Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 17 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Thể tích của khối cầu ngoại tiếp

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60^0 . Thể tích của khối cầu ngoại tiếp khối chóp S.ABCD là:

    Hướng dẫn:

    Thể tích của khối cầu ngoại tiếp

    Gọi O = AC \cap BD, suy ra SO \bot \left( {ABCD} ight).

    Ta có {60^0}{m{ = }}\widehat {SB,\left( {ABCD} ight)} = \widehat {SB,OB} = \widehat {SBO}.

    Trong \triangle SOB, ta có SO = OB.\tan \widehat {SBO} = \frac{{a\sqrt 6 }}{2}.

    Ta có SO là trục của hình vuông ABCD.

    Trong mặt phẳng SOB, kẻ đường trung trực d của đoạn B.

    Gọi I = SO \cap d \Rightarrow \left\{ \begin{array}{l}I \in SO\\I \in d\end{array} ight. \Rightarrow \left\{ \begin{array}{l}IA = IB = IC = ID\\IS = IB\end{array} ight.

    \Rightarrow IA = IB = IC = ID = IS = R

    Xét \triangle SBD\left\{ \begin{array}{l}SB = SD\\\widehat {SBD} = \widehat {SBO} = {60^o}\end{array} ight. \Rightarrow    \triangle SBD đều.

    Do đó d cũng là đường trung tuyến của \triangle SBD . Suy ra I là trọng tâm \triangle SBD .

    Bán kính mặt cầu R = SI = \frac{2}{3}SO = \frac{{a\sqrt 6 }}{3}.

    Suy ra V = \frac{4}{3}\pi {R^3} = \frac{{8\pi {a^3}\sqrt 6 }}{{27}}

  • Câu 2: Vận dụng
    Chọn kết luận đúng

    Cho mặt cầu (S):\ \ x^{2} + y^{2} + z^{2}
+ 2x - 2y + 6z - 5 = 0 và mặt phẳng (P):\ x - 2y + 2z + 3 = 0. Gọi M là tiếp điểm của (S) và tiếp diện di động (Q) vuông góc với (P). tập hợp các điểm M là:

    Hướng dẫn:

    (S) có tâm I( - 1,1, - 3), bán kính R = 4. IM vuông góc với (Q), nên IM//(P) \Rightarrow M nằm trong mặt phẳng (R) qua I và song song với (P).

    Phương trình (R):x - 2y + 2z + D = 0.\ I
\in (R) \Rightarrow D = 9

    \Rightarrow (R):x - 2y + 2z + 9 =0

    M \in (S) \Rightarrow Tập hợp các điểm M là đường tròn giao tuyến của (S)(R):

    \left\{ \begin{matrix}
x^2 + y^{2} + z^{2} + 2x - 2y + 6z - 5 = 0 \\
x - 2y + 2z + 9 = 0 \\
\end{matrix} \right.

  • Câu 3: Vận dụng
    Tìm tọa độ tâm H của (C)

    Trong không gian Oxyz cho đường tròn:(C):\left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 4x + 6y + 6z + 17 = 0 \\
x - 2y + 2z + 1 = 0 \\
\end{matrix} \right.. Tọa độ tâm H của (C) là:

    Hướng dẫn:

    Ta có:

    x^{2} + y^{2} + z^{2} - 4x + 6y + 6z +
17 = 0

    \Leftrightarrow (x - 2)^{2} + (y +
3)^{2} + (z + 3)^{2} = 5

    Tâm mặt cầu là I(2, - 3, -
3)

    Xem đường thẳng qua I và vuông góc với mặt phẳng thiết diện x - 2y + 2z + 1 = 0

    \left\{ \begin{matrix}
x = 2 + t \\
y = - 3 - 2t \\
z = - 3 + 2t \\
\end{matrix} \right. , thế x,y,z vào phương trình mặt phẳng thiết diện

    2 + t - 2( - 3 - 2t) + 2( - 3 + 2t) + 1 =
0 \Leftrightarrow t = - \frac{1}{3}

    \Rightarrow Tọa độ tâm H của (C) là H\left( \frac{5}{3}, - \frac{7}{3}, -
\frac{11}{3} \right)

  • Câu 4: Vận dụng
    Ghi đáp án vào ô trống

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Đáp án là:

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Ta đặt hệ trục vào căn phòng sao cho có hai bức tường là mặt (Oxz),(Oyz), và nền là (Oxy)

    Vậy bài toán dẫn đến việc tìm đường kính của mặt cầu tiếp xúc với 3 mặt phẳng toạ độ và chứa điểm M(17\ ;\ 18\ ;\ 21).

    Ta có thể gọi phương trình mặt cầu là (S):(x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}, với a,b,c,R >
0

    Do mặt cầu tiếp xúc với các mặt phẳng toạ độ nên a = b = c = R

    \Rightarrow (S):(x - a)^{2} + (y -
a)^{2} + (z - a)^{2} = a^{2}

    Do M(17\ ;\ 18\ ;\ 21) \in (S) nên (17 - a)^{2} + (18 - a)^{2} + (21 -
a)^{2} = a^{2}.

    \Rightarrow 2a^{2} - 112a + 1054 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = 28 - \sqrt{257} \\
a = 28 + \sqrt{257} \\
\end{matrix} ight.

    Vì quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm nên a = 28 - \sqrt{257} thỏa.

    Vậy đường kính quả bóng bằng 2a = 56 -
2\sqrt{257} \approx 23,9\ (cm).

  • Câu 5: Thông hiểu
    Xác định phương trình thích hợp

    Cho hai mặt cầu (S):x^{2} + y^{2} + z^{2}
+ 4x - 2y + 2z - 3 = 0(S'):x^{2} + y^{2} + z^{2} - 6x + 4y - 2z - 2
= 0; Gọi (C) là giao tuyến của (S)(S'). Viết phương trình của (C) (Có thể chọn nhiều đáp án).

    Hướng dẫn:

    M(x,y,z) là điểm chung của hai mặt cầu \Rightarrow M \in (C)

    \Rightarrow x^{2} + y^{2} + z^{2} + 4x -
2y + 2z - 3 = x^{2} + y^{2} + z^{2} - 6x + 4y - 2z - 2

    \Rightarrow (C)\left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} + 4x - 2y + 2z - 3 = 0 \\
10x - 6y + 4z - 1 = 0 \\
\end{matrix} \right. hay \left\{
\begin{matrix}
x^{2} + y^{2} + z^{2} - 6x + 4y - 2z - 2 = 0 \\
10x - 6y + 4z - 1 = 0 \\
\end{matrix} \right.

  • Câu 6: Vận dụng
    Xác định phương trình mặt cầu

    Cho hình lập phương QABC.DEFG có cạnh bằng 1 có \overrightarrow{OA},\ \ \overrightarrow{OC},\ \
\overrightarrow{OG}trùng với ba trục \overrightarrow{Ox},\ \overrightarrow{Oy},\
\overrightarrow{Oz}. Viết phương trình mặt cầu \left( S_{3} \right) tiếp xúc với tất cả các cạnh của hình lập phương.

    Hướng dẫn:

    \left( S_{2} \right) tiếp xúc với 12 cạnh của hình lập phương tại trung điểm của mỗi cạnh. Tâm I\left( \frac{1}{2},\frac{1}{2},\frac{1}{2}
\right) là trung điểm của 6 đoạn nối trung điểm của các cặp cạnh đối diện đôi một có độ dài bằng \sqrt{2}

    Bán kính R_{3} =\frac{\sqrt{2}}{2}

    \Rightarrow \left( S_{2} \right):\left(
x - \frac{1}{2} \right)^{2} + \left( y - \frac{1}{2} \right)^{2} +
\left( z - \frac{1}{2} \right)^{2} = \frac{1}{2}

    \Rightarrow \left( S_{3} \right):x^{2} +
y^{2} + z^{2} - x - y - z + \frac{1}{4} = 0

  • Câu 7: Vận dụng cao
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu

    (S):x^{2} + y^{2} + z^{2} + ax + by + cz
+ d = 0 có bán kính R = \sqrt{19} đường thẳng d:\left\{\begin{matrix}x = 5 + t \\y = - 2 - 4t \\z = - 1- 4t\end{matrix} \right. và mặt phẳng (P):3x - y - 3z - 1 = 0 Trong các số \left\{ a;b;c;d \right\} theo thứ tự dưới đây, số nào thỏa mãn a + b + c + d =
43 đồng thời tâm I của (S) thuộc đường thẳng d(S) tiếp xúc mặt phẳng (P)?

    Hướng dẫn:

    Ta có I \in d \Rightarrow I(5 + t;2 - 4t;
- 1 - 4t)

    Do (S) tiếp xúc với (P) nên d\left( I;(P) \right) = R = \sqrt{19}

    \Leftrightarrow |19 + 19t| = 19
\Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = - 2
\end{matrix} \right.

    Mặt khác (S) có tâm I\left( \frac{- a}{2};\frac{- b}{2};\frac{- c}{2}
\right); bán kính R =
\sqrt{\frac{a^{2} + b^{2} + c^{2}}{4} - d} = \sqrt{19}

    Xét khi t = 0 \Rightarrow I(5; - 2; - 1)
\Rightarrow \left\{ a;b;c;d \right\} = \left\{ - 10;4;2;47
\right\}

    Do \frac{{{a^2} + {b^2} + {c^2}}}{4} - d \ne 19 nên ta loại trường hợp này

    Xét khi t = 2 \Rightarrow \left\{ {a;b;c;d} \right\} = \left\{ { - 6; - 12; - 14;75} \right\}

    Do \frac{a^{2} + b^{2} + c^{2}}{4} - d
\neq 19 nên thỏa mãn.

  • Câu 8: Vận dụng
    Chọn kết luận đúng

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2; - 2). Mặt phẳng (\alpha) đi qua H và cắt các trục Ox;Oy;Oz tại A;B;C sao cho H là trực tâm tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha)?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có H là trực tâm của tam giác ABC suy ra OH\bot(ABC)

    Thật vậy \left\{ \begin{matrix}
OH\bot OA \\
OH\bot OB \\
\end{matrix} ight.\  \Rightarrow OC\bot AB(1)

    CH\bot AB (vì H là trực tâm tam giác ABC) (2)

    Từ (1) và (2) suy ra AB\bot(OHC) suy ra AB\bot OH(*)

    Tương tự BC\bot(OAH) \Rightarrow BC\bot
OH(**)

    Từ (*) và (**) suy ra OH\bot(ABC)

    Khi đó mặt cầu tâm O tiếp xúc với mặt phẳng (ABC) có bán kính R = OH = 3

    Vây mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha) là: x^{2} + y^{2} + z^{2} = 9.

  • Câu 9: Vận dụng
    Chọn phương án đúng

    Trong không gian Oxyz cho đường tròn (C):\left\{ \begin{matrix}
x^2 + y^2+ z^{2} - 2x - 4y - 6z - 67 = 0 \\
2x - 2y + z + 5 = 0 \\
\end{matrix} \right.. Bán kính r của (C) bằng:

    Hướng dẫn:

    Viết lại phương trình mặt cầu (S) chứa (C) :

    (x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
81.

    Để biết tâm I(1,2,3) và bán kính R = 9 .

    \Rightarrow Bán kính của (C) là :r =
\sqrt{81 - 4} = \sqrt{77} (do khoảng cách từ I đến mặt phẳng chứa (C)h = \frac{|2.1 - 2.2 + 3 + 5|}{\sqrt{2^{2} + ( -
2)^{2} + 1^{2}}} = 2) .

  • Câu 10: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, cho phương trìnhx^{2} + y^{2} + z^{2} - 2x - 4y - 6z - 11 =
0. Viết phương trình mặt phẳng (\alpha), biết (\alpha) song song với mặt phẳng (P):2x + y - 2z + 11 = 0 và cắt mặt cầu theo thiết diện là một đường tròn có chu vi 8\pi?

    Hướng dẫn:

    (α) // (P) nên phương trình mặt phẳng (α) có dạng 2x + y - 2z + c = 0

    Mặt cầu (S) có tâm I(1; 2; 3) và bán kính R = 5.

    Đường tròn lớn có chu vi là 8\pi nên bán kính của (S)\frac{8\pi}{2\pi} = 4

    Khoảng cách từ tâm I đến mặt phẳng P bằng 3

    Từ đó ta có:

    d\left( I;(P) ight) = \frac{|2.1 + 2 -
2.3 + c|}{\sqrt{2^{2} + 1^{2} + ( - 2)^{2}}} = 3

    \Leftrightarrow | - 2 + c| = 9
\Leftrightarrow \left\lbrack \begin{matrix}
c = 11 \\
c = - 7 \\
\end{matrix} ight.

    (α) // (P) nên phương trình mặt phẳng (α) là 2x + y - 2z - 7 = 0

  • Câu 11: Vận dụng
    Xét tính đúng sai của các khẳng định

    Một đài kiểm soát không lưu tại sân bay có nhiệm vụ kiểm soát, điều hành hoạt động bay của máy bay trong vòng bán kính 70km. Để theo dõi hành trình của máy bay, ta có thể thiết lập hệ trục toạ độ Oxyz có gốc toạ độ O trùng với vị trí trung tâm của kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất (được coi là mặt phẳng) với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời và đơn vị độ dài trên mỗi trục tọa độ là 1km. Một máy bay trực thăng đang ở vị trí A( -
65; - 25;30) bay theo hướng Tây Nam với độ cao không đổi, vận tốc không đổi 200km/h, quỹ đạo bay theo đường thẳng.

    a) [NB] Vùng kiểm không lưu của đài kiểm soát trên là vùng ở bên trong và trên bề mặt của mặt cầu (S) có phương trình: x^{2} + y^{2} + z^{2} = 4900. Đúng||Sai

    b) [TH] Khi máy bay ở vị trí A( - 65; - 25;30) thì đài kiểm soát không lưu của sân bay đã theo dõi được máy bay. Sai||Đúng

    c) [TH] Máy bay di chuyển theo hướng Tây Nam với quỹ đạo bay là đường thẳng d có phương trình: \left\{ \begin{matrix}
x = - 65 + t \\
y = - 25 + t \\
z = 30 \\
\end{matrix} \right.. Đúng||Sai

    d) [VD] Thời gian máy bay di chuyển trong phạm vi đài kiểm soát không lưu của sân bay theo dõi được là 35 phút. Sai||Đúng

    Đáp án là:

    Một đài kiểm soát không lưu tại sân bay có nhiệm vụ kiểm soát, điều hành hoạt động bay của máy bay trong vòng bán kính 70km. Để theo dõi hành trình của máy bay, ta có thể thiết lập hệ trục toạ độ Oxyz có gốc toạ độ O trùng với vị trí trung tâm của kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất (được coi là mặt phẳng) với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời và đơn vị độ dài trên mỗi trục tọa độ là 1km. Một máy bay trực thăng đang ở vị trí A( -
65; - 25;30) bay theo hướng Tây Nam với độ cao không đổi, vận tốc không đổi 200km/h, quỹ đạo bay theo đường thẳng.

    a) [NB] Vùng kiểm không lưu của đài kiểm soát trên là vùng ở bên trong và trên bề mặt của mặt cầu (S) có phương trình: x^{2} + y^{2} + z^{2} = 4900. Đúng||Sai

    b) [TH] Khi máy bay ở vị trí A( - 65; - 25;30) thì đài kiểm soát không lưu của sân bay đã theo dõi được máy bay. Sai||Đúng

    c) [TH] Máy bay di chuyển theo hướng Tây Nam với quỹ đạo bay là đường thẳng d có phương trình: \left\{ \begin{matrix}
x = - 65 + t \\
y = - 25 + t \\
z = 30 \\
\end{matrix} \right.. Đúng||Sai

    d) [VD] Thời gian máy bay di chuyển trong phạm vi đài kiểm soát không lưu của sân bay theo dõi được là 35 phút. Sai||Đúng

    Hình vẽ minh họa

    a) Vùng kiểm không lưu của của đài kiểm soát trên là tập hợp những điểm cách tâm O(0;\ \ 0;\ \ 0) không quá 70km.

    Hay tập hợp các điểm ở bên trong và trên bề mặt của mặt cầu (S) có phương trình: x^{2} + y^{2} + z^{2} = 70^{2} \Leftrightarrow
x^{2} + y^{2} + z^{2} = 4900.

    Suy ra mệnh đề đúng

    b) Ta có OA = \sqrt{( - 65)^{2} + ( -
25)^{2} + 30^{2}} \approx 75,8km

    Khi máy bay ở vị trí A( - 65; -
25;30) thì cách đài kiểm soát không lưu của sân bay một khoảng d \approx 75,8km > 70km

    Vậy đài kiểm soát không lưu của sân bay đã theo dõi được máy bay.

    Suy ra mệnh đề sai

    c) Từ thông tin của hệ trục và máy bay di chuyển theo hướng Tây Nam với độ cao không đổi, quỹ đạo bay theo đường thẳng. Nên đường thẳng d có một vectơ chỉ phương \overrightarrow{u} = (1;\ 1;\ 0). Đường thẳng d đi qua điểm A( - 65; - 25;30) nên có phương trình tham số: \left\{ \begin{matrix}
x = - 65 + t \\
y = - 25 + t \\
z = 30 \\
\end{matrix} ight.

    Suy ra mệnh đề đúng

    d) Thay x,\ y,\ z theo t vào phương trình mặt cầu (S) ta được phương trình:

    ( - 65 + t)^{2} + ( - 25 + t)^{2} +
30^{2} = 4900 \Leftrightarrow 2t^{2} - 180t + 850 = 0 \Leftrightarrow t
= 5 hoặc t = 85

    Thay t = 5 vào phương trình của đường thẳng d ta được M( - 60; - 20;30).

    Thay t = 85 vào phương trình của đường thẳng d ta được N(20;60;30).

    Suy ra đường thẳng d cắt mặt cầu (S) tại hai điểm M( - 60; - 20;30)N(20;60;30).

    Hay độ dài đoạn MN là khoảng cách giữa vị trí đầu tiên và vị trí cuối cùng mà máy bay di chuyển trong phạm vi theo dõi của đài kiểm soát không lưu.

    MN = \sqrt{(60 + 20)^{2} + (20 +
60)^{2}} = 80\sqrt{2}km

    Thời gian máy bay di chuyển trong phạm vi đài kiểm soát không lưu của sân bay theo dõi được là thời gian máy bay di chuyển được quảng đường 80\sqrt{2}km.

    Thời gian đó bằng \frac{80\sqrt{2}}{200}.60 \approx 33,94 phút.

    Suy ra mệnh đề sai

  • Câu 12: Vận dụng cao
    Xác định số mặt phẳng theo yêu cầu

    Trong không gian với hệ tọa độ Oxyz, cho A(1;2; - 3),B\left( \frac{3}{2};\frac{3}{2}; -\frac{1}{2} ight),C(1;1;4),D(5;3;0). Gọi \left( S_{1} ight) là mặt cầu tâm A bán kính bằng 3,\left( S_{2} ight) là mặt cầu tâm B bán kính bằng \frac{3}{2}. Có bao nhiêu mặt phẳng tiếp xúc với hai mặt cầu \left( S_{1}ight),\left( S_{2} ight) đồng thời song song với đường thẳng đi qua 2 điểm C, D ?

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có \overrightarrow{AB} = \left(\frac{1}{2}; - \frac{1}{2};\frac{5}{2} ight) \Rightarrow AB =\frac{3\sqrt{3}}{2} < 3 nên B nằm bên trong mặt cầu \left( S_{1} ight).

    Một mặt phẳng qua AB cắt hai mặt cầu theo hai đường tròn giao tuyến như hình bên.

    Kẻ tiếp tuyến chung của hai đường tròn, tiếp tuyến này sẽ cắt đường thẳng AB tại M.

    Gọi N,E lần lượt là tiếp điểm với hai đường tròn như hình vẽ.

    Tam giác ANM đồng dạng tam giác BEM nên \frac{AM}{BM} = \frac{AN}{BE} = 2.

    Suy ra \overrightarrow{AM} =2\overrightarrow{AB} \Rightarrow M(2;1;2).

    Gọi (P) là mặt phẳng tiếp xúc với cả hai mặt cầu \left( S_{1}ight)\left( S_{2}ight).

    Khi đó (P) sẽ luôn đi qua M.

    Gọi \overrightarrow{n} = (m;n;p) với m^{2} + n^{2} + p^{2} eq 0 là một vectơ pháp tuyến của mặt phẳng (P).

    Phương trình (P):m(x - 2) + n(y - 1) +p(z - 2) = 0.

    Ta có:

    \overrightarrow{CD} = (4;2; -4)

    CD // (P) \Rightarrow\overrightarrow{n} \cdot \overrightarrow{CD} = 0

    \Rightarrow 4m + 2n - 4p = 0 \Rightarrown = 2p - 2m

    d\left( A,(P) ight) = 3\Leftrightarrow \frac{| - m + n - 5p|}{\sqrt{m^{2} + n^{2} + p^{2}}} =3

    \Leftrightarrow | - 3m - 3p| =3\sqrt{m^{2} + (2p - 2m)^{2} + p^{2}}

    \Leftrightarrow 4m^{2} - 10mp + 4p^{2} =0 \Leftrightarrow \left\lbrack \begin{matrix}\dfrac{m}{p} = \dfrac{1}{2} \\\dfrac{m}{p} = 2 \\\end{matrix} ight.

    Trường hợp \frac{m}{p} =\frac{1}{2} : chọn m = 1,p = 2\Rightarrow n = 2.

    Khi đó (P):x + 2y + 2z - 8 = 0 (nhận).

    Trường hợp \frac{m}{p} = 2 : chọn m = 2,p = 1 \Rightarrow n = -2.

    Khi đó (P):2x - 2y + z - 4 = 0 (loại vì chứa C,D).

  • Câu 13: Vận dụng cao
    Tìm giá trị của m thỏa mãn điều kiện

    Trong không gian tọa độ Oxyzcho mặt cầu (S):x^{2} + y^{2} + z^{2} + 4x - 6y
+ m = 0 và đường thẳng \Delta là giao tuyến của hai mặt phẳng (\alpha):x + 2y - 2z - 4 = 0(\beta):2x - 2y - z + 1 = 0. Đường thẳng \Delta cắt mặt cầu (S) tại hai điểm phân biệt A,B thỏa mãn AB = 8 khi:

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
x + 2y - 2z - 4 = 0 \\
2x - 2y - z + 1 = 0
\end{matrix} \right..

    Phương trình tham số của \Delta\left\{ \begin{matrix}
x = - 2 + 2t \\
y = t \\
z = - 3 + 2t
\end{matrix} \right..

    A \in (\Delta) \Rightarrow A( - 2 + 2t;t;
- 3 + 2t).

    A \in (S) \Rightarrow ( - 2 + 2t)^{2} +
t^{2} + ( - 3 + 2t)^{2} + 4( - 2 + 2t) - 6t + m = 0 (*).

    (*) \Leftrightarrow 9t^{2} - 18t + 5 + m
= 0.

    Phương trình (*) có hai nghiệm phân biệt khi \Delta' = 36 - 9m > 0 \Leftrightarrow m
< 4.

    Khi đó A\left( - 2 + 2t_{1};t_{1}; - 3 +
2t_{1} \right),B\left( - 2 + 2t_{2};t_{2}; - 3 + 2t_{2}
\right).

    t_{1} + t_{1} = 2,t_{1}t_{2} = \frac{5 +
m}{9}.

    AB = 8 \Leftrightarrow AB^{2} =
64.

    Suy ra 9\left( t_{2} - t_{1}\right)^{2} = 64 \Leftrightarrow 9\left\lbrack \left( t_{1} + t_{2}\right)^2- 4t_{1}t_{2} \right\rbrack = 64

    \Rightarrow 9.\left\lbrack 2^2 -4\left( \frac{5 + m}{9} \right) \right\rbrack = 64 \Leftrightarrow m = -12.

    Cách 2:

    Mặt cầu (S) có tâm I( - 2;3;0), R = \sqrt{13 - m}, m < 13.

    Đường thẳng (\Delta) qua M_{0}( - 2;0; - 3), có VTCP \overrightarrow{u} = (2;1;2)

    d = d\left( I;(\Delta) \right) =
\frac{\left| \left\lbrack \overrightarrow{IM_{0}};\overrightarrow{u}
\right\rbrack \right|}{\left| \overrightarrow{u} \right|} =
3

    Yêu cầu đề bài tương đương R^{2} =
\frac{AB^{2}}{4} + d^{2} \Leftrightarrow 13 - m = 16 + 9 \Leftrightarrow
m = - 12\ (n).

  • Câu 14: Vận dụng cao
    Xác định phương trình mặt phẳng

    Trong hệ tọa độ Oxyz, cho mặt cầu (S): (x − 1)^2 + (y + 2)^2 + (z − 3)^2 = 12 và mặt phẳng (P): 2x + 2y − z − 3 = 0. Gọi (Q) là mặt phẳng song song với (P) và cắt (S) theo thiết diện là đường tròn (C) sao cho khối nón có đỉnh là tâm của mặt cầu và đáy là hình tròn giới hạn bởi (C) có thể tích lớn nhất. Phương trình của mặt phẳng (Q)

    Hướng dẫn:

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1; −2; 3) và bán kính R = 2\sqrt{3}

    Gọi r là bán kính đường tròn (C) và H là hình chiếu của I lên (Q).

    Đặt IH = x ta có:

    r = \sqrt{R^{2} - x^{2}} = \sqrt{12 -
x^{2}}

    Vậy thể tích khối nón tạo được là:

    V = \frac{1}{3}IH.S_{\left( (C) ight)}
= \frac{1}{3}.x.\pi\left( \sqrt{12 - x^{2}} ight)^{2} =
\frac{1}{3}.\pi\left( 12x - x^{3} ight)

    Gọi f'(x) = 12x - 3x^{2} ta có: f'(x) = 0 \Leftrightarrow x = \pm
2 chỉ có x = 2 \in \left(
0;2\sqrt{3} ight)

    Ta có bảng biến thiên như sau:

    Vậy V_{\max} =
\frac{1}{3}.\pi.16 khi x = IH =
2

    Mặt phẳng (Q) // (P) nên (Q): 2x + 2y − z + a = 0 (a eq - 3)

    Vậy d\left( I;(Q) ight) = IH
\Leftrightarrow \frac{\left| 2 + 2( - 2) - 3 + a ight|}{\sqrt{2^{2} +
2^{2} + ( - 1)^{2}}} = 2

    \Leftrightarrow |a - 5| = 6
\Leftrightarrow \left\lbrack \begin{matrix}
a = 11 \\
a = - 1 \\
\end{matrix} ight.

    Vậy mặt phẳng (Q) có phương trình 2x + 2y − z − 1 = 0 hoặc 2x + 2y − z + 11 =0

  • Câu 15: Vận dụng cao
    Tính giá trị của biểu thức T

    Trong không gian hệ trục tọa độ Oxyz, cho hai điểm A(3; - 2;6),B(0;1;0) và mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
25. Mặt phẳng (P):ax + by + cz - 2
= 0 đi qua A,B và cắt (S) theo giao tuyến là hình tròn có bán kinh nhỏ nhất. Tính T = a + b +
c?

    Hướng dẫn:

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1;2;3) bán kính R = 5.

    Mặt phẳng (P) có vtpt \overrightarrow{n_{p}} = (a;b;c);\left( a^{2} +
b^{2} + c^{2} \neq 0 \right).

    Do B(0;1;0) \in (P):b - 2 = 0
\Leftrightarrow b = 2.

    Ta có: \overrightarrow{AB} = ( - 3;3; -
6) = - 3(1; - 1;2), phương trình đường thẳng AB:\left\{ \begin{matrix}
x = t \\
y = 1 - t \\
z = 2t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Gọi r là bán kính của đường tròn giao tuyến, K là hình chiếu của I trên AB, H là hình chiếu vuông góc của I lên mặt phẳng (P).

    Ta có: K \in AB \Rightarrow K(t;1 -
t;2t)

    \Rightarrow \overrightarrow{IK} = (t -
1; - t - 1;2t - 3)

    IK\bot AB \Rightarrow
\overrightarrow{AB}.\overrightarrow{IK} = 0 \Rightarrow t = 1 \Rightarrow \overrightarrow{IK}
= (0; - 2; - 1)

    r = \sqrt{R^{2} - d^{2}\left( I;(P)
\right)} = \sqrt{25 - d^{2}\left(
I;(P) \right)} = \sqrt{25 - IH^{2}}

    Ta có: r đạt min thì IH đạt max.

    IH \leq IK \Rightarrow IH_{\min}
\Leftrightarrow H \equiv K \Rightarrow (P)\bot IK \Rightarrow\overrightarrow{n_{P}},\overrightarrow{IK} cùng phương

    \Rightarrow \overrightarrow{n_{P}} =
k.\overrightarrow{IK} \Rightarrow \left\{ \begin{matrix}
a = 0 \\
b = - 2k = 2 \\
c = - k
\end{matrix} \right.

    \Rightarrow \left\{ \begin{matrix}
a = 0 \\
k = - 1 \\
b = 2 \\
c = 1
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
a = 0 \\
b = 2 \\
c = 1
\end{matrix} \right.

  • Câu 16: Vận dụng cao
    Chọn phương án thích hợp

    Trong không gian Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = 3 + t \\
y = - 1 - t \\
x = - 2 + t
\end{matrix} \right., điểm M(1;2;
- 1)và mặt cầu (S): x^{2} + y^{2} + z^{2} - 4x + 10y + 14z + 64 =
0. Gọi (\Delta') là đường thẳng đi qua M và cắt \Delta tại A, cắt (S) tại B sao cho \frac{AM}{AB} = \frac{1}{3} và điểm B có hoành độ là số nguyên. Mặt phẳng trung trực của đoạn AB có phương trình là

    Hướng dẫn:

    Từ giả thiết: (S) có tâm I(2; - 5; - 7) và bán kính R = \sqrt{14}.

    A \in \Delta \Rightarrow A(3 + t; - 1 -
t; - 2 + t) \Rightarrow \overrightarrow{AM} = ( - 2 - t;t + 3;1 -
t).

    \frac{AM}{AB} = \frac{1}{3}
\Rightarrow \overrightarrow{AB} = \pm 3\overrightarrow{AM}.

    +) Nếu \overrightarrow{AB} =
3\overrightarrow{AM} = ( - 3t - 6;3t + 9;2 - 3t) \Rightarrow B( - 2t - 3;2t + 8; - 2t +
1).

    Do B \in (S) \Rightarrow BI =
R

    \begin{matrix}
   \Rightarrow {\left( {2t + 5} \right)^2} + {\left( { - 2t - 13} \right)^2} + {\left( {2t - 8} \right)^2} = 14 \hfill \\
   \Rightarrow 12{t^2} + 40t + 244 = 0\left( {VN} \right) \hfill \\ 
\end{matrix}

    +) Nếu \overrightarrow {AB}  = 3\overrightarrow {AM}  = \left( { - 3t - 6;3t + 9;2 - 3t} \right)\Rightarrow B\left( { - 2t - 3;2t + 8; - 2t + 1} \right).

    Do  B \in (S) \Rightarrow BI =
R 

    \Rightarrow (2t + 5)^{2} + ( - 2t -
13)^{2} + (2t - 8)^{2} = 14

    \Leftrightarrow 48t^{2} + 112t + 64 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = - \frac{4}{3} \\
t = - 1
\end{matrix} \right..

    Do B có hoành độ là số nguyên nên t = - 1 \rightarrow \overrightarrow{AB}
= (3; - 6; - 6).

    Trung điểm ABE\left( \frac{7}{2}; - 3; - 6 \right) nên phương trình mặt phẳng trung trực AB:

    3x - 6y - 6z - \frac{129}{2} =
0.

  • Câu 17: Vận dụng
    Tìm tọa độ điểm M

    Trong không gian Oxyz, cho điểm A(0; 1; 2), mặt phẳng (α): x−y +z −4 = 0 và mặt cầu (S):(x - 3)^{2} + (y - 1)^{2} + (z - 2)^{2} =
16. Gọi (P) là mặt phẳng đi qua A, vuông góc với (α) và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x’Ox

    Hướng dẫn:

    Gọi (C) là giao tuyến của mặt phẳng (P) và mặt cầu (S) và (C) có tâm H, bán kính r.

    Bán kính r của đường tròn là nhỏ nhất khi và chỉ khi IH lớn nhất khi và chỉ khi d(I,(P)) lớn nhất.

    M ∈ x'Ox nên gọi M(m; 0; 0).

    Suy ra mặt phẳng (P) chứa AM và (P) ⊥ (α).

    Khi đó \overrightarrow{n_{(P)}} =
\left\lbrack \overrightarrow{MA};\overrightarrow{n_{(\alpha)}}
ightbrack = (3;2 + m;m - 1)

    Mà mặt phẳng (P) đi qua A nên phương trình của mặt phẳng (P) là:

    3(x − 0) + (2 + m)(y − 2) + (m − 1)(z − 2) = 0 hay 3x + (2 + m)y + (m − 1)z −3m=0

    Ta có:

    d\left( I;(P) ight) =
\frac{9}{\sqrt{2m^{2} + 2m + 14}} lớn nhất khi và chỉ khi 2m^{2} + 2m + 14 đạt giá trị nhỏ nhất

    2m^{2} + 2m + 14 = 2\left( m +
\frac{1}{2} ight)^{2} + \frac{27}{2} \geq \frac{27}{2}

    Do đó 2m^{2} + 2m + 14 nhỏ nhất khi và chỉ khi m = -
\frac{1}{2}

    Vậy M\left( - \frac{1}{2};0;0
ight).

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 4y - 6z + 5 =
0 và mặt phẳng (\alpha):2x + y + 2z
- 15 = 0. Mặt phẳng (P) song song với (\alpha) và tiếp xúc với (S)

    Hướng dẫn:

    Ta có:

    (S) có tâm I (1; −2; 3), bán kính R = 3. (P) song song với (α)

    (P):2x + y + 2z + m = 0, với m eq - 15

    Do mặt phẳng (P) tiếp xúc với (S) nên d\left( I;(P) ight) = R \Leftrightarrow
\left\lbrack \begin{matrix}
m = - 15 \\
m = 3 \\
\end{matrix} ight., so với điều kiện ta nhận m = 3.

    Vậy (P):2x + y + 2z + 3 = 0.

  • Câu 19: Vận dụng
    Tính giá trị biểu thức T

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} = 9 và mặt phẳng (P):x + y + z - 3 = 0. Gọi (S') là mặt cầu chứa đường tròn giao tuyến của (S)(P) đồng thời (S') tiếp xúc với mặt phẳng (Q):x - y + z - 5 = 0. Gọi I(a;b;c) là tâm của (S'). Tính giá trị biểu thức T = abc.

    Hướng dẫn:

    Phương trình mặt cầu (S’) có dạng:

    x^{2} + y^{2} + z^{2} - 9 + m(x + y + z
- 3) = 0

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
mx + my + mz - 9 - 3m = 0

    Mặt cầu (S') có tâm I\left( - \frac{m}{2}; - \frac{m}{2}; -
\frac{m}{2} ight), bán kính R =
\sqrt{\frac{3m^{2}}{4} + 3m + 9}.

    Mặt cầu (S') tiếp xúc với (Q) nên

    d\left( I;(Q) ight) = R\Leftrightarrow \dfrac{\left| - \dfrac{m}{2} - 5 ight|}{\sqrt{2}} =\sqrt{\frac{3m^{2}}{4} + 3m + 9}

    \Leftrightarrow |m + 10| = \sqrt{9m^{2}
+ 36m + 108}

    \Leftrightarrow m = - 1 \Rightarrow
I\left( \frac{1}{2};\frac{1}{2};\frac{1}{2} ight)

    Vậy T = abc = \frac{1}{8}.

  • Câu 20: Vận dụng
    Chọn phương án đúng

    Tìm tập các tâm I của mặt cầu (S) tiếp xúc với hai mặt phẳng (P): x - 2y + 2z + 4 = 0;(Q):x - 2y + 2z -
6 = 0.

    Hướng dẫn:

    Gọi A( - 4,0,0)B(6, 0 , 0) lần lượt là giao điểm của trục x’Ox với (P) và (Q). Trung điểm E(1,0,0) của AB cách đều (P) và (Q).

    Tâm I cách đều (P) và (Q)

    \Rightarrow
EI nằm trong mặt (R) qua E song song và cách đều (P) và (Q) ((P)//(Q)).

    \Rightarrow (R):x - 2y + 2z + D = 0,E \in
(R) \Rightarrow D = - 1

    Vậy I \in (R):x - 2y + 2z - 1 =
0

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo