Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm khoảng cách

    Diện tích hình tròn lớn của một hình cầu là p. Một mặt phẳng (\alpha) cắt hình cầu theo một hình tròn có diện tích là \frac{p}{2}. Khoảng cách từ tâm mặt cầu đến mặt phẳng (\alpha)  bằng: 

    Hướng dẫn:

    Hình tròn lớn của hình cầu S là hình tròn tạo bởi mặt phẳng cắt hình cầu và đi qua tâm của hình cầu.

    Gọi R là bán kính hình cầu thì hình tròn lớn cũng có bán kính là R.

    Theo giả thiết, ta có \pi {R^2} = p \Leftrightarrow R = \sqrt {\frac{p}{\pi }}\pi {r^2} = \frac{p}{2} \Leftrightarrow r = \sqrt {\frac{p}{{2\pi }}}

    Suy ra d = \sqrt {{R^2} - {r^2}}  = \sqrt {\frac{p}{{2\pi }}}.

  • Câu 2: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian Oxyz, phương trình nào sau đây là phương trình của mặt cầu có tâm I(7;6; - 5) và bán kính 9?

    Hướng dẫn:

    Mặt cầu tâm I(7;6; - 5), bán kính R = 9 có phương trình lá:

    (x - 7)^{2} + (y - 6)^{2} + (z - 5)^{2} =
81.

  • Câu 3: Nhận biết
    Tính đường kính mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;2;1)B(0 ;1 ; 1). Mặt cầu đi qua hai điểm A, B và tâm thuộc trục hoành có đường kính là:

    Hướng dẫn:

    Gọi I(t;0;0) trên Ox.IA = IB \Rightarrow t = 2 \Rightarrow
I(2;0;0)

    \Rightarrow R = IA = \sqrt{6}
\Rightarrow đường kính bằng 2\sqrt{6}

  • Câu 4: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz, phương trình nào sau đây không phải là phương trình của một mặt cầu?

    Hướng dẫn:

    Phương trình (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0 là phương trình của một mặt cầu nếu a^{2} + b^{2} + c^{2} - d >
0.

    Vậy phương trình không phải phương trình mặt cầu là:

    x^{2} + y^{2} + z^{2} - 2x + 4y - 4z +
10 = 0

  • Câu 5: Thông hiểu
    Chọn phương trình mặt cầu thích hợp

    Cho điểm I(1;1; - 2) đường thẳng d:\frac{x + 1}{1} = \frac{y - 3}{2} =
\frac{z - 2}{1}. Phương trình mặt cầu (S)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho AB = 6 là:

    Hướng dẫn:

    Đường thẳng(d)đi qua M( - 1;\ 3;2)và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;\ 1).

    Gọi H là hình chiếu của I trên (d).

    Ta có: IH = d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{18}

    \Rightarrow R^{2} = IH^{2} + \left(\frac{AB}{2} \right)^{2} = 27.

    Vậy phương trình mặt cầu: (x - 1)^{2} +
(y - 1)^{2} + (z + 2)^{2} = 27.

  • Câu 6: Nhận biết
    Tính bán kính mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x + 10y - 6z + 49 =
0. Tính bán kính của mặt cầu (S)?

    Hướng dẫn:

    Phương trình mặt cầu:

    (S):x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0 có tâm I(a;b;c) và bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d}

    Ta có: a = 4;b = - 5;c = 3;d =
49

    Khi đó R = \sqrt{a^{2} + b^{2} + c^{2} -
d} = 1

  • Câu 7: Nhận biết
    Chọn phương trình mặt cầu

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình mặt cầu

    Hướng dẫn:

    Phương trình mặt cầu tâm I bán kính R có dạng: (x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}

    Vậy đáp án cần tìm là: (x - 13)^{2} + (y
- 24)^{2} + (z - 36)^{2} = 7^{2} .

  • Câu 8: Nhận biết
    Chọn câu đúng

    Cho đường tròn (C) đường kính AB và đường thẳng \triangle. Để hình tròn xoay sinh bởi (C) khi quay quanh \triangle là một mặt cầu thì cần có thêm điều kiện nào sau đây:

    Hướng dẫn:

    Điều kiện để hình tròn xoay sinh bởi (C) khi quay quanh \triangle là một mặt cầu là trục quay \triangle phải cố định và hai điểm A, B cũng cố định trên \triangle.

  • Câu 9: Nhận biết
    Viết phương trình mặt cầu

    Mặt cầu (S) tâm I(3; - 3;1) và đi qua A(5; - 2;1)có phương trình:

    Hướng dẫn:

    Bán kính mặt cầu là: R = IA = \sqrt{2^{2}
+ 1^{2} + 0^{2}} = \sqrt{5}

    Vậy ph­ương trình của mặt cầu là: (S):(x -
3)^{2} + (y + 3)^{2} + (z - 1)^{2} = 5.

  • Câu 10: Thông hiểu
    Tìm phương trình tiếp diện của (S) tại một điểm

    Cho mặt cầu (S):(x - 2)^{2} + (y + 1)^{2}+ z^{2} = 14. Mặt cầu (S) cắt trục Oz tại AB (z_{A} <
0). Phương trình nào sau đây là phương trình tiếp diện của (S) tại B:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(2; -
1;0)

    A \in Oz \Rightarrow A\left( 0;0;z_{A}
\right) (z_{A} < 0)

    A \in (S) \Rightarrow (0 - 2)^{2} + (0 +
1)^{2} + {z_{A}}^{2} = 14

    \Rightarrow {z_{A}}^{2} = 9 \Rightarrow
z_{A} = - 3

    Nên mặt cầu (S) cắt trục Oz tại A(0;0;
- 3)B(0;0;3)

    Gọi (\alpha) là tiếp diện của mặt cầu (S) tại B.

    Mặt phẳng (\alpha) qua B(0;0;3) và có vectơ pháp tuyến \overrightarrow{n} = \overrightarrow{IB} = ( -
2;1;3)

    Vậy phương trình mặt phẳng (\alpha):2x -
y - 3z + 9 = 0.

  • Câu 11: Nhận biết
    Tìm tọa độ tâm mặt cầu

    Trong không gian Oxyz, cho mặt cầu (S):(x + 3)^{2} + (y + 1)^{2} + (z -
1)^{2} = 2 có tọa độ tâm I là:

    Hướng dẫn:

    Tâm của (S) có tọa độ là I( - 3; - 1;1).

  • Câu 12: Nhận biết
    Tính bán kính mặt cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0. Bán kính của mặt cầu (S) là:

    Hướng dẫn:

    Ta có:

    x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2.0.x - 2.1y - 2.( - 1)z - 7 = 0

    \Leftrightarrow \left\{ \begin{matrix}
a = 0 \\
b = 1 \\
c = - 1 \\
d = - 7 \\
\end{matrix} ight. suy ra tâm mặt cầu là: I(0;1; - 1)

    Bán kính mặt cầu là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{0^{2} + 1^{2} + ( - 1)^{2} - 7} = 3

  • Câu 13: Thông hiểu
    Tìm phương trình mặt cầu thích hợp

    Cho mặt cầu (S): (x + 1)^{2} + (y - 1)^{2} + (z - 2)^{2} =
4. Phương trình mặt cầu nào sau đây là phương trình mặt cầu đối xứng với mặt cầu (S) qua trục Oz:

    Hướng dẫn:

    Mặt cầu (S) tâm I( - 1;1;2), bán kính R = 2. Do mặt cầu (S') đối xứng với (S) qua trục Oz nên tâm I' của (S') đối xứng với I qua trục Oz, bán kính R' = R = 2.

    Ta có : I'(1; - 1;2).

    Vậy (S):(x - 1)^{2} + (y + 1)^{2} + (z -
2)^{2} = 4.

    Lưu ý: Sẽ vất vả hơn rất nhiều nếu học sinh không nhớ được tính chất đối xứng, tọa độ của một điểm đối xứng qua các trục tọa độ.

  • Câu 14: Thông hiểu
    Viết phương trình mặt cầu (S’)

    Trong không gian Oxyz, cho tứ diện ABCD có tọa độ đỉnh A(2;0;0),B(0;4;0),C(0;0;6),D(2;4;6). Gọi (S) là mặt cầu ngoại tiếp tứ diện ABCD. Viết phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp hai lần bán kính của mặt cầu (S)?

    Hướng dẫn:

    Gọi phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0a^{2} + b^{2} + c^{2} - d > 0

    (S) là mặt cầu ngoại tiếp tứ diện ABCD nên ta có hệ phương trình

    \left\{ \begin{matrix}
2^{2} + 0^{2} + 0^{2} - 2.a.2 - 2.b.0 - 2.c.0 + d = 0 \\
0^{2} + 4^{2} + 0^{2} - 2.a.0 - 2.b.4 - 2.c.0 + d = 0 \\
0^{2} + 0^{2} + 6^{2} - 2.a.0 - 2.b.0 - 2.c.6 + d = 0 \\
2^{2} + 4^{2} + 6^{2} - 2.a.2 - 2.b.4 - 2.c.6 + d = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 4a + d = - 4 \\
- 8b + d = - 16 \\
- 12c + d = - 36 \\
- 4a - 8b - 12c + d = - 56 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 3 \\
d = 0 \\
\end{matrix} ight.. Suy ra tâm mặt cầu I(1;2;3) và bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{14}

    Vậy phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp hai lần bán kính của mặt cầu (S)là:

    (x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2}
= 56

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Trong không gian tọa độ Oxyz, mặt cầu tâm I\left( x_{0};y_{0} ; z_{0} ight) bán kính R có phương trình là

    Hướng dẫn:

    Mặt cầu tâm I\left( x_{0};y_{0} ; z_{0} ight) và bán kính R có phương trình là:

    \left( x - x_{0}
ight)^{2} + \left( y - y_{0} ight)^{2} + \left( z - z_{0}
ight)^{2} = R^{2}

  • Câu 16: Thông hiểu
    Tính bán kính mặt cầu

    Bán kính mặt cầu đi qua bốn điểm M(1;0;1),\ N(1;0;0),\ P(2;1;0)Q(1;1;1) bằng:

    Hướng dẫn:

    Gọi phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz
+ d = 0 với a^{2} + b^{2} + c^{2} -
d > 0.

    Do (S) đi qua bốn điểm M, N, P, Q nên ta có hệ phương trình:

    \left\{ \begin{matrix}
- 2a - 2c + d = - 2 \\
- 2a + d = - 1 \\
- 4a - 2b + d = - 5 \\
- 2a - 2b - 2c + d = - 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = \dfrac{3}{2} \\
b = \dfrac{1}{2} \\
c = \dfrac{1}{2} \\
d = 2 \\
\end{matrix} \right..

    Vậy R = \sqrt{\left( \frac{3}{2}
\right)^{2} + \left( \frac{1}{2} \right)^{2} + \left( \frac{1}{2}
\right)^{2} - 2} = \frac{\sqrt{3}}{2}.

  • Câu 17: Thông hiểu
    Tìm phương trình tổng quát của tiếp diện

    Viết phương trình tổng quát của tiếp diện của mặt cầu (S):\ \ x^{2} + y^{2} + z^{2} - 4x - 2y - 2z - 10
= 0 song song với mặt phẳng (P):\ \
2x - 3y + 6z - 7 = 0.

    Hướng dẫn:

    (S) có tâm I(2,1,1), bán kính R = 4.

    Tiếp điểm của (S) có phương trình:

    (Q):2x - 3y + 6z + m = 0

    \Rightarrow d(I,Q) = R \Leftrightarrow
\frac{|m + 7|}{7} = 4 \Leftrightarrow \left\lbrack \begin{matrix}
m = 21 \\
m = - 35 \\
\end{matrix} \right.

    \Rightarrow \left\lbrack \begin{matrix}
(Q):2x - 3y + 6z + 21 = 0 \\
(Q'):2x - 3y + 6z - 35 = 0 \\
\end{matrix} \right.

  • Câu 18: Nhận biết
    Tính bán kính mặt cầu (S)

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} + 2x - 2z - 7 =
0. Bán kính của mặt cầu (S) là:

    Hướng dẫn:

    Ta có:

    x^{2} + y^{2} + z^{2} + 2x - 2z - 7 =
0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2.( - 1)x - 2.0.y - 2.1z - 7 = 0

    \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 0 \\
c = 1 \\
d = - 7 \\
\end{matrix} ight. suy ra tâm mặt cầu là: I( - 1;0;1)

    Bán kính mặt cầu là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{( - 1)^{2} + 0^{2} + 1^{2} - 7} = 3

  • Câu 19: Nhận biết
    Chọn đáp án đúng

    Cho đường thẳng (\Delta):\left\{
\begin{matrix}
x = 1 + t \\
y = 2 \\
z = - 4 + 7t \\
\end{matrix} \right.và mặt cầu (S): x^{2} +y^{2} + z^{2} - 2x - 4y + 6z - 67 = 0. Giao điểm của (\Delta)(S) là các điểm có tọa độ:

    Hướng dẫn:

    Tọa độ giao điểm là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
x = 1 + t \\
y = 2 \\
z = - 4 + 7t \\
x^{2} + y^{2} + z^{2} - 2x - 4y + 6z - 67 = 0 \\
\end{matrix} \right.

    \Rightarrow \left\lbrack \begin{matrix}
t = 0 \Rightarrow A(1;2; - 4) \\
t = 1 \Rightarrow B(2;2;3) \\
\end{matrix} \right.

  • Câu 20: Nhận biết
    Tìm tâm mặt cầu

    Mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} +
z^{2} = 9 có tâm là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng (x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2} có tâm I(a;b;c), bán kính R.

    Mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} +
z^{2} = 9 có tâm là I\left( {1; - 2;0} \right).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (70%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo