Cho hàm số . Khẳng định nào sau đây đúng?
Ta thấy hàm số đã cho là hàm trùng phương với
nên đây là trường hợp hàm số có ba điểm cực trị.
Cho hàm số . Khẳng định nào sau đây đúng?
Ta thấy hàm số đã cho là hàm trùng phương với
nên đây là trường hợp hàm số có ba điểm cực trị.
Cho hàm số có đồ thị hàm số như hình vẽ:
Mệnh đề nào sau đây sai?
Giá trị cực đại của hàm số là suy ra mệnh đề sai là: “Giá trị cực đại của hàm số là
.”
Cho hàm số liên tục trên
và có đạo hàm
. Khẳng định nào sau đây đúng?
Ta có: do đó hàm số
nghịch biến trên
Do
Cho hàm số . Mệnh đề nào dưới đây là mệnh đề sai?
Vì nên đồ thị hàm số luôn nghịch biến trên các khoảng
.
Vậy mệnh đề sai là: "Hàm số đồng biến trên ".
Cho hàm số xác định và liên tục trên khoảng
, có bảng biến thiên như hình sau:
Mệnh đề nào sau đây đúng?
Dựa vào bảng biến thiên ta thấy:
Hàm số nghịch biến trên khoảng
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là: “Hàm số đồng biến trên khoảng ”.
Cho hàm số liên tục trên
và có bảng biến thiên như sau:
Điểm cực đại của đồ thị hàm số là:
Điểm cực đại của đồ thị hàm số đã cho là .
Cho hàm số . Hàm số có bao nhiêu điểm cực trị?
Ta có:
Ta có bảng xét dấu như sau:
Vậy hàm số có hai điểm cực trị.
Cho hàm số có đạo hàm
. Số điểm cực trị của hàm số đã cho là
Bảng biến thiên
Từ bảng biến thiên ta thấy hàm số đã cho có đúng một điểm cực trị đó là điểm cực tiểu .
Cho hàm số có đạo hàm
với mọi
. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Ta có
.
Vậy hàm số đồng biến trên khoảng .
Hàm số nào dưới đây đồng biến trên khoảng ?
Vì .
Để hàm số (với
là tham số) đạt cực tiểu tại
thì tham số
thuộc khoảng nào sau đây?
Tập xác định
Ta có:
Hàm số đạt cực tiểu tại
Khi
Ta có: suy ra hàm số đạt cực tiểu tại
Vậy thì hàm số đạt cực tiểu tại
.
Hàm số có đạo hàm
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy kết luận đúng là: “Hàm số đồng biến trên ”.
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau:
Do nên hàm số
nghịch biến trên khoảng
.
Cho hàm số sau, hàm số nào đồng biến trên ?
Xét hàm số ta có:
đồng biến trên
.
Cho hàm số có đạo hàm trên
và
biết
. Khẳng định nào sau đây có thể xảy ra.
Xét từng đáp án
Do nên hàm số
nghịch biến trên
.
Khi đó ta có:
sai
sai
sai
Do đó, đúng.
Tìm các khoảng nghịch biến của hàm số ?
Tập xác định
Ta có:
Do đó hàm số luôn nghịch biến trên từng khoảng xác định.
Cho hàm số có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng
Từ bảng biến thiên, ta thấy giá trị cực tiểu của hàm số đã cho bằng .
Số các giá trị nguyên của tham số trong đoạn
để hàm số
nghịch biến trên
là:
Trường hợp 1: .
Ta có:
có
với mọi
nên hàm số luôn đồng biến trên trên
.
Do đó loại .
Trường hợp 2: .
Ta có: ,
Hàm số nghịch biến trên khi và chỉ khi
với mọi
.
Vì là số nguyên thuộc đoạn
nên
.
Vậy có giá trị
.
Cho hàm số có bảng biến thiên như sau:
Điểm cực đại của hàm số đã cho là
Dựa vào bảng biến thiên ta có: hàm số đạt cực đại tại điểm .
Cho hàm số với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để ham số đã cho đạt cực trị tại hai điểm
thỏa mãn
. Tìm số phần tử của tập hợp
?
Cho hàm số với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để ham số đã cho đạt cực trị tại hai điểm
thỏa mãn
. Tìm số phần tử của tập hợp
?
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: