Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số điểm cực trị của hàm số y = \left|
f(x) ight| là:

    Hướng dẫn:

    Khi đó bảng biến thiên của hàm số y =
\left| f(x) ight| là:

    Dựa vào bảng biến thiên ta thấy hàm số y
= \left| f(x) ight| có 5 điểm cực trị.

  • Câu 2: Nhận biết
    Tìm mệnh đề sai

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Mệnh đề nào dưới đây sai?

    Hướng dẫn:

    Từ bảng biến thiên đã cho ta thấy mệnh đề sai là: “Hàm số có giá trị cực đại bằng 0.”

  • Câu 3: Nhận biết
    Tìm khoảng nghịch biến của hàm số

    Cho hàm số y =
f(x) có đạo hàm f'(x) trên khoảng ( - \infty; + \infty). Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau?

    Hướng dẫn:

    Quan sát hình vẽ ta thấy:

    y = f'(x) \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.f'(x)
\leq 0 \Leftrightarrow 0 \leq x \leq 3

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0;3).

  • Câu 4: Nhận biết
    Tìm giá trị cực tiểu của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực tiểu của hàm số đã cho bằng:

    Hướng dẫn:

    Dựa vào bảng biến thiên suy ra hàm số đạt cực tiểu tại x = - 1x
= 1; giá trị cực tiểu bằng -
4.

  • Câu 5: Nhận biết
    Xác định khoảng nghịch biến của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Hàm số nghịch biến trong khoảng nào?

    Hướng dẫn:

    Từ bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng (0;1).

  • Câu 6: Nhận biết
    Khoảng đồng biến của hàm số

    Hàm số y = 2{x^4} - 4 đồng biến trên khoảng

    Hướng dẫn:

    Ta có y’ = 8x => y’ = 0 => x = 0

    => y’ > 0 => x > 0

    => y’ < 0 => x < 0

    Vậy hàm số đồng biến trên khoảng \left( {0; + \infty } ight)

  • Câu 7: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm y' = - x^{2} - 1;\forall x\mathbb{\in
R}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có: y' = - x^{2} - 1;\forall
x\mathbb{\in R \Rightarrow}f'(x) < 0;\forall x\mathbb{\in
R} do đó hàm số y = f(x) nghịch biến trên \mathbb{R}

    Do 0 < 2020 \Rightarrow f(0) >
f(2020)

  • Câu 8: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau:

    Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Hàm số y = f(x)f'(x) đổi dấu từ + sang – khi f'(x) đi qua điểm x = 1

    Vậy hàm số y = f(x) đạt cực đại tại x = 1.

  • Câu 9: Nhận biết
    Tìm số điểm cực trị của hàm số

    Cho hàm số có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là:

    Hướng dẫn:

    Quan sát đồ thị của hàm số đã cho ta có:

    Hàm số có ba điểm cực trị.

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y =
f(x) có đồ thị như hình vẽ:

    Hàm số y = f( - x) nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Từ đồ thị hàm số y = f(x) ta thấy hàm số đồng biến trên khoảng (0;2)

    \Leftrightarrow f'(x) > 0
\Leftrightarrow 0 < x < 2

    Xét hàm số y = f( - x) ta có: y' = - f'( - x)

    y' < 0 \Leftrightarrow - f'(
- x) < 0 \Leftrightarrow f'( - x) > 0

    \Leftrightarrow 0 < - x < 2
\Leftrightarrow - 2 < x < 0

    Suy ra hàm số y = f( - x) nghịch biến trên khoảng ( - 2;0).

  • Câu 11: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2} + 1, \forall x\mathbb{\in R}. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Do hàm số y = f(x) có đạo hàm f'(x) = x^{2} + 1 > 0 \forall x\mathbb{\in R} nên hàm số đồng biến trên khoảng ( - \infty; +
\infty).

  • Câu 12: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y =
\frac{2x + 1}{x - 1}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có: y = \frac{2x + 1}{x - 1}
\Rightarrow y' = \frac{- 3}{(x - 1)^{2}} < 0;\forall x \in
D

    Suy ra hàm số nghịch biến trên tập xác định

    Hay hàm số nghịch biến trên các khoảng (
- \infty;1),(1; + \infty).

  • Câu 13: Nhận biết
    Tìm mệnh đề đúng

    Cho hàm số y = x^{3} + 3x + 2. Mệnh đề nào dưới đây là đúng?

    Hướng dẫn:

    Ta có:

    +) TXĐ: D\mathbb{= R}.

    +) y' = 3x^{2} + 3 > 0,\ \forall
x\mathbb{\in R}, do đó hàm số đồng biến trên \mathbb{R}.

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Hỏi có bao nhiêu số nguyên m để hàm số y = \left( m^{2} - 1 \right)x^{3} +
(m - 1)x^{2} - x + 4 nghịch biến trên khoảng( - \infty\ ; + \infty).

    Hướng dẫn:

    Ta có y' = 3\left( m^{2} - 1
ight)x^{2} + 2(m - 1)x - 1

    Hàm số đã cho nghịch biến trên khoảng\ (
- \infty\ ; + \infty) \Leftrightarrow y' \leq 0\ ,\forall
x\mathbb{\in R}

    \Leftrightarrow 3\left( m^{2} - 1
ight)x^{2} + 2(m - 1)x - 1 \leq 0\ ,\forall x\mathbb{\in
R}.

    * Trường hợp 1: m^{2} - 1 = 0
\Leftrightarrow m = \pm 1.

    + Với m = 1, ta được - 1 \leq 0\ ,\forall x\mathbb{\in R} (luôn đúng), suy ra m = 1 (nhận).

    + Với m = - 1, ta được - 4x - 1 \leq 0 \Leftrightarrow x \geq
\frac{1}{4}, suy ra m = -
1 (loại).

    * Trường hợp 2: m^{2} - 1 eq 0
\Leftrightarrow m eq \pm 1.

    Ta có \Delta' = (m - 1)^{2} + 3\left(
m^{2} - 1 ight)

    = m^{2} - 2m + 1 + 3m^{2} - 3 = 4m^{2} -
2m - 2.

    Để y' \leq 0\ ,\forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
m^{2} - 1 < 0 \\
4m^{2} - 2m - 2 \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 1 < m < 1 \\
- \frac{1}{2} \leq m \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow - \frac{1}{2} \leq m <
1.

    Tổng hợp lại, ta có tất cả giá trị m cần tìm là - \frac{1}{2} \leq m \leq 1.

    m\mathbb{\in Z}, suy ra m \in \left\{ 0\ ;1 ight\}, nên có 2 giá trị nguyên của tham số m.

  • Câu 15: Thông hiểu
    Xác định khoảng chứa tham số m

    Để hàm số y = x^{3} - 3x^{2} + m (với m là tham số) đạt cực tiểu tại x = 2 thì tham số m thuộc khoảng nào sau đây?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 6x +
m

    Hàm số đạt cực tiểu tại x = 2 \Rightarrow
y'(2) = 0 \Leftrightarrow m = 0

    Khi m = 0 \Rightarrow y' = 3x^{2} -
6x \Rightarrow y'' = 6x - 6

    Ta có: y''(2) = 6.2 - 6 = 6 >
0 suy ra hàm số đạt cực tiểu tại x
= 2

    Vậy m \in ( - 1;1) thì hàm số đạt cực tiểu tại x = 2.

  • Câu 16: Nhận biết
    Cho hàm số y = f(x) có đồ thị như hình vẽ.

    Trắc nghiệm Toán 12 Kết nối tri thức bài 1

    Hàm số đạt giá trị cực tiểu tại:

  • Câu 17: Nhận biết
    Tìm số cực trị của hàm số

    Hàm số y = f(x) có đạo hàm f'(x) = (x - 2)\left( x^{2} - 3 ight)\left(
x^{4} - 9 ight), với \forall
x\mathbb{\in R}. Hỏi hàm số y =
f(x) có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Ta có: f'(x) = 0 \Leftrightarrow (x -
2)\left( x^{2} - 3 ight)\left( x^{4} - 9 ight) = 0

    \Leftrightarrow (x - 2)\left( x +
\sqrt{3} ight)^{2}\left( x - \sqrt{3} ight)^{2}\left( x^{2} + 3
ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 \\
x = - \sqrt{3} \\
x = \sqrt{3} \\
\end{matrix} ight.

    Bảng biến thiên

    Từ bảng biến thiên của hàm số y =
f(x) ta thấy hàm số y =
f(x) có đúng một cực trị.

  • Câu 18: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = x^{4} - x^{3} +
3. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có: y' = 4x^{3} - 3x^{2} = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{3}{4} \\\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Vậy hàm số có đúng một cực trị.

  • Câu 19: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) có đạo hàm f'(x) = x(x - 2)^{3}, với mọi x\mathbb{\in R}. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight..

    Đồng thời f'(x) < 0
\Leftrightarrow x \in (0;2) nên ta chọn đáp án theo đề bài là (0;\ \ 1).

  • Câu 20: Thông hiểu
    Chọn đáp án thích hợp

    Cho các hàm số sau: y = x^{2} + 1;y =
\left( 2x^{2} - 1 ight)^{2};y = (2x - 1)\sqrt[3]{x^{2}};y =
\frac{x}{x^{2} + 1}. Có bao nhiêu hàm số có đúng một điểm cực trị?

    Hướng dẫn:

    Ta có:

    y = x^{2} + 1y' = 2x \Rightarrow y' = 0 \Leftrightarrow
x = 0y' đổi dấu khi x qua nghiệm đó nên hàm số có đúng 1 điểm cực trị.

    y = \left( 2x^{2} - 1
ight)^{2}y' = 2\left(
2x^{2} - 1 ight).4x \Rightarrow y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm \frac{1}{\sqrt{2}} \\
\end{matrix} ight.y' đổi dấu khi x qua các nghiệm đó nên hàm số có 3 điểm cực trị.

    y = (2x - 1)\sqrt[3]{x^{2}} \Rightarrow
y' = 2\sqrt[3]{x^{2}} + \frac{2(2x - 1)}{3\sqrt[3]{x}} = \frac{10x -
2}{3\sqrt[3]{x}}

    \Rightarrow y' = 0 \Leftrightarrow x
= \frac{1}{5}; y’ không xác định khi x = 0 và y’ đổi dấu khi x qua 0;\frac{1}{5} nên hàm số có hai điểm cực trị.

    y = \frac{x}{x^{2} + 1} \Rightarrow
y' = \frac{1 - x^{2}}{\left( x^{2} + 1 ight)^{2}} = 0
\Leftrightarrow x = \pm 1 và y’ đổi dấu khi x qua các nghiệm đó nên hàm số có hai điểm cực trị.

    Vậy chỉ có một hàm số có đúng một cực trị.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo