Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định hàm số đồng biến trên khoảng cho trước

    Hàm số nào sau đây đồng biến trên các khoảng (-∞; 2) và (2; +∞)?

    Hướng dẫn:

     Ta có:

    y' = \frac{{2\left( {x - 2} ight) - \left( {2x - 5} ight)}}{{{{\left( {x - 2} ight)}^2}}} = \frac{1}{{{{\left( {x - 2} ight)}^2}}} > 0,\forall x \in \mathbb{R}\backslash \left\{ 2 ight\}

    Vậy hàm số y = \frac{{2x - 5}}{{x - 2}} đồng biến trên các khoảng (-∞; 2) và (2; +∞)

  • Câu 2: Nhận biết
    Chọn đáp án đúng

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho đạt cực đại tại

    Hướng dẫn:

    Hàm số đạt cực đại tại điểm mà đạo hàm đổi dấu từ dương sang âm.

    Từ bảng biến thiên hàm số đạt cực đại tại x = - 1.

  • Câu 3: Nhận biết
    Tìm tọa độ cực tiểu của hàm số

    Cho hàm số y = {x^3} - 3x + 2. Tọa độ điểm cực tiểu của đồ thị hàm số là:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' = 3{x^2} - 3 \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x =  - 1} \end{array}} ight. \hfill \\  y'' = 6x \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y''\left( 1 ight) = 6 > 0} \\   {y''\left( { - 1} ight) =  - 6 < 0} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy điểm cực tiểu của đồ thị hàm số là (1; 0)

  • Câu 4: Thông hiểu
    Tính diện tích tam giác

    Gọi A;B;C là ba điểm cực trị của đồ thị hàm số y = \frac{1}{2}x^{4} - x^{2} -
1. Tính diện tích tam giác ABC?

    Hướng dẫn:

    Ta có: y' = 2x^{3} - 2x;y' = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ba điểm cực trị của hàm số là A(0; -
1),B\left( 1; - \frac{3}{2} ight),C\left( - 1; - \frac{3}{2}
ight)

    Tam giác ABC có điểm A \in Oy, hai điểm B;C đối xứng nhau qua trục tung nên tam giác ABC cân tại A. Trung điểm H\left( 0; - \frac{3}{2} ight) của BC thuộc trục Oy và là chân đường cao hạ từ A của tam giác, suy ra:

    S_{ABC} = \frac{1}{2}AH.BC =
\frac{1}{2}\left| y_{A} - y_{B} ight|.\left| x_{B} - x_{C}
ight|

    = \frac{1}{2}.\left| - 1 + \frac{3}{2}
ight|.2 = \frac{1}{2}

    Vậy diện tích tam giác ABC bằng \frac{1}{2}.

  • Câu 5: Nhận biết
    Xác định số cực trị của hàm số

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Đồ thị hàm số y = f(x) có mấy điểm cực trị?

    Hướng dẫn:

    Từ đồ thị suy ra đồ thị có điểm một điểm cực tiểu và một điểm cực đại.

  • Câu 6: Nhận biết
    Xác định khoảng nghịch biến của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Hàm số nghịch biến trong khoảng nào?

    Hướng dẫn:

    Từ bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng (0;1).

  • Câu 7: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Hàm số đạt cực đại tại điểm

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy y' đối dấu từ ( + ) sang (-) tại x = 2.

    Nên hàm số đạt cực đại tại điểm x =
2.

  • Câu 8: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Giá trị cực tiểu của hàm số đã cho bằng:

    Hướng dẫn:

    Dựa vào đồ thị của hàm số ta thấy giá trị cực tiểu của hàm số bằng -2.

  • Câu 9: Nhận biết
    Xác định số cực tiểu của hàm số

    Cho hàm số y = f(x) có đạo hàm f'(x) = x(x + 1)(x - 2)^{3};\forall
x\mathbb{\in R}. Số điểm cực tiểu của hàm số là:

    Hướng dẫn:

    Ta có: f'(x) = x(x + 1)(x - 2)^{3} =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 2 \\
\end{matrix} ight.

    Bảng xét dấu:

    Suy ra số điểm cực tiểu của hàm số là 2 điểm.

  • Câu 10: Thông hiểu
    Tính số phần tử của tập hợp

    Cho hàm số y = \frac{mx - 2m - 3}{x -
m} với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số đồng biến trên các khoảng xác định. Tìm số phần tử của S.

    Hướng dẫn:

    Ta có:

    y' = \frac{- m^{2} + 2m + 3}{(x -
m)^{2}} hàm số đồng biến trên khoảng xác định khi - 1 < m < 3 nên có 3 giá trị của m nguyên.

  • Câu 11: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = \frac{{2x + 1}}{{ - x + 1}}. Mệnh đề nào dưới dây là đúng?

    Hướng dẫn:

    Tập xác định của hàm số D = \mathbb{R}\backslash \left\{ 1 ight\}

    Ta có: y' = \frac{3}{{{{\left( { - x + 1} ight)}^2}}} > 0,\forall x e 1

    Hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)

  • Câu 12: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm f'(x) = (1 - x)^{2}(x + 1)^{3}(3 -
x). Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có: f'(x) = 0 \Leftrightarrow (1 -
x)^{2}(x + 1)^{3}(3 - x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1\ \ \  \\
x = - 1 \\
x = 3\ \ \  \\
\end{matrix} ight..

    Bảng xét dấu:

    Hàm số đồng biến trên các khoảng ( - 1;\
3).

  • Câu 13: Thông hiểu
    Tìm m để hàm số đạt cực đại

    Cho hàm số y = x^{3} - 3mx^{2} + 3\left(
m^{2} - 1 \right)x - 3m^{2} + 5 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số đạt cực đại tại x = 1.

    Hướng dẫn:

    Thử từng đáp án.

    ● Kiểm tra khi m = 0 thì hàm số có đạt cực đại tại x = 1 không

    Và tiếp theo tính tại x = 1^{-} (cho x = 0.9) và x = 1^{+} (cho x = 1.1)

    Vậy y' đổi dấu từ âm sang dương qua giá trị x =
1\overset{}{ightarrow}x = 1 là điểm cực tiểu.

    \overset{}{ightarrow}m = 0 loại \overset{}{ightarrow} Đáp án m = 0,\ m = 2. hoặc m = 0. sai.

    ● Tương tự kiểm tra khi m =
2

    Và tiếp theo tính tại x = 1^{-} (cho x = 0.9) và x = 1^{+} (cho x = 1.1)

    Ta thấy y' đổi dấu từ dương sang âm qua giá trị x =
1\overset{}{ightarrow}x = 1 là điểm cực đại.

    \overset{}{ightarrow} m=2 thỏa mãn \overset{}{ightarrow} Đáp án m = 2. chính xác.

  • Câu 14: Nhận biết
    Tìm khoảng đồng biến của hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R} và có bảng biến thiên như hình bên dưới

    Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Dựa vào bảng biến thiên, ta thấy hàm số đồng biến trên (3; + \infty).

  • Câu 15: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = \frac{x^{2} + 3}{x +
1}. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Cách 1.

    Ta có: y' = \frac{x^{2} + 2x - 3}{(x
+ 1)^{2}}; y' = 0
\Leftrightarrow x^{2} + 2x - 3 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 3 \\
x = 1 \\
\end{matrix} ight.

    Lập bảng biến thiên. Vậy hàm số đạt cực tiểu tại x = 1 và giá trị cực tiểu bằng 2.

    Cách 2.

    Ta có y' = \frac{x^{2} + 2x - 3}{(x +
1)^{2}};x = 3 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 3 \\
x = 1 \\
\end{matrix} ight.

    y'' = \frac{8}{(x +
1)^{3}}. Khi đó: y''(1) =
\frac{1}{2} > 0; y''( -
3) = - \frac{1}{2} < 0.

    Nên hàm số đạt cực tiểu tại x =
1 và giá trị cực tiểu bằng 2.

  • Câu 16: Nhận biết
    Xác định hàm số thỏa mãn yêu cầu

    Hàm số nào dưới dây nghịch biến trên \mathbb{R}?

    Hướng dẫn:

    Xét hàm số y = x^{3} + 2x - 2020y' = 3x^{2} + 2 > 0;\forall
x\mathbb{\in R} suy ra hàm số y =
x^{3} + 2x - 2020 đồng biến trên \mathbb{R}.

  • Câu 17: Nhận biết
    Chọn đáp án thích hợp

    Xác định hàm số nghịch biến trên \mathbb{R}?

    Hướng dẫn:

    Xét hàm số y = - x^{3} + x^{2} -
x ta có:

    y' = - 3x^{2} + 2x - 1 = - 3\left( x
- \frac{1}{3} ight)^{2} - \frac{2}{3} < 0;\forall x\mathbb{\in
R}

    Nên hàm số y = - x^{3} + x^{2} -
x nghịch biến trên \mathbb{R}.

  • Câu 18: Thông hiểu
    Xác định khoảng đồng biến của hàm số

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hỏi hàm số y = 2021 - f(x) đồng biến trên khoảng nào?

    Hướng dẫn:

    Hàm số y = 2021 - f(x)y' = - f'(x)

    y' = 0 \Leftrightarrow - f'(x) =
0 \Leftrightarrow f'(x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 0 \\
\end{matrix} ight.

    Từ bảng biến thiên của hàm số y =
f(x) ta có bảng biến thiên của hàm số y = 2021 - f(x)

    Dựa vào bảng biến thiên ta có hàm số y =
2021 - f(x) đồng biến trong khoảng ( - 1;0).

  • Câu 19: Nhận biết
    Tìm khẳng định đúng

    Cho hàm số y =
\frac{2x - 1}{x + 3}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}

    Ta có: y' = \frac{7}{(x + 3)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên mỗi khoảng (
- \infty;3)(3; +
\infty).

  • Câu 20: Nhận biết
    Chọn khoảng nghịch biến của hàm số

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau:

    Hướng dẫn:

    Do f'(x) < 0\forall x \in ( -
1;3) nên hàm số f(x) nghịch biến trên khoảng ( -
1;3).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo