Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Độ dài AB

    Cho mặt cầu S\left( {O;R} ight) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

    Hướng dẫn:

    Vì AB tiếp xúc với (S) tại B nên AB \bot OB.

    Suy ra AB = \sqrt {O{A^2} - O{B^2}}  = \sqrt {4{R^2} - {R^2}}  = R\sqrt 3 .

  • Câu 2: Nhận biết
    Xác định phương trình mặt cầu

    Phương trình nào sau đây là phương trình mặt cầu?

    Hướng dẫn:

    Phương trình mặt cầu (S) có hai dạng là:

    (1) (x - a)^{2} + (y - b)^{2} + (z -
c)^{2} = R^{2};

    (2) x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0.

    Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

    Từ đó ta xác định được phương trình mặt cầu cần tìm là: {x^2} + {y^2} + {z^2} - 2x = 0.

  • Câu 3: Nhận biết
    Viết phương trình mặt cầu

    Trong không gian Oxyz, viết phương trình mặt cầu (S) đường kính AB biết A(2; - 1; - 3),B(0;3; - 1)?

    Hướng dẫn:

    Gọi I là trung điểm của AB khi đó I(1;1; - 2) là tâm mặt cầu (S).

    Bán kính R = \frac{1}{2}AB =
\frac{1}{2}\sqrt{4 + 16 + 4} = \frac{\sqrt{24}}{2}

    Vậy phương trình mặt cầu cần tìm là: (S):(x + 1)^{2} + (y + 1)^{2} + (z - 2)^{2} =
6.

  • Câu 4: Nhận biết
    Tính khoảng cách

    Cho mặt cầu S(O; R) và một điểm A, biết OA = 2R. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho BC = R\sqrt 3. Khi đó khoảng cách từ O đến BC bằng:

    Hướng dẫn:

     Gọi H là hình chiếu của O lên BC.

    Ta có OB=OC=R , suy ra H là trung điểm của BC nên HC = \frac{{CD}}{2} = \frac{{R\sqrt 3 }}{2}

    Suy ra OH = \sqrt {O{C^2} - H{C^2}}  = \frac{R}{2}.

  • Câu 5: Nhận biết
    Viết phương trình mặt cầu

    Mặt cầu (S) tâm I(3; - 3;1) và đi qua A(5; - 2;1)có phương trình:

    Hướng dẫn:

    Bán kính mặt cầu là: R = IA = \sqrt{2^{2}
+ 1^{2} + 0^{2}} = \sqrt{5}

    Vậy ph­ương trình của mặt cầu là: (S):(x -
3)^{2} + (y + 3)^{2} + (z - 1)^{2} = 5.

  • Câu 6: Thông hiểu
    Xác định phương trình mặt cầu

    Mặt cầu tâm I(2;4;6) và tiếp xúc với mặt phẳng (Oxz) có phương trình:

    Hướng dẫn:

    Mặt cầu tâm I(2;4;6), bán kính R và tiếp xúc với mặt phẳng (Oxz): y = 0 \Leftrightarrow R = d\left( I;(Oxz)
\right)

    \Leftrightarrow R = \frac{|4|}{1} =
4.

    Vậy (S):(x - 2)^{2} + (y - 4)^{2} + (z -
6)^{2} = 16.

  • Câu 7: Nhận biết
    Tìm điều kiện tham số m thỏa mãn yêu cầu

    Trong không gian Oxyz, tìm tất cả các giá trị của m để phương trình x^{2} + y^{2} + z^{2} - 2x - 2y - 4z +
m = 0 là phương trình của một mặt cầu?

    Hướng dẫn:

    Phương trình x^{2} + y^{2} + z^{2} - 2x -
2y - 4z + m = 0 là một mặt cầu

    \Leftrightarrow 1^{2} + 1^{2} + 2^{2} - m
> 0 \Leftrightarrow m < 6.

  • Câu 8: Nhận biết
    Tính bán kính mặt cầu

    Mặt cầu (S): 3x^{2} + 3y^{2} + 3z^{2} - 6x + 12y + 2 =
0 có bán kính bằng:

    Hướng dẫn:

    Biến đổi 3x^{2} + 3y^{2} + 3z^{2} - 6x +
12y + 2 = 0 \Leftrightarrow x^{2} + y^{2} + z^{2} - 2x + 4y +
\frac{2}{3} = 0 có tâm I(1; -
2;0), bán kính R =
\sqrt{\frac{13}{3}}.

  • Câu 9: Thông hiểu
    Viết phương trình mặt cầu (S’)

    Trong không gian Oxyz, cho tứ diện ABCD có tọa độ đỉnh A(2;0;0),B(0;4;0),C(0;0;6),D(2;4;6). Gọi (S) là mặt cầu ngoại tiếp tứ diện ABCD. Viết phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp hai lần bán kính của mặt cầu (S)?

    Hướng dẫn:

    Gọi phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0a^{2} + b^{2} + c^{2} - d > 0

    (S) là mặt cầu ngoại tiếp tứ diện ABCD nên ta có hệ phương trình

    \left\{ \begin{matrix}
2^{2} + 0^{2} + 0^{2} - 2.a.2 - 2.b.0 - 2.c.0 + d = 0 \\
0^{2} + 4^{2} + 0^{2} - 2.a.0 - 2.b.4 - 2.c.0 + d = 0 \\
0^{2} + 0^{2} + 6^{2} - 2.a.0 - 2.b.0 - 2.c.6 + d = 0 \\
2^{2} + 4^{2} + 6^{2} - 2.a.2 - 2.b.4 - 2.c.6 + d = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 4a + d = - 4 \\
- 8b + d = - 16 \\
- 12c + d = - 36 \\
- 4a - 8b - 12c + d = - 56 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 3 \\
d = 0 \\
\end{matrix} ight.. Suy ra tâm mặt cầu I(1;2;3) và bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{14}

    Vậy phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp hai lần bán kính của mặt cầu (S)là:

    (x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2}
= 56

  • Câu 10: Nhận biết
    Tính bán kính mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x + 10y - 6z + 49 =
0. Tính bán kính của mặt cầu (S)?

    Hướng dẫn:

    Phương trình mặt cầu:

    (S):x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0 có tâm I(a;b;c) và bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d}

    Ta có: a = 4;b = - 5;c = 3;d =
49

    Khi đó R = \sqrt{a^{2} + b^{2} + c^{2} -
d} = 1

  • Câu 11: Nhận biết
    Tính bán kính mặt cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0. Bán kính của mặt cầu (S) là:

    Hướng dẫn:

    Ta có:

    x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2.0.x - 2.1y - 2.( - 1)z - 7 = 0

    \Leftrightarrow \left\{ \begin{matrix}
a = 0 \\
b = 1 \\
c = - 1 \\
d = - 7 \\
\end{matrix} ight. suy ra tâm mặt cầu là: I(0;1; - 1)

    Bán kính mặt cầu là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{0^{2} + 1^{2} + ( - 1)^{2} - 7} = 3

  • Câu 12: Thông hiểu
    Chọn phương án thích hợp

    Viết phương trình mặt cầu (S) đường kính AB với A(4, - 3,5);B(2,1,3).

    Hướng dẫn:

    M(x,y,z) \in (S) \Rightarrow
\overrightarrow{AM}.\overrightarrow{BM} = 0

    Với \overrightarrow{AM} = (x - 4,y + 3,z
- 5)\overrightarrow{BM} = (x -
2,y - 1,z - 3)

    (1) \Leftrightarrow (x - 4)(x - 2) = (y +
3)(y - 1) + (z - 5)(z - 3) = 0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
6x + 2y - 8z + 20 = 0

  • Câu 13: Thông hiểu
    Định phương trình mặt cầu (S)

    Cho điểm I(1;1; - 2) đường thẳng d:\frac{x + 1}{1} = \frac{y - 3}{2} =
\frac{z - 2}{1}. Phương trình mặt cầu (S)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:

    Hướng dẫn:

    Đường thẳng d đi qua M( - 1;\ 3;2)và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;\ 1).

    Gọi H là hình chiếu của I trên d.

    Ta có : IH = d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{18}.

    \Rightarrow IH = R.\frac{\sqrt{3}}{2}
\Rightarrow R = \frac{2IH}{\sqrt{3}} = 2\sqrt{6}.

    Vậy phương trình mặt cầu là : (x - 1)^{2}
+ (y - 1)^{2} + (z + 2)^{2} = 24.

  • Câu 14: Nhận biết
    Chọn đáp án thích hợp

    Phương trình nào sau đây không phải là phương trình mặt cầu?

    Gợi ý:

    Phương trình mặt cầu (S) có hai dạng là:

    (1) (x - a)^{2} + (y - b)^{2} + (z -
c)^{2} = R^{2};

    (2) x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0.

    Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

    Hướng dẫn:

    Phương trình ở các đáp án (x - 1)^{2} +
(y - 1)^{2} + (z - 1)^{2} = 6, (2x
- 1)^{2} + (2y - 1)^{2} + (2z + 1)^{2} = 6, (x + y)^{2} = 2xy - z^{2} + 3 - 6x đều thỏa mãn điều kiện phương trình mặt cầu. Ví dụ:

    (2x - 1)^{2} + (2y - 1)^{2} + (2z +
1)^{2} = 6

    \Leftrightarrow \left( x - \frac{1}{2}
\right)^{2} + \left( y - \frac{1}{2} \right)^{2} + \left( z +
\frac{1}{2} \right)^{2} = \frac{3}{2}.

    (x + y)^{2} = 2xy - z^{2} + 3 -
6x\Leftrightarrow x^{2} + y^{2} + z^{2} +
6x - 3 = 0.

  • Câu 15: Nhận biết
    Chọn câu đúng

    Cho đường tròn (C) đường kính AB và đường thẳng \triangle. Để hình tròn xoay sinh bởi (C) khi quay quanh \triangle là một mặt cầu thì cần có thêm điều kiện nào sau đây:

    Hướng dẫn:

    Điều kiện để hình tròn xoay sinh bởi (C) khi quay quanh \triangle là một mặt cầu là trục quay \triangle phải cố định và hai điểm A, B cũng cố định trên \triangle.

  • Câu 16: Thông hiểu
    Tìm độ lớn bán kính mặt cầu

    Cho hai điểm A;B cố định trong không gian có độ dài AB = 4. Biết rằng tập hợp các điểm M trong không gian sao cho MA = 3MB là một mặt cầu. Bán kính mặt cầu đó bằng bao nhiêu?

    Hướng dẫn:

    Ta có: MA = 3MB \Leftrightarrow
\overrightarrow{MA} = 3\overrightarrow{MB}

    \Leftrightarrow \left(
\overrightarrow{MI} + \overrightarrow{IA} ight)^{2} = 9\left(
\overrightarrow{MI} + \overrightarrow{IB} ight)^{2}

    \Leftrightarrow IA^{2} - 9IB^{2} +
2\overrightarrow{MI}\left( \overrightarrow{IA} - 9\overrightarrow{IB}
ight) = 8MI^{2}(*)

    Gọi I thỏa mãn \overrightarrow{IA} - 9\overrightarrow{IB} =
\overrightarrow{0} \Leftrightarrow \overrightarrow{BI} =
\frac{1}{8}\overrightarrow{AB} nên IB = \frac{1}{2};IA = \frac{9}{2}

    Từ (*) suy ra 8MI^{2} = 18
\Leftrightarrow MI = \frac{3}{2} \Rightarrow M \in S\left( I;\frac{3}{2}
ight).

  • Câu 17: Thông hiểu
    Xác định phương trình mặt cầu (S)

    Viết phương trình mặt cầu (S) tâm I( -
3,2,2) tiếp xúc với mặt cầu (S’):

    Hướng dẫn:

    (S') có tâm J(1, - 2,4), bán kínhR' = 4 \Rightarrow IJ = 6

    Gọi R là bán kính của (S). (S)(S') tiếp xúc trong khi và chỉ khi:

    \left| R - R^{'} \right| = IJ
\Leftrightarrow |R - 4| = 6

    \Rightarrow R = 10 \vee R = - 2 (loại)

    \Rightarrow (S):(x + 3)^{2} + (y - 2)^{2}
+ (z - 2)^{2} = 100

  • Câu 18: Nhận biết
    Xác định tọa độ giao điểm

    Cho đường thẳng d:\frac{x + 2}{2} =\frac{y - 2}{3} = \frac{z + 3}{2} và mặt cầu (S) : x^{2} + y^{2} + (z + 2)^{2} = 9. Tọa độ giao điểm của (\Delta)(S) là:

    Hướng dẫn:

    Tọa độ giao điểm là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
x = - 2 + 2t \\
y = 2 + 3t \\
z = - 3 + 2t \\
x^{2} + y^{2} + (z + 2)^{2} = 9 \\
\end{matrix} \right.\  \Rightarrow t = 0 \Rightarrow A( - 2;2; -
3).

  • Câu 19: Nhận biết
    Viết phương trình mặt cầu (S)

    Trong không gian tọa độ Oxyz, cho tọa độ hai điểm A(1;2;3),B(5;4; -
1). Phương trình mặt cầu đường kính AB là:

    Hướng dẫn:

    Gọi I là trung điểm của AB suy ra I(3;3;1)

    \overrightarrow{AB} = (4;2; - 4)
\Rightarrow AB = \sqrt{16 + 4 + 16} = 6

    Mặt cầu đường kính AB có tâm I(3;3;1) và bán kính R = \frac{AB}{2} = 3 có phương trình là: (x - 3)^{2} + (y - 3)^{2} + (z - 1)^{2} =
9

  • Câu 20: Nhận biết
    Chọn đáp án đúng

    Phương trình nào sau đây là phương trình mặt cầu (S) tâm A(2;1;0) và đi qua điểm B(0;1;2)?

    Hướng dẫn:

    Vì mặt cầu (S) tâm A(2;1;0) và đi qua điểm B(0;1;2) nên mặt cầu (S) nhận độ dài đoạn thẳng AB làm bán kính.

    Ta có: \overrightarrow{AB} = ( - 2;0;2)
\Rightarrow AB = 2\sqrt{2}

    \Rightarrow R = 2\sqrt{2}

    Vậy phương trình mặt cầu cần tìm là: (x -
2)^{2} + (y - 1)^{2} + z^{2} = 8.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (70%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo