Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 1 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực đại của hàm số đã cho là:

    Hướng dẫn:

    Quan sát bảng biến thiên dễ thấy giá trị cực đại của hàm số đã cho bằng 3.

  • Câu 2: Thông hiểu
    Xác định tổng tất cả các giá trị của tham số m

    Tính tổng S tất cả các giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} - (m - 1)x^{2} + x -
m đồng biến trên tập xác định?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = x^{2} - 2(m - 1)x +
1

    Để hàm số đồng biến trên tập xác định thì y' \geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \Delta' \geq 0
\Leftrightarrow m^{2} - 2m \geq 0 \Leftrightarrow 0 \leq m \leq
2

    m\mathbb{\in Z} nên m \in \left\{ 0;1;2 ight\}

    Vậy S = 0 + 1 + 2 = 3.

  • Câu 3: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2} + 1, \forall x\mathbb{\in R}. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Do hàm số y = f(x) có đạo hàm f'(x) = x^{2} + 1 > 0 \forall x\mathbb{\in R} nên hàm số đồng biến trên khoảng ( - \infty; +
\infty).

  • Câu 4: Nhận biết
    Xác định số điểm cực trị của hàm số

    Cho hàm số f(x) có bảng xét dấu của f'(x) như sau:

    Số điểm cực trị của hàm số đã cho là

    Hướng dẫn:

    Dựa vào bảng xét dấu của f'(x) hàm số đã cho có 2 điểm cực trị.

  • Câu 5: Thông hiểu
    Tìm điều kiện của tham số m

    Định tất cả các giá trị thực của m để hàm số y
= x^{4} + (2m - 6)x^{2} - 2020 có ba điểm cực trị?

    Hướng dẫn:

    Ta có: y' = 4x^{3} + 2(2m - 6)x =
4x\left( x^{2} + m - 3 ight)

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
4x = 0 \\
x^{2} + m - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = 3 - m \\
\end{matrix} ight.

    Để hàm số có ba điểm cực trị thì y' =
0 có ba nghiệm phân biệt suy ra phương trình x^{2} + m - 3 = 0 có hai nghiệm phân biệt khác 0

    \Leftrightarrow 3 - m > 0
\Leftrightarrow m < 3

    Vậy đáp án cần tìm là m <
3.

  • Câu 6: Nhận biết
    Tìm giá trị cực đại và giá trị cực tiểu của hàmsố

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tìm giá trị cực đại và giá trị cực tiểu của hàm số đã cho.

    Hướng dẫn:

    Từ bảng biến thiên ta có: y_{CÐ} =
0;y_{CT} = - 3.

  • Câu 7: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Hàm số đã cho đạt cực đại tại điểm nào dưới đây?

    Hướng dẫn:

    Từ bảng biến thiên ta thấy hàm số đạt cực đại tại x = 0.

  • Câu 8: Nhận biết
    Tìm số điểm cực tiểu của hàm số

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng xét dấu của f'(x) như sau:

    Số điểm cực tiểu của hàm số đã cho là

    Hướng dẫn:

    Đạo hàm f'(x) đổi dấu từ âm sang dương hai lần qua các điểm x = -
2x = 2 nên hàm số đã cho có hai điểm cực tiểu.

  • Câu 9: Nhận biết
    Xác định khoảng nghịch biến của hàm số

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Từ bảng biến thiên ta thấy hàm số nghịch biến trên (3; + \infty)

    Suy ra hàm số nghịch biến trên (4;10).

  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Hàm số nào dưới dây nghịch biến trên khoảng ( - \infty; + \infty)?

    Hướng dẫn:

    Xét hàm số y = - 2x + 1y' = - 2 < 0;\forall x\mathbb{\in
R} nên hàm số y = - 2x + 1 nghịch biến trên khoảng ( - \infty; +
\infty).

  • Câu 11: Nhận biết
    Cho bảng biến thiên sau:

    Trắc nghiệm Toán 12 Kết nối tri thức bài 1

    Khẳng định sai là:

  • Câu 12: Thông hiểu
    Chọn mệnh đề đúng

    Biết m_{0} là giá trị của tham số m để hàm số y = x^{3} - 3x^{2} + mx - 1 có hai điểm cực trị x_{1};x_{2} sao cho {x_{1}}^{2} + {x_{2}}^{2} - x_{1}x_{2} =
13. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 6x +
m

    Hàm số có hai cực trị \Leftrightarrow
\Delta' = 9 - 3m > 0 \Leftrightarrow m < 3

    x_{1};x_{2} là hai nghiệm của phương trình 3x^{2} - 6x + m =
0

    Áp dụng hệ thức Vi – et ta có: \left\{\begin{matrix}S = x_{1} + x_{2} = 2 \\P = x_{1}.x_{2} = \dfrac{m}{3} \\\end{matrix} ight.

    Ta có: {x_{1}}^{2} + {x_{2}}^{2} -
x_{1}x_{2} = 13

    \Leftrightarrow \left( x_{1} + x_{2}
ight)^{2} - 3x_{1}x_{2} = 13

    \Leftrightarrow m = - 9 \in ( - 15; -
7).

  • Câu 13: Nhận biết
    Xác định số cực tiểu của hàm số

    Cho hàm số y = f(x) có đạo hàm f'(x) = x(x + 1)(x - 2)^{3};\forall
x\mathbb{\in R}. Số điểm cực tiểu của hàm số là:

    Hướng dẫn:

    Ta có: f'(x) = x(x + 1)(x - 2)^{3} =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 2 \\
\end{matrix} ight.

    Bảng xét dấu:

    Suy ra số điểm cực tiểu của hàm số là 2 điểm.

  • Câu 14: Nhận biết
    Chọn đáp án thích hợp

    Xác định hàm số nghịch biến trên \mathbb{R}?

    Hướng dẫn:

    Xét hàm số y = - x^{3} + x^{2} -
x ta có:

    y' = - 3x^{2} + 2x - 1 = - 3\left( x
- \frac{1}{3} ight)^{2} - \frac{2}{3} < 0;\forall x\mathbb{\in
R}

    Nên hàm số y = - x^{3} + x^{2} -
x nghịch biến trên \mathbb{R}.

  • Câu 15: Thông hiểu
    Xác định khoảng đồng biến của hàm số

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hỏi hàm số y = 2021 - f(x) đồng biến trên khoảng nào?

    Hướng dẫn:

    Hàm số y = 2021 - f(x)y' = - f'(x)

    y' = 0 \Leftrightarrow - f'(x) =
0 \Leftrightarrow f'(x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 0 \\
\end{matrix} ight.

    Từ bảng biến thiên của hàm số y =
f(x) ta có bảng biến thiên của hàm số y = 2021 - f(x)

    Dựa vào bảng biến thiên ta có hàm số y =
2021 - f(x) đồng biến trong khoảng ( - 1;0).

  • Câu 16: Nhận biết
    Xác định số cực trị của hàm số

    Cho hàm số f(x) có bảng xét dấu của đạo hàm f'(x) như sau:

    Hàm số f(x) có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Dựa vào bảng xét dấu ta thấy hàm số có bốn điểm cực trị.

  • Câu 17: Nhận biết
    Tìm hàm số đồng biến trên tập số thực

    Cho hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Xét hàm số f(x) = x^{3} - 3x^{2} + 3x -
4 ta có:

    f'(x) = 3x^{2} - 6x + 3 = 3(x -
1)^{2} \geq 0;\forall x\mathbb{\in R}

    \Rightarrow f(x) = x^{3} - 3x^{2} + 3x -
4 đồng biến trên \mathbb{R}.

  • Câu 18: Nhận biết
    Tìm điều kiện của tham số m

    Tất cả các giá trị của tham số m để hàm số y = x^{3} - 3x^{2} + mx +
5 có hai điểm cực trị?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 6x +
m

    Để hàm số có hai điểm cực trị thì y'
= 0 có hai nghiệm phân biệt khi đó

    \Delta'_{y'} = 9 - 3m > 0
\Leftrightarrow m < 3

  • Câu 19: Nhận biết
    Cho hàm số y = f(x) có đồ thị như hình vẽ.

    Trắc nghiệm Toán 12 Kết nối tri thức bài 1

    Hàm số đạt giá trị cực tiểu tại:

  • Câu 20: Nhận biết
    Xác định khoảng nghịch biến của hàm số

    Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào

    dưới đây?

    Hướng dẫn:

    Nhìn vào đồ thị đã cho, ta có hàm số nghịch biến trên khoảng (0;2) nên nghịch biến trên khoảng (1;2).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo