Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 1 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm mệnh đề đúng

    Cho hàm số f(x), bảng xét dấu của f'(x) như sau:

    Hàm số y = f(3 - 2x) đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có y' = - 2.f'(3 - 2x) \geq 0 \Leftrightarrow f'(3 - 2x) \leq 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
3 - 2x \leq - 3 \\
- 1 \leq 3 - 2x \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x \geq 3 \\
1 \leq x \leq 2. \\
\end{matrix} ight.

  • Câu 2: Nhận biết
    Xác định số cực trị của hàm số

    Hàm số y=\frac{2 x +3}{x+1} có bao nhiêu điểm cực trị?

    Hướng dẫn:

    y' = \frac{- 1}{(x + 1)^{2}} >
0,\forall x eq - 1 nên hàm số không có cực trị.

  • Câu 3: Nhận biết
    Xác định số điểm cực trị của hàm số

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x - 1)^{2020}(x - 2)^{2021}(x -
3)^{2022};\forall x\mathbb{\in R}. Số điểm cực trị của hàm số đã cho là:

    Hướng dẫn:

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Ta có bảng xét dấu:

    Vậy hàm số đã cho có một điểm cực trị.

  • Câu 4: Nhận biết
    Xác định số cực trị của hàm số

    Cho hàm số f(x) có bảng xét dấu của đạo hàm f'(x) như sau:

    Hàm số f(x) có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Dựa vào bảng xét dấu ta thấy hàm số có bốn điểm cực trị.

  • Câu 5: Nhận biết
    Xác định số điểm cực trị

    Cho hàm số y = \sqrt[3]{x^{2}}. Hỏi hàm số có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' =
\frac{2}{3\sqrt[3]{x^{2}}};(x eq 0)

    Xét dấu y' ta có: \left\{ \begin{matrix}
y' > 0;\forall x \in (0; + \infty) \\
y' < 0;\forall x \in ( - \infty;0) \\
\end{matrix} ight.

    Vậy hàm số có 1 cực trị.

  • Câu 6: Nhận biết
    Tìm khoảng đồng biến của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ sau

    Hàm số y = f(x) đồng biến trên khoảng nào dưới đây

    Hướng dẫn:

    Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng (0;2).

  • Câu 7: Thông hiểu
    Xác đinh hàm số có cực trị

    Hàm số nào sau đây có cực trị?

    Hướng dẫn:

    Hàm số y = \sqrt{x - 1}y' = \frac{1}{2\sqrt{x - 1}} > 0;\forall x
\in (1; + \infty) suy ra hàm số không có cực trị.

    Hàm số y = x^{2} - 2x + 3y' = 2x - 2 = 0 \Leftrightarrow x =
1y' đổi dấu đi qua x = 1 suy ra hàm số có cực trị tại điểm x = 1.

    Hàm số y = x^{3} + 8x + 9y' = 3x^{2} + 8 > 0;\forall
x\mathbb{\in R} suy ra hàm số không có cực trị.

    Hàm số y = \frac{2x - 1}{3x + 1}y' = \frac{5}{(3x + 1)^{2}} >
0 với \forall x \in \left( -
\infty; - \frac{1}{3} ight) \cup \left( - \frac{1}{3}; + \infty
ight) suy ra hàm số không có cực trị.

  • Câu 8: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau:

    Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Hàm số y = f(x)f'(x) đổi dấu từ + sang – khi f'(x) đi qua điểm x = 1

    Vậy hàm số y = f(x) đạt cực đại tại x = 1.

  • Câu 9: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm f'(x) = (1 - x)^{2}(x + 1)^{3}(3 -
x). Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có: f'(x) = 0 \Leftrightarrow (1 -
x)^{2}(x + 1)^{3}(3 - x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1\ \ \  \\
x = - 1 \\
x = 3\ \ \  \\
\end{matrix} ight..

    Bảng xét dấu:

    Hàm số đồng biến trên các khoảng ( - 1;\
3).

  • Câu 10: Nhận biết
    Chọn khoảng nghịch biến của hàm số

    Cho hàm số y = f(x) có đạo hàm f'(x) = x + 1 với mọi x\mathbb{\in R}. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có: f'(x) = 0 \Leftrightarrow x +
1 = 0 \Leftrightarrow x = - 1.

    Bảng xét dấu:

    Vậy hàm số đã cho nghịch biến trên khoảng ( - \infty\ ; - 1).

  • Câu 11: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = -
\frac{1}{3}x^{3} + \frac{1}{2}x^{2} + 6x - 1. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = - x^{2} + x + 6
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
x = 3 \\
\end{matrix} ight.

    Ta có bảng xét dấu

    Suy ra hàm số đồng biến trên khoảng ( -
2,3).

  • Câu 12: Nhận biết
    Chọn mệnh đề sai

    Cho hàm số y = ax^{3} + bx^{2} + cx +
d;\left( a;b;c;d\mathbb{\in R} ight) có đồ thị hàm số như hình vẽ:

    Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Giá trị cực đại của hàm số là 4 suy ra mệnh đề sai là: “Giá trị cực đại của hàm số là - 1.”

  • Câu 13: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = x^{4} - x^{3} +
3. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có: y' = 4x^{3} - 3x^{2} = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{3}{4} \\\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Vậy hàm số có đúng một cực trị.

  • Câu 14: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) xác định trên tập số thực và có đạo hàm f'(x) =
3x^{3} - 3x^{2};\left( x\mathbb{\in R} ight). Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (1; +∞). Đúng||Sai

    b) Hàm số nghịch biến trên khoảng (−1; 1). Đúng||Sai

    c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng

    d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định trên tập số thực và có đạo hàm f'(x) =
3x^{3} - 3x^{2};\left( x\mathbb{\in R} ight). Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (1; +∞). Đúng||Sai

    b) Hàm số nghịch biến trên khoảng (−1; 1). Đúng||Sai

    c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng

    d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai

    Ta có: f'(x) = 0 \Leftrightarrow
3x^{3} - 3x^{2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên:

    a) Hàm số đồng biến trên khoảng (1; +∞).

    b) Hàm số nghịch biến trên khoảng (−∞; 1) nên nghịch biến trên (−1; 1).

    c) Hàm số có đúng một điểm cực trị.

    d) Hàm số có đúng một điểm cực tiểu x = 1.

  • Câu 15: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) có đồ thị như hình vẽ. Hàm số đã cho nghịch biến trên khoảng nào?

    Hướng dẫn:

    Trên khoảng ( - 2\ ;\ 0) đồ thị hướng đi xuống là hàm số nghịch biến nên chọn.

    Trên khoảng ( - \infty\ ;\ 0) đồ thị có đoạn hướng đi lên là hàm số đồng biến và có đoạn hướng xuống là hàm số đồng nghịch biến nên loại.

    Trên khoảng ( - 2\ ;\ 2) đồ thị có hướng đi xuống là hàm số nghịch biến và có đoạn hướng đi lên là hàm số đồng biến nên loại.

    Trên khoảng (0\ ;\ 2) đồ thị có hướng đi lên là hàm số đồng biến nên loại.

  • Câu 16: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2brack và có đồ thị là đường cong trong hình bên dưới.

    Hàm số y = f(x) đạt cực tiểu tại điểm

    Hướng dẫn:

    Theo hình vẽ thì hàm số y = f(x) đạt cực tiểu tại điểm x = 1.

  • Câu 17: Nhận biết
    Tìm hàm số đồng biến trên R

    Trong các hàm số dưới đây, hàm số nào đồng biến trên \mathbb{R}?

    Hướng dẫn:

     Hàm số y = x – sinx có tập các định D = \mathbb{R}y' = 1 - \cos x \geqslant 0, \vee x \in \mathbb{R}

    Nên hàm số luôn đồng biến trên \mathbb{R}

  • Câu 18: Nhận biết
    Tìm khoảng đồng biến của hàm số

    Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Hàm số đã cho đồng biến trên ( -
1;2).

  • Câu 19: Thông hiểu
    Tìm giá trị tham số m thỏa mãn yêu cầu

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị của hàm số y = x^{3} - (2m - 1)x^{2} + \left( 2m^{2} + 2m - 4
ight)x - 2m^{2} + 4 có hai điểm cực trị nằm về hai phía của trục hoành?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm

    x^{3} - (2m - 1)x^{2} + \left( 2m^{2} +
2m - 4 ight)x - 2m^{2} + 4 = 0(*)

    \Leftrightarrow (x - 1)\left( x^{2} -
2mx + 2m^{2} - 4 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 = 0 \\
x^{2} - 2mx + 2m^{2} - 4 = 0(**) \\
\end{matrix} ight.

    Đồ thị của hàm số y = x^{3} - (2m -
1)x^{2} + \left( 2m^{2} + 2m - 4 ight)x - 2m^{2} + 4 có hai điểm cực trị nằm về hai phía của trục hoành khi và chỉ khi phương trình (*) có ba nghiệm phân biệt hay phương trình (**) có 2 nghiệm phân biệt khác 1

    \Leftrightarrow \left\{ \begin{gathered}
  \Delta  > 0 \hfill \\
  f\left( 1 ight) e 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  {m^2} - \left( {2{m^2} - 4} ight) > 0 \hfill \\
  2{m^2} - 2m - 3 e 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}
   - 2 < m < 2 \hfill \\
  m e \frac{{1 \pm \sqrt 7 }}{2} \hfill \\ 
\end{gathered}  ight.

    m\mathbb{\in Z} suy ra m \in \left\{ - 1;0;1 ight\}

    Vậy có 3 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 20: Nhận biết
    Các dân tộc ít người phân bố chủ yếu ở khu vực nào của Trung Quốc?

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo