Cho hàm số , bảng xét dấu của
như sau:
Số điểm cực trị của hàm số đã cho là
Từ bảng biến thiên ta thấy đổi dấu khi
qua nghiệm
và nghiệm
; không đổi dấu khi
qua nghiệm
nên hàm số có hai điểm cực trị.
Cho hàm số , bảng xét dấu của
như sau:
Số điểm cực trị của hàm số đã cho là
Từ bảng biến thiên ta thấy đổi dấu khi
qua nghiệm
và nghiệm
; không đổi dấu khi
qua nghiệm
nên hàm số có hai điểm cực trị.
Số nào sau đây là điểm cực đại của hàm số ?
Tập xác định
Ta có:
Ta có bảng biến thiên như sau:

Từ bảng biến thiên ta có điểm cực đại của hàm số đã cho là
Cho hàm số có bảng biến thiên như sau
Hàm số đạt cực đại tại điểm
Dựa vào bảng biến thiên ta thấy đối dấu từ
sang
tại
.
Nên hàm số đạt cực đại tại điểm .
Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?
Dựa vào dấu của hệ số nên hàm số
có ba điểm cực trị trong đó có hai điểm cực đại và một điểm cực tiểu.

Khẳng định đúng là:
Cho hàm số có đồ thị như hình vẽ sau. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Dựa vào đồ thị ta có hàm số đồng biến trên khoảng
Cho hàm số có bảng biến thiên như hình dưới đây. Mệnh đề nào sau đây là đúng?
Từ bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng .
Cho hàm số có bảng biến thiên như sau:
Hàm số đạt cực tiểu tại điểm
Từ bảng biến thiên, hàm số đạt cực tiểu tại điểm .
Tất cả các giá trị của tham số để hàm số
có hai điểm cực trị?
Ta có:
Để hàm số có hai điểm cực trị thì có hai nghiệm phân biệt khi đó
Cho hàm số . Khẳng định nào sau đây đúng?
Ta có:
Ta có bảng xét dấu như sau:
Vậy hàm số có đúng một cực trị.
Cho hàm số có đồ thị như hình vẽ bên.
Mệnh đề nào sau đây là đúng?
Nhìn vào đồ thị đã cho, ta có trên khoảng đồ thị hàm số đi xuống (theo chiều từ trái qua phải) nên nghịch biến trên khoảng
.
Hàm số nghịch biến trên
Hàm số có tập xác định là
.
với
.
Vậy hàm số đã cho nghịch biến trên các khoảng và
.
Cho hàm số liên tục trên đoạn
và có đồ thị là đường cong trong hình bên dưới.
Hàm số đạt cực tiểu tại điểm
Theo hình vẽ thì hàm số đạt cực tiểu tại điểm
.
Cho hàm số . Hàm số có bao nhiêu điểm cực trị?
Ta có:
Ta có bảng xét dấu như sau:
Vậy hàm số có hai điểm cực trị.
Cho hàm số có bảng biến thiên như sau:
Hàm số nghịch biến trong khoảng nào?
Từ bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng .
Hàm số nào dưới đây đồng biến trên khoảng ?
Vì .
Hàm số nào dưới đây nghịch biến trên ?
Xét hàm số ta có:
Do đó hàm số nghịch biến trên
.
Cho hàm số với
là tham số. Gọi
là tập hợp các số nguyên
để hàm số đã cho nghịch biến trên khoảng
. Xác định số phần tử của tập hợp
?
Xét là hàm hằng nên hàm số không nghịch biến. Vậy
không thỏa mãn.
Xét
Tập xác định
Để hàm số nghịch biến trên khoảng khi và chỉ khi
Mà nên
Vậy tập hợp S có tất cả 9 giá trị.
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đạt cực tiểu tại
Theo bảng biến thiên thì hàm số đạt cực tiểu tại điểm
Cho hàm số , kết luận nào sau đây về tính đơn điệu của hàm số là đúng nhất:
Ta có hàm số xác định trên .
.
Bảng biến thiên
Vậy đáp án “Hàm số đồng biến trên khoảng và nghịch biến trên các khoảng
;
“ là đúng nhất.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: