y = - m và 2 đường tiệm cận đứng là x = 0 và x = -1
Để hai đường tiệm cận đứng và 2 đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2 thì
Cho hàm số có đồ thị như hình vẽ:
Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận đứng?
Số đường tiệm cận đứng là số nghiệm của phương trình
Nhìn vào đồ thị ta thấy phương trình trên có 4 nghiệm tương ứng với 4 đường tiệm cận đứng.
Tìm tập hợp các giá trị thực của m để đồ thị hàm số có tiệm cận đứng là:
Để tồn tại các đường tiệm cận của đồ thị hàm số thì
Khi đó phương trình đường tiệm cận đứng là
Điều kiện để đồ thị hàm số có tiệm cận là
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: