Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 9 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Cho mẫu dữ liệu ghép nhóm được ghi trong bảng dưới đây:

    Khoảng

    Tần số

    Nhỏ hơn 10

    10

    Nhỏ hơn 20

    20

    Nhỏ hơn 30

    30

    Nhỏ hơn 40

    40

    Nhỏ hơn 50

    50

    Nhỏ hơn 60

    30

    Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Nhóm dữ liệu

    Tần số

    Tần số tích lũy

    (0; 10]

    10

    10

    (10; 20]

    20

    30

    (20; 30]

    30

    60

    (30; 40]

    50

    110

    (40; 50]

    40

    150

    (50; 60]

    30

    180

    Tổng

    N = 180

     

    Ta có: \frac{N}{4} = \frac{180}{4} =
45

    => Nhóm chứa tứ phân vị thứ nhất là: (20; 30]

    Khi đó: \left\{ \begin{matrix}
l = 20;\frac{N}{4} = 45 \\
m = 30,f = 30,d = 10 \\
\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \frac{\frac{N}{4} -
m}{f}.d

    \Rightarrow Q_{1} = 20 + \frac{45 -
30}{30}.10 = 25

    Ta có: \frac{3N}{4} = \frac{3.180}{4} =
135

    => Nhóm chứa tứ phân vị thứ ba là: (40; 50]

    Khi đó: \left\{ \begin{matrix}
l = 40;\frac{3N}{4} = 30 \\
m = 110,f = 40,d = 10 \\
\end{matrix} ight.

    Tứ phân vị thứ ba là:

    Q_{3} = l + \frac{\frac{3N}{4} -
m}{f}.d

    \Rightarrow Q_{3} = 40 + \frac{135 -
110}{40}.10 = \frac{185}{4}

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
\frac{185}{4} - 25 = 21,25

  • Câu 2: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Tìm hiểu thời gian hoàn thành một bài tập (đơn vị: phút) của một số học sinh thu được kết quả sau:

    Thời gian

    \lbrack 0;\ 4) \lbrack 4;\ 8) \lbrack 8;12) \lbrack 12;16) \lbrack 16;20)

    Số học sinh

    2

    4

    7

    4

    3

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm này là

    Hướng dẫn:

    Cỡ mẫu: n = 2 + 4 + 7 + 4 + 3 =
20.

    Gọi x_{1};\ x_{2};\ \ldots;\ x_{20}thời gian hoàn thành bài tập của 20 học sinh và được sắp xếp theo thứ tự không giảm.

    Tứ phân vị thứ ba Q_{1}\frac{x_{5} + x_{6}}{2}. Do x_{5},\ \ x_{6} đều thuộc nhóm \lbrack 4;8) nên nhóm này chứa Q_{1}.

    Khi đó Q_{1} = 4 + \frac{\frac{20}{4} -
2}{4}.4 = 7

    Tứ phân vị thứ ba Q_{3}\frac{x_{15} + x_{16}}{2}. Do x_{15},\ \ x_{16} đều thuộc nhóm \lbrack 12;16) nên nhóm này chứa Q_{3}.

    Khi đó: Q_{3} = 12 + \frac{\frac{3.20}{4}
- 13}{4}.4 = 14.

    Vậy khoảng tứ phân vị của mẫu số liệu trên là \Delta_{Q} = Q_{3} - Q_{1} = 14 - 7 =
7.

  • Câu 3: Nhận biết
    Chọn kết luận đúng

    Cho bảng thống kê thời gian (đơn vị: phút) và số ngày tập thể dục của hai người A và B trong 30 ngày như sau:

    Thời gian

    [15; 20)

    [25; 30)

    [30; 35)

    Số ngày tập của A

    10

    15

    5

    Số ngày tập của B

    9

    21

    0

    Chọn kết luận đúng dưới đây?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của A là: 35 – 15 = 20 (phút).

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của B là: 30 – 15 = 15 (phút).

    Do đó căn cứ theo khoảng biến thiên thì thời gian tập của A có độ phân tán lớn hơn.

  • Câu 4: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm sau

    Cho mẫu số liệu ghép nhóm sau:

    Đối tượng

    [40; 45)

    [45; 50)

    [50; 55)

    [55; 60)

    [60; 65)

    Tần số

    5

    20

    18

    7

    3

    Tính giá trị R?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu đã cho là R = 65 - 40 = 25.

  • Câu 5: Thông hiểu
    Xác định tính đúng sai của các nhận định

    Thời gian (phút) truy cập Internet mỗi buổi tối của một số học sinh được cho ở bảng sau:

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a. Khoảng biến thiên của mẫu số liệu là 15. Đúng||Sai

    b. Nhóm chứa tứ phân vị thứ ba là \lbrack
15,5;18,5). Sai||Đúng

    c. Tứ phân vị thứ nhất là Q_{1} =
15. Đúng||Sai

    d. Khoảng tứ phân vị của mẫu số liệu ghép nhóm bé hơn 6. Đúng||Sai

    Đáp án là:

    Thời gian (phút) truy cập Internet mỗi buổi tối của một số học sinh được cho ở bảng sau:

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a. Khoảng biến thiên của mẫu số liệu là 15. Đúng||Sai

    b. Nhóm chứa tứ phân vị thứ ba là \lbrack
15,5;18,5). Sai||Đúng

    c. Tứ phân vị thứ nhất là Q_{1} =
15. Đúng||Sai

    d. Khoảng tứ phân vị của mẫu số liệu ghép nhóm bé hơn 6. Đúng||Sai

    a. Khoảng biến thiên của mẫu số liệu là 15.

    R = a_{6} - a_{1} = 24,5 - 9,5 =
15 .

    Mệnh đề đúng.

    b. Nhóm chứa tứ phân vị thứ ba là \lbrack
15,5;18,5).

    Cỡ mẫu n = 4 + 12 + 14 + 23 + 3 =
56.

    Tứ phân vị thứ nhất Q_{1}\frac{x_{14} + x_{15}}{2} nên nhóm chứa tứ phân vị thứ nhất là \lbrack
12,5;15,5).

    Mệnh đề sai.

    c. Tứ phân vị thứ nhất là Q_{1} =
15.

    Q_{1} = 12,5 + \frac{\frac{56 }{4} -4}{12}.3 = 15.

    Mệnh đề đúng.

    d. Khoảng tứ phân vị của mẫu số liệu ghép nhóm bé hơn 6.

    Tứ phân vị thứ ba Q_{3}\frac{x_{42} + x_{43}}{2} nên nhóm chứa tứ phân vị thứ ba là \lbrack
18,5;21,5).

    Q_{3} = 18,5 + \frac{\frac{3.56}{4} -
30}{23}.3 = \frac{923}{46}.

    Vậy khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = \frac{233}{46} < 6.

    Mệnh đề đúng.

  • Câu 6: Nhận biết
    Xác định nhóm chứa tứ phân vị thứ nhất

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14;15)

    [15;16)

    [16;17)

    [17;18)

    [18;19)

    Số con

    1

    3

    8

    6

    2

    Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu ghép nhóm đã cho là:

    Hướng dẫn:

    Ta có: \frac{n}{4} = \frac{20}{4} =
51 + 3 < 5 < 1 + 3 +
8 nên tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm [16;17).

  • Câu 7: Vận dụng
    Xác định tính đúng sai của các nhận định

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B. (ảnh 1)

    a) Giá trị đại điện cho mỗi nhóm và bảng tần số ghép nhóm của mẫu số liệu trên là:

    Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường A là 2,275. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường B là 1.526. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường A có điểm trung bình đồng đều hơn trường B. Sai||Đúng

    Đáp án là:

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B. (ảnh 1)

    a) Giá trị đại điện cho mỗi nhóm và bảng tần số ghép nhóm của mẫu số liệu trên là:

    Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường A là 2,275. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường B là 1.526. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường A có điểm trung bình đồng đều hơn trường B. Sai||Đúng

    A.B.C.D.ĐÚNGĐÚNGSAISAI

    a) Giá trị đại diện của nhóm [5; 6) là 5,5.

    Giá trị đại diện của nhóm [6; 7) là 6,5.

    Giá trị đại diện của nhóm [7; 8) là 7,5.

    Giá trị đại diện của nhóm [8; 9) là 8,5.

    Giá trị đại diện của nhóm [9; 10) là 9,5.

    Từ biểu đồ, ta có bảng tần số ghép nhóm sau:

    b) Xét mẫu số liệu của trường A:

    Cỡ mẫu nA = 4 + 5 + 3 + 4 + 2 = 18.

    Gọi x_{1};...;x_{18}là mẫu số liệu gốc về điểm trung bình năm học của học sinh trường A được xếp theo thứ tự không giảm.

    Ta có

    x_{1};...;x_{4} \in [5; 6),

    x_{5};...;x_{9} \in [6; 7),

    x_{10};...;x_{12} \in [7; 8),

    x_{13};...;x_{16} \in [8; 9),

    x_{17};x_{18} \in [9; 10).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{5} \in [6; 7). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{1} = 6
+ \frac{\frac{18}{4} - 4}{5}(7 - 6) = 6,1

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{14} \in [8; 9). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: Q_{3} = 8 +
\frac{\frac{3.18}{4} - (4 + 5 + 3)}{4}(9 - 8) = 8,375

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: ∆Q = Q3 – Q1 = 8,375 – 6,1 = 2,275.

    Xét mẫu số liệu của trường B:

    Cỡ mẫu nB = 2 + 5 + 4 + 3 + 1 = 15.

    Gọi y_{1};...;y_{20}là mẫu số liệu gốc về điểm trung bình năm học của học sinh trường B được xếp theo thứ tự không giảm.

    Ta có

    y_{1};y_{2} \in [5; 6),

    y_{3};...;y_{7} \in [6; 7),

    y_{8};...;y_{11} \in [7; 8),

     y_{12};...;y_{14} \in [8; 9),

    y_{15} \in [9; 10).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là y_{4} \in [6; 7). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{\
_{1}}' = 6 + \frac{\frac{15}{4} - 2}{5}(7 - 6) = 6,35

    Tứ phân vị thứ ba của mẫu số liệu gốc là y_{12} \in [8; 9). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:  Q_{\
_{3}}' = 8 + \frac{\frac{3.15}{4} - (2 + 5 + 4)}{3}(9 - 8) =
\frac{97}{12}

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{\ _{Q}}' = Q_{\ _{3}}' - Q_{\
_{1}}' = \frac{97}{12} - 6,35 \approx 1,73

    d) Vì ∆Q = 2,275 > ∆'Q ≈ 1,73 nên nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường B có điểm trung bình đồng đều hơn.

  • Câu 8: Thông hiểu
    Tìm mốt của mẫu số liệu ghép nhóm

    Cho mẫu số liệu điểm môn Toán của một nhóm học sinh như sau:

    Điểm

    \lbrack 6;7)

    \lbrack 7;8)

    \lbrack 8;9)

    \lbrack 9;10brack

    Số học sinh

    8

    7

    10

    5

    Mốt của mẫu số liệu (kết quả làm tròn đến hàng phần trăm) là:

    Hướng dẫn:

    Nhóm chứa Mốt là \lbrack
8;9).

    Mốt của mẫu số liệu là M_{e} = 8 +
\frac{10 - 7}{10 - 7 + 10 - 5}(9 - 8) \approx 8,38

  • Câu 9: Nhận biết
    Chọn công thức tính khoảng tứ phân vị

    Công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1}

  • Câu 10: Thông hiểu
    Xác định trung vị của mẫu số liệu ghép nhóm

    Cho mẫu số liệu ghép nhóm của chiều cao của cây cao su trong một nông trường

    Trung vị của mẫu số liệu ghép nhóm trên là:

    Hướng dẫn:

    Ta có: n = 55 + 78 + 120 + 45 + 11 =
309

    Nhóm chứa trung vị: Q_{2} = x_{155} \in
\lbrack 18;22)

    Trung vị của mẫu số liệu ghép nhóm là:

    Q_{2} = 18 + (22 -18).\dfrac{\dfrac{309.2}{4} - 55 - 78}{120} = \dfrac{1123}{60}

  • Câu 11: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Tìm hiểu thời gian (đơn vị: giờ) sử dụng điện thoại di động của một nhóm bạn trẻ thu được kết quả sau như sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Số bạn

    2

    6

    8

    9

    3

    2

    Xác định tính đúng sai của các đáp án dưới đây?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là 25. Sai||Đúng

    b) Nhóm chứa tứ phân vị thứ 3 là [15; 20). Đúng||Sai

    c) Số trung bình của thống kê là 10. Sai||Đúng

    d) Khoảng tứ phân của mẫu số liệu ghép nhóm này lớn hơn 10. Sai||Đúng

    Đáp án là:

    Tìm hiểu thời gian (đơn vị: giờ) sử dụng điện thoại di động của một nhóm bạn trẻ thu được kết quả sau như sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Số bạn

    2

    6

    8

    9

    3

    2

    Xác định tính đúng sai của các đáp án dưới đây?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là 25. Sai||Đúng

    b) Nhóm chứa tứ phân vị thứ 3 là [15; 20). Đúng||Sai

    c) Số trung bình của thống kê là 10. Sai||Đúng

    d) Khoảng tứ phân của mẫu số liệu ghép nhóm này lớn hơn 10. Sai||Đúng

    Ta có

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Giá trị đại diện

    2,5

    7,5

    12,5

    17,5

    22,5

    17,5

    Số bạn

    2

    6

    8

    9

    3

    2

    a) Sai: Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 30 - 0 = 30.

    b) Đúng:

    16 < \frac{3n}{4} = \frac{3.30}{4}
= \frac{90}{4} = 22,5 < 25 nên nhóm chứa tứ phân vị thứ 3 là [15;20).

    c) Sai: Thời gian sử dụng điện thoại trung bình là:

    \overline{x} = \frac{2.2,5 + 6.7,5 +
8.12,5 + 9.17,5 + 3.22,5 + 2.27,5}{30} = \frac{43}{3} \approx
14,3

    d) Sai: Ta có: \frac{n}{4} =
7,5;\frac{n}{2} = 15;\frac{3n}{4} = 22,5

    \left\{ \begin{matrix}
  {Q_1} = 5 + \dfrac{{\dfrac{{30}}{4} - 2}}{6}.5 = 9,58 \hfill \\
  {Q_3} = 15 + \dfrac{{\dfrac{{90}}{4} - 16}}{9}.5 \approx 18,61 \hfill \\ 
\end{matrix}  ight. \Rightarrow \Delta Q = {Q_3} - {Q_1} \approx 9,03 < 10

  • Câu 12: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Cho mẫu số liệu ghép nhóm cho bởi bảng sau:

    Nhóm

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    Tần số

    3

    7

    2

    9

    Khoảng biến thiên của mẫu số liệu ghép nhóm này là

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    R = 40 – 0 = 40.

  • Câu 13: Thông hiểu
    Chọn kết quả chính xác

    Bạn Linh thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ lớp 12A và lớp 12\ B ở bảng sau:

    Chiều cao (cm)

    \lbrack 150;155) \lbrack 155;160) \lbrack 160;165) \lbrack 165;170) \lbrack 170;175) \lbrack 175;180)

    Số học sinh nữ lớp 12 A

    2

    7

    12

    3

    0

    1

    Số học sinh nữ lớp 12 B

    0

    9

    8

    2

    1

    5

    Gọi R_{1}; R_{2}lần lượt là khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12A12\
B. Tìm R_{1}; R_{2}.

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12Alà: R_{1} = 180 - 150 = 30 (cm).

    Trong mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12B, khoảng đầu tiên chứa dữ liệu là [155; 160) và khoảng cuối cùng chứa dữ liệu là [175; 180).

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12Blà: R_{2} = 180 - 155 = 25 (cm).

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Dữ liệu thu được ghi trong bảng dưới đây.

    Chiều cao (cm)

    Số học sinh

    (120; 125]

    3

    (125; 130]

    5

    (130; 135]

    11

    (135; 140]

    6

    (140; 145]

    5

     

    N = 30

    Giá trị \Delta_{Q} là:

    Hướng dẫn:

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    (120; 125]

    3

    3

    (125; 130]

    5

    8

    (130; 135]

    11

    19

    (135; 140]

    6

    25

    (140; 145]

    5

    30

     

    N = 30

     

    Ta có: \frac{N}{4} = \frac{30}{4} =
7,5

    => Nhóm chứa tứ phân vị thứ nhất là: (125; 130]

    Khi đó: \left\{ \begin{matrix}l = 125;\dfrac{N}{4} = 7,5;m = 3 \\f = 5;d = 130 - 125 = 5 \\\end{matrix} ight.

    Vậy tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 125 + \frac{7,5 -
3}{5}.5 = 129,5

    Ta có: \frac{3N}{4} = \frac{3.30}{4} =
22,5

    => Nhóm chứa tứ phân vị thứ ba là (135; 140]

    Khi đó: \left\{ \begin{matrix}
l = 135;\frac{3N}{4} = 22,5;m = 19 \\
f = 6;d = 140 - 135 = 5 \\
\end{matrix} ight.

    Vậy tứ phân vị thứ ba là:

    \left\{ \begin{matrix}l = 135;\dfrac{3N}{4} = 22,5;m = 19 \\f = 6;d = 140 - 135 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = 135 + \frac{22,5 -
19}{6}.5 \approx 137,9

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
\frac{1655}{12} - 29,5 \approx 8,4

  • Câu 15: Nhận biết
    Chọn kết luận đúng

    Cho bảng thống kê chiều cao (đơn vị: cm) của học sinh lớp 12A và lớp 12B như sau:

    Chiều cao

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    12A

    2

    7

    12

    3

    0

    1

    12B

    5

    9

    8

    2

    1

    0

    Giả sử khoảng biến thiên của mẫu số liệu chiều cao học sinh lớp 12A và 12B lần lượt là R_{1};R_{2}. Chọn kết luận đúng?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu chiều cao lớp 12A là R_{1} = 185 - 155 = 30.

    Khoảng biến thiên của mẫu số liệu chiều cao lớp 12B là R_{2} = 180 - 155 = 25.

    Vậy R_{1} > R_{2} là kết luận đúng.

  • Câu 16: Thông hiểu
    Xác định tính đúng sai của các nhận định

    Bạn An và bạn Bình làm thí nghiệm trồng cây. Mỗi bạn trồng 40 cây cần tây trong cốc, phần gốc của các cây khi bắt đầu trồng đều dài 4cm. Bảng 13Bảng 14 lần lượt biểu diễn mẫu số liệu ghép nhóm về số liệu thống kê chiều cao của các cây (đơn vị: centimét) mà bạn An và bạn Bình trồng sau 5 tuần.

    a) Chiều cao trung bình của mỗi cây do hai bạn An và Bình trồng không bằng nhau. Sai||Đúng

    b) Khoảng biến thiên của cả hai mẫu số liệu trên là 20. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ở Bảng 13 là 5,5. Đúng||Sai

    d) Chiều cao của các cây mà bạn Bình trồng đồng đều hơn các cây mà bạn An trồng. Sai||Đúng

    Đáp án là:

    Bạn An và bạn Bình làm thí nghiệm trồng cây. Mỗi bạn trồng 40 cây cần tây trong cốc, phần gốc của các cây khi bắt đầu trồng đều dài 4cm. Bảng 13Bảng 14 lần lượt biểu diễn mẫu số liệu ghép nhóm về số liệu thống kê chiều cao của các cây (đơn vị: centimét) mà bạn An và bạn Bình trồng sau 5 tuần.

    a) Chiều cao trung bình của mỗi cây do hai bạn An và Bình trồng không bằng nhau. Sai||Đúng

    b) Khoảng biến thiên của cả hai mẫu số liệu trên là 20. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ở Bảng 13 là 5,5. Đúng||Sai

    d) Chiều cao của các cây mà bạn Bình trồng đồng đều hơn các cây mà bạn An trồng. Sai||Đúng

    Chiều cao trung bình của cây do bạn An trồng là: {\overline{x}}_{\ _{A}} = 30,25(\
cm).

    Chiều cao trung bình của cây do bạn Bình trồng là: {\overline{x}}_{\ _{B}} = 30,25(\
cm).

    Suy ra chiều cao trung bình của mỗi cây do hai bạn An và Bình trồng là bằng nhau.

    Khoảng biến thiên của cả hai mẫu số liệu là 40 - 20 = 20.

    Xét mẫu số liệu ở Bảng 13.

    • Tứ phân vị thứ nhất Q_{1} của mẫu số liệu đó là:

    Q_{1} = 25 + \left( \frac{10 - 2}{16}
\right) \cdot 5 = 27,5(\ cm)

    • Tứ phân vị thứ ba Q_{3} của mẫu số liệu đó là:

    Q_{3} = 30 + \left( \frac{30 - 18}{20}
\right).5 = 33(\ cm)

    Suy ra khoảng tứ phân vị của mẫu số liệu ở Bảng 13 là 33 - 27,5 = 5,5.

    Phương sai của mẫu số liệu ở Bảng 13 là: s_{A}^{2} = 11,1875.

    Phương sai của mẫu số liệu ở Bảng 14 là: s_{B}^{2} = 13,6875.

    Suy ra s_{A}^{2} < s_{B}^2. Vậy chiều cao của các cây mà bạn An trồng đồng đều hơn các cây mà bạn Bình trồng.

    Đáp án: a) Sai, b) Đúng, c) Đúng, d) Sai.

  • Câu 17: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Bảng sau thống kê thành tích nhảy xa của một số học sinh lớp 12A:

    Thành tích cm)

    [150; 180)

    [180; 210)

    [210; 240)

    [240; 270)

    [270; 300)

    Số học sinh

    3

    5

    28

    14

    8

    Xác định khoảng biến thiên của mẫu số liệu đã cho?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu là R =
300 - 150 = 150.

  • Câu 18: Vận dụng
    Ghi đáp án vào ô trống

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Thông hiểu
    Chọn đáp án đúng

    Một mẫu số liệu ghép nhóm có khoảng tứ phân vị là 4,43 và tứ phân vị thứ 3 là \frac{68}{3} thì giá trị ngoại lệ của mẫu số liệu ghép nhóm đó phải là bao nhiêu?

    Hướng dẫn:

    Do tứ phân vị thứ 3 là \frac{68}{3}

    Suy ra giá trị ngoại lệ x > Q_{3} +
1,5\Delta Q = \frac{68}{3} + 1,5.4,43 \approx 29,3.

  • Câu 20: Thông hiểu
    Chọn kết luận đúng

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Chọn đáp án đúng?

    Hướng dẫn:

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \Rightarrow \left\{ \begin{matrix}l = 50,\dfrac{N}{4} = 11,5,m = 5,f = 12 \\c = 55 - 50 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{11,5 -
5}{12}.5 \approx 52,7

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

    \Rightarrow \left\{ \begin{matrix}l = 65,\dfrac{3N}{4} = 34,5,m = 33,f = 5 \\c = 70 - 65 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 65 + \frac{34,5 -
33}{5}.5 \approx 66,5

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo