Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm bán kính của đường tròn

    Cho mặt cầu tâm I bán kính R = 2,6{m{cm}} . Một mặt phẳng cắt mặt cầu và cách tâm I một khoảng bằng 2,4 cm . Thế thì bán kính của đường tròn do mặt phẳng cắt mặt cầu tạo nên là:

    Hướng dẫn:

     Theo đề bài, mặt phẳng cắt mặt cầu S(I;2,6 cm) theo một đường tròn (H;r) .

    Vậy r = \sqrt {{R^2} - I{H^2}}  = \sqrt {{{\left( {2,6} ight)}^2} - {{\left( {2,4} ight)}^2}}  = 1{m{cm}}.

  • Câu 2: Nhận biết
    Xác định bán kính mặt cầu

    Trong không gian Oxyz, mặt cầu (S):(x + 1)^{2} + (y - 2)^{2} + z^{2} =
9 có bán kính bằng:

    Hướng dẫn:

    Bán kính của mặt cầu (S)R = \sqrt{9} = 3.

  • Câu 3: Thông hiểu
    Tìm phương trình mặt cầu thích hợp

    Cho đường thẳng d:\frac{x}{1} = \frac{y -1}{2} = \frac{z + 1}{- 1} và điểm A(5;4; - 2). Phương trình mặt cầu đi qua điểm A và có tâm là giao điểm của d với mặt phẳng (Oxy) là:

    Hướng dẫn:

    Mặt phẳng (Oxy) có phương trình z = 0

    Tâm I là giao điểm của d với mặt phẳng (Oxy) \Rightarrow I \in d \Rightarrow I(t;1 + 2t;
- 1 - t)

    I \in (Oxy) \Rightarrow - 1 - t = 0
\Rightarrow t = - 1 \Rightarrow I( - 1; - 1;0) \Rightarrow
\overrightarrow{IA} = (6;5; - 2)

    Bán kính mặt cầu là: R = IA = \sqrt{6^{2}
+ 5^{2} + ( - 2)^{2}} = \sqrt{65}

    Vậy phương trình của mặt cầu là (S):(x +
1)^{2} + (y + 1)^{2} + z^{2} = 65.

    Lưu ý : Để làm được bài này học sinh phải nhớ được phương trình tổng quát của mặt phẳng (Oxy) và loại ngay được đáp án (S):(x +
1)^{2} + (y - 1)^{2} + (z + 2)^{2} = 65.

  • Câu 4: Thông hiểu
    Xét tính đúng sai của các mệnh đề

    Trong không gian Oxyz, cho mặt cầu (S) có phương trình: (x - 3)^{2} + y^{2} + (z - 2)^{2} = m^{2} +
1. Xét tính đúng sai của các nhận định dưới đây?

    a) Bán kính nhỏ nhất của (S)1. Sai||Đúng

    b) Với m = \pm \sqrt{2} thì mặt phẳng (Oxy) tiếp xúc với (S). Sai||Đúng

    c) Với m = 2\sqrt{6} thì (S)cắt (P):2x
- y + 2z + 2 = 0 theo giao tuyến là một đường tròn có bán kính bằng 3.Đúng||Sai

    d) Có 5 giá trị nguyên của tham số m để đường thẳng \Delta:\frac{x - 2}{- 3} = \frac{y-1}{1} =\frac{z - 3}{- 1} cắt (S) tại 2 điểm phân biệt. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho mặt cầu (S) có phương trình: (x - 3)^{2} + y^{2} + (z - 2)^{2} = m^{2} +
1. Xét tính đúng sai của các nhận định dưới đây?

    a) Bán kính nhỏ nhất của (S)1. Sai||Đúng

    b) Với m = \pm \sqrt{2} thì mặt phẳng (Oxy) tiếp xúc với (S). Sai||Đúng

    c) Với m = 2\sqrt{6} thì (S)cắt (P):2x
- y + 2z + 2 = 0 theo giao tuyến là một đường tròn có bán kính bằng 3.Đúng||Sai

    d) Có 5 giá trị nguyên của tham số m để đường thẳng \Delta:\frac{x - 2}{- 3} = \frac{y-1}{1} =\frac{z - 3}{- 1} cắt (S) tại 2 điểm phân biệt. Sai||Đúng

    Mặt cầu (S) có tâm I(3;0;2), bán kính R = \sqrt{m^{2} + 1}.

    a) Với mọi giá trị m, ta có: m^{2} + 1 \geq 1 \Leftrightarrow \sqrt{m^{2}
+ 1} \geq 1 \Leftrightarrow R \geq 1.

    Vậy R_{\min} = 1.

    b) (S) tiếp xúc với (Oxy) \Leftrightarrow d(I,(Oxy)) = R

    \Leftrightarrow 2 = \sqrt{m^{2} + 1}
\Leftrightarrow m^{2} = 3 \Leftrightarrow m = \pm \sqrt{3}.

    c) Với m = 2\sqrt{6}, mặt cầu (S) có tâm I(3;0;2), bán kính R = 5.

    Ta có: d = d\left( I,(P) \right) =
\frac{|2.3 - 0 + 2.2 + 2|}{3} = 4 \Rightarrow d < R.

    Khi đó, (S) cắt (P) theo giao tuyến là một đường tròn có bán kính là:

    r = \sqrt{R^{2} - d^{2}} =\sqrt{25-16} = 3.

    d) Phương trình tham số của \Delta:\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 + t \\
z = 3 - t
\end{matrix} \right..

    Từ phương trình của \Delta(S) ta có phương trình

    (2 - 3t - 3)^{2} + (1 + t)^{2} + (3 - t- 2)^{2} = m^{2} + 1

    \Leftrightarrow 11t^{2} + 6t + 2 - m^{2} =  0 (1)

    Để \Delta cắt (S) tại 2 điểm phân biệt thì phương trình (1)2 nghiệm phân biệt

    \Leftrightarrow \Delta'= 9 -11\left( 2 - m^{2} \right) > 0

    \Leftrightarrow 11m^{2} - 13 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m > \sqrt{\frac{13}{11}} \\
m < - \sqrt{\frac{13}{11}}
\end{matrix} \right..

    Vậy có vô số giá trị nguyên m thỏa mãn.

  • Câu 5: Thông hiểu
    Chọn phương án thích hợp

    Hai mặt cầu (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0(S):x^{2}
+ y^{2} + z^{2} - 2a'x - 2b'y - 2c'z + d' = 0, cắt nhau theo đường tròn có phương trình: (Có thể chọn nhiều đáp án)

    Hướng dẫn:

    Đáp án cần tìm là:

    \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0 \\
2(a - a')x + 2(b - b')y + 2(c - c')z + d' - d = 0 \\
\end{matrix} \right.\left\{
\begin{matrix}
x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0 \\
2(a - a')x + 2(b - b')y + 2(c - c')z + d - d' = 0 \\
\end{matrix} \right.

  • Câu 6: Thông hiểu
    Xác định phương trình mặt cầu

    Cho điểm I(1;7;5)và đường thẳng d:\frac{x - 1}{2} = \frac{y - 6}{- 1} =
\frac{z}{3}. Phương trình mặt cầu có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác diện tích tam giác IAB bằng 2\sqrt{6015} là:

    Hướng dẫn:

    Gọi H là hình chiếu của I(1;7;5) trên d

    \Rightarrow H(0;0; - 4) \Rightarrow IH =d(I;\ d) = 2\sqrt{3}

    S_{\Delta AIB} = \frac{IH.AB}{2}
\Rightarrow AB = \frac{2S_{\Delta AIB}}{IH} = \sqrt{8020}

    \Rightarrow R^{2} = IH^{2} + \left(
\frac{AB}{2} \right)^{2} = 2017

    Vậy phương trình mặt cầu là: (x - 1)^{2}
+ (y - 7)^{2} + (z - 5)^{2} = 2017.

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Phương trình mặt cầu có tâm I\left(
3;\sqrt{3}; - 7 \right) và tiếp xúc trục tung là:

    Hướng dẫn:

    Gọi H là hình chiếu của I\left(
3;\sqrt{3}; - 7 \right) trên Oy

    \Rightarrow H\left( 0;\sqrt{3};0 \right)
\Rightarrow R = IH = \sqrt{58}

    Vậy phương trình mặt cầu là: (x - 3)^{2}+ \left( y - \sqrt{3} \right)^{2} + (z + 7)^{2} = 58.

  • Câu 8: Nhận biết
    Xác định tọa độ điểm thuộc mặt cầu

    Mặt cầu (S):\ x^{2} + y^{2} + z^{2} - 2x
+ 10y + 3z + 1 = 0 đi qua điểm có tọa độ nào sau đây?

    Hướng dẫn:

    Lần lượt thay tọa độ các điểm vào phương trình mặt cầu. Tọa độ điểm nào thỏa mãn phương trình thì điểm đó thuộc mặt cầu.

    Kiểm tra đáp án thu được kết quả là: điểm (4; - 1;0). thuộc mặt cầu đã cho.

  • Câu 9: Nhận biết
    Viết phương trình mặt cầu (S)

    Trong không gian Oxyz, cho hai điểm I(1;1;1)A(1;2;3). Phương trình mặt cầu có tâm I và đi qua A là:

    Hướng dẫn:

    Ta có: R = IA = \sqrt{(1 - 1)^{2} + (2 -
1)^{2} + (3 - 1)^{2}} = \sqrt{5}

    Vậy phương trình mặt cầu tâm I và đi qua điểm A có phương trình là:

    (x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
5.

  • Câu 10: Nhận biết
    Xác định phương trình mặt cầu (S)

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(1; - 4;0) có bán kính bằng 3. Phương trình của (S) là:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1; - 4;0)và bán kính bằng 3có phương trình là:

    (x - 1)^{2} + (y + 4)^{2} + (z - 0)^{2}
= 3^{2}

    \Rightarrow (x - 1)^{2} + (y + 4)^{2} +
z^{2} = 9

  • Câu 11: Thông hiểu
    Xác định điểm không thuộc mặt cầu

    Gọi (S) là mặt cầu có tâm I(1; -
3;0) và cắt trục Ox tại hai điểm A, B sao cho tam giác IAB đều. Điểm nào sau đây không thuộc mặt cầu (S):

    Hướng dẫn:

    Gọi H là hình chiếu của I(1; -
3;0) trên Ox

    \Rightarrow H(1;0;0) \Rightarrow IH =
d(I;Ox) = 3

    \Rightarrow IH = R.\frac{\sqrt{3}}{2}
\Rightarrow R = \frac{2IH}{\sqrt{3}} = 2\sqrt{3}

    Vậy phương trình mặt cầu là: (x - 1)^{2}
+ (y + 3)^{2} + z^{2} = 12 \mathbf{\Rightarrow}\left(
\mathbf{2;}\mathbf{-}\mathbf{1;1} \right)\mathbf{\notin}\left(
\mathbf{S} \right)\mathbf{.}

  • Câu 12: Nhận biết
    Chọn đáp án thích hợp

    Phương trình nào sau đây không phải là phương trình mặt cầu?

    Gợi ý:

    Phương trình mặt cầu (S) có hai dạng là:

    (1) (x - a)^{2} + (y - b)^{2} + (z -
c)^{2} = R^{2};

    (2) x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0.

    Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

    Hướng dẫn:

    Phương trình ở các đáp án (x - 1)^{2} +
(y - 1)^{2} + (z - 1)^{2} = 6, (2x
- 1)^{2} + (2y - 1)^{2} + (2z + 1)^{2} = 6, (x + y)^{2} = 2xy - z^{2} + 3 - 6x đều thỏa mãn điều kiện phương trình mặt cầu. Ví dụ:

    (2x - 1)^{2} + (2y - 1)^{2} + (2z +
1)^{2} = 6

    \Leftrightarrow \left( x - \frac{1}{2}
\right)^{2} + \left( y - \frac{1}{2} \right)^{2} + \left( z +
\frac{1}{2} \right)^{2} = \frac{3}{2}.

    (x + y)^{2} = 2xy - z^{2} + 3 -
6x\Leftrightarrow x^{2} + y^{2} + z^{2} +
6x - 3 = 0.

  • Câu 13: Nhận biết
    Xác định phương trình mặt cầu

    Phương trình nào sau đây là phương trình mặt cầu?

    Hướng dẫn:

    Phương trình mặt cầu (S) có hai dạng là:

    (1) (x - a)^{2} + (y - b)^{2} + (z -
c)^{2} = R^{2};

    (2) x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0.

    Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

    Từ đó ta xác định được phương trình mặt cầu cần tìm là: {x^2} + {y^2} + {z^2} - 2x = 0.

  • Câu 14: Nhận biết
    Mệnh đề đúng

    Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. Hình chiếu của O trên (P) là I. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

     Mệnh đề đúng

    Vì I là hình chiếu của O trên (P) nên  d\left[ {O,\left( P ight)} ight] = OId\left[ {O,\left( P ight)} ight] = R nên I là tiếp điểm của (P)(S).

    Đường thẳng OM cắt (P) tại N nên IN vuông góc với OI tại I.

    Suy ra IN tiếp xúc với (S).

    Tam giác OIN vuông tại I nên ON = R\sqrt 2  \Leftrightarrow IN = R.

  • Câu 15: Nhận biết
    Xác định phương trình mặt cầu (S)

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 2;7),B( - 3;8; - 1). Mặt cầu đường kính AB có phương trình là:

    Hướng dẫn:

    Gọi I là trung điểm của AB khi đó I(
- 1;3;3) là tâm mặt cầu (S).

    Bán kính R = IA = \sqrt{(1 + 1)^{2} + ( -
2 - 3)^{2} + (7 - 3)^{2}} = \sqrt{45}

    Vậy phương trình mặt cầu cần tìm là: (x +
1)^{2} + (y - 3)^{2} + (z - 3)^{2} = 45.

  • Câu 16: Nhận biết
    Độ dài AB

    Cho mặt cầu S\left( {O;R} ight) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

    Hướng dẫn:

    Vì AB tiếp xúc với (S) tại B nên AB \bot OB.

    Suy ra AB = \sqrt {O{A^2} - O{B^2}}  = \sqrt {4{R^2} - {R^2}}  = R\sqrt 3 .

  • Câu 17: Nhận biết
    Chọn kết luận đúng

    Trong không gian Oxyz, hai điểm A(7; - 2;2)B(1;2;4). Phương trình nào sau đây là phương trình mặt cầu đường kính AB?

    Hướng dẫn:

    Mặt cầu nhận AB làm đường kính, do đó mặt cầu nhận trung điểm I(4;0;3) của AB làm tâm và có bán kính R = \frac{AB}{2} = \sqrt{56}

    Suy ra phương trình mặt cầu cần tìm là (x
- 4)^{2} + y^{2} + (z - 3)^{2} = 56.

  • Câu 18: Nhận biết
    Viết phương trình mặt cầu (S)

    Trong không gian tọa độ Oxyz, cho tọa độ hai điểm A(1;2;3),B(5;4; -
1). Phương trình mặt cầu đường kính AB là:

    Hướng dẫn:

    Gọi I là trung điểm của AB suy ra I(3;3;1)

    \overrightarrow{AB} = (4;2; - 4)
\Rightarrow AB = \sqrt{16 + 4 + 16} = 6

    Mặt cầu đường kính AB có tâm I(3;3;1) và bán kính R = \frac{AB}{2} = 3 có phương trình là: (x - 3)^{2} + (y - 3)^{2} + (z - 1)^{2} =
9

  • Câu 19: Nhận biết
    Tính đường kính mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + (y - 2)^{2} + (z + 1)^{2} =
6. Đường kính (S) bằng:

    Hướng dẫn:

    Đường kính của mặt cầu (S) bằng: 2R = 2\sqrt{6}.

  • Câu 20: Nhận biết
    Chọn phương trình mặt cầu thích hợp

    Mặt cầu có phương trình nào sau đây có tâm là I( - 1;1;0)\ ?

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0 với a^{2} + b^{2} + c^{2} - d
> 0, có tâm I(a;b;c), bán kính R = \sqrt{a^{2} + b^{2} + c^{2} -
d}.

    Vậy phương trình mặt cầu thích hợp là: x^{2} + y^{2} + z^{2} + 2x - 2y + 1 =
0.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (70%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo