Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 17 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Bán kính mặt cầu

    Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Mặt phẳng (AB'C') tạo với mặt đáy góc 60^0 và điểm G là trọng tâm tam giác ABC. Bán kính mặt cầu ngoại tiếp khối chóp G.A'B'C' bằng:

    Hướng dẫn:

      Bán kính mặt cầu

    Gọi M là trung điểm B’C’, ta có

    {60^0} = \widehat {\left( {AB'C'} ight),\left( {A'B'C'} ight)} = \widehat {AM,A'M} = \widehat {AMA'}.

    Trong \Delta AA'M, có A'M = \frac{{a\sqrt 3 }}{2};

    AA' = A'M.\tan \widehat {AMA'} = \frac{{3a}}{2}.

    Gọi G’ là trọng tâm tam giác đều A’B’C’, suy ra G’ cũng là tâm đường tròn ngoại tiếp \Delta A'B'C'.

    Vì lặng trụ đứng nên GG' \bot \left( {A'B'C'} ight).

    Do đó GG' là trục của tam giác A'B'C'.

    Trong mặt phẳng \left( {GC'G'} ight), kẻ trung trực d của đoạn thẳng GC' cắt GG' tại I. Khi đó I là tâm mặt cầu ngoại tiếp khối chóp G.A'B'C' , bán kính R = GI

    Ta có \Delta GPI\,\backsim\,\,\,\Delta GG'C' \Rightarrow \frac{{GP}}{{GI}} = \frac{{GG'}}{{GC'}}

    \Rightarrow R = GI = \frac{{GP.GC'}}{{GG'}} = \frac{{GC{'^2}}}{{2GG'}} = \frac{{GG{'^2} + G'C{'^2}}}{{2GG'}} = \frac{{31a}}{{36}}.

  • Câu 2: Thông hiểu
    Chọn đáp án đúng

    Viết phương trình tiếp diện của mặt cầu (S):\ \ x^{2} + y^{2} + z^{2} - 2x - 2y - 4z - 2 =
0 qua trục y’Oy.

    Hướng dẫn:

    (S) có tâm I(1,1,2), bán kính R = 2. Phương trình tiếp diện của (S) qua y'Oy:\ \ (P):x + Bz = 0,A^{2} + B^{2} >
0.

    (P) tiếp xúc (S) \Leftrightarrow d(I,P) = R \Leftrightarrow
\frac{|A + 2B|}{\sqrt{A^{2} + B^{2}}} = 2

    \Leftrightarrow A(3A + 4B) = 0
\Leftrightarrow A = 0 \vee A = \frac{4B}{3}

    \Rightarrow \left\lbrack \begin{matrix}
(P):Bz = 0 \\
(P') = \frac{4Bx}{3} + Bz = 0 \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
(P):z = 0 \\
(P'):4x + 3z = 0 \\
\end{matrix} \right.

  • Câu 3: Thông hiểu
    Xác định phương trình mặt cầu

    Viết phương trình mặt cầu (S) tâm I(1,2, - 3) tiếp xúc với mặt phẳng (P):4x - 2y + 4z - 3 = 0.

    Hướng dẫn:

    Bán kính R = d(I,P) =
\frac{5}{2}

    \Rightarrow (S):(x - 1)^{2} + (y - 2)^{2}
+ (y + 3)^{2} = \frac{25}{4}

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2x - 4y + 6z + \frac{31}{4} = 0

  • Câu 4: Vận dụng cao
    Tính giá trị của biểu thức T

    Trong không gian hệ trục tọa độ Oxyz, cho hai điểm A(3; - 2;6),B(0;1;0) và mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
25. Mặt phẳng (P):ax + by + cz - 2
= 0 đi qua A,B và cắt (S) theo giao tuyến là hình tròn có bán kinh nhỏ nhất. Tính T = a + b +
c?

    Hướng dẫn:

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1;2;3) bán kính R = 5.

    Mặt phẳng (P) có vtpt \overrightarrow{n_{p}} = (a;b;c);\left( a^{2} +
b^{2} + c^{2} \neq 0 \right).

    Do B(0;1;0) \in (P):b - 2 = 0
\Leftrightarrow b = 2.

    Ta có: \overrightarrow{AB} = ( - 3;3; -
6) = - 3(1; - 1;2), phương trình đường thẳng AB:\left\{ \begin{matrix}
x = t \\
y = 1 - t \\
z = 2t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Gọi r là bán kính của đường tròn giao tuyến, K là hình chiếu của I trên AB, H là hình chiếu vuông góc của I lên mặt phẳng (P).

    Ta có: K \in AB \Rightarrow K(t;1 -
t;2t)

    \Rightarrow \overrightarrow{IK} = (t -
1; - t - 1;2t - 3)

    IK\bot AB \Rightarrow
\overrightarrow{AB}.\overrightarrow{IK} = 0 \Rightarrow t = 1 \Rightarrow \overrightarrow{IK}
= (0; - 2; - 1)

    r = \sqrt{R^{2} - d^{2}\left( I;(P)
\right)} = \sqrt{25 - d^{2}\left(
I;(P) \right)} = \sqrt{25 - IH^{2}}

    Ta có: r đạt min thì IH đạt max.

    IH \leq IK \Rightarrow IH_{\min}
\Leftrightarrow H \equiv K \Rightarrow (P)\bot IK \Rightarrow\overrightarrow{n_{P}},\overrightarrow{IK} cùng phương

    \Rightarrow \overrightarrow{n_{P}} =
k.\overrightarrow{IK} \Rightarrow \left\{ \begin{matrix}
a = 0 \\
b = - 2k = 2 \\
c = - k
\end{matrix} \right.

    \Rightarrow \left\{ \begin{matrix}
a = 0 \\
k = - 1 \\
b = 2 \\
c = 1
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
a = 0 \\
b = 2 \\
c = 1
\end{matrix} \right.

  • Câu 5: Vận dụng
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho (S):(x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
1 và điểm A(2;2;2). Xét các điểm M \in (S) sao cho đường thẳng AM luôn tiếp xúc với (S). Điểm M luôn thuộc một mặt phẳng cố định có phương trình là

    Hướng dẫn:

    Tọa độ tâm mặt cầu là:I(1;1;1)

    Gọi M(x;y;z) khi đó: \left\{ \begin{matrix}
\overrightarrow{AM} = (x - 2;y - 2;z - 2) \\
\overrightarrow{IM} = (x - 1;y - 1;z - 1) \\
\end{matrix} ight..

    Theo đề bài ra ta có:

    \overrightarrow{AM}.\overrightarrow{IM}
= 0

    \Leftrightarrow (x - 2)(x - 1) + (y -
2)(y - 1) + (z - 2)(z - 1) = 0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
3x - 3y - 3z + 6 = 0(*)

    Mặt khác phương trình mặt cầu

    (S):(x - 1)^{2} + (y - 1)^{2} + (z -
1)^{2} = 1

    \Rightarrow x^{2} + y^{2} + z^{2} - 2x -
2y - 2z + 2 = 0(**)

    Lấy (*) trừ (**) ta được: x + y + z - 4 =
0.

  • Câu 6: Vận dụng
    Tìm tập hợp tất cả các điểm M

    Cho ba điểm A(1,0,1);\ \ B(2, - 1,0);\ \
C(0, - 3, - 1). Tìm tập hợp các điểm M(x,y,z) thỏa mãn AM^{2} - BM^{2} = CM^{2}

    Hướng dẫn:

    Theo bài ra ta có:

    AM^{2} - BM^{2} = CM^{2}

    \Leftrightarrow (x - 1)^{2} + y^{2} + (z
- 1)^{2}- (x - 2)^{2} - (y + 1)^{2} - z^{2}= x^{2} + (y + 3)^{2} + (z
+ 1)^{2}

    \Leftrightarrow Mặt cầu: x^{2} + y^{2} + z^{2} - 2x + 8y + 4z + 13 =
0

  • Câu 7: Vận dụng cao
    Tính giá trị của biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(2;1;3),B(6;5;5). Gọi (S) là mặt cầu đường kính AB. Mặt phẳng (P) vuông góc với đoạn AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao của mặt cầu (S) và mặt phẳng (P)) có thể tích lớn nhất, biết rẳng (P):2x + by + cz + d = 0 với b;c;d\mathbb{\in Z}. Tính S = b +c + d.

    Hướng dẫn:

    Hình vẽ minh họa

    \overrightarrow{AB} = (4;4;2) =
2(2;2;1), \overrightarrow{AB} là vectơ pháp tuyến của mặt phẳng (P) suy ra phương trình mặt phẳng (P) có dạng 2x + 2y + z + d = 0.

    Gọi I là tâm mặt cầu thì I là trung điểm của AB suy ra I(4;3;4), bán kính mặt cầu R = \frac{AB}{2} = 3.

    Đặt IH = x suy ra HK = \sqrt{R^{2} - x^{2}} = \sqrt{9 -
x^{2}}.

    Thể tích khối nón

    V = \frac{1}{3}IH.\pi.HK^{2} =
\frac{1}{3}.\pi.\left( 9 - x^{2} \right)(3 + x)

    = \frac{1}{6}.\pi.(6 - 2x)(3 + x)(3 + x)
\leq \frac{1}{6}.\pi\left( \frac{6 + 3 + 3}{3} \right)^{3}.

    Dấu bằng xảy ra khi 6 - 2x = 3 + x
\Leftrightarrow x = 1.

    Ta có hệ: \left\{ \begin{matrix}d\left( A;(P) \right) = 4 \\d\left( I;(P) \right) = 1\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}\frac{|d + 9|}{3} = 4 \\\frac{|d + 18|}{3} = 1\end{matrix} \right.\Leftrightarrow \left\{ \begin{gathered}
  \left[ \begin{gathered}
  d = 3 \hfill \\
  d =  - 21 \hfill \\ 
\end{gathered}  \right. \hfill \\
  \left[ \begin{gathered}
  d =  - 21 \hfill \\
  d =  - 15 \hfill \\ 
\end{gathered}  \right. \hfill \\ 
\end{gathered}  \right. \Leftrightarrow d =  - 21

    Vậy (P):2x + 2y + z -21 =0.

    Suy ra: b + c + d = - 18.

  • Câu 8: Vận dụng
    Chọn đáp án thích hợp

    Tìm tập hợp các tâm I của mặt cầu

    (S): x^{2} + y^{2} + z^{2} - 6\cos t -
4\sin ty + 6z\cos 2t - 3 = 0, t\mathbb{\in R}.

    Hướng dẫn:

    Ta có:

    a = 3cost;b = 2sint;c = - 3;d = cos2t -
3 = - 2sin^{2}t - 2

    \Rightarrow 9cos^{2}t + 4sin^{2}t +
2sin^{2}t + 11 > 0,\ \ \forall t\mathbb{\in R}

    Tâm I:x = 3cost;y = 2sint;z = -
3

    \Rightarrow \frac{x^{2}}{9} +
\frac{y^{2}}{4} = 1;\ \ z + 3 = 0

    Vậy tập hợp các tâm I là elip \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1;z + 3 =
0

  • Câu 9: Vận dụng cao
    Viết phương trình mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: \dfrac{x-2}{2}=\dfrac{y}{-1} = \dfrac z 4và mặt

    cầu (S) tâm I(1;2;1), bán kính R. Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với

    (S) tạo với nhau góc 60^0 . Hãy viết phương trình mặt cầu (S)

    Hướng dẫn:

     Viết phương trình mặt cầu

    Gọi M, N là tiếp điểm của mặt phẳng (P), (Q) và mặt cầu (S). Gọi H là hình chiếu của điểm I trên đường thẳng d.

    \Rightarrow IH=d(I,d)= \sqrt 6

    TH1: Góc \widehat {MHN}=60^0:

    Theo bài ra ta có: R=IM=IH.\sin30^0= \sqrt 6 .\frac 1 2 = \frac{\sqrt 6}{2}

    \Rightarrow(S) : (x-1)^2+(y-2)^2+(z-1)^2= \frac 3 2

    TH2: Góc \widehat {MHN}=120^0:

    Theo bài ra ta có: R=IM=IH.\sin60^0= \sqrt 6 .\frac {\sqrt 3}{2} = \frac{\sqrt18}{2}

    \Rightarrow(S) : (x-1)^2+(y-2)^2+(z-1)^2= \frac 9 2.

  • Câu 10: Vận dụng
    Tính diện tích mặt cầu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA = a\sqrt 6 và vuông góc với đáy (ABCD). Tính theo a diện tích mặt cầu ngoại tiếp hình chóp S.ABCD ta được:

    Hướng dẫn:

     Tính diện tích mặt cầu

    Gọi O = AC \cap BD, suy ra O là tâm đường tròn ngoại tiếp hình vuông ABCD.

    Gọi I là trung điểm SC, suy ra IO\parallel SA \Rightarrow IO \bot \left( {ABCD} ight)

    Do đó IO là trục của hình vuông ABCD, suy ra IA = IB = IC = ID.  (1)

    Xét tam giác SAC vuông tại A có I là trung điểm cạnh huyền SC nên IS = IC = IA.   (2)

    Từ (1) và (2), ta có: R = IA = IB = IC = ID = IS = \frac{{SC}}{2} = a\sqrt 2

    Vậy diện tích mặt cầu S = 4\pi {R^2} = 8\pi {a^2} (đvdt).

  • Câu 11: Vận dụng
    Tính giá trị biểu thức T

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} = 9 và mặt phẳng (P):x + y + z - 3 = 0. Gọi (S') là mặt cầu chứa đường tròn giao tuyến của (S)(P) đồng thời (S') tiếp xúc với mặt phẳng (Q):x - y + z - 5 = 0. Gọi I(a;b;c) là tâm của (S'). Tính giá trị biểu thức T = abc.

    Hướng dẫn:

    Phương trình mặt cầu (S’) có dạng:

    x^{2} + y^{2} + z^{2} - 9 + m(x + y + z
- 3) = 0

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
mx + my + mz - 9 - 3m = 0

    Mặt cầu (S') có tâm I\left( - \frac{m}{2}; - \frac{m}{2}; -
\frac{m}{2} ight), bán kính R =
\sqrt{\frac{3m^{2}}{4} + 3m + 9}.

    Mặt cầu (S') tiếp xúc với (Q) nên

    d\left( I;(Q) ight) = R\Leftrightarrow \dfrac{\left| - \dfrac{m}{2} - 5 ight|}{\sqrt{2}} =\sqrt{\frac{3m^{2}}{4} + 3m + 9}

    \Leftrightarrow |m + 10| = \sqrt{9m^{2}
+ 36m + 108}

    \Leftrightarrow m = - 1 \Rightarrow
I\left( \frac{1}{2};\frac{1}{2};\frac{1}{2} ight)

    Vậy T = abc = \frac{1}{8}.

  • Câu 12: Vận dụng
    Tìm phương trình mặt cầu thỏa mãn điều kiện

    Cho hình lập phương QABC.DEFG có cạnh bằng 1 có \overrightarrow{OA},\ \ \overrightarrow{OC},\ \
\overrightarrow{OG} trùng với ba trục \overrightarrow{Ox},\ \overrightarrow{Oy},\
\overrightarrow{Oz}. Viết phương trình mặt cầu \left( S_{1} \right) ngoại tiếp hình lập phương.

    Hướng dẫn:

    \left( S_{1} \right) có tâm I là trung điểm chung của 4 đường chéo: I\left(
\frac{1}{2},\frac{1}{2},\frac{1}{2} \right), bán kính R_{1} = \frac{1}{2}OE =
\frac{\sqrt{3}}{2}

    \Rightarrow \left( S_{1} \right):\left(
x - \frac{1}{2} \right)^{2} + \left( y - \frac{1}{2} \right)^{2} +
\left( z - \frac{1}{2} \right)^{2} = \frac{3}{4}

    \Rightarrow \left( S_{1} \right):x^{2} +
y^{2} + z^{2} - x - y - z = 0

  • Câu 13: Vận dụng
    Xác định phương trình mặt cầu ngoại tiếp tứ diện

    Viết phương trình mặt cầu \left( S_{3}
\right) ngoại tiếp tứ diện.

    Hướng dẫn:

    Tứ diện ABCD đều \Rightarrow \left( S_{3} \right) có tâm E(2,2,2)

    Bán kính R_{3}^{2} = EA^{2} = (1 - 2)^{2}
+ (1 - 2)^{2} + (1 - 2)^{2} = 3

    \Rightarrow \left( S_{3} \right) = (x -
2)^{2} + (y - 2)^{2} + (z - 2)^{2} = 3

  • Câu 14: Thông hiểu
    Xác định vectơ chỉ phương

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm nằm trên mặt phẳng (Oxy) và đi qua ba điểm A(1;2; - 4),B(1; - 3;1),C(2;2;3). Tọa độ tâm I của mặt cầu (S) là:

    Hướng dẫn:

    Gọi tâm mặt cầu là I(a;b;c) và phương trình mặt cầu (S):x^{2} + y^{2} +
z^{2} - 2ax - 2by - 2cz + d = 0

    Do I \in (Oxy) \Rightarrow c =
0

    \Rightarrow (S):x^{2} + y^{2} + z^{2} -
2ax - 2by + d = 0

    Lại có \left\{ \begin{matrix}
A \in (S) \\
B \in (S) \\
C \in (S) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a + 4b - d = 21 \\
2a - 6b - d = 11 \\
4a + 4b - d = 17 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 2 \\
b = 1 \\
d = - 21 \\
\end{matrix} ight.

    Vậy I( - 2;1;0) là đáp án cần tìm.

  • Câu 15: Vận dụng
    Chọn phương án thích hợp

    Cho mặt phẳng (P):x - 2y - 2z + 10 =0 và hai đường thẳng \Delta_{1}:\
\frac{x - 2}{1} = \frac{y}{1} = \frac{z - 1}{- 1}, \ \Delta_{2}:\frac{x - 2}{1} = \frac{y}{1} =
\frac{z + 3}{4}. Mặt cầu (S) có tâm thuộc \Delta_{1}, tiếp xúc với \Delta_{2} và mặt phẳng (P), có phương trình:

    Hướng dẫn:

    Ta có:

    \Delta_{1}:\left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = 1 - t \\
\end{matrix} \right.; \Delta_{2} đi qua điểm A(2;0; - 3) và có vectơ chỉ phương \overrightarrow{a_{2}} = (1;1;4).

    Giả sử I(2 + t;t;1 - t) \in
\Delta_{1} là tâm và R là bán kính của mặt cầu (S).

    Ta có: \overrightarrow{AI} = (t;t;4 -
t) \left\lbrack
\overrightarrow{AI},\overrightarrow{a_{2}} \right\rbrack = (5t - 4;4 -
5t;0)

    d\left( I;\Delta_{2} \right) =
\frac{\left| \left\lbrack \overrightarrow{AI},\overrightarrow{a_{2}}
\right\rbrack \right|}{\left| \overrightarrow{a_{2}} \right|} =
\frac{|5t - 4|}{3}

    d(I,(P)) = \frac{\left| 2 + t - 2t - 2(1
- t) + 10 \right|}{\sqrt{1 + 4 + 4}} = \frac{|t + 10|}{3}.

    (S) tiếp xúc với \Delta_{2}(P) d(I,\Delta_{2}) = d(I,(P)) |5t - 4| = |t + 10| \left\lbrack \begin{matrix}
t = \frac{7}{2} \\
t = - 1 \\
\end{matrix} \right..

    Với t = \frac{7}{2} I\left( \frac{11}{2};\frac{7}{2}; - \frac{5}{2}
\right), R = \frac{9}{2} (S):\left( x - \frac{11}{2} \right)^{2} +
\left( y - \frac{7}{2} \right)^{2} + \left( z + \frac{5}{2} \right)^{2}
= \frac{81}{4}.

    Với t = - 1 I(1; - 1;2),\ R = 3 (S):(x - 1)^{2} + (y + 1)^{2} + (z - 2)^{2} =
9.

  • Câu 16: Vận dụng
    Tính bán kính đường tròn

    Trong không gian với hệ tọa độ Oxyz, cho điểm M thuộc mặt cầu (S): (x − 3)^2 + (y + 1)^2 + z^ 2 = 9 và ba điểm A(1; 0; 0), B(2; 1; 3), C(0; 2; −3). Biết rằng quỹ tích các điểm M thỏa mãn MA^{2} + 2\overrightarrow{MB}.\overrightarrow{MC}= 8 là đường tròn cố định, tính bán kính r đường tròn này?

    Hướng dẫn:

    Ta có:\left\{ \begin{matrix}\overrightarrow{MA} = (1 - x; - y; - z) \\\overrightarrow{MB} = (2 - x;1 - y;3 - z) \\\overrightarrow{MC} = ( - x;2 - y; - 3 - z) \\\end{matrix} ight. khi đó:

    MA^{2} +2\overrightarrow{MB}.\overrightarrow{MC} = 8

    \Leftrightarrow (x - 1)^{2} + y^{2} +z^{2} + 2\left\lbrack x(x - 2) + (y - 1)(y - 2) + (z - 3)(z + 3)ightbrack = 8

    \Leftrightarrow 3.\left( x^{2} + y^{2} +z^{2} ight) - 6x - 6y - 21 = 0

    \Leftrightarrow M \in (S'):x^{2} +y^{2} + z^{2} - 2x - 2y - 7 = 0

    M \in (S):(x - 3)^{2} + (y + 1)^{2} +z^{2} = 9

    \Leftrightarrow x^{2} + y^{2} + z^{2} -6x + 2y + 1 = 0

    Suy ra M ∈ (P): 4x − 4y − 8 = 0.

    Như vậy quỹ tích điểm M là đường tròn giao tuyến của (S) tâm I(3; −1; 0), bán kính R = 3 và (P)

    Ta có: d\left( I;(P) ight) = \sqrt{2}\Leftrightarrow r = \sqrt{R^{2} - d^{2}} = \sqrt{7}

  • Câu 17: Vận dụng cao
    Tìm giá trị lớn nhất của biểu thức

    Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 4y + 4z =
0 và điểmM(1;2; - 1). Một đường thẳng thay đổi qua M cắt (S) tại hai điểm A; B. Tìm giá trị lớn nhất của tổng MA + MB.

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1; - 2; - 2) và bán kính R = 3. Trong khi IM = \sqrt{17} > 3 nên M nằm ngoài hình cầu (S).

    Gọi H là trung điểm của AB, có M nằm trên đường AB và nằm ngoài đoạn AB nên có MA + MB = 2MH.

    Mặt khác, tam giác IHM vuông tại H nên HM \leq MI. Vậy MA + MB \leq 2\sqrt{17}.

    Đẳng thức xảy ra khi đường thẳng qua M và tâm I của mặt cầu, tức AB lúc này là đường kính của mặt cầu.

    Vậy giá trị lớn nhất của tổng MA +
MB2\sqrt{17}.

  • Câu 18: Vận dụng cao
    Tính chu vi của đường tròn

    Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng (P):x - y - z + 3 = 0 và hai điểm M( - 1;1; - 1),N(3; - 3;3). Mặt cầu (S) đi qua hai điểm M,N và tiếp xúc với (P) tại C. Biết rằng C luôn thuộc một đường tròn cố định. Tính chu vi của đường tròn đó.

    Hướng dẫn:

    Ta có MN đi qua M( - 1;1; - 1), nhận \frac{1}{4}\overrightarrow{MN} = \frac{1}{4}(4; -
4;4) = (1; - 1;1) là một vecto chỉ phương nên MN:\left\{ \begin{matrix}
x = - 1 + t \\
y = 1 - t \\
z = - 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    Thay \left\{ \begin{matrix}
x = - 1 + t \\
y = 1 - t \\
z = - 1 + t
\end{matrix} \right.vào (P) ta được -
1 + t + 1 + t + 1 - t + 3 = 0 \Leftrightarrow t = 4

    Tọa độ điểm D(3;3;3) là giao điểm của của MN(P). Do đó theo tính chất của phương tích ta được DM.DN = DI^{2} - R^{2}.

    Mặt khác vì DC là tiếp tuyến của mặt cầu (S) cho nên DC^{2} = DI^{2} - R^{2}.

    Do vậy DC^{2} = DM.DN = 36 \Rightarrow DC = 6 (là một giá trị không đổi).

    Vậy C luôn thuộc một đường tròn cố định tâm D với bán kính R = 6 suy ra chu vi của đường tròn là 12\pi.

  • Câu 19: Vận dụng
    Tìm phương trình mặt cầu

    Cho đường thẳng d:\left\{ \begin{matrix}
x = t \\
y = - 1 + 3t \\
z = 1 \\
\end{matrix} \right.. Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của đường thẳng d và trục Ox là:

    Hướng dẫn:

    Gọi A(t; - 1 + 3t;1) \in d;B(t';0;0)
\in Ox

    \Rightarrow \overrightarrow{AB} = (t'
- t;1 - 3t; - 1), \overrightarrow{u_{d}} = (1;3;0),\
\overrightarrow{i} = (1;0;0).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB}.\overrightarrow{u_{d}} = 0 \\
\overrightarrow{AB}.\overrightarrow{i} = 0 \\
\end{matrix} \right.\  \Rightarrow t = t' = \frac{1}{3}R = \frac{1}{2} \Rightarrow \left( x -
\frac{1}{3} \right)^{2} + y^{2} + \left( z - \frac{1}{2} \right)^{2} =
\frac{1}{4}.

  • Câu 20: Vận dụng
    Tính góc tạo bởi hai mặt phẳng

    Cho mặt cầu (S): x^{2} + y^{2} + z^{2} -
4x + 6y + 2z - 2 = 0 và điểm A( -
6, - 1,3). Gọi M là tiếp điểm của (S) và tiếp tuyến di động (d) qua A. Gọi (P) là tiếp điểm của (S) tại M và (Q) là mặt phẳng qua M cắt hình cầu (S) theo hình trơn (C) có diện tích bằng \frac{1}{2} diện tích hình trơn lớn của (S). Tính góc tạo bởi (P) và (Q).

    Hướng dẫn:

    Diện tích thiết diện r^{2}\pi = \frac{\pi
R^{2}}{2}

    \Leftrightarrow \left( R^{2} - IH^{2}
\right)\pi = \frac{\pi R^{2}}{2} \Leftrightarrow IH =
\frac{R\sqrt{2}}{2}

    \overrightarrow{IM}\bot(P);\ \
\overrightarrow{IH}\bot(Q) \Rightarrow \overrightarrow{MIH} =
\alpha

    Là góc tạ bởi (P)(Q)

    \Rightarrow \cos\alpha = \frac{IH}{IM} =
\frac{\sqrt{2}}{2} \Rightarrow \alpha = 45^{o}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo