Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 17 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn kết luận đúng

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2; - 2). Mặt phẳng (\alpha) đi qua H và cắt các trục Ox;Oy;Oz tại A;B;C sao cho H là trực tâm tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha)?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có H là trực tâm của tam giác ABC suy ra OH\bot(ABC)

    Thật vậy \left\{ \begin{matrix}
OH\bot OA \\
OH\bot OB \\
\end{matrix} ight.\  \Rightarrow OC\bot AB(1)

    CH\bot AB (vì H là trực tâm tam giác ABC) (2)

    Từ (1) và (2) suy ra AB\bot(OHC) suy ra AB\bot OH(*)

    Tương tự BC\bot(OAH) \Rightarrow BC\bot
OH(**)

    Từ (*) và (**) suy ra OH\bot(ABC)

    Khi đó mặt cầu tâm O tiếp xúc với mặt phẳng (ABC) có bán kính R = OH = 3

    Vây mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha) là: x^{2} + y^{2} + z^{2} = 9.

  • Câu 2: Vận dụng
    Tính diện tích mặt cầu (S)

    Cho hình hợp chữ nhật ABCD.EFGH có A(0,0,0);\ \ \ B(4,0,0);\ \ \ D(0,6,0);\ \ \
E(0,0,2). Tính diện tích mặt cầu (S) ngoại tiếp hình hợp chữ nhật.

    Hướng dẫn:

    Mặt cầu (S) ngoại tiếp hình hợp chữ nhật có tâm là trung điểm chung của 4 đường chéo bằng nhau của hình hộp và có đường chéo bằng đường chéo. (Học sinh tự vẽ hình)

    AG^{2} = AC^{2} + AE^{2} = AB^{2} +
AD^{2} + AE^{2}= 16 + 36 + 4 = 56

    R = \frac{AG}{2} \Rightarrow R^{2} =
\frac{AG^{2}}{4} = \frac{56}{4} = 14 \Rightarrow S = 4\pi R^{2} = 56\piđvdt

  • Câu 3: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu \left( S_{1} ight):x^{2} + y^{2} + z^{2} + 4x +
2y + z = 0\left( S_{2}
ight):x^{2} + y^{2} + z^{2} - 2x - y - z = 0 cắt nhau theo một đường tròn (C) nằm trong mặt phẳng (P). Cho các điểm A (1; 0; 0), B (0; 2; 0), C (0; 0; 3). Có bao nhiêu mặt cầu tâm thuộc (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA?

    Hướng dẫn:

    Mặt phẳng (P) chứa đường tròn (C) có được bằng cách khử x^{2};y^{2};z^{2} trong phương trình hai mặt cầu ta được 6x + 3y + 2z = 0. Mặt phẳng (ABC) có phương trình là

    \frac{x}{1} + \frac{y}{2} + \frac{z}{3} =
1⇔ 6x + 3y + 2z − 6 = 0.

    Do đó (P) // (ABC). Mặt cầu (S) tiếp xúc với cả ba đường thẳng AB, BC, CA sẽ giao với mặt phẳng (ABC) theo một đường tròn tiếp xúc với ba đường thẳng AB, BC, CA.

    Trên mặt phẳng (ABC) có 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA đó là đường tròn nội tiếp tam giác ABC và ba đường tròn bàng tiếp các góc A, B, C.

    Do đó có 4 mặt cầu có tâm nằm trên (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA.

    Tâm của 4 mặt cầu là hình chiếu của tâm 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA lên mặt phẳng (P).

  • Câu 4: Vận dụng cao
    Định phương trình mặt cầu

    Cho điểm A(2;\ 5;\ 1) và mặt phẳng (P):6x + 3y - 2z + 24 = 0, H là hình chiếu vuông góc của A trên mặt phẳng (P). Phương trình mặt cầu (S) có diện tích 784\pi và tiếp xúc với mặt phẳng (P) tại H, sao cho điểm A nằm trong mặt cầu là:

    Hướng dẫn:

    Gọi d là đường thẳng đi qua A và vuông góc với (P).

    Suy ra d:\left\{ \begin{matrix}
x = 2 + 6t \\
y = 5 + 3t \\
z = 1 - 2t \\
\end{matrix} \right.

    H là hình chiếu vuông góc của A trên (P) nên H = d
\cap (P).

    H \in d nên H(2 + 6t;5 + 3t;1 - 2t).

    Mặt khác, H\in(P) nên ta có:

    6(2 + 6t) + 3(5 + 3t) - 2(1 - 2t) + 24 =
0 \Leftrightarrow t = - 1

    Do đó, H( - 4;\ 2;\ 3).

    Gọi I, R lần lượt là tâm và bán kính mặt cầu.

    Theo giả thiết diện tích mặt cầu bằng 784\pi, suy ra 4\pi R^{2} = 784\pi \Rightarrow R =
14.

    Vì mặt cầu tiếp xúc với mặt phẳng (P) tại H nên IH\bot(P) \Rightarrow I \in d.

    Do đó tọa độ điểm I có dạng I(2 + 6t;5 + 3t;1 - 2t), với t \neq - 1.

    Theo giả thiết, tọa độ điểm I thỏa mãn:\left\{ \begin{matrix}
d(I,(P)) = 14 \\
AI < 14 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
\dfrac{\left| 6(2 + 6t) + 3(5 + 3t) - 2(1 - 2t) + 24 \right|}{\sqrt{6^{2}
+ 3^{2} + ( - 2)^{2}}} = 14 \\
\sqrt{(6t)^{2} + (3t)^{2} + ( - 2t)^{2}} < 14 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
t = 1 \\
t = - 3 \\
\end{matrix} \right.\  \\
- 2 < t < 2 \\
\end{matrix} \right.\  \Leftrightarrow t = 1

    Do đó: I(8 ; 8 ;  - 1).

    Vậy phương trình mặt cầu (S):(x - 8)^{2}
+ (y - 8)^{2} + (z + 1)^{2} = 196.

  • Câu 5: Vận dụng
    Viết phương trình mặt cầu

    Cho hai mặt phẳng (P), (Q) có phương trình (P):x - 2y + z - 1 = 0(Q):2x + y - z + 3 = 0. Mặt cầu có tâm nằm trên mặt phẳng (P) và tiếp xúc với mặt phẳng (Q) tại điểm M, biết rằng M thuộc mặt phẳng (Oxy) và có hoành độ x_{M} = 1, có phương trình là:

    Hướng dẫn:

    M \in (Oxy) và có hoành độ bằng 1 nên M(1;y;0).

    Lại có, mặt cầu tiếp xúc với mặt phẳng (Q) nên M \in
(Q) \Rightarrow M(1; -
5;0).

    Gọi I(a;b;c) là tâm của mặt cầu (S) cần tìm.

    Ta có (S) tiếp xúc với mp (Q) tại M nên IM\bot(Q).

    Mặt phẳng (Q) có vectơ pháp tuyến \overrightarrow{n} = (2;1; -
1).

    Ta có: IM\bot(Q)\Leftrightarrow
\overrightarrow{MI} = t\overrightarrow{n},\ \left( t\mathbb{\in R}
\right) \Leftrightarrow \left\{ \begin{matrix}
a = 1 + 2t \\
b = -5 + t \\
c = - t \\
\end{matrix} \right.

    I \in (P) \Leftrightarrow 1 + 2t - 2( - 5
+ t) - t - 1 = 0 \Leftrightarrow t = 10 \Rightarrow I(21;5; -
10).

    Bán kính mặt cầu R = d\left( I;(Q)
\right) = 10\sqrt{6}.

    Vậy phương trình mặt cầu (S):(x - 21)^{2}+ (y - 5)^{2} + (z + 10)^{2} = 600.

  • Câu 6: Vận dụng
    Tìm tập hợp các điểm M thỏa mãn biểu thức

    Cho tứ diện ABCD có A(1,2,3);\ \ \
B(0,0,3);\ \ \ C(0,2,0);\ \ \ D(1,0,0).Tìm tập hợp các điểm M thỏa mãn \left| \overrightarrow{AM} +
\overrightarrow{BM} + \overrightarrow{CM} + \overrightarrow{DM} \right|
= 8

    Hướng dẫn:

    Ta có:

    \left| \overrightarrow{AM} +
\overrightarrow{BM} + \overrightarrow{CM} + \overrightarrow{DM} \right|= \left| 4\left( x - \frac{1}{2} \right);4(y - 1);4\left( z -
\frac{3}{2} \right) \right| = 8

    \Rightarrow 16\left( x - \frac{1}{2}
\right)^{2} + 16(y - 1)^{2} + 16\left( z - \frac{3}{2} \right)^{2} =
64

    Mặt cầu (S):\left( x - \frac{1}{2}
\right)^{2} + (y - 1)^{2} + \left( z - \frac{3}{2} \right)^{2} =
4

  • Câu 7: Vận dụng cao
    Bán kính mặt cầu

    Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Mặt phẳng (AB'C') tạo với mặt đáy góc 60^0 và điểm G là trọng tâm tam giác ABC. Bán kính mặt cầu ngoại tiếp khối chóp G.A'B'C' bằng:

    Hướng dẫn:

      Bán kính mặt cầu

    Gọi M là trung điểm B’C’, ta có

    {60^0} = \widehat {\left( {AB'C'} ight),\left( {A'B'C'} ight)} = \widehat {AM,A'M} = \widehat {AMA'}.

    Trong \Delta AA'M, có A'M = \frac{{a\sqrt 3 }}{2};

    AA' = A'M.\tan \widehat {AMA'} = \frac{{3a}}{2}.

    Gọi G’ là trọng tâm tam giác đều A’B’C’, suy ra G’ cũng là tâm đường tròn ngoại tiếp \Delta A'B'C'.

    Vì lặng trụ đứng nên GG' \bot \left( {A'B'C'} ight).

    Do đó GG' là trục của tam giác A'B'C'.

    Trong mặt phẳng \left( {GC'G'} ight), kẻ trung trực d của đoạn thẳng GC' cắt GG' tại I. Khi đó I là tâm mặt cầu ngoại tiếp khối chóp G.A'B'C' , bán kính R = GI

    Ta có \Delta GPI\,\backsim\,\,\,\Delta GG'C' \Rightarrow \frac{{GP}}{{GI}} = \frac{{GG'}}{{GC'}}

    \Rightarrow R = GI = \frac{{GP.GC'}}{{GG'}} = \frac{{GC{'^2}}}{{2GG'}} = \frac{{GG{'^2} + G'C{'^2}}}{{2GG'}} = \frac{{31a}}{{36}}.

  • Câu 8: Vận dụng
    Tính bán kính

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Đường thẳng SA = a\sqrt 2 vuông góc với đáy (ABCD) . Gọi M là trung điểm SC, mặt phẳng (\alpha) đi qua hai điểm A và M đồng thời song song với BD cắt SB, SD lần lượt tại E và F. Bán kính mặt cầu đi qua năm điểm S, A, E, M, Fnhận giá trị nào sau đây?

    Hướng dẫn:

     Tính bán kính

    Mặt phẳng (\alpha) song song với BD cắt SB, SD lần lượt tại E, F nên EF||BD.

    \triangle SAC cân tại A , trung tuyến AM nên AM \bot SC  (1)

    Ta có \left\{ \begin{array}{l}BD \bot AC\\BD \bot SA\end{array} ight. \Rightarrow BD \bot \left( {SAC} ight) \Rightarrow BD \bot SC

    Do đó EF \bot SC   (2)

    Từ (1) và (2), suy ra SC \bot \left( \alpha  ight) \Rightarrow SC \bot AE   (*)

    Lại có \left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot AE  (**)

    Từ (*) và (**), suy ra AE \bot \left( {SBC} ight) \Rightarrow AE \bot SB. Tương tự ta cũng có AF \bot SD.

    Do đó \widehat {SEA} = \widehat {SMA} = \widehat {SFA} = {90^0} nên năm điểm S,{m{ }}A,{m{ }}E,{m{ }}M,{m{ }}F cùng thuộc mặt cầu tâm I là trung điểm của SA, bán kính R = \frac{{SA}}{2} = \frac{{a\sqrt 2 }}{2}.

  • Câu 9: Vận dụng cao
    Tính tổng diện tích

    Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S): (x-1)^2+(y+1)^2+(z-2)^2=16 và điểm A(1;2;3) . Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau, cắt mặt cầu theo ba đường tròn. Tính tổng diện tích của ba đường tròn tương ứng đó.

    Gợi ý:

    Tính tổng diện tích

    Giả sử ba mặt mặt phẳng cùng đi qua A đôi một vuông góc với nhau là (P), (Q), (R).

    Với điểm I bất kỳ, hạ II_1, II_2, II_3 lần lượt vuông góc với ba mặt phẳng (P), (Q), (R) thì ta luôn có: IA^2 = II_1 ^2+ II_2^2, II_3 ^2 (1) .

    Ta sẽ chứng minh (1) và áp dụng vào giải bài toán.

    Hướng dẫn:

    Tính tổng diện tích

    Giả sử ba mặt mặt phẳng cùng đi qua A đôi một vuông góc với nhau là (P), (Q), (R).

    Với điểm I bất kỳ, hạ II_1, II_2, II_3 lần lượt vuông góc với ba mặt phẳng (P), (Q), (R) thì ta luôn có: IA^2 = II_1 ^2+ II_2^2, II_3 ^2(1) .

    Thật vậy , ta chọn hệ trục tọa độ Oxyz với O\equiv A , ba trục Ox, Oy, Oz lần lượt là ba giao tuyến của ba mặt phẳng (P), (Q), (R)..

    Khi đó tọa độ I(a;b;c) thì:

    IA^2=a^2+b^2+c^2=d^2(A;(Iyz))+d^2(A;(Ixz))+d^2(A;(Ixy))

    hay IA^2=II_1^2+II_2^2+II_3^2.

    Vậy (1) được chứng minh.

    Tính tổng diện tích

    Áp dụng giải bài:

    Mặt cầu (S) có tâm I(1;-1;2) và có bán kính r=4.

    \overrightarrow {IA}=(0;3;1) \Rightarrow IA= \sqrt {10}.

    Giả sử ba mặt mặt phẳng cùng đi qua A đôi một vuông góc với nhau là (P), (Q), (R) và cắt mặt cầu (S) theo ba đường tròn lần lượt là(C_1),(C_2),(C_3).

    Gọi I_1, I_2, I_3 và  r_1, r_2, r_3 lần lượt là tâm và bán kính của (C_1),(C_2),(C_3).

    Khi đó : II_1\perp (P) \Rightarrow II_1^2+r_1^2=r^2 \Rightarrow r_1^2=r^2-II_1^2.

    Tương tự có: r_2^2=r^2-II_2^2  và  r_3^2=r^2-II_3^2.

    Theo nhận xét ở trên ta có: IA^2=II_1^2+II_2^2+II_3^2

    Ta có tổng diện tích các đường tròn là :

    S= \pi(r_1^2+r_2^2+r_3^2)=\pi(r^2-II_1^2+r^2-II_2^2+r^2-II_3^2)

    =\pi[3r^2-(II_1^2+II_2^2+II_3^2)]

    =\pi(3r^2-IA^2)=38 \pi.

  • Câu 10: Thông hiểu
    Tìm giá trị tham số m theo yêu cầu

    Với giá trị nào của m thì mặt phẳng (Q):x
+ y + z + 3 = 0 cắt mặt cầu (S):x^{2} + y^{2} + z^{2} - 2(m + 1)x + 2my - 2mz
+ 2m^{2} + 9 = 0?

    Hướng dẫn:

    a = m + 1;b = - m;c = m;d = 2m^{2} +
9. Tâm I(m + 1, - m,m)

    \Rightarrow R^{2} = (m + 1)^{2} + m^{2} +
m^{2} - 2m^{2} - 9 = m^{2} + 2m - 8 > 0

    \Rightarrow m < - 4 \vee m >
2. (P) cắt (S) khi:

    d(I,P) < R \Leftrightarrow \frac{|m +
4|}{\sqrt{3}} < \sqrt{m^{2} + 2m - 8}

    \Leftrightarrow \left\lbrack
\begin{matrix}
m < - 4 \\
m > 5 \\
\end{matrix} \right.

  • Câu 11: Vận dụng cao
    Tính giá trị nhỏ nhất của bán kính mặt cầu

    Trong không gian với hệ trục tọa độ Oxyz, xét mặt cầu (S) đi qua hai điểm A\left( {1;6;2} \right),B\left( {3;0;0} \right) và có tâm thuộc mặt phẳng (P):x - y + 2 =
0 bán kính của mặt cầu (S) có giá trị nhỏ nhất là

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi H là trung điểm của đoạn thẳng AB nên H(2; 3; 1). Vecto \overrightarrow{HB} = (1; - 3; - 1).

    Mặt cầu đi qua A, B có tâm M thuộc mặt phẳng (Q)

    là mặt phẳng trung trực của đoạn thẳng AB

    qua H và có vecto pháp tuyến \overrightarrow{HB} = (1; - 3; - 1) có phương trình (Q):x - 3y + z + 6 =
0.

    Do tâm M của mặt cầu cũng thuộc (P) nên M thuộc đường thẳng (d) là giao của (P) và (Q) có vectơ chỉ phương \overrightarrow{u} = (1;1;2) và qua M_{0}( - 2;0;4).

    Gọi d là khoảng cách từ H đến (d), d =
d\left( H;(d) \right) = \frac{\left| \left\lbrack
\overrightarrow{M_{0}H};\overrightarrow{u} \right\rbrack \right|}{\left|
\overrightarrow{u} \right|} = \frac{\sqrt{66}}{6},HB = \sqrt{11}.

    Ta có R = MB = \sqrt {H{B^2} + M{H^2}}. Nhận thấy HB không đổi, R nhỏ nhất khi MH nhỏ nhất, MH nhỏ nhất khi M trùng I, lúc đó MH = HI = d = \frac{{\sqrt {66} }}{6}. (I là hình chiếu vuông góc của H lên (d))

    Vậy R = MB = \sqrt{HB^{2} + IH^{2}} =
\sqrt{\frac{66}{36} + 11} = \frac{\sqrt{462}}{6}.

  • Câu 12: Vận dụng cao
    Viết phương trình tiếp diện của mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x − 1)^2 + (y − 2)^2 + (z − 2)^2 = 9 hai hai điểm M(4; −4; 2),N(6; 0; 6). Gọi E là điểm thuộc mặt cầu (S) sao cho EM + EN đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu (S) tại E?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi I(1; 2; 2) là tâm của (S), P(5; −2; 4) là trung điểm MN.

    Theo bất đẳng thức Bu-nhi-a-copx-ki và công thức độ dài trung tuyến ta được:

    (EM + EN)^{2} \leq 2\left( EM^{2} +
EN^{2} ight) = 2\left( 2EP^{2} + \frac{MN^{2}}{2} ight)

    nên T = EM + EN đạt giá trị lớn nhất khi EM = EN và EP đạt giá trị lớn nhất.

    Khi đó E là giao điểm của đường thẳng IP với mặt cầu (S) (I nằm giữa E và P). Đường thẳng IP có phương trình:

    \frac{x - 1}{2} = \frac{y - 2}{- 2} =
\frac{z - 2}{1}

    Tọa độ E thỏa hệ phương trình:

    \left\{ \begin{matrix}(x - 1)^{2} + (y - 2)^{2} + (z - 2)^{2} = 9 \\\dfrac{x - 1}{2} = \dfrac{y - 2}{- 2} = \dfrac{z - 2}{1} \\\end{matrix} ight.

    Tìm được E(3; 0; 3) hoặc E(−1; 4; 1), thử lại để EP lớn nhất ta được E(−1; 4; 1).

    Khi đó phương trình tiếp diện với (S) tại E là 2x−2y+z+9 = 0.

  • Câu 13: Vận dụng
    Viết phương trình mặt cầu (S)

    Trong không gian Oxyz, cho A(5; 0; 0), B(1; 2; −4), C(4; 3; 0) và mặt phẳng (α): x + 2y + 2z − 10 = 0. Viết phương trình mặt cầu đi qua A, B, C và tiếp xúc mặt phẳng (α).

    Hướng dẫn:

    Gọi I(x; y; z) là tâm mặt cầu cần tìm.

    Theo bài ra ta có:

    \left\{ \begin{matrix}
AI = IB \\
AI = CI \\
AI = d\left( I;(\alpha) ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\sqrt{(x - 5)^{2} + y^{2} + z^{2}} = \sqrt{(x - 1)^{2} + (y - 2)^{2} +(z + 4)^{2}} \\\sqrt{(x - 5)^{2} + y^{2} + z^{2}} = \sqrt{(x - 4)^{2} + (y - 3)^{2} +z^{2}} \\\sqrt{(x - 5)^{2} + y^{2} + z^{2}} = \dfrac{|x + 2y + 2z -10|}{\sqrt{1^{2} + 2^{2} + 2^{2}}} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x - y + 2z = 1 \\
x - 3y = 0 \\
3\sqrt{(x - 5)^{2} + y^{2} + z^{2}} = |x + 2y + 2z - 10| \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x = 3y \\z = \dfrac{- 5y + 1}{2} \\65y^{2} - 130y + 65 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 3 \\y = 1 \\z = - 2 \\\end{matrix} ight.

    Vậy phương trình mặt cầu tâm I(3; 1; −2) bán kính R = AI = 3(x - 3)^{2} + (y - 1)^{2} + (z + 2)^{2} =
9.

  • Câu 14: Vận dụng
    Tính bán kính r của đường tròn (C)

    Trong không gian cho đường tròn (C):\left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 4x + 6y + 6z + 17 = 0 \\
x - 2y + 2z + 1 = 0 \\
\end{matrix} \right.

    Bán kính r của đường tròn (C) bằng:

    Hướng dẫn:

    Cùng đề trên nên có bán kính mặt cầu là R
= \sqrt{5} .

    Khoảng cách từ I đến thiết diện là h =
\frac{\left| 2 - 2( - 3) + 2( - 3) + 1 \right|}{\sqrt{1^{2} + ( - 2)^{2}
+ 2^{2}}} = 1 .

    \Rightarrow Bán kính của (C) là: r =
\sqrt{R^{2} - r^{2}} = 2.

  • Câu 15: Vận dụng
    Xác định phương trình mặt cầu ngoại tiếp tứ diện

    Viết phương trình mặt cầu \left( S_{3}
\right) ngoại tiếp tứ diện.

    Hướng dẫn:

    Tứ diện ABCD đều \Rightarrow \left( S_{3} \right) có tâm E(2,2,2)

    Bán kính R_{3}^{2} = EA^{2} = (1 - 2)^{2}
+ (1 - 2)^{2} + (1 - 2)^{2} = 3

    \Rightarrow \left( S_{3} \right) = (x -
2)^{2} + (y - 2)^{2} + (z - 2)^{2} = 3

  • Câu 16: Vận dụng
    Tính tỉ số

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy lớn AD=2a, AB = BC = CD = a. Cạnh bên SA=2a và vuông góc với đáy. Gọi R là bán kính mặt cầu ngoại tiếp khối chóp S.ABCD. Tỉ số \frac{R}{a}nhận giá trị nào sau đây?

    Hướng dẫn:

     Tính tỉ số

    Ta có SA \bot AD hay \widehat {SAD} = {90^0}

    Gọi E là trung điểm AD.

    Ta có EA = AB = BC nên ABCE là hình thoi.

    Suy ra CE = EA = \frac{1}{2}AD .

    Do đó tam giác ACD vuông tại C. Ta có:

    \left\{ \begin{array}{l}DC \bot AC\\DC \bot SA\end{array} ight. \Rightarrow DC \bot \left( {SAC} ight) \Rightarrow DC \bot SC   hay    \widehat {SCD} = {90^0}

    Tương tự, ta cũng có SB \bot BD hay \widehat {SBD} = {90^0}

    Ta có \widehat {SAD} = \widehat {SBD} = \widehat {SCD} = {90^0} nên khối chóp S.ABCD nhận trung điểm I của SD làm tâm mặt cầu ngoại tiếp, bán kính R = \frac{{SD}}{2} = \frac{{\sqrt {S{A^2} + A{D^2}} }}{2} = a\sqrt 2.

    Suy ra \frac{R}{a} = \sqrt 2.

  • Câu 17: Thông hiểu
    Xác định phương trình mặt cầu

    Phương trình mặt cầu có tâm I\left(
\sqrt{5};3;9 \right) và tiếp xúc trục hoành là:

    Hướng dẫn:

    Gọi H là hình chiếu của I\left(
\sqrt{5};3;9 \right) trên Ox

    \Rightarrow H\left( \sqrt{5};0;0 \right)
\Rightarrow R = IH = \sqrt{90}

    Vậy phương trình mặt cầu là: \left( x -
\sqrt{5} \right)^{2} + (y - 3)^{2} + (z - 9)^{2} = 90.

  • Câu 18: Thông hiểu
    Tìm tham số m thỏa mãn điều kiện

    Với giá trị nào của m thì mặt cầu (S):x^{2} + y^{2} + z^{2} + 4x - 2my +
4mz + 4m^{2} + 3m + 2 = 0 tiếp xúc trục z'Oz.

    Hướng dẫn:

    (S) có tâm I( - 2,m, - 2m), bán kính R = \sqrt{m^{2} - 3m + 2},m < 1 hoặc m > 2

    Hình chiếu A của I trên z’Oz là tiếp điểm của (S) và z’Oz \Rightarrow A(0,0, - 2m)

    Ta có: d(I,z'Oz) = AI = \sqrt{4 +
m^{2}} = R = \sqrt{m^{2} - 3m + 2}

    \Leftrightarrow 4 + m^{2} = m^{2} - 3m +
2 \Leftrightarrow m = - \frac{2}{3}

  • Câu 19: Vận dụng cao
    Tìm giá trị lớn nhất của biểu thức

    Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 4y + 4z =
0 và điểmM(1;2; - 1). Một đường thẳng thay đổi qua M cắt (S) tại hai điểm A; B. Tìm giá trị lớn nhất của tổng MA + MB.

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1; - 2; - 2) và bán kính R = 3. Trong khi IM = \sqrt{17} > 3 nên M nằm ngoài hình cầu (S).

    Gọi H là trung điểm của AB, có M nằm trên đường AB và nằm ngoài đoạn AB nên có MA + MB = 2MH.

    Mặt khác, tam giác IHM vuông tại H nên HM \leq MI. Vậy MA + MB \leq 2\sqrt{17}.

    Đẳng thức xảy ra khi đường thẳng qua M và tâm I của mặt cầu, tức AB lúc này là đường kính của mặt cầu.

    Vậy giá trị lớn nhất của tổng MA +
MB2\sqrt{17}.

  • Câu 20: Vận dụng
    Tính giá trị biểu thức

    Trong hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z -
3)^{2} = 16 và các điểm A(1; 0; 2); B(−1; 2; 2). Gọi (P) là mặt phẳng đi qua hai điểm A; B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax + by + cz + 3 = 0. Tính T = a + b + c.

    Hướng dẫn:

    Ta có:

    (S) có tâm I(1; 2; 3), bán kính R = 4.

    Nhận thấy: IA = IB = \sqrt{5} <
R ⇒ A; B nằm bên trong mặt cầu.

    Gọi K là trung đểm của AB ⇒ K(0; 1; 2); IK ⊥ AB.

    Gọi H là hình chiếu của I trên (P),(P) cắt (S) theo thiết diện là đường tròn tâm H bán kính r.

    Std nhỏ nhất ⇔ r nhỏ nhất ⇔ IH lớn nhất

    ⇔ IH = IK ⇔ H ≡ K.

    Khi đó mặt phẳng (P): Đi qua A và có VTPT là \overrightarrow{IK} = ( - 1; - 1; -
1)

    ⇒ Phương trình mặt phẳng (P) : −x−y−z+3 = 0 ⇒ a+b+c = −3

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo