Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 9 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm mốt của mẫu số liệu ghép nhóm

    Cho mẫu số liệu điểm môn Toán của một nhóm học sinh như sau:

    Điểm

    \lbrack 6;7)

    \lbrack 7;8)

    \lbrack 8;9)

    \lbrack 9;10brack

    Số học sinh

    8

    7

    10

    5

    Mốt của mẫu số liệu (kết quả làm tròn đến hàng phần trăm) là:

    Hướng dẫn:

    Nhóm chứa Mốt là \lbrack
8;9).

    Mốt của mẫu số liệu là M_{e} = 8 +
\frac{10 - 7}{10 - 7 + 10 - 5}(9 - 8) \approx 8,38

  • Câu 2: Thông hiểu
    Xác định tính đúng sai của các nhận định

    Cho bảng mẫu số liệu ghép nhóm về điểm môn Toán của hai lớp 12A12B được cho như sau:

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a) Khoảng biến thiên cho điểm môn Toán của lớp 12A7. Sai||Đúng

    b) Khoảng biến thiên cho điểm môn Toán của lớp 12B6. Đúng||Sai

    c) Nhóm chứa tứ phân vị thứ nhất của lớp 12A là nhóm \lbrack 6;7). Đúng||Sai

    d) Nhóm chứa tứ phân vị thứ ba của lớp 12B là nhóm \lbrack 7;8). Sai||Đúng

    Đáp án là:

    Cho bảng mẫu số liệu ghép nhóm về điểm môn Toán của hai lớp 12A12B được cho như sau:

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a) Khoảng biến thiên cho điểm môn Toán của lớp 12A7. Sai||Đúng

    b) Khoảng biến thiên cho điểm môn Toán của lớp 12B6. Đúng||Sai

    c) Nhóm chứa tứ phân vị thứ nhất của lớp 12A là nhóm \lbrack 6;7). Đúng||Sai

    d) Nhóm chứa tứ phân vị thứ ba của lớp 12B là nhóm \lbrack 7;8). Sai||Đúng

    a) Ta có khoảng biến thiên của điểm môn Toán của lớp 12AR_{1}
= 10 - 4 = 6.

    Mệnh đề sai.

    b) Khoảng biến thiên cho điểm môn Toán của lớp 12BR_{2}
= 9 - 3 = 6.

    Mệnh đề đúng.

    c) Ta có n = 1 + 3 + 13 + 11 + 5 + 3 =
36.

    Gọi x_{1},...,\ x_{36} là điểm của 36 học sinh lớp 12A được sắp xếp theo thứ tự tăng dần. Tứ phân vị thứ ba có số liệu gốc là x_{9} nên nhóm chứa phân vị thứ nhất là nhóm \lbrack 6;7).

    Mệnh đề đúng.

    d) Ta có n = 1 + 3 + 13 + 11 + 5 + 3 =
36. Gọi x_{1},...,\ x_{36} là điểm của 36 học sinh lớp 12B được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ ba có số liệu gốc là x_{27} nên nhóm chứa phân vị thứ ba là nhóm \lbrack 6;7).

    Mệnh đề sai.

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Ta có bảng sau về thời gian tập thể dục buổi sáng của bác Bình và bác An:

    Thời gian (phút)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    Bác Bình

    5

    12

    8

    3

    2

    Bác An

    0

    25

    5

    0

    0

    Hỏi hiệu khoảng biến thiên của mẫu số liệu của bác Bình và bác An là bao nhiêu?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là:

    40 – 15 = 25 (phút).

    Trong mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An, khoảng đầu tiên chứa dữ liệu là [20; 25) và khoảng cuối cùng chứa dữ liệu là [25; 30). Do đó khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An là: 30 – 20 = 10 (phút).

    Vậy hiệu khoảng biến thiên của bác Bình và bác An là: 25 - 10 = 15.

  • Câu 4: Thông hiểu
    Tìm số trung bình cộng của mẫu số liệu

    Bác Hùng thống kê lại đường kính thân gỗ của một số cây Keo tai tượng 5 năm tuổi được trồng ở một lâm trường ở bảng sau.

    Đường kính (cm)

    \lbrack 25;30)

    \lbrack 30;35)

    \lbrack 35;40)

    \lbrack 40;45)

    \lbrack 45;50)

    Số cây

    5

    20

    18

    7

    3

    Hãy tìm số trung bình cộng của mẫu số liệu ghép nhóm trên.

    Hướng dẫn:

    Ta có:

    Đường kính (cm)

    \lbrack 25;30)

    \lbrack 30;35)

    \lbrack 35;40)

    \lbrack 40;45)

    \lbrack 45;50)

    Số cây

    5

    20

    18

    7

    3

    Giá trị đại diện

    27,5 32,5 37,5 42,5 47,5

    Số trung bình cộng:

    \overline{x} = \frac{c_{1}.n_{1} +
c_{2}.n_{2} + ... + c_{k}.n_{k}}{n_{1} + n_{2} + ... +
n_{k}}

    = \frac{27,5.5 + 32,5.20 + 37,5.18 +
42,5.7 + 47,5.3}{5 + 20 + 18 + 7 + 3} \approx 35,9

  • Câu 5: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?

    Đối tượng

    Tần số

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    40

    [165; 170)

    26

    [170; 175)

    8

    [175; 180)

    3

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là R = 180 - 150 = 30.

  • Câu 6: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Kết quả đo chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được cho ở bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

     Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.

    Hướng dẫn:

    Cỡ mẫu n = 100.

    Gọi x_{1};x_{2};...;x_{100} là mẫu số liệu gốc về chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được xếp theo thứ tự không giảm.

    Ta có

    x_{1};...;x_{5} \in [8,4; 8,6),

    x_{6};...;x_{17} \in [8,6; 8,8),

    x_{18};...;x_{42} \in [8,8; 9,0),

    x_{43};...;x_{86} \in [9,0; 9,2),

    x_{87};...;x_{100} \in [9,2; 9,4).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{x_{25} + x_{26}}{2} \in [8,8; 9,0). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 8,8 + \frac{\frac{100}{4} - (5 +
12)}{25}(9,0 - 8,8) = 8,864

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{x_{75} + x_{76}}{2} \in [9,0; 9,2).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 20 + \frac{\frac{3.100}{4} - (5
+ 12 + 25)}{44}(9,2 - 9,0) = 9,15

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta_{Q} = Q_{3} - Q_{1} = 9,15 -
8,864 = 0,286

  • Câu 7: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu

    Kiểm tra điện lượng của một số viên pin tiểu do một hãng sản xuất thu được kết quả sau.

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [0,1; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này? (Làm tròn các kết quả đến hàng phần trăm)

    Hướng dẫn:

    Ta có:

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [1,0; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Tần số tích lũy

    10

    30

    65

    80

    85

    Cỡ mẫu N = 85

    \frac{N}{4} = \frac{85}{4}

    => Nhóm chứa Q_{1} là [0,95; 1,0)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 0,95;m = 10,f = 20;c = 1
- 0,95 = 0,05

    \Rightarrow {Q_1} = l + \dfrac{{\dfrac{N}{4} - m}}{f}.c = 0,95 + \dfrac{{\dfrac{{85}}{4} - 10}}{{20}}.0,05 \approx 0,98

    \frac{3N}{4} = \frac{3.85}{4} =
\frac{255}{4}

    => Nhóm chứa Q_{3} là [1,0; 1,05)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,0;m = 30,f = 35;c =
1,05 - 1,0 = 0,05

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 1,0 + \dfrac{\dfrac{255}{4} - 30}{35}.0,05\approx 1,05.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} \approx
0,07

  • Câu 8: Thông hiểu
    Tìm khoảng biến thiên của mẫu số liệu

    Dưới đây là thống kê thời gian 100 lần đi làm bằng xe bus từ nhà đến trường của bạn Lan:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Hướng dẫn:

    Ta có:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Tần số tích lũy

    22

    60

    87

    95

    99

    100

    Cỡ mẫu N = 100 \Rightarrow \frac{N}{4} =
25

    => Nhóm chứa tứ phân vị thứ nhất là [18; 21)

    Do đó: l = 18;m = 22,f = 38;c = 21 - 18 =
3

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 18 + \frac{25 - 22}{38}.3 =\frac{693}{38}

    N = 100 \Rightarrow \frac{3N}{4} =
75

    => Nhóm chứa tứ phân vị thứ ba là [21; 24)

    Do đó: l = 21;m = 60,f = 27;c =
3

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 21 + \frac{75 - 60}{27}.3 =\frac{68}{3}

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} \approx
4,43

  • Câu 9: Thông hiểu
    Chọn đáp án đúng

    Tìm khoảng tứ phân vị của mẫu số liệu sau

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [30; 35)

    2

    Hướng dẫn:

    Ta có:

    Thời gian

    Số học sinh

    Tần số tích lũy

    [0; 5)

    6

    6

    [5; 10)

    10

    16

    [10; 15)

    11

    27

    [15; 20)

    9

    36

    [20; 25)

    1

    37

    [25; 30)

    1

    38

    [30; 35)

    2

    40

    Cỡ mẫu là: N = 40 \Rightarrow \frac{N}{4}
= 10

    => Nhóm chứa tứ phân vị thứ nhất là [5; 10) (vì 10 nằm giữa hai tần số tích lũy 6 và 16)

    Khi đó \left\{ \begin{matrix}l = 5;\dfrac{N}{4} = 10;m = 6;f = 10 \\c = 10 - 5 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 5 + \frac{10 -
6}{10}.5 = 7

    Cỡ mẫu là: N = 40 \Rightarrow
\frac{3N}{4} = 30

    => Nhóm chứa tứ phân vị thứ ba là [15; 20) (vì 30 nằm giữa hai tần số tích lũy 36 và 27)

    Khi đó \left\{ \begin{matrix}l = 15;\dfrac{3N}{4} = 30;m = 27;f = 9 \\c = 20 - 15 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 15 + \frac{30 -
27}{9}.5 = \frac{50}{3}

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} \approx
10.

  • Câu 10: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Cho mẫu số liệu ghép nhóm:

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Tìm khoảng biến thiên?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 50 - 0 = 50.

  • Câu 11: Nhận biết
    Xác định khoảng biến thiên của mẫu số liệu

    Cô Hà thống kê lại đường kính thân gỗ của một số cây xoan đào 6 năm tuổi được trồng ở một lâm trường ở bảng sau.

    Hãy tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên.

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 65 - 40 = 25(\ cm).

  • Câu 12: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Bảng sau thống kê chiều cao của 38 học sinh lớp 12A1 của trường THPT X:

    Chiều cao

    [145;155)

    [155;165)

    [165;175)

    [175;180)

    Số học sinh

    8

    15

    6

    9

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: R = 185 - 145 = 40

  • Câu 13: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Khi thống kê chiều cao (đơn vị: centimét) của học sinh lớp 12A, người ta thu được mẫu số liệu ghép nhóm như bảng số liệu. Khoảng biến thiên của mẫu số liệu ghép nhóm đó bằng:

    Ảnh có chứa văn bản, Phông chữ, số, ảnh chụp màn hìnhMô tả được tạo tự động

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm ta có đầu mút trái của nhóm 1 là a_{1} = 155, đầu mút phải của nhóm 5 là a_{5} = 180.

    Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là R = a_{5} -
a_{1} = 180 - 155 = 25

  • Câu 14: Nhận biết
    Tính khoảng biến thiên của mẫu số liệu

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Tần số

    13

    45

    24

    12

    6

    Khoảng biến thiên của mẫu số liệu ghép nhóm này bằng

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu này bằng 21,5 - 19 = 2,5.

  • Câu 15: Thông hiểu
    Tìm khoảng chứa tứ phân vị thứ nhất

    Đo cân nặng của 40 học sinh lớp 12A9 ta được bảng số liệu như sau:

    Khối lượng (kg)

    [40;45)

    [45;50)

    [50;55)

    [55;60)

    [60;65)

    [65;70)

    [70;75)

    [75;80]

    Số học sinh

    4

    13

    7

    5

    6

    2

    1

    2

    Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm thuộc khoảng nào sau đây?

    Hướng dẫn:

    Gọi x_{1};x_{2};\ldots;x_{40} là mẫu số liệu gốc về cân nặng của 40 học sinh lớp 12A9 được xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu x_{1};x_{2};...;x_{40}x_{10} \in \lbrack 45;50)

  • Câu 16: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Số điểm thi đấu của các đội được biểu diễn trong bảng dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 2]

    5

    (2; 4]

    16

    (4; 6]

    13

    (6; 8]

    7

    (8; 10]

    5

    (10; 12]

    4

    Khoảng biến thiên của mẫu số liệu đó là:

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 12 - 0 = 12.

  • Câu 17: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tính khoảng tứ phân vị của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \frac{\left( \frac{N}{4} - m
ight)}{f}.c = 155 + \frac{25 - 15}{11}.5 \approx 159,55

    Cỡ mẫu là: N = 100

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

    Do đó: \left\{ \begin{matrix}l = 165;\dfrac{3N}{4} = 75;m = 65;f = 27 \\c = 170 - 165 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\left( \dfrac{3N}{4} -m ight)}{f}.c = 165 + \dfrac{75 - 65}{27}.5 \approx 166,85

    Vậy khoảng tứ phân vị của mẫu số liệu là \Delta_{Q} = Q_{3} - Q_{1} \approx 166,85 - 159,55
= 7,3

  • Câu 18: Thông hiểu
    Xác định trung vị của mẫu số liệu ghép nhóm

    Cho mẫu số liệu ghép nhóm của chiều cao của cây cao su trong một nông trường

    Trung vị của mẫu số liệu ghép nhóm trên là:

    Hướng dẫn:

    Ta có: n = 55 + 78 + 120 + 45 + 11 =
309

    Nhóm chứa trung vị: Q_{2} = x_{155} \in
\lbrack 18;22)

    Trung vị của mẫu số liệu ghép nhóm là:

    Q_{2} = 18 + (22 -18).\dfrac{\dfrac{309.2}{4} - 55 - 78}{120} = \dfrac{1123}{60}

  • Câu 19: Vận dụng
    Ghi đáp án vào ô trống

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Đáp án là:

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Lập mẫu số liệu ghép nhóm bao gồm cả tần số tích luỹ nhu ở Báng 8 .

    Số phần tử của mẫu là n = 40. Ta có: \frac{n}{2} = \frac{40}{2} = 2015 < 20 < 22. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 20 . Xét nhóm 3 có r = 50;d = 5;n_{3} = 7 và nhóm 2 có

    Nhóm

    Tần sồ

    Tần số tích luỹ

    \lbrack 40;45)

    4

    4

    \lbrack 45;50)

    11

    15

    \lbrack 50;55)

    7

    22

    \lbrack 55;60)

    8

    30

    \lbrack 60;65)

    8

    38

    \lbrack 65;70)

    2

    2

     

    n = 40

     

    cf_{2} = 15.

    Trung vị của mẫu số liệu ghép nhóm đó là:

    M_{e} = 50 + \left( \frac{20 - 15}{7}
ight) \cdot 5 = \frac{375}{7}(\ km/h).

    Suy ra a = 375.

  • Câu 20: Vận dụng
    Chọn đáp án đúng

    Cho biểu đồ thống kê thời gian tập thể dục buổi sáng của hai người A và B

    Gọi khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A và B lần lượt là \Delta_{Q_{A}};\Delta_{Q_{B}}. Chọn kết luận đúng?

    Hướng dẫn:

    Ta có:

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    A

    5

    12

    8

    3

    2

    Tần số tích lũy

    5

    17

    25

    28

    30

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 12;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +
\frac{\frac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 5}{12}.5 =
\frac{505}{24}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 17,f = 8;c =
5

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 25 + \frac{22,5 - 17}{8}.5 =
\frac{455}{16}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A là:

    \Delta_{Q_{A}} = Q_{3} - Q_{1} =
\frac{355}{48} \approx 7,4.

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    B

    0

    25

    5

    0

    0

    Tần số tích lũy

    0

    25

    30

    0

    0

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 0}{25}.5 =\frac{43}{2}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 20 + \dfrac{22,5 - 0}{25}.5 =\dfrac{49}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của B là:

    \Delta_{Q_{B}} = Q_{3} - Q_{1} =
3.

    Vậy kết luận đúng là: \Delta_{Q_{A}} >
\Delta_{Q_{B}}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo