Cho hàm số có bảng biến thiên như sau:
Giá trị cực đại của hàm số đã cho là:
Quan sát bảng biến thiên dễ thấy giá trị cực đại của hàm số đã cho bằng 3.
Cho hàm số có bảng biến thiên như sau:
Giá trị cực đại của hàm số đã cho là:
Quan sát bảng biến thiên dễ thấy giá trị cực đại của hàm số đã cho bằng 3.
Tính tổng tất cả các giá trị nguyên của tham số
để hàm số
đồng biến trên tập xác định?
Tập xác định
Ta có:
Để hàm số đồng biến trên tập xác định thì
Vì nên
Vậy .
Cho hàm số có đạo hàm
,
. Mệnh đề nào dưới đây đúng?
Do hàm số có đạo hàm
nên hàm số đồng biến trên khoảng
.
Cho hàm số có bảng xét dấu của
như sau:
Số điểm cực trị của hàm số đã cho là
Dựa vào bảng xét dấu của hàm số đã cho có
điểm cực trị.
Định tất cả các giá trị thực của để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì có ba nghiệm phân biệt suy ra phương trình
có hai nghiệm phân biệt khác
Vậy đáp án cần tìm là .
Cho hàm số có bảng biến thiên như sau:
Tìm giá trị cực đại và giá trị cực tiểu của hàm số đã cho.
Từ bảng biến thiên ta có: .
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đạt cực đại tại điểm nào dưới đây?
Từ bảng biến thiên ta thấy hàm số đạt cực đại tại .
Cho hàm số liên tục trên
và có bảng xét dấu của
như sau:
Số điểm cực tiểu của hàm số đã cho là
Đạo hàm đổi dấu từ âm sang dương hai lần qua các điểm
và
nên hàm số đã cho có hai điểm cực tiểu.
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Từ bảng biến thiên ta thấy hàm số nghịch biến trên
Suy ra hàm số nghịch biến trên .
Hàm số nào dưới dây nghịch biến trên khoảng ?
Xét hàm số có
nên hàm số
nghịch biến trên khoảng
.

Khẳng định sai là:
Biết là giá trị của tham số
để hàm số
có hai điểm cực trị
sao cho
. Mệnh đề nào sau đây đúng?
Ta có:
Hàm số có hai cực trị
là hai nghiệm của phương trình
Áp dụng hệ thức Vi – et ta có:
Ta có:
.
Cho hàm số có đạo hàm
. Số điểm cực tiểu của hàm số là:
Ta có:
Bảng xét dấu:
Suy ra số điểm cực tiểu của hàm số là 2 điểm.
Xác định hàm số nghịch biến trên ?
Xét hàm số ta có:
Nên hàm số nghịch biến trên
.
Cho hàm số có bảng biến thiên như sau:
Hỏi hàm số đồng biến trên khoảng nào?
Hàm số có
Từ bảng biến thiên của hàm số ta có bảng biến thiên của hàm số
Dựa vào bảng biến thiên ta có hàm số đồng biến trong khoảng
.
Cho hàm số có bảng xét dấu của đạo hàm
như sau:
Hàm số có bao nhiêu điểm cực trị?
Dựa vào bảng xét dấu ta thấy hàm số có bốn điểm cực trị.
Cho hàm số sau, hàm số nào đồng biến trên ?
Xét hàm số ta có:
đồng biến trên
.
Tất cả các giá trị của tham số để hàm số
có hai điểm cực trị?
Ta có:
Để hàm số có hai điểm cực trị thì có hai nghiệm phân biệt khi đó

Hàm số đạt giá trị cực tiểu tại:
Cho hàm số có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào
dưới đây?
Nhìn vào đồ thị đã cho, ta có hàm số nghịch biến trên khoảng nên nghịch biến trên khoảng
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: