Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 17 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Bán kính mặt cầu

    Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Mặt phẳng (AB'C') tạo với mặt đáy góc 60^0 và điểm G là trọng tâm tam giác ABC. Bán kính mặt cầu ngoại tiếp khối chóp G.A'B'C' bằng:

    Hướng dẫn:

      Bán kính mặt cầu

    Gọi M là trung điểm B’C’, ta có

    {60^0} = \widehat {\left( {AB'C'} ight),\left( {A'B'C'} ight)} = \widehat {AM,A'M} = \widehat {AMA'}.

    Trong \Delta AA'M, có A'M = \frac{{a\sqrt 3 }}{2};

    AA' = A'M.\tan \widehat {AMA'} = \frac{{3a}}{2}.

    Gọi G’ là trọng tâm tam giác đều A’B’C’, suy ra G’ cũng là tâm đường tròn ngoại tiếp \Delta A'B'C'.

    Vì lặng trụ đứng nên GG' \bot \left( {A'B'C'} ight).

    Do đó GG' là trục của tam giác A'B'C'.

    Trong mặt phẳng \left( {GC'G'} ight), kẻ trung trực d của đoạn thẳng GC' cắt GG' tại I. Khi đó I là tâm mặt cầu ngoại tiếp khối chóp G.A'B'C' , bán kính R = GI

    Ta có \Delta GPI\,\backsim\,\,\,\Delta GG'C' \Rightarrow \frac{{GP}}{{GI}} = \frac{{GG'}}{{GC'}}

    \Rightarrow R = GI = \frac{{GP.GC'}}{{GG'}} = \frac{{GC{'^2}}}{{2GG'}} = \frac{{GG{'^2} + G'C{'^2}}}{{2GG'}} = \frac{{31a}}{{36}}.

  • Câu 2: Vận dụng
    Ghi đáp án vào ô trống

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Đáp án là:

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Ta đặt hệ trục vào căn phòng sao cho có hai bức tường là mặt (Oxz),(Oyz), và nền là (Oxy)

    Vậy bài toán dẫn đến việc tìm đường kính của mặt cầu tiếp xúc với 3 mặt phẳng toạ độ và chứa điểm M(17\ ;\ 18\ ;\ 21).

    Ta có thể gọi phương trình mặt cầu là (S):(x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}, với a,b,c,R >
0

    Do mặt cầu tiếp xúc với các mặt phẳng toạ độ nên a = b = c = R

    \Rightarrow (S):(x - a)^{2} + (y -
a)^{2} + (z - a)^{2} = a^{2}

    Do M(17\ ;\ 18\ ;\ 21) \in (S) nên (17 - a)^{2} + (18 - a)^{2} + (21 -
a)^{2} = a^{2}.

    \Rightarrow 2a^{2} - 112a + 1054 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = 28 - \sqrt{257} \\
a = 28 + \sqrt{257} \\
\end{matrix} ight.

    Vì quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm nên a = 28 - \sqrt{257} thỏa.

    Vậy đường kính quả bóng bằng 2a = 56 -
2\sqrt{257} \approx 23,9\ (cm).

  • Câu 3: Vận dụng cao
    Xác định phương trình mặt phẳng

    Trong hệ tọa độ Oxyz, cho mặt cầu (S): (x − 1)^2 + (y + 2)^2 + (z − 3)^2 = 12 và mặt phẳng (P): 2x + 2y − z − 3 = 0. Gọi (Q) là mặt phẳng song song với (P) và cắt (S) theo thiết diện là đường tròn (C) sao cho khối nón có đỉnh là tâm của mặt cầu và đáy là hình tròn giới hạn bởi (C) có thể tích lớn nhất. Phương trình của mặt phẳng (Q)

    Hướng dẫn:

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1; −2; 3) và bán kính R = 2\sqrt{3}

    Gọi r là bán kính đường tròn (C) và H là hình chiếu của I lên (Q).

    Đặt IH = x ta có:

    r = \sqrt{R^{2} - x^{2}} = \sqrt{12 -
x^{2}}

    Vậy thể tích khối nón tạo được là:

    V = \frac{1}{3}IH.S_{\left( (C) ight)}
= \frac{1}{3}.x.\pi\left( \sqrt{12 - x^{2}} ight)^{2} =
\frac{1}{3}.\pi\left( 12x - x^{3} ight)

    Gọi f'(x) = 12x - 3x^{2} ta có: f'(x) = 0 \Leftrightarrow x = \pm
2 chỉ có x = 2 \in \left(
0;2\sqrt{3} ight)

    Ta có bảng biến thiên như sau:

    Vậy V_{\max} =
\frac{1}{3}.\pi.16 khi x = IH =
2

    Mặt phẳng (Q) // (P) nên (Q): 2x + 2y − z + a = 0 (a eq - 3)

    Vậy d\left( I;(Q) ight) = IH
\Leftrightarrow \frac{\left| 2 + 2( - 2) - 3 + a ight|}{\sqrt{2^{2} +
2^{2} + ( - 1)^{2}}} = 2

    \Leftrightarrow |a - 5| = 6
\Leftrightarrow \left\lbrack \begin{matrix}
a = 11 \\
a = - 1 \\
\end{matrix} ight.

    Vậy mặt phẳng (Q) có phương trình 2x + 2y − z − 1 = 0 hoặc 2x + 2y − z + 11 =0

  • Câu 4: Vận dụng cao
    Tính tổng

    Trong không gian cho ba điểm A(3;0;0), B(1;2;1)C(2;-1;2). Biết mặt

    phẳng qua B, C và tâm mặt cầu nội tiếp tứ diện OABC có một vectơ pháp tuyến là (10;a;b). Tổng a+b là?

    Gợi ý:

    Áp dụng phương pháp tìm tọa độ tâm của mặt cầu nội tiếp tứ diện.

    Hướng dẫn:

     Phương trình (OAB) là: -y+2z=0.

    Phương trình (OAC) là:2y+z=0.

    Phương trình (OBC) là: x-z=0.

    Phương trình (ABC) là: 5x+3y+4z-15=0 .

    Gọi I(a';b';c') là tâm mặt cầu nội tiếp tứ diện OABC.

    Do đó:

    I nằm cùng phía với A đối với (OBC) suy ra: (a'-c')>0.

    I nằm cùng phía với B đối với (OAC) suy ra: (2b'+c')>0.

    I nằm cùng phía với C đối với (OAB) suy ra: (-b'+2c')>0.

    I nằm cùng phía với O đối với (ABC) suy ra: (5a'+3b'+4c'-15)<0.

    Suy ra:

    \left\{\begin{matrix} d(I,(OAB))=d(I,(OAC)) \\ d(I,(OAB))=d(I,(OBC)) \\ d(I,(OAB))=d(I,(ABC)) \end{matrix}ight.\Leftrightarrow \left\{\begin{matrix} \dfrac{|-b'+2c'|}{\sqrt 5}= \dfrac{|2b'+c'|}{\sqrt 5} \\ \dfrac{|-b'+2c'|}{\sqrt 5}= \dfrac{|a'-c'|}{\sqrt 2} \\ \dfrac{|-b'+2c'|}{\sqrt 5}= \dfrac{|5a'+3b'+4c'-15|}{5\sqrt 2} \end{matrix}ight.

     

    \Leftrightarrow \left\{\begin{matrix} |-b'+2c'|= |2b'+c'| \\ \sqrt 2{|-b'+2c'|}= \sqrt 5|a'-c'|\\ \sqrt 10{|-b'+2c'|}= |5a'+3b'+4c'-15| \end{matrix}ight.

    \Leftrightarrow \left\{\begin{matrix} -b'+2c'= 2b'+c' \\ \sqrt 2{(-b'+2c')}= \sqrt 5(a'-c')\\ \sqrt 10{(-b'+2c')}= -(5a'+3b'+4c'-15)\end{matrix}ight.

    \Leftrightarrow \left\{\begin{matrix} a'=\dfrac{3}{ 2} \\ -b'=\dfrac{3 \sqrt 10 -9}{2} \\ c'=\dfrac{9 \sqrt 10 -27}{ 2} \end{matrix}ight.

    Suy ra:  I (\frac {3}{2} ;\frac {3\sqrt{10} -9}{2}; \frac {9\sqrt{10} -27}{2}), \Rightarrow \overrightarrow {BI}= (\frac {1}{2} ;\frac {3\sqrt{10} -13}{2}; \frac {9\sqrt{10} -29}{2}) ; \,\, \overrightarrow {BC}= (1;-3;1)

    \Rightarrow [\overrightarrow {BI}, \overrightarrow {BC}]= (-50+15 \sqrt{10} ; \frac {9\sqrt{10} -30}{2}; \frac {-3\sqrt{10} +10}{2})

    cùng phương với \vec n =(10;3;-1).

    Suy ra (BCI) có một VTPT là \vec n =(10;3;-1) =(10; a; b).

    Vậy: a+b=2.

  • Câu 5: Vận dụng
    Chọn đáp án thích hợp

    Trong không gian cho đường tròn (C):\left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 12x + 4y - 6z + 24 = 0 \\
2x + 2y + z + 1 = 0 \\
\end{matrix} \right.

    Bán kính r của đường tròn (C) bằng:

    Hướng dẫn:

    Mặt cầu (S)chứa (C) có tâm I(6, - 2,3)R = 5 .

    Khoảng cách từ I đến mặt phẳng thiết diện là:

    h = \frac{\left| 2.6 + 2.( - 2) + 3 + 1
\right|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} = 4

    \Rightarrow r = \sqrt{R^{2} - h^{2}} =
\sqrt{25 - 16} = 3.

  • Câu 6: Vận dụng
    Tìm số phần bằng nhau

    Cho hình lập phương QABC.DEFG có cạnh bằng 1 có \overrightarrow{OA},\ \ \overrightarrow{OC},\ \
\overrightarrow{OG} trùng với ba trục \overrightarrow{Ox},\ \overrightarrow{Oy},\
\overrightarrow{Oz}. Sáu mặt phẳng x - y = 0;\ \ y - z = 0;z - x = 0; x + y = 1;\ \ y + z = 1;\ \ z + x = 1 chia hình lập phương thành bao nhiêu phân bằng nhau?

    Hướng dẫn:

     

  • Câu 7: Vận dụng
    Tìm phương trình mặt phẳng (P)

    Cho hai điểm M(1; 0; 4) , N(1;1;2) và mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 2y - 2 =
0. Mặt phẳng (P) qua M, N và tiếp xúc với mặt cầu (S) có phương trình:

    Hướng dẫn:

    Ta có mặt cầu (S) có tâm I(1; -
1;0) và bán kính R = 2, \overrightarrow{MN} = (0;1; -
2)

    Gọi \overrightarrow{n} =
(A,B,C)với A^{2} + B^{2} + C^{2}
> 0 là một vectơ pháp tuyến của mặt phẳng (P).

    (P) qua M, N nên \overrightarrow{n}\bot\overrightarrow{MN}
\Leftrightarrow \overrightarrow{n}.\overrightarrow{MN} = 0
\Leftrightarrow B - 2C = 0\ \ (1)

    Mặt phẳng (P) qua M(1 ; 0; 4) và nhận \overrightarrow{n} = (A,B,C) là vectơ pháp tuyến nên có phương trình

    A(x - 1) + B(y - 0) + C(z - 4) = 0\Leftrightarrow Ax + By + Cz - A - 4C = 0.

    Mặt phẳng (P) tiếp xúc với (S)

    \Leftrightarrow d\left( I;(P) \right) =
R \Leftrightarrow \frac{|1.A - 1.B + 0.C - A - 4C|}{\sqrt{A^{2} + B^{2}
+ C^{2}}} = 2

    \Leftrightarrow |B + 4C| = 2\sqrt{A^{2}
+ B^{2} + C^{2}}(2)

    Từ (1) và (2) \Rightarrow A^{2} - 4C^{2}
= 0 (*)

    Trong (*), nếu C = 0 thì A = 0, và từ (1) suy ra B
= 0 (vô lí). Do vậy C \neq
0.

    Chọn C = 1 \Rightarrow A = \pm
2.

    Với A = 2,\ C = 1, ta có B = 2. Khi đó (P):2x + 2y + z - 6 = 0.

    Với A = - 2,\ C = 1, ta có B = 2. Khi đó (P):2x - 2y - z + 2 = 0.

    Vậy phương trình mặt phẳng (P):2x + 2y +
z - 6 = 0 hoặc (P):2x - 2y - z + 2
= 0.

  • Câu 8: Vận dụng
    Tìm tập hợp các điểm M

    Cho mặt cầu (S): {x^2} + {y^2} + {z^2} - 4x + 6y + 2z - 2 = 0 và điểm A\left( { - 6, - 1,3} ight). Gọi M là tiếp điểm của (S) và tiếp tuyến di động qua (d). Tìm tập hợp các điểm M.

    (Có thể chọn nhiều đáp án)

    Hướng dẫn:

     Theo đề bài, (S) có tâm I\left( {2, - 3,1} ight).\,\overrightarrow {IM}  = \left( {x - 2,y + 3,z + 1} ight);\,\,\overrightarrow {AM}  = \left( {x + 6,y + 1,z - 3} ight)

    Ta có:

    \begin{array}{l}\overrightarrow {IM} .\overrightarrow {AM}  = \left( {x - 2} ight)\left( {x + 6} ight) + \left( {y + 3} ight)\left( {y + 1} ight) + \left( {z + 1} ight)\left( {z - 3} ight) = 0\\ \Rightarrow M \in \left( {S'} ight):{x^2} + {y^2} + {z^2} + 4x + 4y - 3z - 12 = 0;\,\,M \in \left( S ight)\end{array}

    \Rightarrow M \in  đường tròn  \left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} - 4x + 6y + 2z - 2 = 0\\4x - y - 2z - 5 = 0\end{array} ight.

    Hay \left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} + 4x + 4y - 2z - 12 = 0\\4x - y - 2z - 5 = 0\end{array} ight.

  • Câu 9: Vận dụng cao
    Tính thể tích khối tứ diện

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(a;0;0),B(0;b;0),C(0;0;c), trong đó a > 0,b > 0,c > 0\frac{1}{a} + \frac{2}{b} + \frac{3}{c} =
7. Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S):(x - 1)^{2} + (y -
2)^{2} + (y - 3)^{2} = \frac{72}{7}. Thể tích của khối tứ diện OABC là.

    Hướng dẫn:

    Cách 1:

    Ta có : (ABC):\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1 \Leftrightarrow bcx + acy + abz - abc = 0.

    Theo bài ra có: \frac{1}{a} + \frac{2}{b}
+ \frac{3}{c} = 7 \Leftrightarrow bc + 2ca + 3ab = 7abc.

    Mặt phẳng (ABC) tiếp xúc với mặt cầu (S) \Rightarrow d\left( I;(ABC) \right)
= R

    \Leftrightarrow \frac{|bc + 2ca + 3ab -
abc|}{\sqrt{b^{2}c^{2} + c^{2}a^{2} + a^{2}b^{2}}} =
\sqrt{\frac{72}{7}}

    \Leftrightarrow \frac{1}{36}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} \right) =
\frac{7}{72} \Leftrightarrow \frac{1}{a^{2}} + \frac{1}{b^{2}} +
\frac{1}{c^{2}} = \frac{7}{2}.

    Ta có \frac{1}{a} + \frac{2}{b} +
\frac{3}{c} = 7

    \Leftrightarrow 7 = \left( \frac{1}{a} +
2.\frac{1}{b} + 3.\frac{1}{c} \right)^{2} \leq (1 + 4 + 9)\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}}
\right).

    Dấu bằng xảy ra \Leftrightarrow \left\{\begin{matrix}a = 2b = 3c \\\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 7\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix} a = 2 \\b = 1 \\c = \frac{2}{3}\end{matrix} \right..

    VậyV_{OABC} = \frac{1}{6}abc =
\frac{1}{6}.2.1.\frac{2}{3} = \frac{2}{9}.

    Cách 2:

    Ta có (ABC):\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1\frac{1}{a} +
\frac{2}{b} + \frac{3}{c} = 7 suy ra M\left( \frac{1}{7};\frac{2}{7};\frac{3}{7}\right)\in (ABC).

    Lại có M\left(
\frac{1}{7};\frac{2}{7};\frac{3}{7} \right) \in (S) nên (ABC) tiếp xúc với (S) tại M.

    Suy ra (ABC):\frac{x}{2} + \frac{y}{1} +
\frac{z}{\frac{2}{3}} = 1 nên V_{OABC} = \frac{1}{6}abc =
\frac{1}{6}.2.1.\frac{2}{3} = \frac{2}{9}.

  • Câu 10: Vận dụng
    Chọn kết luận đúng

    Cho mặt cầu (S):\ \ x^{2} + y^{2} + z^{2}
+ 2x - 2y + 6z - 5 = 0 và mặt phẳng (P):\ x - 2y + 2z + 3 = 0. Gọi M là tiếp điểm của (S) và tiếp diện di động (Q) vuông góc với (P). tập hợp các điểm M là:

    Hướng dẫn:

    (S) có tâm I( - 1,1, - 3), bán kính R = 4. IM vuông góc với (Q), nên IM//(P) \Rightarrow M nằm trong mặt phẳng (R) qua I và song song với (P).

    Phương trình (R):x - 2y + 2z + D = 0.\ I
\in (R) \Rightarrow D = 9

    \Rightarrow (R):x - 2y + 2z + 9 =0

    M \in (S) \Rightarrow Tập hợp các điểm M là đường tròn giao tuyến của (S)(R):

    \left\{ \begin{matrix}
x^2 + y^{2} + z^{2} + 2x - 2y + 6z - 5 = 0 \\
x - 2y + 2z + 9 = 0 \\
\end{matrix} \right.

  • Câu 11: Vận dụng
    Chọn phương án đúng

    Trong không gian Oxyz cho đường tròn (C):\left\{ \begin{matrix}
x^2 + y^2+ z^{2} - 2x - 4y - 6z - 67 = 0 \\
2x - 2y + z + 5 = 0 \\
\end{matrix} \right.. Bán kính r của (C) bằng:

    Hướng dẫn:

    Viết lại phương trình mặt cầu (S) chứa (C) :

    (x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
81.

    Để biết tâm I(1,2,3) và bán kính R = 9 .

    \Rightarrow Bán kính của (C) là :r =
\sqrt{81 - 4} = \sqrt{77} (do khoảng cách từ I đến mặt phẳng chứa (C)h = \frac{|2.1 - 2.2 + 3 + 5|}{\sqrt{2^{2} + ( -
2)^{2} + 1^{2}}} = 2) .

  • Câu 12: Vận dụng cao
    Tính thể tích mặt cầu nội tiếp tứ diện

    Trong không gian ABCD cho tứ diện ABCD với điểm A(1;2;2), B(
- 1;2; - 1), D(1;6; - 1)D( - 1;6;2). Thể tích của mặt cầu nội tiếp tứ diện ABCD

    Hướng dẫn:

    Ta có phương trình các mặt phẳng như sau:

    (ABC):6x - 3y - 4z+ 8 = 0

    (BCD):6x - 3y + 4z + 16 = 0

    (CDA):6x + 3y + 4z - 20 = 0

    (ABD):6x + 3y - 4z - 4 = 0

    Gọi I(a';b';c') là tâm và R là bán kính mặt cầu nội tiếp tứ diện DABC

    Do đó:

    I nằm cùng phái với A đối với (DBC) suy ra: 6a' - 3b' + 4c' + 16 >
0.

    I nằm cùng phía với B đối với (DAC) suy ra: 6a' + 3b' + 4c' - 20 <
0.

    I nằm cùng phía với C đối với (DAB) suy ra: 6a' + 3b' - 4c' - 4 >
0.

    I nằm cùng phía với D đối với (ABC) suy ra: 6a' - 3b' - 4c' + 8 <
0.

    Suy ra:

    \left\{ \begin{matrix}
d\left( I;(DAB) \right) = d\left( I;(DAC) \right) \\
d\left( I;(DAB) \right) = d\left( I;(DBC) \right) \\
d\left( I;(DAB) \right) = d\left( I;(ABC) \right)
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
|6a' + 3b' - 4c' - 4| = |6a' + 3b' + 4c' - 20|
\\
|6a' + 3b' - 4c' - 4| = |6a' - 3b' + 4c' + 16|
\\
|6a' + 3b' - 4c' - 4| = |6a' - 3b' - 4c' + 8|
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
6a' + 3b' - 4c' - 4 = - \left( 6a' + 3b' + 4c' -
20 \right) \\
6a' + 3b' - 4c' - 4 = 6a' - 3b' + 4c' + 16 \\
6a' + 3b' - 4c' - 4 = - \left( 6a' - 3b' - 4c' +
8 \right)
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
a' = 0 \\
b' = 4 \\
c' = \frac{1}{2}
\end{matrix} \right.

    Suy ra: I\left( 0;4;\frac{1}{2} \right),R
= \sqrt{\frac{36}{61}}

    Thể tích mặt cầu cần tìm là: V =
\frac{4}{3}\pi R^{3} = \frac{288\pi\sqrt{61}}{3721}

    Cách khác: Sử dụng công thức nhanh.

    V_{ABCD} = \frac{1}{3}.r\left( S_{ABC} +
S_{ABD} + S_{ADC} + S_{BCD} \right) (r là bán kính của mặt cầu nội tiếp)

    Ta có: \overrightarrow{AB} = ( - 2;0; -
3),\overrightarrow{AC} = (0;4; - 3) ,\overrightarrow{AD} = ( -
2;4;0),\overrightarrow{DB} = (0; - 4; - 3), \overrightarrow{DC} = (2;0; - 3).

    V_{ABCD} = \frac{1}{6}.\left|
\left\lbrack \overrightarrow{AB};\overrightarrow{AC}
\right\rbrack.\overrightarrow{AD} \right| = 8.

    S_{ABC} = \frac{1}{2}.\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} \right\rbrack \right| =
\sqrt{61}, S_{ADC} =
\frac{1}{2}.\left| \left\lbrack \overrightarrow{AD};\overrightarrow{AC}
\right\rbrack \right| = \sqrt{61}, S_{ABD} = \frac{1}{2}.\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AD} \right\rbrack \right| =
\sqrt{61},

    S_{BCD} = \frac{1}{2}.\left| \left\lbrack
\overrightarrow{BD};\overrightarrow{DC} \right\rbrack \right| =
\sqrt{61}.

    Ta có:

    V_{ABCD} = \frac{1}{3}.r\left( S_{ABC} +
S_{ABD} + S_{ADC} + S_{BCD} \right)

    \Leftrightarrow 8 =
\frac{1}{3}.r4\sqrt{61} \Leftrightarrow r =
\sqrt{\frac{36}{21}}.

    Vậy: \mathbf{V
=}\frac{\mathbf{4}}{\mathbf{3}}\mathbf{\pi}\mathbf{R}^{\mathbf{3}}\mathbf{=}\frac{\mathbf{288}\mathbf{\pi}\sqrt{\mathbf{61}}}{\mathbf{3721}}.

  • Câu 13: Thông hiểu
    Vị trí tương đối của 2 mặt cầu

    Cho hai mặt cầu sau:

    \left( S ight):{x^2} + {y^2} + {z^2} - 4x + 6y - 10z - 11 = 0;

    \left( {S'} ight):{x^2} + {y^2} + {z^2} - 2x + 2y - 6z - 5 = 0

    Xét vị trí tương đối của 2 mặt cầu?

    Tiếp xúc trong || tiếp xúc trong

    Đáp án là:

    Cho hai mặt cầu sau:

    \left( S ight):{x^2} + {y^2} + {z^2} - 4x + 6y - 10z - 11 = 0;

    \left( {S'} ight):{x^2} + {y^2} + {z^2} - 2x + 2y - 6z - 5 = 0

    Xét vị trí tương đối của 2 mặt cầu?

    Tiếp xúc trong || tiếp xúc trong

     Theo đề bài, ta suy ra các hệ số, tâm và bán kính của (S):

    \left( S ight):a = 2;\,\,b =  - 3;\,\,c = 5;\,\,d =  - 11 \Rightarrow Tâm I\left( {2, - 3,5} ight); bán kính R=7

    \left( {S'} ight) = a' = 1;\,\,b' =  - 1;\,c' = 3;\,\,d' =  - 5 \Rightarrow Tâm J\left( {1, - 1,3} ight); bán kính R'=4

    I{J^2} = {\left( {1 - 2} ight)^2} + {\left( { - 1 + 3} ight)^2} + {\left( {3 - 5} ight)^2} = 9 \Rightarrow IJ = 3 = R - R'

    (S) và (S') tiếp xúc trong.

  • Câu 14: Vận dụng
    Tìm tọa độ tâm H của (C)

    Trong không gian Oxyz cho đường tròn:(C):\left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 4x + 6y + 6z + 17 = 0 \\
x - 2y + 2z + 1 = 0 \\
\end{matrix} \right.. Tọa độ tâm H của (C) là:

    Hướng dẫn:

    Ta có:

    x^{2} + y^{2} + z^{2} - 4x + 6y + 6z +
17 = 0

    \Leftrightarrow (x - 2)^{2} + (y +
3)^{2} + (z + 3)^{2} = 5

    Tâm mặt cầu là I(2, - 3, -
3)

    Xem đường thẳng qua I và vuông góc với mặt phẳng thiết diện x - 2y + 2z + 1 = 0

    \left\{ \begin{matrix}
x = 2 + t \\
y = - 3 - 2t \\
z = - 3 + 2t \\
\end{matrix} \right. , thế x,y,z vào phương trình mặt phẳng thiết diện

    2 + t - 2( - 3 - 2t) + 2( - 3 + 2t) + 1 =
0 \Leftrightarrow t = - \frac{1}{3}

    \Rightarrow Tọa độ tâm H của (C) là H\left( \frac{5}{3}, - \frac{7}{3}, -
\frac{11}{3} \right)

  • Câu 15: Vận dụng
    Tính bán kính đường tròn ngoại tiếp tam giác

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x - 4z - 4 =
0 và ba điểmA(1,2, - 2);B( -
4,2,3);C(1, - 3,3) nằm trên mặt cầu (S). Bán kính r của đường tròn ngoại tiếp tam giác ABC là:

    Hướng dẫn:

    Ta có:

    h = \frac{|1 + 5.0 - 2 - 8|}{\sqrt{1^{2}
+ 5^{2} + ( - 1)^{2}}} = \sqrt{3}

    \Rightarrow r = \sqrt{R^{2} - h^{2}} =
\sqrt{9 - 3} = \sqrt{6}.

  • Câu 16: Thông hiểu
    Xác định số phần bằng nhau

    Cho hình hợp chữ nhật ABCD.EFGH có A(0,0,0);\ \ \ B(4,0,0);\ \ \ D(0,6,0);\ \ \
E(0,0,2). Ba mặt phẳng: x - 2z =
0;\ \ y - 3 = 0;\ \ \ x + 2z - 4 = 0 chia hình hộp chữ nhật thanh mấy phần bằng nhau?

    Hướng dẫn:

    Hai mặt phẳng: x - 2zx + 2z- 4 = 0 chia hình hộp chữ nhật thành 4 phần bằng nhau.

    Mặt phẳng y - 3 = 0 cắt 4 phần trên thành 8 phần bằng nhau. (Học sinh tự vẽ hình).

  • Câu 17: Vận dụng cao
    Tính giá trị của biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(2;1;3),B(6;5;5). Gọi (S) là mặt cầu đường kính AB. Mặt phẳng (P) vuông góc với đoạn AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao của mặt cầu (S) và mặt phẳng (P)) có thể tích lớn nhất, biết rẳng (P):2x + by + cz + d = 0 với b;c;d\mathbb{\in Z}. Tính S = b +c + d.

    Hướng dẫn:

    Hình vẽ minh họa

    \overrightarrow{AB} = (4;4;2) =
2(2;2;1), \overrightarrow{AB} là vectơ pháp tuyến của mặt phẳng (P) suy ra phương trình mặt phẳng (P) có dạng 2x + 2y + z + d = 0.

    Gọi I là tâm mặt cầu thì I là trung điểm của AB suy ra I(4;3;4), bán kính mặt cầu R = \frac{AB}{2} = 3.

    Đặt IH = x suy ra HK = \sqrt{R^{2} - x^{2}} = \sqrt{9 -
x^{2}}.

    Thể tích khối nón

    V = \frac{1}{3}IH.\pi.HK^{2} =
\frac{1}{3}.\pi.\left( 9 - x^{2} \right)(3 + x)

    = \frac{1}{6}.\pi.(6 - 2x)(3 + x)(3 + x)
\leq \frac{1}{6}.\pi\left( \frac{6 + 3 + 3}{3} \right)^{3}.

    Dấu bằng xảy ra khi 6 - 2x = 3 + x
\Leftrightarrow x = 1.

    Ta có hệ: \left\{ \begin{matrix}d\left( A;(P) \right) = 4 \\d\left( I;(P) \right) = 1\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}\frac{|d + 9|}{3} = 4 \\\frac{|d + 18|}{3} = 1\end{matrix} \right.\Leftrightarrow \left\{ \begin{gathered}
  \left[ \begin{gathered}
  d = 3 \hfill \\
  d =  - 21 \hfill \\ 
\end{gathered}  \right. \hfill \\
  \left[ \begin{gathered}
  d =  - 21 \hfill \\
  d =  - 15 \hfill \\ 
\end{gathered}  \right. \hfill \\ 
\end{gathered}  \right. \Leftrightarrow d =  - 21

    Vậy (P):2x + 2y + z -21 =0.

    Suy ra: b + c + d = - 18.

  • Câu 18: Thông hiểu
    Tìm tập hợp các giá trị a

    Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) có phương trình dạng x^{2} + y^{2} + z^{2} - 4x + 2y - 2az + 10a =
0. Tập hợp các giá trị thực của tham số a để (S) có chu vi 8\pi?

    Hướng dẫn:

    Đường tròn lớn có chu vi là 8\pi nên bán kính của (S)\frac{8\pi}{2\pi} = 4

    Từ phương trình của (S) suy ra bán kính của (S)R = \sqrt{2^{2} + 1^{2} + a^{2} -
10a}

    Do đó \sqrt{2^{2} + 1^{2} + a^{2} - 10a}
= 4 \Leftrightarrow \left\lbrack \begin{matrix}
a = - 1 \\
a = 11 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: a \in \left\{ -
1;11 ight\}

  • Câu 19: Vận dụng
    Viết phương trình mặt cầu (S’)

    Cho mặt cầu (S):\ \ x^{2} + y^{2} + z^{2}
+ 2x - 2y + 6z - 5 = 0 và mặt phẳng (P):\ x - 2y + 2z + 3 = 0. Viết phương trình mặt cầu (S’) có bán kính nhỏ nhất chứa giao tuyến (C) của (S) và (P).

    Hướng dẫn:

    Ta có:

    (S'):x^{2} + y^{2} + z^{2} + 2x - 2y+ 6z - 5 + m(x - 2y + 2z + 3) = 0

    \Leftrightarrow (S'):x^{2} + y^{2} +
z^{2} +(m + 2)x - 2(m + 1)y + 2(m + 3)z + 3m - 5 = 0

    (S') có bán kính nhỏ nhất \Leftrightarrow Tâm H\left( - \frac{m + 2}{2},m + 1, - m - 3 \right)
\in (P)

    \Leftrightarrow - \frac{m + 2}{2} - 2(m +
1) + 2( - m - 3) + 3 = 0 \Leftrightarrow m = - \frac{4}{3}

    Vậy (S'):x^{2} + y^{2} + = z^{2} +
\frac{2}{3}x + \frac{2}{3}y + \frac{10}{3}z - 9 = 0

  • Câu 20: Vận dụng
    Tính diện tích mặt cầu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA = a\sqrt 6 và vuông góc với đáy (ABCD). Tính theo a diện tích mặt cầu ngoại tiếp hình chóp S.ABCD ta được:

    Hướng dẫn:

     Tính diện tích mặt cầu

    Gọi O = AC \cap BD, suy ra O là tâm đường tròn ngoại tiếp hình vuông ABCD.

    Gọi I là trung điểm SC, suy ra IO\parallel SA \Rightarrow IO \bot \left( {ABCD} ight)

    Do đó IO là trục của hình vuông ABCD, suy ra IA = IB = IC = ID.  (1)

    Xét tam giác SAC vuông tại A có I là trung điểm cạnh huyền SC nên IS = IC = IA.   (2)

    Từ (1) và (2), ta có: R = IA = IB = IC = ID = IS = \frac{{SC}}{2} = a\sqrt 2

    Vậy diện tích mặt cầu S = 4\pi {R^2} = 8\pi {a^2} (đvdt).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo