Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 9 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn phương án thích hợp

    Giả sử kết quả khảo sát hai khu vực A và B về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình được cho ở bảng sau:

    Tuổi kết hôn

    [19; 22)

    [22; 25)

    [25; 28)

    [28; 31)

    [31; 34)

    Số phụ nữ khu vực A

    10

    27

    31

    25

    7

    Số phụ nữ khu vực B

    47

    40

    11

    2

    0

     Khoảng biến thiên R và R’ của từng mẫu số liệu ghép nhóm ứng với mỗi khu vực A và B.

    Hướng dẫn:

    Khu vực A:

    Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực A là:

    R = 34 – 19 = 15.

    Khu vực B:

    Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực B là:

    R' = 31 – 19 = 12.

  • Câu 2: Vận dụng
    Chọn kết luận đúng

    Bạn Trang thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ lớp 12C và lớp 12D ở bảng sau:

    Chiều cao (cm)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    Số học sinh nữ lớp 12C

    2

    7

    12

    3

    0

    1

    Số học sinh nữ lớp 12D

    5

    9

    8

    2

    1

    0

    Gọi \Delta_{Q}\Delta_{\ _{Q}}^{'}khoảng tứ phân vị của mẫu số liệu ghép nhóm về chiều cao của học sinh nữ lớp lớp 12C và 12D .

    Hãy so sánh khoảng tứ phân vị của mẫu số liệu ghép nhóm về chiều cao của học sinh nữ lớp lớp 12C và 12D .

    Hướng dẫn:

    Lớp 12C:

    Cỡ mẫu n = 2 + 7 + 12 + 3 + 0 + 1 = 25.

    Gọi x_{1};x_{2};...;x_{25}là mẫu số liệu gốc về chiều cao của 25 học sinh nữ lớp 12C được xếp theo thứ tự không giảm.

    Ta có:

    x_{1};x_{2} \in \lbrack
155;160)

    x_{3};...;x_{9} \in \lbrack
160;165)

    x_{10};...;x_{21} \in \lbrack
165;170)

    x_{22};x_{23};x_{24} \in \lbrack
170;175)

    x_{25} \in \lbrack 180;185)

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{x_{6} + x_{7}}{2} \in \lbrack
160;165). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 160 + \frac{\frac{25}{4} -
2}{7}(165 - 160) = \frac{4565}{28}

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{x_{19} + x_{20}}{2} \in \lbrack
165;170). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: 

    Q_{3} = 165 + \frac{\frac{3.25}{4} - (2
+ 7)}{12}(170 - 165) = \frac{2705}{16}

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12C là:

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{2705}{16} - \frac{4565}{28} \approx 6,03

    Lớp 12D:

    Cỡ mẫu n' = 5 + 9 + 8 + 2 + 1 = 25.

    Gọi y1; y2; …; y25 là mẫu số liệu gốc về chiều cao của 25 học sinh nữ lớp 12D được xếp theo thứ tự không giảm.

    Ta có

    y_{1};...;y_{5} \in [155; 160),

    y_{6};...;y_{14} \in [160; 165),

    y_{15};...;y_{22} \in [165; 170),

    y_{23};y_{24} \in [170; 175),

    y_{25} \in [175; 180).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{y_{6} + y_{7}}{2} \in [160; 165). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là Q_{\ _{1}}^{'} = 160 + \frac{\frac{25}{4} -
5}{9}(165 - 160) = \frac{5785}{36}

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{y_{19} + y_{20}}{2} \in [165; 170). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là Q_{3}^{'} = 165 + \frac{\frac{3.25}{4} - (5 +
9)}{8}(170 - 165) = \frac{5395}{32}

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12D là:

    \Delta_{\ _{Q}}^{'} = Q_{\
_{3}}^{'} - Q_{\ _{1}}^{'} = \frac{5375}{32} - \frac{5785}{36}
\approx 7,27

    Ta có \Delta_{Q} \approx 6,03 <
\Delta_{\ _{Q}}^{'} \approx 7,27

  • Câu 3: Nhận biết
    Chọn kết luận đúng

    Xét mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, tứ phân vị thứ hai, tứ phân vị thứ ba lần lượt là Q_{1}; Q_{2}; Q_{3}. Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó bằng

    Hướng dẫn:

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là Q_{3} - Q_{1}.

  • Câu 4: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Thời gian chờ khám bệnh của hai phòng khám 1 và phòng khám 2 được cho trong bảng sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    Số bệnh nhân phòng 1

    3

    12

    15

    18

    Số bệnh nhân phòng 1

    5

    10

    12

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} =
15. Sai|| Đúng

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} =
20. Sai|| Đúng

    (d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1. Sai|| Đúng

    Đáp án là:

    Thời gian chờ khám bệnh của hai phòng khám 1 và phòng khám 2 được cho trong bảng sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    Số bệnh nhân phòng 1

    3

    12

    15

    18

    Số bệnh nhân phòng 1

    5

    10

    12

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} =
15. Sai|| Đúng

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} =
20. Sai|| Đúng

    (d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1. Sai|| Đúng

    (a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3.

    Chọn ĐÚNG.

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} =
15.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} = 20 - 0 =
20

    Chọn SAI.

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} =
20.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} = 15 - 0 =
15

    Chọn SAI.

    (d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1.

    R_{1} > R_{2} nên thời gian khám bệnh ở phòng khám số 1 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 2.

    Chọn SAI

  • Câu 5: Thông hiểu
    Chọn kết luận đúng

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Chọn đáp án đúng?

    Hướng dẫn:

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \Rightarrow \left\{ \begin{matrix}l = 50,\dfrac{N}{4} = 11,5,m = 5,f = 12 \\c = 55 - 50 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{11,5 -
5}{12}.5 \approx 52,7

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

    \Rightarrow \left\{ \begin{matrix}l = 65,\dfrac{3N}{4} = 34,5,m = 33,f = 5 \\c = 70 - 65 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 65 + \frac{34,5 -
33}{5}.5 \approx 66,5

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn A được thống kê lại ở bảng sau:

    Thời gian (phút)

    [20;25)

    [25;30)

    [30;35)

    [35;40)

    [40;45)

    Số ngày

    6

    6

    4

    1

    1

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Ta có:

    Thời gian (phút)

    [20;25)

    [25;30)

    [30;35)

    [35;40)

    [40;45)

    Số ngày

    6

    6

    4

    1

    1

    Tần số tích lũy

    6

    12

    16

    17

    28

    Cỡ mẫu N = 18

    Cỡ mẫu \Rightarrow \frac{N}{4} =
\frac{18}{4}

    => Nhóm chứa Q_{1} là [20;25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 6;c =
5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \dfrac{\dfrac{18}{4} - 0}{6}.5 =23,75

    Cỡ mẫu N = 18 \Rightarrow \frac{3N}{4} =
\frac{3.18}{4}

    => Nhóm chứa Q_{3} là [30;35)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 30;m = 12,f = 4;c =
5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 30 + \dfrac{\dfrac{3.18}{4} - 12}{4}.5 =31,875.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 8,125

  • Câu 7: Thông hiểu
    Xác định tứ phân vị thứ ba của mẫu số liệu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị Q_{3} của mẫu dữ liệu ghép nhóm trên?

    Hướng dẫn:

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{3N}{4} =
15

    => Nhóm chứa tứ phân vị thứ ba là [9; 11)

    (Vì 15 nằm giữa hai tần số tích lũy 9 và 16)

    Do đó: l = 9;m = 9,f = 7;c = 11 - 9 =
2

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 9 + \dfrac{15 - 9}{7}.2 = \dfrac{75}{7}\approx 10,7

  • Câu 8: Thông hiểu
    Tìm khoảng chứa khoảng tứ phân vị

    Khảo sát thời gian tập thể dục của một số học sinh khối 12 thu được mẫu số liệu ghép nhóm sau:

    Thời gian

    \lbrack 0;\ 20) \lbrack 20;\ 40) \lbrack 40;\ 60) \lbrack 60;\ 80) \lbrack 80;\ 100)

    Số học sinh

    5

    9

    12

    10

    6

    Khoảng tứ phân vị của mẫu số liệu trên thuộc khoảng nào dưới đây

    Hướng dẫn:

    Cỡ mẫu n = 5 + 9 + 12 + 10 + 6 =
42.

    Gọi x_{1};\ x_{2};\ \ldots;\ x_{42}thời gian tập thể dụccủa mỗi học sinh khối 12 và được sắp xếp theo thứ tự không giảm.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{11} mà x_{11} thuộc nhóm \lbrack 20;\ 40), khi đó

    Q_{1}\  = 20 + \frac{\frac{42}{4} -
5}{9}(40 - 20) = \frac{290}{9}.

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{32} mà  x_{32} thuộc nhóm \lbrack 60;\ 80), khi đó

    Ta có Q_{3} = 60 + \frac{\frac{3.42}{4} -
26}{10}.(80 - 60) = 7\ 1.

    Khoảng tứ phân vị \Delta_{Q}\  = Q_{3}\
–\ Q_{1}\  = 71–\frac{290}{9} = \frac{349}{9} \approx 38,8.

  • Câu 9: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu

    Kiểm tra điện lượng của một số viên pin tiểu do một hãng sản xuất thu được kết quả sau.

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [0,1; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này? (Làm tròn các kết quả đến hàng phần trăm)

    Hướng dẫn:

    Ta có:

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [1,0; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Tần số tích lũy

    10

    30

    65

    80

    85

    Cỡ mẫu N = 85

    \frac{N}{4} = \frac{85}{4}

    => Nhóm chứa Q_{1} là [0,95; 1,0)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 0,95;m = 10,f = 20;c = 1
- 0,95 = 0,05

    \Rightarrow {Q_1} = l + \dfrac{{\dfrac{N}{4} - m}}{f}.c = 0,95 + \dfrac{{\dfrac{{85}}{4} - 10}}{{20}}.0,05 \approx 0,98

    \frac{3N}{4} = \frac{3.85}{4} =
\frac{255}{4}

    => Nhóm chứa Q_{3} là [1,0; 1,05)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,0;m = 30,f = 35;c =
1,05 - 1,0 = 0,05

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 1,0 + \dfrac{\dfrac{255}{4} - 30}{35}.0,05\approx 1,05.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} \approx
0,07

  • Câu 10: Thông hiểu
    Xác định tính đúng sai của các nhận định

    Bạn An và bạn Bình làm thí nghiệm trồng cây. Mỗi bạn trồng 40 cây cần tây trong cốc, phần gốc của các cây khi bắt đầu trồng đều dài 4cm. Bảng 13Bảng 14 lần lượt biểu diễn mẫu số liệu ghép nhóm về số liệu thống kê chiều cao của các cây (đơn vị: centimét) mà bạn An và bạn Bình trồng sau 5 tuần.

    a) Chiều cao trung bình của mỗi cây do hai bạn An và Bình trồng không bằng nhau. Sai||Đúng

    b) Khoảng biến thiên của cả hai mẫu số liệu trên là 20. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ở Bảng 13 là 5,5. Đúng||Sai

    d) Chiều cao của các cây mà bạn Bình trồng đồng đều hơn các cây mà bạn An trồng. Sai||Đúng

    Đáp án là:

    Bạn An và bạn Bình làm thí nghiệm trồng cây. Mỗi bạn trồng 40 cây cần tây trong cốc, phần gốc của các cây khi bắt đầu trồng đều dài 4cm. Bảng 13Bảng 14 lần lượt biểu diễn mẫu số liệu ghép nhóm về số liệu thống kê chiều cao của các cây (đơn vị: centimét) mà bạn An và bạn Bình trồng sau 5 tuần.

    a) Chiều cao trung bình của mỗi cây do hai bạn An và Bình trồng không bằng nhau. Sai||Đúng

    b) Khoảng biến thiên của cả hai mẫu số liệu trên là 20. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ở Bảng 13 là 5,5. Đúng||Sai

    d) Chiều cao của các cây mà bạn Bình trồng đồng đều hơn các cây mà bạn An trồng. Sai||Đúng

    Chiều cao trung bình của cây do bạn An trồng là: {\overline{x}}_{\ _{A}} = 30,25(\
cm).

    Chiều cao trung bình của cây do bạn Bình trồng là: {\overline{x}}_{\ _{B}} = 30,25(\
cm).

    Suy ra chiều cao trung bình của mỗi cây do hai bạn An và Bình trồng là bằng nhau.

    Khoảng biến thiên của cả hai mẫu số liệu là 40 - 20 = 20.

    Xét mẫu số liệu ở Bảng 13.

    • Tứ phân vị thứ nhất Q_{1} của mẫu số liệu đó là:

    Q_{1} = 25 + \left( \frac{10 - 2}{16}
\right) \cdot 5 = 27,5(\ cm)

    • Tứ phân vị thứ ba Q_{3} của mẫu số liệu đó là:

    Q_{3} = 30 + \left( \frac{30 - 18}{20}
\right).5 = 33(\ cm)

    Suy ra khoảng tứ phân vị của mẫu số liệu ở Bảng 13 là 33 - 27,5 = 5,5.

    Phương sai của mẫu số liệu ở Bảng 13 là: s_{A}^{2} = 11,1875.

    Phương sai của mẫu số liệu ở Bảng 14 là: s_{B}^{2} = 13,6875.

    Suy ra s_{A}^{2} < s_{B}^2. Vậy chiều cao của các cây mà bạn An trồng đồng đều hơn các cây mà bạn Bình trồng.

    Đáp án: a) Sai, b) Đúng, c) Đúng, d) Sai.

  • Câu 11: Nhận biết
    Chọn đáp án đúng

    Một công ty cung cấp nước sạch thống kê lượng nước các hộ gia đình trong một khu vực tiêu thụ trong một tháng ở bảng sau:

    Lượng nước (m3)

    [3; 6)

    [6; 9)

    [9; 12)

    [12; 15)

    [15; 18)

    Số hộ gia đình

    20

    60

    40

    32

    7

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là:

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 18 - 3 = 15m^{3}

  • Câu 12: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tính khoảng tứ phân vị của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \frac{\left( \frac{N}{4} - m
ight)}{f}.c = 155 + \frac{25 - 15}{11}.5 \approx 159,55

    Cỡ mẫu là: N = 100

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

    Do đó: \left\{ \begin{matrix}l = 165;\dfrac{3N}{4} = 75;m = 65;f = 27 \\c = 170 - 165 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\left( \dfrac{3N}{4} -m ight)}{f}.c = 165 + \dfrac{75 - 65}{27}.5 \approx 166,85

    Vậy khoảng tứ phân vị của mẫu số liệu là \Delta_{Q} = Q_{3} - Q_{1} \approx 166,85 - 159,55
= 7,3

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Một người thống kê lại thời gian (đơn vị: giây) thực hiện các cuộc gọi điện thoại của người đó trong một tuần ở bảng sau.

    Thời gian

    [0; 60)

    [60; 120)

    [120; 180)

    [180; 240)

    [240; 300)

    [300; 360)

    Số cuộc gọi

    8

    10

    7

    5

    2

    1

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này?

    Hướng dẫn:

    Cỡ mẫu N = 33

    Suy ra tứ phân vị thứ nhất của mẫu số liệu gốc là: \frac{1}{2}\left( x_{8} + x_{9}
ight)

    {x_8} \in \left[ {0;60} ight);{x_9} \in \left[ {60;120} ight) \Rightarrow {Q_1} = 60

    Suy ra tứ phân vị thứ ba của mẫu số liệu gốc là: \frac{1}{2}\left( x_{25} + x_{26}
ight)

    x_{25} \in \lbrack 120;180);x_{26} \in
\lbrack 180;240) \Rightarrow Q_{3} = 180

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} = 120

  • Câu 14: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Cho mẫu số liệu ghép nhóm cho bởi bảng sau:

    Nhóm

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    Tần số

    3

    7

    2

    9

    Khoảng biến thiên của mẫu số liệu ghép nhóm này là

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    R = 40 – 0 = 40.

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Chọn đáp án đúng?

    Hướng dẫn:

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow \frac{N}{4}
= 15

    => Nhóm chứa tứ phân vị thứ nhất là [50; 100) (vì 15 nằm giữa hai tần số tích lũy 5 va 17)

    Khi đó \left\{ \begin{matrix}l = 50;\dfrac{N}{4} = 15;m = 5;f = 12 \\c = 100 - 50 = 50 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{15 -
5}{12}.50 = \frac{275}{3}

  • Câu 16: Vận dụng
    Xét tính đúng sai của các khẳng định

    Khảo sát thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 của trường trung học phổ thông X, thu được mẫu số liệu ghép nhóm sau:

    s

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là 180 phút. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là 65 phút. Đúng||Sai

    d) Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 phân tán hơn so với lớp 12A2. Sai||Đúng

    Đáp án là:

    Khảo sát thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 của trường trung học phổ thông X, thu được mẫu số liệu ghép nhóm sau:

    s

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là 180 phút. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là 65 phút. Đúng||Sai

    d) Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 phân tán hơn so với lớp 12A2. Sai||Đúng

    a) Đúng

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là 180 - 0 = 180 (phút).

    b) Đúng

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là 240 - 60 = 180(phút).

    Nên khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau.

    c) Đúng

    Xét mẫu số liệu ghép nhóm của lớp 12A1:

    Cỡ mẫu là: n = 5 + 20 + 15 =
40

    Gọi x_{1},\ ...,x_{40} là thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{x_{10} + x_{11}}{2}.

    Do x_{10}x_{11} đều thuộc nhóm \lbrack 120;180) nên nhóm này chứa Q_{1}.

    Q_{1} = 120 + \frac{\frac{40}{4} -
5}{20}.60 = 135

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{x_{30} + x_{31}}{2}.

    Do x_{30}x_{31} đều thuộc nhóm \lbrack 180;240) nên nhóm này chứa Q_{3}.

    Q_{3} = 180 + \frac{\frac{3.40}{4} -
25}{15}.60 = 200

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là:

    \Delta Q = Q_{3} - Q_{1} = 200 - 135 =
65 phút.

    d) Sai

    Xét mẫu số liệu ghép nhóm của lớp 12A2:

    Cỡ mẫu là: n = 9 + 12 + 18 =
39

    Gọi y_{1},...,y_{39} là thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là y_{ 10}.

    Do y_{10} thuộc nhóm \lbrack 60;120) nên nhóm này chứa Q_{1}.

    Q_{1} = 60 + \frac{\frac{39}{4} -
9}{12}.60 = 63,75

    Tứ phân vị thứ ba của mẫu số liệu gốc là y_{30}.

    Do y_{30} thuộc nhóm \lbrack 120;180) nên nhóm này chứa Q_{3}.

    Q_{3} = 120 + \frac{\frac{3.39}{4} -
21}{18}.60 = 147,5

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là:

    \Delta Q = Q_{3} - Q_{1} = 147,5 - 63,75
= 83,75

    Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 phân tán hơn so với lớp 12A1.

  • Câu 17: Nhận biết
    Chọn đáp án đúng

    Khoảng biến thiên của mẫu số liệu ghép nhóm được cho ở bảng sau là bao nhiêu?

    Nhóm

    \lbrack 15;22) \lbrack 22;29) \lbrack 29;36) \lbrack 36;43) \lbrack 43;50)

    Tần số

    1 6 21 21 11
    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm ở bảng trên là:

    R = a_{6} - a_{1} = 50 - 15 =
35

  • Câu 18: Nhận biết
    Chọn đáp án đúng

    Xét mẫu số liệu ghép nhóm cho bởi Bảng 1.

    Nhóm

    Tần số

    \left\lbrack a_{1}\ ;\ a_{2} \right)

    \left\lbrack a_{2}\ ;\ a_{3}
\right)

    \left\lbrack a_{m}\ ;\ a_{m + 1}
\right)

    n_{1}

    n_{2}

    n_{m}

    n

    Khoảng biến thiên của mẫu số liệu ghép nhóm đó bằng?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm đó bằng a_{m + 1} - a_{1}.

  • Câu 19: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Xác định khoảng biến thiên của mẫu số liệu ghép nhóm sau đây:

    Thời gian (s)

    Số vận động viên (người)

    (50,5; 55,5]

    2

    (55,5; 60,5]

    7

    (60,5; 65,5]

    8

    (65,5; 70,5]

    4

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 70,5 - 50,5 = 20

  • Câu 20: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Khi thống kê chiều cao (đơn vị: centimét) của học sinh lớp 12A, người ta thu được mẫu số liệu ghép nhóm như bảng số liệu. Khoảng biến thiên của mẫu số liệu ghép nhóm đó bằng:

    Ảnh có chứa văn bản, Phông chữ, số, ảnh chụp màn hìnhMô tả được tạo tự động

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm ta có đầu mút trái của nhóm 1 là a_{1} = 155, đầu mút phải của nhóm 5 là a_{5} = 180.

    Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là R = a_{5} -
a_{1} = 180 - 155 = 25

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo