Trong không gian Oxyz cho đường tròn:. Tọa độ tâm H của
là:
Ta có:
Tâm mặt cầu là
Xem đường thẳng qua I và vuông góc với mặt phẳng thiết diện
, thế
vào phương trình mặt phẳng thiết diện
Tọa độ tâm H của (C) là
Trong không gian Oxyz cho đường tròn:. Tọa độ tâm H của
là:
Ta có:
Tâm mặt cầu là
Xem đường thẳng qua I và vuông góc với mặt phẳng thiết diện
, thế
vào phương trình mặt phẳng thiết diện
Tọa độ tâm H của (C) là
Cho hình chóp tam giác đều có cạnh đáy bằng a và cạnh bên bằng
. Gọi h là chiều cao của khối chóp và R là bán kính mặt cầu ngoại tiếp khối chóp. Tỉ số
bằng:

Gọi O là tâm , suy ra
và
Trong SOA, ta có
Trong mặt phẳng SOA, kẻ trung trực d của đoạn SA cắt SO tại I, suy ra:
Do đó nên I là tâm mặt cầu ngoại tiếp khối chóp .
Gọi M là tung điểm SA, ta có nên
Vậy
Trong không gian với hệ tọa độ , cho điểm
thuộc mặt cầu
và ba điểm
. Biết rằng quỹ tích các điểm M thỏa mãn
là đường tròn cố định, tính bán kính
đường tròn này.
có tâm
bán kính
.
Gọi là trọng tâm tam giác
, khi đó tọa độ
.
.
.
Do đó, nằm trên mặt cầu
tâm
bán kính
có phương trình
.
Vì nên hai mặt cầu cắt nhau theo giao tuyến là đường tròn tâm H, bán kính r, nằm trên mặt phẳng
.
Từ đó suy ra .
Cho hai điểm cố định trong không gian có độ dài
. Biết rằng tập hợp các điểm
trong không gian sao cho
là một mặt cầu. Bán kính mặt cầu đó bằng bao nhiêu?
Ta có:
(*)
Gọi thỏa mãn
nên
Từ (*) suy ra .
Viết phương trình mặt cầu đường kính
với
.
Với và
Trong không gian với hệ tọa độ cho mặt cầu
và điểm
. Ba mặt phẳng thay đổi đi qua
và đôi một vuông góc với nhau, cắt mặt cầu theo ba đường tròn. Tính tổng diện tích của ba đường tròn tương ứng đó.

Giả sử ba mặt mặt phẳng cùng đi qua A đôi một vuông góc với nhau là
Với điểm I bất kỳ, hạ lần lượt vuông góc với ba mặt phẳng
thì ta luôn có:
(1) .
Ta sẽ chứng minh (1) và áp dụng vào giải bài toán.

Giả sử ba mặt mặt phẳng cùng đi qua A đôi một vuông góc với nhau là
Với điểm I bất kỳ, hạ lần lượt vuông góc với ba mặt phẳng
thì ta luôn có:
(1) .
Thật vậy , ta chọn hệ trục tọa độ Oxyz với , ba trục Ox, Oy, Oz lần lượt là ba giao tuyến của ba mặt phẳng
.
Khi đó tọa độ I(a;b;c) thì:
hay .
Vậy (1) được chứng minh.

Áp dụng giải bài:
Mặt cầu (S) có tâm và có bán kính
.
.
Giả sử ba mặt mặt phẳng cùng đi qua A đôi một vuông góc với nhau là và cắt mặt cầu (S) theo ba đường tròn lần lượt là
.
Gọi và
lần lượt là tâm và bán kính của
.
Khi đó : .
Tương tự có: và
.
Theo nhận xét ở trên ta có:
Ta có tổng diện tích các đường tròn là :
.
Trong không gian với hệ tọa độ , cho mặt cầu
và các điểm
. Gọi
là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng
. Tính
Mặt cầu (S) có tâm và bán kính
.
Vì nên điểm A nằm bên trong mặt cầu. Suy ra (P) luôn cắt mặt cầu. Gọi r là bán
kính đường tròn giao tuyến, ta có với d là khoảng cách từ I đến mặt phẳng (P).
Diện tích hình tròn thiết diện nhỏ nhất khi và chỉ khi bán kính r nhỏ nhất, hay d lớn nhất.
Gọi H là hình chiếu của I lên đường thẳng AB ta có d lớn nhất khi tức IH vuông góc với (P).
Phương trình đường thẳng
Gọi .
.
. Suy ra
.
Mặt phẳng (P) nhận làm vectơ pháp tuyến và đi qua điểm A nên có phương trình
.
Vậy .
Trong không gian với hệ tọa độ , cho hai điểm
. Viết phương trình mặt cầu có tâm là tâm của đường tròn nội tiếp tam giác
và tiếp xúc với mặt phẳng
?
Gọi I là tâm đường tròn nội tiếp tam giác
Ta áp dụng tính chất sau: “Cho tam giác với I là tâm đường tròn nội tiếp, khi đó ta có:
với
”
Ta có:
Khi đó:
Mặt phẳng có phương trình
Mặt cầu tiếp xúc với mặt phẳng nên mặt cầu có bán kính
Vậy phương trình mặt cầu cần tìm là: .
Cho hình chóp có đáy ABC là tam giác vuông tại B và
. Cạnh bên
và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp
là:

Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.
Gọi I là trung điểm SC, suy ra nên
.
Do đó IM là trục của , suy ra
(1)
Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên . (2)
Từ (1) và (2) , ta có
hay I là tâm của mặt cầu ngoại tiếp hình chóp .
Vậy bán kính .
Trong không gian với hệ tọa độ , cho
với
là các số thực thay đổi, khác 0 và thỏa mãn
. Gọi tâm mặt cầu ngoại tiếp tứ diện
là
. Giá trị nhỏ nhất của
bằng

Ta có OABC là tứ diện vuông tại O. Gọi M là trung điểm BC. Đường thẳng d qua M song song với OA là trục đường tròn ngoại tiếp tam giác OBC.
Trong mặt phẳng , từ trung điểm N của đoạn OA kẻ đường thẳng
vuông góc với OA tại N cắt d tại I. Khi đó I là tâm mặt cầu ngoại tiếp tứ diện OABC.
Ta có tọa độ điểm , khi đó điểm
.
Do đó .
Dấu bằng xảy ra
Trong không gian cho đường tròn
Bán kính r của đường tròn (C) bằng:
Cùng đề trên nên có bán kính mặt cầu là .
Khoảng cách từ I đến thiết diện là .
Bán kính của
là:
Cho mặt cầu và mặt phẳng
. Gọi M là tiếp điểm của (S) và tiếp diện di động (Q) vuông góc với (P). tập hợp các điểm M là:
có tâm
, bán kính
IM vuông góc với
, nên
M nằm trong mặt phẳng
qua I và song song với
.
Phương trình
Tập hợp các điểm M là đường tròn giao tuyến của
và
:
Cho hai đường thẳng và
. Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của đường thẳng d và d’ là:
Gọi
Ta có:
và
Cho mặt cầu và mặt phẳng
. Gọi (C) là đường tròn giao tuyến của (P) và (S). Viết phương trình mặt cầu (S') chứa (C) và điểm M(1,-2,1)
Phương trình của
(S') qua
Cho đường thẳng :
và hai mặt phẳng
. Mặt cầu có tâm
nằm trên
và tiếp xúc với 2 mặt phẳng
, có phương trình:
Ta có:
Mặt cầu tiếp xúc với 2 mặt phẳng
Với
Với
Mặt cầu tâm và tiếp xúc với mặt phẳng (Oxz) có phương trình:
Mặt cầu tâm , bán kính R và tiếp xúc với mặt phẳng (Oxz):
.
Vậy
Trong không gian với hệ tọa độ , cho hai điểm
. Gọi
là mặt cầu có đường kính AB. Mặt phẳng (P) vuông góc với đoạn AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao tuyến của mặt cầu (S) và mặt phẳng (P)) có thể tích lớn nhất, biết rằng
với
. Tính giá trị
.
Hình vẽ minh họa
Ta có: mà
nên
Suy ra (P): 2x + 2y + z + d = 0.
Ta có AB = 6. Gọi I là trung điểm của đoạn thẳng AB, suy ra I (4; 3; 4).
Ta có (S) là mặt cầu có đường kính AB nên có
Gọi r là bán kính đường tròn tâm H.
Khi đó, thể tích khối nón đỉnh cần tìm được xác định bởi công thức
Ta có:
Đặt
Mà
Vậy
Trong không gian với hệ tọa độ , cho mặt cầu
hai hai điểm
. Gọi E là điểm thuộc mặt cầu (S) sao cho
đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu (S) tại E?
Hình vẽ minh họa
Gọi I(1; 2; 2) là tâm của (S), P(5; −2; 4) là trung điểm MN.
Theo bất đẳng thức Bu-nhi-a-copx-ki và công thức độ dài trung tuyến ta được:
nên T = EM + EN đạt giá trị lớn nhất khi EM = EN và EP đạt giá trị lớn nhất.
Khi đó E là giao điểm của đường thẳng IP với mặt cầu (S) (I nằm giữa E và P). Đường thẳng IP có phương trình:
Tọa độ E thỏa hệ phương trình:
Tìm được E(3; 0; 3) hoặc E(−1; 4; 1), thử lại để EP lớn nhất ta được E(−1; 4; 1).
Khi đó phương trình tiếp diện với (S) tại E là .
Cho mặt cầu và ba điểm
nằm trên mặt cầu
. Bán kính r của đường tròn ngoại tiếp tam giác ABC là:
Ta có:
Cho hình chóp có đáy
là hình vuông cạnh a. Cạnh bên
và vuông góc với đáy (
). Tính theo
diện tích mặt cầu ngoại tiếp hình chóp
ta được:

Gọi , suy ra O là tâm đường tròn ngoại tiếp hình vuông
.
Gọi I là trung điểm SC, suy ra
Do đó IO là trục của hình vuông , suy ra
(1)
Xét tam giác SAC vuông tại A có I là trung điểm cạnh huyền SC nên . (2)
Từ (1) và (2), ta có:
Vậy diện tích mặt cầu (đvdt).
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: