Cho hàm số có đồ thị như hình vẽ như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Dựa vào đồ thị dễ dàng thấy hàm số đồng biến trên .
Cho hàm số có đồ thị như hình vẽ như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Dựa vào đồ thị dễ dàng thấy hàm số đồng biến trên .
Cho hàm số xác định, liên tục trên
và có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại .
Cho hàm số f(x) có đạo hàm . Số cực trị của hàm số đã cho là
Xét phương trình
Ta có bảng xét dấu:

Quan sát bảng xét dấu ta dễ thấy f’(x) đổi dấu khi qua c = -2 và f’(x) đổi dấu khi qua x = 1
=> Hàm số có hai điểm cực trị
Cho đồ thị hàm số như hình vẽ:
Hỏi hàm số nghịch biến trên khoảng nào dưới đây?
Theo đồ thị hàm số ta có hàm số đồng biến trên khoảng
và
khi đó:
Mặt khác
Do hàm số nghịch biến nên
Vậy hàm số nghịch biến trên khoảng
.
Cho hàm số có đồ thị là đường cong trong hình bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Dựa vào đồ thị của hàm số ta có:
Hàm số nghịch biến trên các khoảng
và
, đồng biến trên các khoảng
và
Cho hàm số (
là tham số thực). Có bao nhiêu giá trị nguyên của
để hàm số đã cho đồng biến trên khoảng
?
Tập xác định .
Đạo hàm .
Hàm số đồng biến trên khi và chỉ khi
.
Do . Vậy có hai giá trị nguyên của
thỏa mãn đề bài.
Cho hàm có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng
Từ BBT ta có hàm số đạt giá trị cực tiểu tại
.
Số giá trị nguyên của tham số để hàm số
có giá trị cực đại và giá trị cực tiểu trái dấu nhau là:
Ta có:
Giá trị cực đại và giá trị cực tiểu trái dấu
Vì nên có 12 giá trị thỏa mãn.
Vậy có tất cả 12 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Cho đồ thị hàm số như hình vẽ. Hàm số đã cho đồng biến trên khoảng
Dựa vào đồ thị ta có hàm số đồng biến trên .
Cho hàm số có đồ thị là đường cong trong hình vẽ:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Trên khoảng đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến trên
.
Tìm tập hợp tất cả các giá trị của tham số thực để hàm số
đồng biến trên khoảng
.
Ta có: .
Hàm số đồng biến trên khoảng khi và chỉ khi
.
.
Cho hàm số . Mệnh đề nào dưới dây là đúng?
Tập xác định của hàm số
Ta có:
Hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)
Cho hàm số có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Từ đồ thị, ta thấy hàm số đồng biến trên các khoảng và
.

Hàm số đạt giá trị cực tiểu tại:
Cho hàm số . Biết
,
là các điểm cực trị của đồ thị hàm số. Tính giá trị của hàm số tại
.
Ta có .
Vì là các điểm cực trị của đồ thị hàm số nên
Giải hệ và
, ta được
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Hàm số đồng biến trên khoảng .
Đồ thị hàm số có hai điểm cực trị
. Khi đó
có giá trị là:
Gọi đồ thị hàm số là
Ta có: .
Vì là hai điểm cực trị của đồ thị hàm số
nên ta có:
Vậy do đó
.
Cho hàm số có đạo hàm
. Số điểm cực tiểu của hàm số là:
Ta có:
Bảng xét dấu:
Suy ra số điểm cực tiểu của hàm số là 2 điểm.
Cho hàm số có bảng biến thiên như sau:
Giá trị cực đại của hàm số đã cho bằng:
Quan sát bảng biến thiên dễ thấy giá trị cực đại của hàm số đã cho bằng 3.
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đạt cực đại tại điểm nào dưới đây?
Từ bảng biến thiên ta thấy hàm số đạt cực đại tại .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: