Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 1 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn mệnh đề sai

    Cho hàm số y =\frac{2x + 1}{x - 3}. Mệnh đề nào dưới đây là mệnh đề sai?

    Hướng dẫn:

    f'(x) = \frac{- 7}{(x - 3)^{2}}< 0;\forall x \in D nên đồ thị hàm số luôn nghịch biến trên các khoảng ( - \infty;3),(3; +\infty).

    Vậy mệnh đề sai là: "Hàm số đồng biến trên \mathbb{R}\backslash\left\{ 3 ight\}".

  • Câu 2: Nhận biết
    Tìm khoảng đồng biến của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ sau

    Hàm số y = f(x) đồng biến trên khoảng nào dưới đây

    Hướng dẫn:

    Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng (0;2).

  • Câu 3: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta suy ra mệnh đề đúng là: “Điểm cực tiểu của đồ thị hàm số là B(0;1)”.

  • Câu 4: Nhận biết
    Tìm khoảng đồng biến của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy: f'(x) > 0, \forall x \in (0;1).

    Suy ra, hàm số y = f(x) đồng biến trên khoảng (0;1).

  • Câu 5: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x - 2)\left( x^{2} - 3
\right)\left( x^{4} - 9 \right). Số điểm cực trị của hàm số y = f(x)

    Hướng dẫn:

    Ta có:

    f'(x) = (x - 2)\left( x^{2} - 3
ight)^{2}\left( x^{2} + 3 ight)= (x - 2)\left( x - \sqrt{3}
ight)^{2}\left( x + \sqrt{3} ight)^{2}\left( x^{2} + 3
ight)

    f'(x) = 0 \Leftrightarrow (x -
2)\left( x + \sqrt{3} ight)^{2}\left( x - \sqrt{3} ight)^{2}\left(
x^{2} + 3 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - \sqrt{3} \\
x = \sqrt{3} \\
x = 2 \\
\end{matrix} ight..

    Bảng biến thiên

    Từ bảng biến thiên của hàm số y =
f(x), ta thấy hàm số y =
f(x) có đúng 1 điểm cực trị.

  • Câu 6: Nhận biết
    Tính số cực trị của hàm số

    Cho hàm số f(x) có đạo hàm f'(x) = x\left( x^{2} - x ight)(x -
2). Số điểm cực trị của hàm số đã cho là:

    Hướng dẫn:

    Ta có: f'(x) = x\left( x^{2} - x
ight)(x - 2) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    x = 1;x = 2 là nghiệm bội lẻ và x = 0 là nghiệm bội chẵn nên hàm số có hai điểm cực trị.

  • Câu 7: Nhận biết
    Chọn mệnh đề sai

    Cho hàm số y = ax^{3} + bx^{2} + cx +
d;\left( a;b;c;d\mathbb{\in R} ight) có đồ thị hàm số như hình vẽ:

    Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Giá trị cực đại của hàm số là 4 suy ra mệnh đề sai là: “Giá trị cực đại của hàm số là - 1.”

  • Câu 8: Nhận biết
    Tìm khoảng đồng biến của hàm số

    Cho hảm số có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào sau đây?

    Hướng dẫn:

    Trên ( - 1;1) đồ thị hàm số đi lên từ trái sang phải nên hàm số đã cho đồng biến.

  • Câu 9: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)\left( x^{2} - 1ight)(x - 3)^{3};\forall x\mathbb{\in R}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)\left( x^{2} - 1ight)(x - 3)^{3};\forall x\mathbb{\in R}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Thông hiểu
    Xác định các giá trị nguyên tham số m

    Có tất cả bao nhiêu số nguyên m để hàm số y = \frac{(m + 1)x - 2}{x -
m} đồng biến trên từng khoảng xác định của nó?

    Hướng dẫn:

    TXĐ: D = \mathbb{R}\backslash\left\{ m
ight\}

    y' = \frac{- m^{2} - m + 2}{(x -
m)^{2}}.

    Để hàm số đồng biến trên từng khoảng xác định của ta cần tìm m để y'
\geq 0 trên ( - \infty;\
m)(m;\  + \infty) và dấu "= " chỉ xảy ra tại hữu hạn điểm trên các khoảng đó

    ĐK: - m^{2} - m + 2 > 0
\Leftrightarrow - 2 < m < 1.

    m\mathbb{\in Z} nên m = - 1,0.

  • Câu 11: Nhận biết
    Tìm điểm cực tiểu của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Điểm cực tiểu của hàm số đã cho là:

    Hướng dẫn:

    Từ bảng biến thiên ta suy ra: điểm cực tiểu của hàm số đã cho là x = 1.

  • Câu 12: Nhận biết
    Tìm giá trị cực tiểu của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Xác định giá trị cực tiểu của hàm số đã cho.

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy:

    Hàm số đạt cực tiểu tại x = 0, giá trị cực tiểu là y = 1.

  • Câu 13: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho đạt cực tiểu tại

    Hướng dẫn:

    Từ bảng biến thiên ta có điểm cực tiểu của hàm số là x = 3.

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{x^{3}}{3} + 2x^{2} - mx + 2020 đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Ta có:

    Hàm số y = \frac{x^{3}}{3} + 2x^{2} - mx
+ 2020 đồng biến trên \mathbb{R}

    \Leftrightarrow y' = x^{2} + 4x - m
\geq 0;\forall x\mathbb{\in R}

    Dễ thấy x^{2} + 4x - m \geq 0;\forall
x\mathbb{\in R \Leftrightarrow}\left\{ \begin{matrix}
1 > 0 \\
\Delta' = 4 + m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \leq - 4

    Vậy hàm số đã cho đồng biến trên \mathbb{R} khi m \leq - 4.

  • Câu 15: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y =
f(x) xác định và liên tục trên khoảng ( - \infty; + \infty), có bảng biến thiên như hình sau:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy:

    Hàm số nghịch biến trên khoảng ( -
1;1)

    Hàm số đồng biến trên khoảng ( - \infty;
- 1) \cup (1; + \infty)

    Vậy đáp án cần tìm là: “Hàm số đồng biến trên khoảng ( - \infty; - 2)”.

  • Câu 16: Nhận biết
    Xác định cực tiểu của hàm số

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}, đạo hàm y = f'(x) có đồ thị như hình vẽ sau:

    Tìm số điểm cực tiểu của hàm số y =
f(x)?

    Hướng dẫn:

    Hàm số đạt cực tiểu tại điểm có f'(x) đổi dấu từ âm sang dương. Dựa vào đồ thị hàm số có 1 điểm cực tiểu.

  • Câu 17: Thông hiểu
    Xác định các giá trị nguyên của tham số m

    Số các giá trị nguyên của tham số m \in
\lbrack - 20;20brack để hàm số y
= \frac{mx - 16}{x - m} nghịch biến trên khoảng ( - \infty;8) là:

    Hướng dẫn:

    Ta có: y' = \frac{- m^{2} + 16}{(x -
m)^{2}}. Hàm số nghịch biến trên khoảng ( - \infty;8) khi

    \left\{ \begin{matrix}
y' < 0;\forall x < 8 \\
x eq m \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- m^{2} + 16 < 0 \\
m otin ( - \infty;8) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m < - 4 \\
m > 4 \\
\end{matrix} ight.\  \\
m \geq 8 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 8

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 20;20brack \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 8;9;10;...;20
ight\}

    Vậy có tất cả 13 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 18: Nhận biết
    Tìm điểm cực đại của hàm số

    Hàm số y = x^{3} - 12x + 3 đạt cực đại tại điểm

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 12

    y' = 0 \Leftrightarrow x = \pm
2

    Bảng biến thiên

    Từ bảng biến thiên ta thấy hàm số đạt cực đại tại x = - 2.

  • Câu 19: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y =
f(x) có đồ thị f'(x) là parabol như hình vẽ:

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Từ đồ thị hàm số ta có bảng biến thiên như sau:

    Vậy hàm số đồng biến trên các khoảng ( -
\infty; - 1)(3; +
\infty).

  • Câu 20: Nhận biết
    Tìm khoảng đồng biến

    Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Từ đồ thị, ta thấy hàm số đồng biến trên các khoảng ( - 1;0)(1; + \infty).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo