Cho hàm số , bảng xét dấu của
như sau:

Hàm số đồng biến trên khoảng nào dưới đây?
Ta có
Cho hàm số , bảng xét dấu của
như sau:

Hàm số đồng biến trên khoảng nào dưới đây?
Ta có
Hàm số có bao nhiêu điểm cực trị?
Có nên hàm số không có cực trị.
Cho hàm số có đạo hàm
. Số điểm cực trị của hàm số đã cho là:
Ta có:
Ta có bảng xét dấu:
Vậy hàm số đã cho có một điểm cực trị.
Cho hàm số có bảng xét dấu của đạo hàm
như sau:
Hàm số có bao nhiêu điểm cực trị?
Dựa vào bảng xét dấu ta thấy hàm số có bốn điểm cực trị.
Cho hàm số . Hỏi hàm số có bao nhiêu điểm cực trị?
Tập xác định
Ta có:
Xét dấu ta có:
Vậy hàm số có 1 cực trị.
Cho hàm số có bảng biến thiên như hình vẽ sau
Hàm số đồng biến trên khoảng nào dưới đây
Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng .
Hàm số nào sau đây có cực trị?
Hàm số có
suy ra hàm số không có cực trị.
Hàm số có
và
đổi dấu đi qua
suy ra hàm số có cực trị tại điểm
.
Hàm số có
suy ra hàm số không có cực trị.
Hàm số có
với
suy ra hàm số không có cực trị.
Cho hàm số có bảng xét dấu đạo hàm như sau:
Mệnh đề nào dưới đây đúng?
Hàm số có
đổi dấu từ + sang – khi
đi qua điểm
Vậy hàm số đạt cực đại tại
.
Cho hàm số liên tục trên
và có đạo hàm
. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có: .
Bảng xét dấu:
Hàm số đồng biến trên các khoảng .
Cho hàm số có đạo hàm
với mọi
. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Ta có: .
Bảng xét dấu:
Vậy hàm số đã cho nghịch biến trên khoảng .
Cho hàm số . Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Ta có bảng xét dấu
Suy ra hàm số đồng biến trên khoảng .
Cho hàm số có đồ thị hàm số như hình vẽ:
Mệnh đề nào sau đây sai?
Giá trị cực đại của hàm số là suy ra mệnh đề sai là: “Giá trị cực đại của hàm số là
.”
Cho hàm số . Khẳng định nào sau đây đúng?
Ta có:
Ta có bảng xét dấu như sau:
Vậy hàm số có đúng một cực trị.
Cho hàm số xác định trên tập số thực và có đạo hàm
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng . Đúng||Sai
b) Hàm số nghịch biến trên khoảng . Đúng||Sai
c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng
d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai
Cho hàm số xác định trên tập số thực và có đạo hàm
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng . Đúng||Sai
b) Hàm số nghịch biến trên khoảng . Đúng||Sai
c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng
d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai
Ta có:
Bảng biến thiên:
a) Hàm số đồng biến trên khoảng .
b) Hàm số nghịch biến trên khoảng nên nghịch biến trên
.
c) Hàm số có đúng một điểm cực trị.
d) Hàm số có đúng một điểm cực tiểu .
Cho hàm số có đồ thị như hình vẽ. Hàm số đã cho nghịch biến trên khoảng nào?
Trên khoảng đồ thị hướng đi xuống là hàm số nghịch biến nên chọn.
Trên khoảng đồ thị có đoạn hướng đi lên là hàm số đồng biến và có đoạn hướng xuống là hàm số đồng nghịch biến nên loại.
Trên khoảng đồ thị có hướng đi xuống là hàm số nghịch biến và có đoạn hướng đi lên là hàm số đồng biến nên loại.
Trên khoảng đồ thị có hướng đi lên là hàm số đồng biến nên loại.
Cho hàm số liên tục trên đoạn
và có đồ thị là đường cong trong hình bên dưới.
Hàm số đạt cực tiểu tại điểm
Theo hình vẽ thì hàm số đạt cực tiểu tại điểm
.
Trong các hàm số dưới đây, hàm số nào đồng biến trên ?
Hàm số y = x – sinx có tập các định và
Nên hàm số luôn đồng biến trên
Cho hàm số có bảng xét dấu của đạo hàm như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Hàm số đã cho đồng biến trên
Có bao nhiêu giá trị nguyên của tham số để đồ thị của hàm số
có hai điểm cực trị nằm về hai phía của trục hoành?
Xét phương trình hoành độ giao điểm
Đồ thị của hàm số có hai điểm cực trị nằm về hai phía của trục hoành khi và chỉ khi phương trình (*) có ba nghiệm phân biệt hay phương trình (**) có 2 nghiệm phân biệt khác 1
Vì suy ra
Vậy có 3 giá trị nguyên của tham số thỏa mãn yêu cầu bài toán.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: