Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = x^{4} - 2x^{2} +
3. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta thấy hàm số đã cho là hàm trùng phương y = ax^{4} + bx^{2} + c;(a eq 0) với ab < 0 nên đây là trường hợp hàm số có ba điểm cực trị.

  • Câu 2: Nhận biết
    Chọn mệnh đề sai

    Cho hàm số y = ax^{3} + bx^{2} + cx +
d;\left( a;b;c;d\mathbb{\in R} ight) có đồ thị hàm số như hình vẽ:

    Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Giá trị cực đại của hàm số là 4 suy ra mệnh đề sai là: “Giá trị cực đại của hàm số là - 1.”

  • Câu 3: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm y' = - x^{2} - 1;\forall x\mathbb{\in
R}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có: y' = - x^{2} - 1;\forall
x\mathbb{\in R \Rightarrow}f'(x) < 0;\forall x\mathbb{\in
R} do đó hàm số y = f(x) nghịch biến trên \mathbb{R}

    Do 0 < 2020 \Rightarrow f(0) >
f(2020)

  • Câu 4: Nhận biết
    Chọn mệnh đề sai

    Cho hàm số y =\frac{2x + 1}{x - 3}. Mệnh đề nào dưới đây là mệnh đề sai?

    Hướng dẫn:

    f'(x) = \frac{- 7}{(x - 3)^{2}}< 0;\forall x \in D nên đồ thị hàm số luôn nghịch biến trên các khoảng ( - \infty;3),(3; +\infty).

    Vậy mệnh đề sai là: "Hàm số đồng biến trên \mathbb{R}\backslash\left\{ 3 ight\}".

  • Câu 5: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y =
f(x) xác định và liên tục trên khoảng ( - \infty; + \infty), có bảng biến thiên như hình sau:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy:

    Hàm số nghịch biến trên khoảng ( -
1;1)

    Hàm số đồng biến trên khoảng ( - \infty;
- 1) \cup (1; + \infty)

    Vậy đáp án cần tìm là: “Hàm số đồng biến trên khoảng ( - \infty; - 2)”.

  • Câu 6: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Điểm cực đại của đồ thị hàm số là:

    Hướng dẫn:

    Điểm cực đại của đồ thị hàm số đã cho là ( - 1;2).

  • Câu 7: Nhận biết
    Xác định số điểm cực trị của hàm số

    Cho hàm số y = 2x^{3} - x^{2} - 4x +
2. Hàm số có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Ta có: y' = 6x^{2} - 2x - 4 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = - \dfrac{2}{3} \\\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Vậy hàm số có hai điểm cực trị.

  • Câu 8: Thông hiểu
    Tìm số điểm cực trị của hàm số

    Cho hàm số f(x) có đạo hàm f'(x) = x(x + 2)^{2},\forall x\mathbb{\in
R}. Số điểm cực trị của hàm số đã cho là

    Hướng dẫn:

    Bảng biến thiên

    Từ bảng biến thiên ta thấy hàm số đã cho có đúng một điểm cực trị đó là điểm cực tiểu x = 0.

  • Câu 9: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x - 2)^{2}(1 - x) với mọi x\mathbb{\in R}. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có f'(x) > 0 \Leftrightarrow (x
- 2)^{2}(1 - x) > 0

    \Leftrightarrow \left\{ \begin{matrix}
1 - x > 0 \\
(x - 2)^{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 1 \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow x < 1.

    Vậy hàm số đồng biến trên khoảng ( -
\infty;1).

  • Câu 10: Nhận biết
    Xác định hàm số thích hợp

    Hàm số nào dưới đây đồng biến trên khoảng ( - \infty; + \infty)?

    Hướng dẫn:

    y = x^{3} + x \Rightarrow y' =
3x^{2} + 1 > 0,\ \ \forall x\mathbb{\in R}.

  • Câu 11: Thông hiểu
    Xác định khoảng chứa tham số m

    Để hàm số y = x^{3} - 3x^{2} + m (với m là tham số) đạt cực tiểu tại x = 2 thì tham số m thuộc khoảng nào sau đây?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 6x +
m

    Hàm số đạt cực tiểu tại x = 2 \Rightarrow
y'(2) = 0 \Leftrightarrow m = 0

    Khi m = 0 \Rightarrow y' = 3x^{2} -
6x \Rightarrow y'' = 6x - 6

    Ta có: y''(2) = 6.2 - 6 = 6 >
0 suy ra hàm số đạt cực tiểu tại x
= 2

    Vậy m \in ( - 1;1) thì hàm số đạt cực tiểu tại x = 2.

  • Câu 12: Nhận biết
    Chọn mệnh đề đúng

    Hàm số y = f(x) có đạo hàm y' = x^{2}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    y' = 0 \Leftrightarrow x^{2} = 0
\Leftrightarrow x = 0

    Vậy kết luận đúng là: “Hàm số đồng biến trên \mathbb{R}”.

  • Câu 13: Nhận biết
    Chọn khoảng nghịch biến của hàm số

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau:

    Hướng dẫn:

    Do f'(x) < 0\forall x \in ( -
1;3) nên hàm số f(x) nghịch biến trên khoảng ( -
1;3).

  • Câu 14: Nhận biết
    Tìm hàm số đồng biến trên tập số thực

    Cho hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Xét hàm số f(x) = x^{3} - 3x^{2} + 3x -
4 ta có:

    f'(x) = 3x^{2} - 6x + 3 = 3(x -
1)^{2} \geq 0;\forall x\mathbb{\in R}

    \Rightarrow f(x) = x^{3} - 3x^{2} + 3x -
4 đồng biến trên \mathbb{R}.

  • Câu 15: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}f'(x) < 0,\forall x \in (0; +
\infty) biết f(0) = 3. Khẳng định nào sau đây có thể xảy ra.

    Gợi ý:

    Xét từng đáp án

    Hướng dẫn:

    Do f^{'}(x) < 0,\forall x \in (0;
+ \infty) nên hàm số y =
f(x) nghịch biến trên (0; +
\infty).

    Khi đó ta có:

    f(2024) < f(0) = 3 \Rightarrow f(2024)
= 3,5 sai

    f(2023) < f(0) = 3 \Rightarrow f(2023)
+ f(2024) < 3 + 3 = 6 \Rightarrow f(2023) + f(2024) = 6 sai

    f(2023) > f(2024) \Rightarrow f(2023)
< f(2024) sai

    Do đó, f( - 2024) = 3 đúng.

  • Câu 16: Nhận biết
    Xác định khoảng nghịch biến của hàm số

    Tìm các khoảng nghịch biến của hàm số y = \frac{1 - x}{x + 1}?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y = \frac{1 - x}{x + 1}
\Rightarrow y' = \frac{- 2}{(x + 1)^{2}} < 0;\forall x \in
D

    Do đó hàm số luôn nghịch biến trên từng khoảng xác định.

  • Câu 17: Nhận biết
    Chọn phương án đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực tiểu của hàm số đã cho bằng

    Hướng dẫn:

    Từ bảng biến thiên, ta thấy giá trị cực tiểu của hàm số đã cho bằng - 4.

  • Câu 18: Thông hiểu
    Tìm m để hàm số nghịch biến trên R

    Số các giá trị nguyên của tham số m trong đoạn \lbrack - 100;100brack để hàm số y = mx^{3} + mx^{2} + (m + 1)x - 3 nghịch biến trên \mathbb{R} là:

    Hướng dẫn:

    Trường hợp 1: m = 0.

    Ta có:

    y = x - 3y' = 1 > 0 với mọi x\mathbb{\in R} nên hàm số luôn đồng biến trên trên \mathbb{R}.

    Do đó loại m = 0.

    Trường hợp 2: m eq 0.

    Ta có: y' = 3mx^{2} + 2mx + m +
1, \Delta' = - 2m^{2} - 3m = m(
- 2m - 3)

    Hàm số nghịch biến trên \mathbb{R} khi và chỉ khi y' \leq 0 với mọi x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
m < 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 0 \\
m( - 2m - 3) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m < 0 \\
- 2m - 3 \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \leq -
\frac{3}{2}.

    mlà số nguyên thuộc đoạn \lbrack - 100;100brack nên m \in \left\{ - 2; - 3;...; - 99; - 100
ight\}.

    Vậy có 99 giá trị m.

  • Câu 19: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số f(x) có bảng biến thiên như sau:

    Điểm cực đại của hàm số đã cho là

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có: hàm số đạt cực đại tại điểm x = 3.

  • Câu 20: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hàm số y = \frac{1}{3}x^{3} -\frac{m}{2}x^{2} - \left( 3m^{2} - 1 ight)x + m với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để ham số đã cho đạt cực trị tại hai điểm x_{1};x_{2} thỏa mãn x_{1}.x_{2} + 2\left( x_{1} + x_{2}ight) + 4 = 0. Tìm số phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{1}{3}x^{3} -\frac{m}{2}x^{2} - \left( 3m^{2} - 1 ight)x + m với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để ham số đã cho đạt cực trị tại hai điểm x_{1};x_{2} thỏa mãn x_{1}.x_{2} + 2\left( x_{1} + x_{2}ight) + 4 = 0. Tìm số phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo