Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 3 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm câu sai

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây là sai?

    Hướng dẫn:

    Từ bảng biến thiên, ta có:

    \lim_{x ightarrow \pm \infty}y = 0
ightarrow y = 0 là TCN;

    \left\{ \begin{matrix}
\lim_{x ightarrow \ ( - 3)^{+}}y = - \infty \\
\lim_{x ightarrow \ ( - 3)^{-}}y = + \infty \\
\end{matrix} ight.\  ightarrow x = - 3 là TCĐ;

    \left\{ \begin{matrix}
\lim_{x ightarrow \ 3^{+}}y = - \infty \\
\lim_{x ightarrow \ 3^{-}}y = + \infty \\
\end{matrix} ight.\  ightarrow x = 3 là TCĐ.

    Vậy đồ thị hàm số có tất cả ba đường tiệm cận. Do đó “Đồ thị hàm số có tất cả hai đường tiệm cận” sai.

  • Câu 2: Vận dụng
    Tìm m để khoảng cách nhỏ nhất

    Cho hàm số y = \frac{x - m}{x +
1} (C) với m là tham số thực. Gọi M là điểm thuộc (C) sao cho tổng khoảng cách từ M đến hai đường tiệm cận của (C) nhỏ nhất. Tìm tất cả các giá trị của m để giá trị nhỏ nhất đó bằng 2.

    Hướng dẫn:

    Áp dụng công thức giải nhanh:

    Điểm M\left( x_{0};y_{0} = \frac{ax_{0} +
b}{cx_{0} + d} ight) thuộc đồ thị hàm số y = \frac{ax + b}{cx + d}.

    Đồ thị hàm số có TCĐ \Delta_{1}:x +
\frac{d}{c} = 0; TCN \Delta_{2}:y -
\frac{a}{c} = 0.

    Ta có \left\{ \begin{matrix}
d_{1} = d\left\lbrack M,\Delta_{1} ightbrack = \left| x_{0} +
\frac{d}{c} ight| = \left| \frac{cx_{0} + d}{c} ight| \\
d_{2} = d\left\lbrack M,\Delta_{2} ightbrack = \left| y_{0} -
\frac{a}{c} ight| = \left| \frac{ad - bc}{c\left( cx_{0} + d ight)}
ight| \\
\end{matrix} ight..

    Khi đó d_{1} + d_{2} \geq
2\sqrt{\frac{|ad - bc|}{c^{2}}}.

    Áp dụng: Ycbt \Leftrightarrow
\sqrt{\frac{|ad - bc|}{c^{2}}} = 1

    \Leftrightarrow \frac{|ad - bc|}{c^{2}} =
1 \Leftrightarrow |1 + m| = 1 \Leftrightarrow \left\lbrack
\begin{matrix}
m = 0 \\
m = - 2 \\
\end{matrix} ight.

  • Câu 3: Vận dụng
    Tìm m để hàm số có tiệm cận đứng

    Tìm tập hợp các giá trị thực của m để đồ thị hàm số y = \frac{{x - 1}}{{mx - 1}} có tiệm cận đứng là:

    Gợi ý:

    Để tồn tại các đường tiệm cận của đồ thị hàm số y = \frac{{ax + b}}{{cx + d}} thì \left\{ {\begin{array}{*{20}{c}}  {c e 0} \\   {ad - bc e 0} \end{array}} ight.

    Khi đó phương trình đường tiệm cận đứng là y =  - \frac{d}{c}

    Hướng dẫn:

     Điều kiện để đồ thị hàm số có tiệm cận là \left\{ {\begin{array}{*{20}{c}}  {m e 0} \\   { - 1 + m e 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m e 0} \\   {m e 1} \end{array}} ight.

  • Câu 4: Vận dụng
    Tìm tiệm cận của đồ thị hàm số

    Số đường tiệm cận của đồ thị hàm số y =
\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3} là:

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;3 ight\}

    \lim_{x ightarrow +\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow +\infty}\dfrac{x^{2}\left( \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 -\dfrac{2}{x} - \dfrac{3}{x^{2}}} = 2 suy ra y = 2 là tiệm cận ngang.

    \lim_{x ightarrow -\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow -\infty}\dfrac{x^{2}\left( - \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = 0 suy ra y =
0 là tiệm cận ngang.

    \lim_{x ightarrow - 1}\left\lbrack\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3}ightbrack= \lim_{x ightarrow - 1}\frac{x\left( \sqrt{x^{2} + 3} +x - 1 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}{\left( x^{2} - 2x- 3 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x(x +
1)}{(x - 3)(x + 1)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x}{(x -
3)\left( \sqrt{x^{2} + 3} - x + 1 ight)} = \frac{- 2}{16} =
\frac{1}{8}

    Vậy x = - 1 không là tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
3 là tiệm cận đứng của đồ thị hàm số đã cho

    Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.

  • Câu 5: Thông hiểu
    Chọn khẳng định sai

    Cho hàm số y = \frac{{x + 2}}{{x - 3}}. Khẳng định nào sau đây sai?

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Ta có tiệm cận đứng của hàm số là y = 3 và tiệm cận ngang là y = 1

    Giao điểm của hai đường tiệm cận I(3; 1) là tâm đối xứng của đồ thị

    => A, C, D đúng và B sai

  • Câu 6: Vận dụng
    Tìm số đường tiệm cận của hàm số

    Cho hàm số y = f\left( x ight) có bảng biến thiên như hình vẽ dưới đây.

    Tìm số đường tiệm cận của hàm số

    Số đường tiệm cận của đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} là:

    Gợi ý:

    Đường thẳng x = {x_0} là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f\left( x ight) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = {y_0} là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f\left( x ight) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Phương trình f\left( x ight) = 2018 có 2 nghiệm phân biệt

    => Đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} có 2 đường tiệm cận đứng.

    Khi x \to  - \infty thì y \to 5 \Rightarrow y = \frac{2}{{f\left( x ight) - 2018}} \to \frac{2}{{ - 2013}}

    Khi x \to  + \infty thì y \to 5 \Rightarrow y = \frac{2}{{f\left( x ight) - 2018}} \to \frac{2}{{ - 2013}}

    Vậy đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} có 1 tiệm cận ngang.

     

  • Câu 7: Vận dụng
    Tính a + b

    Cho hàm số y = \frac{{ax + b}}{{x + 1}}. Biết đồ thị hàm số đã cho đi qua điểm A\left( {0; - 1} ight) và có đường tiệm cận ngang là y = 1. Giá trị a + b bằng:

    Gợi ý:

     Để tồn tại các đường tiệm cận của đồ thị hàm số y = \frac{{ax + b}}{{cx + d}} thì \left\{ {\begin{array}{*{20}{c}}  {c e 0} \\   {ad - bc e 0} \end{array}} ight.

    Khi đó phương trình đường tiệm cận ngang là y = \frac{a}{c}

    Hướng dẫn:

    Điều kiện để đồ thị hàm số có tiệm cận là a - b e 0

    => Đồ thị hàm số đi qua điểm A\left( {0; - 1} ight) nên b =  - 1

    Đồ thị hàm số có đường tiệm cận ngang là y = a \Rightarrow a = 1 (thỏa mãn)

    Vậy a + b = 0

  • Câu 8: Thông hiểu
    Tìm số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến như sau:

    Số đường tiệm cận của đồ thị hàm số là:

    Hướng dẫn:

    Từ bảng biến thiên của hàm số ta có:

    +\lim_{x ightarrow - \infty}y =
0;\lim_{x ightarrow + \infty}y = 0 \Rightarrowđồ thị hàm số nhận đường thẳng y = 0 là tiệm cận ngang.

    +\lim_{x ightarrow ( - 3)^{-}}y = +
\infty;\lim_{x ightarrow ( - 3)^{+}} = - \infty \Rightarrowđồ thị hàm số nhận đường thẳng x = - 3 là tiệm cận đứng.

    +\lim_{x ightarrow 3^{-}}y = +
\infty;\lim_{x ightarrow 3^{+}} = - \infty \Rightarrowđồ thị hàm số nhận đường thẳng x = 3là tiệm cận đứng.

    Vậy số đường tiệm cận của đồ thị hàm số là 3.

  • Câu 9: Vận dụng
    Xác định tọa độ các điểm M theo yêu cầu

    Tìm trên đồ thị hàm số y = \frac{2x +
1}{x - 1} những điểm M sao cho khoảng cách từ M đến tiệm cận đứng bằng ba lần khoảng cách từ M đến tiệm cận ngang của đồ thị.

    Hướng dẫn:

    Gọi M\left( a\ ;\ \frac{2a + 1}{a - 1}
ight) với a eq 1 là điểm thuộc đồ thị.

    Đường tiệm cận đứng d:x = 1\ ; đường tiệm cận ngang d':y =
2.

    Ycbt \Leftrightarrow \ \ d\lbrack
M,dbrack = 3d\lbrack M,d'brack\ \  \Leftrightarrow \ \ |a - 1| =
3\left| \frac{2a + 1}{a - 1} - 2 ight|\

    \Leftrightarrow \ \ (a - 1)^{2} = 9\
\  \Leftrightarrow \ \ \left\lbrack \begin{matrix}
a = 4 \\
a = - 2 \\
\end{matrix} ight.\ \ \  \Rightarrow \ \ \left\lbrack \begin{matrix}
M(4\ ;\ 3) \\
M( - 2\ ;\ 1) \\
\end{matrix} ight. .

    Áp dụng công thức giải nhanh.

    \left|
\frac{cx_{0} + d}{c} ight| = k\left| \frac{ad - bc}{c\left( cx_{0} + d
ight)} ight| ightarrow x_{0} = - \frac{d}{c} \pm
\sqrt{kp}

    Với c = 1,\ \ d = - 1,\ \ k = 3,\ \ p =
\left| \frac{ad - bc}{c^{2}} ight| = 3.

    Suy ra x_{0} = 1 \pm 3.

  • Câu 10: Vận dụng cao
    Số tiệm cận đứng của đồ thị hàm số

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d có bảng biến thiên như hình dưới đây.

    Số tiệm cận đứng của đồ thị hàm số

    Hỏi đồ thị hàm số g\left( x ight) = \frac{{\left( {{x^2} - 3x + 2} ight)\sqrt {2x + 1} }}{{\left( {{x^4} - 5{x^2} + 4} ight).f\left( x ight)}} có bao nhiêu tiệm cận đứng?

    Hướng dẫn:

    Ta có: f'\left( x ight) = 3a{x^2} + 2bx + c = 3a\left( {x - 1} ight)\left( {x - 2} ight) = 3x\left( {{x^2} - 3x + 2} ight)

    Đồng nhất hai vế ta có: \left\{ {\begin{array}{*{20}{c}}  {2b =  - 9a} \\   {c = 6a} \end{array}} ight. \Rightarrow f\left( x ight) = a{x^3} - \frac{{9a}}{2}{x^2} + 6ax + d

    Mặt khác \left\{ {\begin{array}{*{20}{c}}  {f\left( 1 ight) = 5} \\   {f\left( 2 ight) = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a + \dfrac{9}{2}a + 6a + d = 5} \\   {8a - 18a + 12a + d = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{{10}}{{49}}} \\   {d = \dfrac{{ - 20}}{{19}}} \end{array}} ight.

    Giải phương trình f\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{1}{2}} \\   {x = 2} \end{array}} ight.

    Hàm số có tập xác định là D = \left[ { - \frac{1}{2}; + \infty } ight)\backslash \left\{ {\frac{1}{2};1;2} ight\}

    Khi đó

    g\left( x ight) = \frac{{\left( {{x^2} - 3x + 2} ight)\sqrt {2x + 1} }}{{\left( {{x^4} - 5{x^2} + 4} ight).f\left( x ight)}}

    = \frac{{\left( {x - 1} ight)\left( {x - 2} ight)\sqrt {2x + 1} }}{{\left( {{x^2} - 1} ight)\left( {{x^2} - 4} ight).f\left( x ight)}}

    = \frac{{\sqrt {2x + 1} }}{{\left( {x + 1} ight)\left( {x + 2} ight)f\left( x ight)}}

    => Đồ thị hàm số có 2 đường tiệm cận đứng là x = \frac{1}{2};x = 2

  • Câu 11: Vận dụng
    Chọn đáp án đúng:

    Đường thẳng y = kx + m vừa là tiếp tuyến của đường cong y = \frac{x+2}{2x+3}, vừa cắt hai trục toạ độ A, B sao cho tam giác OAB cân tại gốc tạo độ O. Tính giá trị của biểu thức S = m + k

  • Câu 12: Thông hiểu
    Chọn khẳng định đúng

    Gọi m,n lần lượt là số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{\sqrt{2 - x}}{(x - 1)\sqrt{x}}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D =
(0;2brack\backslash\left\{ 1 ight\}

    Đồ thị hàm số không có tiệm cận ngang.

    \lim_{x ightarrow 1^{+}}\frac{\sqrt{2 -
x}}{(x - 1)\sqrt{x}} = + \infty;\lim_{x ightarrow 1^{-}}\frac{\sqrt{2
- x}}{(x - 1)\sqrt{x}} = - \infty ta có x = 1 là tiệm cận đứng.

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{2 -
x}}{(x - 1)\sqrt{x}} = - \infty ta có: x = 0 là tiệm cận đứng.

    Vậy m = 0;n = 2.

  • Câu 13: Vận dụng
    Xác định số TCĐ và TCN của đồ thị hàm số

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d;\left( {a,b,c,d \in \mathbb{R}} ight) có đồ thị như hình vẽ dưới đây.

    Xác định số TCĐ và TCN của đồ thị hàm số

    Đồ thị hàm số g\left( x ight) = \frac{1}{{f\left( {4 - {x^2}} ight) - 3}} có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.

    Hướng dẫn:

    Đặt t = 4 - {x^2} khi đó x \to  \pm \infty thì t \to \infty

    Khi đó \mathop {\lim }\limits_{x \to  \pm \infty } g\left( x ight) = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{1}{{f\left( t ight) - 3}} = 0

    => y = 0 là tiệm cận ngang của đồ thị hàm số g(x)

    Mặt khác

    \begin{matrix}  f\left( {4 - {x^2}} ight) - 3 = 0 \hfill \\   \Leftrightarrow f\left( {4 - {x^2}} ight) = 3 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {4 - {x^2} =  - 2} \\   {4 - {x^2} = 4} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm \sqrt 6 } \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Đồ thị hàm số g(x) có ba đường tiệm cận đứng.

    Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.

  • Câu 14: Vận dụng
    Tìm tổng các đường tiệm cận

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{1}{2f(x) - 1} là:

    Hướng dẫn:

    Điều kiện xác định của hàm số y =
\frac{1}{2f(x) - 1}2f(x) - 1
eq 0 \Leftrightarrow f(x) eq \frac{1}{2}

    Từ bảng biến thiên ta có: f(x) =
\frac{1}{2} \Leftrightarrow \left\lbrack \begin{matrix}
x = x_{1} \in ( - \infty; - 0,5) \\
x = x_{2} \in ( - 0,5; - \infty) \\
\end{matrix} ight.

    Tập xác định \mathbb{R}\backslash\left\{
x_{1};x_{2} ight\}

    Ta có:

    \lim_{x ightarrow -
\infty}\frac{1}{2f(x) - 1} = \frac{1}{2.1 - 1} = 1 suy ra đồ thị hàm số có tiệm cận ngang y =
1.

    \lim_{x ightarrow +
\infty}\frac{1}{2f(x) - 1} = \frac{1}{2.1 - 1} = 1 suy ra đồ thị hàm số có tiệm cận ngang y =
1.

    \lim_{x ightarrow
{x_{1}}^{\pm}}\frac{1}{2f(x) - 1} = \mp \infty suy ra đồ thị hàm số có tiệm cận đứng x =
x_{1}.

    \lim_{x ightarrow
{x_{2}}^{\pm}}\frac{1}{2f(x) - 1} = \pm \infty suy ra đồ thị hàm số có tiệm cận đứng x =
x_{2}.

    Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{1}{2f(x) - 1}3.

  • Câu 15: Vận dụng
    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = \frac{x + 2}{x^{2} - 4x + m} có tiệm cận ngang mà không có tiệm cận đứng.

    Hướng dẫn:

    Ta có \lim_{x ightarrow \pm
\infty}\frac{x + 2}{x^{2} - 4x + m} = 0y = 0 là tiệm cận ngang với mọi m.

    Do đó để đồ thị hàm số có tiệm cận ngang mà không có tiệm cận đứng thì phương trình x^{2} - 4x + m = 0 vô nghiệm \Leftrightarrow \ \ \Delta'
< 0\ \  \Leftrightarrow \ \ m > 4.

    Nhận xét.

    Bạn đọc dễ nhầm lẫn mà xét thêm trường hợp mẫu thức x^{2} - 4x + m = 0 có nghiệm x = - 2 ightarrow m = - 12.Điều này là sai, vì với m = - 12 thì hàm số trở thành y = \frac{1}{x - 6}. Đồ thị này vẫn còn tiệm cận đứng là x =
6.

  • Câu 16: Vận dụng
    Tính tổng các tham số

    Biết đồ thị hàm số y = \frac{{\left( {2m - n} ight){x^2} + mx + 1}}{{{x^2} + mx + n - 6}} nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:

    Gợi ý:

     Điều kiện để đồ thị hàm số y = \frac{{f\left( x ight)}}{{g\left( x ight)}} có tiệm cận ngang là bậc f(x) không lớn hơn bậc của g(x).

    Điều kiện để đường thẳng x = x0 là tiệm cận đứng của đồ thị hàm số y = \frac{{f\left( x ight)}}{{g\left( x ight)}} là x0 là nghiệm của g(x) nhưng không là nghiệm của f(x) hoặc x0 là nghiệm bội n của g(x) đồng thời là nghiệm bội m của f(x) và m < n

    Hướng dẫn:

    Điều kiện {x^2} + mx + n - 6 e 0

    Phương trình đường tiệm cận ngang của đồ thị hàm số là y = 2m - n

    => 2m - n = 0\left( * ight)

    Đặt \left\{ {\begin{array}{*{20}{c}}  {f\left( x ight) = \left( {2m - n} ight){x^2} + mx + 1} \\   {g\left( x ight) = {x^2} + mx + n - 6} \end{array}} ight.

    Nhận thấy f\left( x ight) e 0 với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0

    => n – 6 = 0 => n = 6

    Kết hợp với (*) => m = 3

    Vậy m + n = 9

  • Câu 17: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
\right\}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

    Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên, ta có nhận xét như sau:

    “Đồ thị hàm số có một đường tiệm cận đứng” đúng vì \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{-}}f(x) = - \infty ightarrow x = 0 là tiệm cận đứng của đồ thị hàm số.

    “Hàm số đạt cực tiểu tại x = 0.” sai vì tại x = 0 hàm số không xác định.

    “Giá trị lớn nhất của hàm số là 2” sai vì hàm số đạt giá trị lớn nhất bằng 1 trên khoảng (0\ ; + \infty) mà không đạt giá trị lớn nhất trên khoảng ( - \infty\ ;\
0).

    “Hàm số không có cực trị” sai vì đạo hàm y' đổi dấu từ "\  + " sang "\  - " khi đi qua điểm x = 1\ \ \overset{}{ightarrow}\ \ x = 1 là điểm cực đại của hàm số.

  • Câu 18: Vận dụng
    Tìm m để đồ thị hàm số có tiệm cận đứng

    Tìm giá trị thực của tham số m để đồ thị hàm sô y = \frac{mx - 1}{2x +
m} có đường tiệm cận đứng đi qua điểm M\left( - 1;\sqrt{2} \right).

    Hướng dẫn:

    TXĐ: D\mathbb{= R}\backslash\left\{ -
\frac{m}{2} ight\}.

    Ta có \left\{ \begin{matrix}
\lim_{x ightarrow \left( - \frac{m}{2} ight)^{-}}y = \lim_{x
ightarrow \left( - \frac{m}{2} ight)^{-}}\frac{mx - 1}{2x + m} = +
\infty \\
\lim_{x ightarrow \left( - \frac{m}{2} ight)^{+}}y = \lim_{x
ightarrow \left( - \frac{m}{2} ight)^{+}}\frac{mx - 1}{2x + m} = -
\infty \\
\end{matrix} ight.\  ightarrow x = - \frac{m}{2} là TCĐ.

    Do đó yêu cầu bài toán \Leftrightarrow -
\frac{m}{2} = - 1 \Leftrightarrow m = 2.

  • Câu 19: Vận dụng
    Xác định tham số m thỏa mãn bài toán

    Tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{1 + \sqrt{x + 1}}{x^{2} - 2x -
m} có đúng hai tiệm cận đứng?

    Hướng dẫn:

    Điều kiện xác định x \geq -
1

    1 + \sqrt{x + 1} > 0;\forall x \geq
- 1 nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình x^{2} - 2x = m\ \ (*) phải có hai nghiệm phân biệt lớn hơn -
1.

    Xét hàm số f(x) = x^{2} - 2x trên \lbrack - 1; + \infty) có:

    f'(x) = 2x - 2 = 0 \Rightarrow x =
1

    Bảng biến thiên

    Phương trình (*) có hai nghiệm phân biệt lớn hơn - 1 khi - 1
< m \leq 3.

    Vậy đáp án cần tìm là m \in ( -
1;3brack.

  • Câu 20: Vận dụng
    Ghi đáp án vào ô trống

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo