Trong không gian , cho mặt cầu
và các điểm
. Điểm
thuộc mặt cầu
. Thể tích lớn nhất của tứ diện
bằng:
Mặt cầu có tâm là
và bán kính
.
Khi lớn nhất thì
Ta có: suy ra:
.
Trong không gian , cho mặt cầu
và các điểm
. Điểm
thuộc mặt cầu
. Thể tích lớn nhất của tứ diện
bằng:
Mặt cầu có tâm là
và bán kính
.
Khi lớn nhất thì
Ta có: suy ra:
.
Trong không gian với hệ tọa độ , cho hai điểm
và
và mặt phẳng
. Phương trình mặt cầu
có bán kính bằng
có tâm thuộc đường thẳng
và
tiếp xúc với mặt phẳng
là:
Ta có: suy ra
Ta có:
Tâm I thuộc AB nên
Mặt phẳng (P) tiếp xúc mặt cầu nên
Ta có phương trình đường tròn (C) tâm , bán kính
là:
Ta có phương trình đường tròn (C) tâm I(−6; 5; −4), bán kính là:
Vậy đáp án cần tìm là:
Cho hình chóp có đáy ABC là tam giác vuông cân tại B, . Cạnh bên , hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Bán kính mặt cầu ngoại tiếp khối chóp
là:

Gọi M là trung điểm AC, suy ra
Tam giác SAC có SM là đường cao và cũng là trung tuyến nên tam giác SAC cân tại S.
Ta có , suy ra tam giác SAC đều.
Gọi G là trọng tâm , suy ra
. (1)
Tam giác ABC vuông tại B, có M là trung điểm cạnh huyền AC nên M là tâm đường tròn ngoại tiếp tam giác ABC.
Lại có nên SM là trục của tam giác ABC.
Mà G thuộc SM nên suy ra .
Từ (1) và (2), suy ra hay G là tâm mặt cầu ngoại tiếp khối chóp
.
Bán kính mặt cầu .
Trong không gian , cho 3 điểm
và
. Gọi
là mặt cầu tâm A bán kính bằng 3 và
là mặt cầu tâm B bán kính bằng 6. Hỏi có tất cả bao nhiêu mặt phẳng đi qua C và tiếp xúc đồng thời với cả hai mặt cầu
?
Phương trình mặt phẳng qua C có dạng .
Mặt phẳng tiếp xúc
ta có
(1)
Mặt phẳng tiếp xúc
ta có
(2)
Từ đây ta có phương trình
Từ (1), (3) ta có:
Trường hợp này ta tìm được hai mặt phẳng:
Từ (1); (4) ta có:
Trường hợp này không có mặt phẳng nào.
Trong không gian với hệ trục tọa độ , cho mặt cầu
có bán kính
đường thẳng
và mặt phẳng
Trong các số
theo thứ tự dưới đây, số nào thỏa mãn
đồng thời tâm
của
thuộc đường thẳng
và
tiếp xúc mặt phẳng
?
Ta có
Do tiếp xúc với
nên
Mặt khác có tâm
; bán kính
Xét khi
Do nên ta loại trường hợp này
Xét khi
Do nên thỏa mãn.
Trong không gian với hệ tọa độ , cho điểm
. Mặt phẳng
đi qua
và cắt các trục
lần lượt tại các điểm
sao cho
là trực tâm của
. Tính diện tích mặt cầu ngoại tiếp tứ diện
?
Gọi lần lượt thuộc các trục tọa độ Ox, Oy, Oz.
Khi đó ta có phương trình mặt phẳng (α) đi qua các điểm A, B, C là
Vì
Ta có:
Theo đề bài ta có H là trực tâm , ta có:
thay vào (1) ta được:
. Gọi
là tâm mặt cầu ngoại tiếp chóp tứ giác OABC, ta có:
Vậy
Trong không gian tọa độ cho mặt cầu
và đường thẳng
là giao tuyến của hai mặt phẳng
và
. Đường thẳng
cắt mặt cầu
tại hai điểm phân biệt
thỏa mãn
khi:
Ta có .
Phương trình tham số của là
.
.
(*).
(*) .
Phương trình (*) có hai nghiệm phân biệt khi .
Khi đó .
.
.
Suy ra
.
Cách 2:
Mặt cầu có tâm
,
,
.
Đường thẳng qua
, có VTCP
Yêu cầu đề bài tương đương .
Tìm tập các tâm I của mặt cầu tiếp xúc với hai mặt phẳng
.
Gọi và
lần lượt là giao điểm của trục x’Ox với (P) và (Q). Trung điểm
của AB cách đều (P) và (Q).
Tâm I cách đều (P) và (Q)
nằm trong mặt (R) qua E song song và cách đều (P) và (Q) ((P)//(Q)).
Vậy
Cho mặt cầu (S): và điểm
. Gọi M là tiếp điểm của (S) và tiếp tuyến di động (d) qua. Tìm tập hợp các điểm M. (Chọn các đáp án đúng)
có tâm
đường tròn
Hay
Trong không gian với hệ tọa độ , cho mặt phẳng
và mặt cầu
tâm
, bán kính
. Từ một điểm
thuộc mặt phẳng
kẻ một đường thẳng tiếp xúc với mặt cầu
tại
. Tính
biết
.
Hình vẽ minh họa
Khoảng cách từ điểm I đến mặt phẳng (P) là
Vì AB tiếp xúc với tại B nên tam giác AIB vuông tại B, do đó ta có:
Đường thẳng IA đi qua có vectơ chỉ phương là
nên có phương trình là:
Do nên
Vậy A(3; 1; 1) nên .
Trong không gian , cho
và mặt phẳng
. Viết phương trình mặt cầu đi qua
và tiếp xúc mặt phẳng
.
Gọi là tâm mặt cầu cần tìm.
Theo bài ra ta có:
Vậy phương trình mặt cầu tâm I(3; 1; −2) bán kính là
.
Viết phương trình mặt cầu (S) qua ba điểm có tâm nằm trong mặt phẳng (xOy)
Ta có:
vì tâm
Cho mặt phẳng và mặt cầu
. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau
Cho mặt phẳng và mặt cầu
. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I có tọa độ là:
Áp dụng CT, ta có (P) cắt (S)
Cho mặt phẳng và hai đường thẳng
,
. Mặt cầu
có tâm thuộc
, tiếp xúc với
và mặt phẳng
, có phương trình:
Ta có:
;
đi qua điểm
và có vectơ chỉ phương
.
Giả sử là tâm và
là bán kính của mặt cầu
.
Ta có:
.
tiếp xúc với
và
.
Với
,
.
Với
.
Tìm tập hợp các tâm I của mặt cầu
;
Ta có:
Tâm
đường thẳng:
là mặt cầu
Vậy tập hợp các tâm O là phần đường thẳng tương ứng với
Cho lăng trụ đứng có đáy ABC là tam giác vuông tại B,
, góc
bằng
. Góc giữa đường thẳng
và mặt phẳng
bằng
. Bán kính mặt cầu ngoại tiếp tứ diện
bằng:

Ta có .
Trong , ta có
Trong , ta có
Gọi N là trung điểm AC , suy ra N là tâm đường tròn ngoại tiếp .
Gọi là trung điểm A'C, suy ra
.
Do đó IN là trục của , suy ra
(1)
Hơn nữa, tam giác vuông tại A có
là trung điểm A'C nên
. (2)
Từ (1) và (2), ta có hay
là tâm của mặt cầu ngoại tiếp hình chóp
với bán kính
.
Cho ba điểm . Tìm tập hợp các điểm
thỏa mãn
Theo bài ra ta có:
Mặt cầu:
Cho mặt phẳng và mặt cầu
có phương trình lần lượt là
. Giá trị của
để
tiếp xúc
là:
Ta có:
có tâm
và bán kính
.
tiếp xúc
Cho ba điểm và mặt phẳng
. Phương trình mặt cầu đi qua ba điểm
và có tâm thuộc mặt phẳng
là:
Phương mặt cầu có dạng:
, ta có :
Lấy ;
; kết hợp (4) ta được hệ:
Vậy phương trình mặt cầu là : .
Lưu ý : Ở câu này nếu nhanh trí chúng ta có thể sử dụng máy tính cầm tay thay ngay tọa độ tâm của các mặt cầu ở 4 đáp án trên vào phương trình mặt phẳng để loại ngay được các đáp án có tọa độ tâm không thuộc mặt phẳng
Trong không gian với hệ tọa độ , cho ba mặt cầu
,
,
. Có bao nhiêu mặt phẳng tiếp xúc với cả ba mặt cầu
?
Ta có có tâm lần lượt là
và bán kính lần lượt là
.
Gọi là mặt phẳng tiếp xúc với cả ba mặt cầu nói trên. Khi đó:
Xét phương trình
(1) Với . Thay vào
, ta được
Với .
Thay vào , ta được:
Với (vô lí).
Với .
Thay vào , ta được:
Với (vô lí).
(2) Với .
Thay vào , ta được
Với .
Thay vào , ta được
Với : chọn
Tồn tại một mặt phẳng tiếp xúc với cả ba mặt cầu
.
Với
Thay vào ta được:
Với (vô lí).
Vậy tồn tại 2 mặt phẳng tiếp xúc với cả ba mặt cầu .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: