Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Viết phương trình mặt cầu

    Mặt cầu (S) tâm I(3; - 3;1) và đi qua A(5; - 2;1)có phương trình:

    Hướng dẫn:

    Bán kính mặt cầu là: R = IA = \sqrt{2^{2}
+ 1^{2} + 0^{2}} = \sqrt{5}

    Vậy ph­ương trình của mặt cầu là: (S):(x -
3)^{2} + (y + 3)^{2} + (z - 1)^{2} = 5.

  • Câu 2: Nhận biết
    Xác định phương trình mặt cầu

    Phương trình nào sau đây là phương trình mặt cầu?

    Hướng dẫn:

    Phương trình mặt cầu (S) có hai dạng là:

    (1) (x - a)^{2} + (y - b)^{2} + (z -
c)^{2} = R^{2};

    (2) x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0.

    Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

    Từ đó ta xác định được phương trình mặt cầu cần tìm là: {x^2} + {y^2} + {z^2} - 2x = 0.

  • Câu 3: Nhận biết
    Xác định tọa độ điểm thuộc mặt cầu

    Mặt cầu (S):\ x^{2} + y^{2} + z^{2} - 2x
+ 10y + 3z + 1 = 0 đi qua điểm có tọa độ nào sau đây?

    Hướng dẫn:

    Lần lượt thay tọa độ các điểm vào phương trình mặt cầu. Tọa độ điểm nào thỏa mãn phương trình thì điểm đó thuộc mặt cầu.

    Kiểm tra đáp án thu được kết quả là: điểm (4; - 1;0). thuộc mặt cầu đã cho.

  • Câu 4: Nhận biết
    Chọn khẳng định đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x + 2y - z - 1 = 0 và mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x - 4y + 6z + 5 =
0. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1; 2; −3), bán kính R = \sqrt{1 + 4 + 9 - 5} = 3

    Ta có:

    d\left( I;(P) ight) = \frac{\left| 2.1
+ 2.2 - ( - 3) - 1 ight|}{\sqrt{4 + 4 + 1}} = \frac{8}{3} <
R

    Do đó (P) cắt mặt cầu (S).

  • Câu 5: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian Oxyz, phương trình nào sau đây là phương trình của mặt cầu có tâm I(7;6; - 5) và bán kính 9?

    Hướng dẫn:

    Mặt cầu tâm I(7;6; - 5), bán kính R = 9 có phương trình lá:

    (x - 7)^{2} + (y - 6)^{2} + (z - 5)^{2} =
81.

  • Câu 6: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian với hệ toạ độ Oxyz, một trạm thu phát sóng điện thoại di động được đặt ở vị trí I( -
3;5;2)được thiết kế với bán kính phủ sóng 4\ km, mỗi đơn vị trên trục ứng với 1 km. Xét sự đúng sai của các nhận định dưới đây:

    a) Phương trình mặt cầu (S) để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x + 3)^{2} + (y - 5)^{2} + (z + 2)^{2} =
16. Sai||Đúng

    b) Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là 8\ km.Đúng||Sai

    c) Người dùng điện thoại ở vị trí Acó toạ độ (
- 3;4;1)không thể sử dụng dịch vụ của trạm thu phát sóng đó. Sai||Đúng

    d) Trong điều kiện giao thông thuận lợi, khoảng cách ngắn nhất để người Bở toạ độ (8;6;2)di chuyển tới vùng phủ sóng là 11,05 km. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ toạ độ Oxyz, một trạm thu phát sóng điện thoại di động được đặt ở vị trí I( -
3;5;2)được thiết kế với bán kính phủ sóng 4\ km, mỗi đơn vị trên trục ứng với 1 km. Xét sự đúng sai của các nhận định dưới đây:

    a) Phương trình mặt cầu (S) để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x + 3)^{2} + (y - 5)^{2} + (z + 2)^{2} =
16. Sai||Đúng

    b) Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là 8\ km.Đúng||Sai

    c) Người dùng điện thoại ở vị trí Acó toạ độ (
- 3;4;1)không thể sử dụng dịch vụ của trạm thu phát sóng đó. Sai||Đúng

    d) Trong điều kiện giao thông thuận lợi, khoảng cách ngắn nhất để người Bở toạ độ (8;6;2)di chuyển tới vùng phủ sóng là 11,05 km. Sai||Đúng

    a) Sai.

    Ta có, trạm thu phát sóng là tâm của vùng phủ sóng I( - 3;5;2), bán kính phủ sóng là R = 4 nên phương trình mặt cầu (S) mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x + 3)^{2} + (y -
5)^{2} + (z - 2)^{2} = 16

    b) Đúng.

    Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là đường kính của mặt cầu, tức là 8\ km.

    c) Sai.

    Ta có: IA = \sqrt{( - 3 + 3)^{2} + (4 -
5)^{2} + (1 - 2)^{2}} = \sqrt{2} < 4 nên điểm A nằm trong mặt cầu hay người dùng điện thoại ở vị trí A có thể sử dụng dịch vụ của trạm thu phát sóng đó.

    d) Sai.

    Khoảng cách từ người Bđến trạm thu phát sóng là:

    IB = \sqrt{(8 + 3)^{2} + (6 - 5)^{2} + (2
- 2)^{2}} \approx 11,05.

    Khoảng cách ngắn nhất để người đó di chuyển đến vùng phủ sóng là:

    11,05 - 4 = 7,05 (km).

  • Câu 7: Nhận biết
    Chọn kết luận đúng

    Trong không gian Oxyz, hai điểm A(7; - 2;2)B(1;2;4). Phương trình nào sau đây là phương trình mặt cầu đường kính AB?

    Hướng dẫn:

    Mặt cầu nhận AB làm đường kính, do đó mặt cầu nhận trung điểm I(4;0;3) của AB làm tâm và có bán kính R = \frac{AB}{2} = \sqrt{56}

    Suy ra phương trình mặt cầu cần tìm là (x
- 4)^{2} + y^{2} + (z - 3)^{2} = 56.

  • Câu 8: Thông hiểu
    Xác định vectơ chỉ phương

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm nằm trên mặt phẳng (Oxy) và đi qua ba điểm A(1;2; - 4),B(1; - 3;1),C(2;2;3). Tọa độ tâm I của mặt cầu (S) là:

    Hướng dẫn:

    Gọi tâm mặt cầu là I(a;b;c) và phương trình mặt cầu (S):x^{2} + y^{2} +
z^{2} - 2ax - 2by - 2cz + d = 0

    Do I \in (Oxy) \Rightarrow c =
0

    \Rightarrow (S):x^{2} + y^{2} + z^{2} -
2ax - 2by + d = 0

    Lại có \left\{ \begin{matrix}
A \in (S) \\
B \in (S) \\
C \in (S) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a + 4b - d = 21 \\
2a - 6b - d = 11 \\
4a + 4b - d = 17 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 2 \\
b = 1 \\
d = - 21 \\
\end{matrix} ight.

    Vậy I( - 2;1;0) là đáp án cần tìm.

  • Câu 9: Nhận biết
    Độ dài AB

    Cho mặt cầu S\left( {O;R} ight) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

    Hướng dẫn:

    Vì AB tiếp xúc với (S) tại B nên AB \bot OB.

    Suy ra AB = \sqrt {O{A^2} - O{B^2}}  = \sqrt {4{R^2} - {R^2}}  = R\sqrt 3 .

  • Câu 10: Thông hiểu
    Chọn kết quả chính xác

    Tìm tập hợp các điểm M có cùng phương tích với hai mặt cầu \left( S_{1} \right): x^{2} + y^{2} + z^2 -4x + 6y + 2z - 5 = 0; \left( S_{2}
\right):\ \ x^{2} + y^{2} + z^{2} + 2x - 8y - 6z + 3 = 0

    Hướng dẫn:

    Ta có:

    M(x,y,z):P_{M/\left( S_{1} \right)} =
P_{M/\left( S_{2} \right)}

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
4x + 6y + 2z - 5 = x^{2} + y^{2} + z^{2} + 2x - 8y - 6z + 3 =
0

    \Rightarrow M \in mặt phẳng: 3x - 7y- 4z + 4 = 0

  • Câu 11: Nhận biết
    Tìm phương trình mặt cầu

    Trong không gian Oxyz, hỏi trong các phương trình sau đây phương trình nào là phương trình của mặt cầu?

    Hướng dẫn:

    Phương trình x^{2} + z^{2} + 3x - 2y + 4z
- 1 = 0 không có y^{2}=> Loại

    Phương trình x^{2} + y^{2} + z^{2} + 2xy
- 4y + 4z - 1 = 0 có số hạng 2xy => Loại

    Phương trình x^{2} + y^{2} + z^{2} - 2x +
2y - 4z + 8 = 0 loại vì

    a^{2} + b^{2} + c^{2} - d = 1 + 1 + 4 -
8 < 0

    Phương trình x^{2} + y^{2} + z^{2} - 2x +
4z - 1 = 0 thỏa mãn vì

    a^{2} +
b^{2} + c^{2} - d = 1 + 0 + 4 + 1 = 6 > 0.

  • Câu 12: Nhận biết
    Tìm đường kính

    Cho mặt cầu S\left( {O;R} ight) và mặt phẳng (\alpha). Biết khoảng cách từ O đến (\alpha) bằng \frac{R}{2}. Khi đó thiết diện tạo bởi mặt phẳng (\alpha) với S\left( {O;R} ight) là một đường tròn có đường kính bằng:

    Hướng dẫn:

     Tìm đường kính

    Gọi H là hình chiếu của O xuống (\alpha) .

    Ta có d\left[ {O,\left( \alpha  ight)} ight] = OH = \frac{R}{2} < R nên (\alpha) cắt S\left( {O;R} ight) theo đường tròn C\left( {H;r} ight).

    Bán kính đường tròn C\left( {H;r} ight)r = \sqrt {{R^2} - O{H^2}}  = \frac{{R\sqrt 3 }}{2}.

    Suy ra đường kính bằng R\sqrt 3.

  • Câu 13: Thông hiểu
    Chọn đáp án chính xác

    Trong không gian với hệ trục tọa độ Oxyz, mặt cầu (S) đi qua điểm O và cắt các tia Ox;Oy;Oz lần lượt tại các điểm A;B;C khác O thỏa mãn tam giác ABC có trọng tâm là điểm G( - 6; - 12;18). Tọa độ tâm của mặt cầu (S) là:

    Hướng dẫn:

    Gọi tọa độ các điểm trên ba tia Ox;Oy;Oz lần lượt là A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0

    Vì G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{a}{3} = - 6 \\
\frac{b}{3} = - 12 \\
\frac{c}{3} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 18 \\
b = - 36 \\
c = 54 \\
\end{matrix} ight.

    Gọi phương trình mặt cầu cần tìm là:

    (S):x^{2} + y^{2} + z^{2} - 2mx - 2ny -
2pz + q = 0

    (S) qua các điểm OABC nên ta có hệ phương trình:

    \left\{ \begin{matrix}
q = 0 \\
36m + q = - 18^{2} \\
72n + q = - 36^{2} \\
- 108p + q = - 54^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
q = 0 \\
m = - 9 \\
n = - 18 \\
p = 27 \\
\end{matrix} ight.

    Vậy tọa độ tâm của mặt cầu (S) là: ( - 9; - 18;27).

  • Câu 14: Nhận biết
    Tính đường kính mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + (y - 2)^{2} + (z + 1)^{2} =
6. Đường kính (S) bằng:

    Hướng dẫn:

    Đường kính của mặt cầu (S) bằng: 2R = 2\sqrt{6}.

  • Câu 15: Thông hiểu
    Xác định bán cầu mặt cầu ngoại tiếp tứ giác

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A( - 1;0;0),B(0;0;2),C(0; - 3;0). Bán kính mặt cầu ngoại tiếp tứ diện OABC là:

    Hướng dẫn:

    Gọi (S) là mặt cầu ngoại tiếp tứ diện OABC

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0

    O;A;B;C \in (S) nên ta có: \left\{ \begin{matrix}
d = 0 \\
1 + 2a + d = 0 \\
4 - 4c + d = 0 \\
9 + 6b + d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
d = 0 \\
a = - \frac{1}{2} \\
b = - \frac{3}{2} \\
c = 1 \\
\end{matrix} ight.

    Vậy bán kính mặt cầu (S) là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{\frac{1}{4} + \frac{9}{4} + 1} = \frac{\sqrt{14}}{2}

  • Câu 16: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, cho các mặt cầu dưới đây. Hỏi mặt cầu nào có bán kính R = 2?

    Hướng dẫn:

    Phương trình mặt cầu (S):x^{2} + y^{2} +
z^{2} - 2ax - 2by - 2cz + d = 0 có bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d}

    Xét phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 4x + 2y + 2z + 2 = 0 ta có:

    \left\{ \begin{matrix}
a = 2;b = - 1 \\
c = - 1;d = 2 \\
\end{matrix} ight.\  \Rightarrow R = \sqrt{a^{2} + b^{2} + c^{2} - d}
= \sqrt{4} = 2

  • Câu 17: Thông hiểu
    Định tập hợp tâm I của mặt cầu (S) theo yêu cầu

    Tìm tập hợp các tâm I của mặt cầu (S) có bán kính thay đổi tiếp xúc với hai mặt phẳng (P):2x - y - 2z + 1 = 0;(Q):\ 3x + 2y - 6z + 5 = 0.

    Hướng dẫn:

    Tâm I(x,y,z) cách đều (P) và (Q) \Rightarrow d(I, P)=d(I, Q)

    \Rightarrow \frac{|2x - y - 2z + 1|}{3} =
\frac{|3x + 2y - 6z + 5|}{7}

    \Rightarrow Hai mặt phẳng: 5x - 13y + 4z - 8 = 0;23x - y - 32z + 22 =
0

  • Câu 18: Nhận biết
    Xác định tâm và bán kính mặt cầu

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x +1 = 0 có tọa độ tâm và bán kính R là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0 với a^{2} + b^{2} + c^{2} - d
> 0, có tâm I(a;b;c), bán kính R = \sqrt{a^{2} + b^{2} + c^{2} -
d}.

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x +1 = 0 có tọa độ tâm và bán kính R là: I(2;0;0),\ R =
\sqrt{3}.

  • Câu 19: Nhận biết
    Chọn đáp án đúng

    Cho đường thẳng (\Delta):\left\{
\begin{matrix}
x = 1 + t \\
y = 2 \\
z = - 4 + 7t \\
\end{matrix} \right.và mặt cầu (S): x^{2} +y^{2} + z^{2} - 2x - 4y + 6z - 67 = 0. Giao điểm của (\Delta)(S) là các điểm có tọa độ:

    Hướng dẫn:

    Tọa độ giao điểm là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
x = 1 + t \\
y = 2 \\
z = - 4 + 7t \\
x^{2} + y^{2} + z^{2} - 2x - 4y + 6z - 67 = 0 \\
\end{matrix} \right.

    \Rightarrow \left\lbrack \begin{matrix}
t = 0 \Rightarrow A(1;2; - 4) \\
t = 1 \Rightarrow B(2;2;3) \\
\end{matrix} \right.

  • Câu 20: Nhận biết
    Tìm bán kính của đường tròn

    Cho mặt cầu tâm I bán kính R = 2,6{m{cm}} . Một mặt phẳng cắt mặt cầu và cách tâm I một khoảng bằng 2,4 cm . Thế thì bán kính của đường tròn do mặt phẳng cắt mặt cầu tạo nên là:

    Hướng dẫn:

     Theo đề bài, mặt phẳng cắt mặt cầu S(I;2,6 cm) theo một đường tròn (H;r) .

    Vậy r = \sqrt {{R^2} - I{H^2}}  = \sqrt {{{\left( {2,6} ight)}^2} - {{\left( {2,4} ight)}^2}}  = 1{m{cm}}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (70%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo