Cho hàm số có bảng biến thiên như sau:
Xác định giá trị cực tiểu của hàm số đã cho.
Dựa vào bảng biến thiên ta thấy:
Hàm số đạt cực tiểu tại , giá trị cực tiểu là
.
Cho hàm số có bảng biến thiên như sau:
Xác định giá trị cực tiểu của hàm số đã cho.
Dựa vào bảng biến thiên ta thấy:
Hàm số đạt cực tiểu tại , giá trị cực tiểu là
.
Cho hàm số có
. Số điểm cực tiểu của hàm số đã cho là:
Ta có:
Ta có bảng xét dấu:
Dựa vào bảng xét dấu suy ra hàm số có 1 điểm cực tiểu.
Cho hàm số có bảng biến thiên như sau
Giá trị cực đại của hàm số đã cho bằng
Dựa bào BBT ta có: Giá trị cực đại của hàm số là
Cho hàm số sau, hàm số nào đồng biến trên ?
Xét hàm số ta có:
đồng biến trên
.
Hàm số nào dưới đây nghịch biến trên ?
Xét hàm số ta có:
Do đó hàm số nghịch biến trên
.
Trong các hàm số sau, hàm số nào đồng biến trên tập số thực?
Xét hàm số có:
Suy ra hàm số đồng biến trên tập số thực.
Cho hàm số có đạo hàm
. Tìm số điểm cực đại của hàm số đã cho.
Ta có:
Ta có bảng xét dấu:
Suy ra hàm số có một điểm cực đại.
Hàm số nghịch biến trên khoảng nào?
Tập xác định
suy ra hàm số nghịch biến trên
và
.
Tìm tất cả các giá trị của tham số để hàm số
có cực trị.
Nếu thì
: Hàm bậc hai luôn có cực trị.
Khi , ta có
.
Để hàm số có cực trị khi và chỉ khi phương trình có hai nghiệm phân biệt
Hợp hai trường hợp ta được .
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Từ bảng biến thiên ta thấy hàm số đồng biến trên các khoảng và
.
Vậy đáp án cần tìm là .
Xác định giá trị thực của tham số để hàm số
đồng biến trên khoảng
?
Tập xác định
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là .
Hàm số nào dưới đây đồng biến trên khoảng ?
Vì .
Định tất cả các giá trị thực của để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì có ba nghiệm phân biệt suy ra phương trình
có hai nghiệm phân biệt khác
Vậy đáp án cần tìm là .
Cho hàm số có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là:
Quan sát đồ thị của hàm số đã cho ta có:
Hàm số có ba điểm cực trị.
Hàm số nào dưới dây nghịch biến trên ?
Xét hàm số có
suy ra hàm số
đồng biến trên
.
Hàm số đạt cực đại tại
Tập xác định:
Ta có:
Ta có bảng biến thiên
Vậy hàm số đạt cực tiểu tại và
.
Hàm số đạt cực đại tại điểm
Ta có:
Bảng biến thiên
Từ bảng biến thiên ta thấy hàm số đạt cực đại tại .
Cho hàm số . Mệnh đề nào sau đây đúng?
Ta có:
Ta có bảng xét dấu:

Quan sát bảng xét dấu ta thấy:
+ Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞)
+ Hàm số nghịch biến trên các khoảng (0; 2)
Hàm số y = x3 – 3x2 nghịch biến trên khoảng nào dưới đây?
Ta có:
Theo dấu hiệu nhận biết tính đơn điệu của hàm số, hàm số nghịch biến trên (0; 2)
Hàm số nghịch biến trên khoảng nào?
Ta có:
=> Hàm số nghịch biến trên khoảng (2; 3)
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: