Cho hàm số có bảng biến thiên như sau:
Số điểm cực trị của hàm số là:
Khi đó bảng biến thiên của hàm số là:
Dựa vào bảng biến thiên ta thấy hàm số có 5 điểm cực trị.
Cho hàm số có bảng biến thiên như sau:
Số điểm cực trị của hàm số là:
Khi đó bảng biến thiên của hàm số là:
Dựa vào bảng biến thiên ta thấy hàm số có 5 điểm cực trị.
Cho hàm số có bảng biến thiên như sau
Mệnh đề nào dưới đây sai?
Từ bảng biến thiên đã cho ta thấy mệnh đề sai là: “Hàm số có giá trị cực đại bằng .”
Cho hàm số có đạo hàm
trên khoảng
. Đồ thị hàm số
như hình vẽ:
Hàm số nghịch biến trên khoảng nào trong các khoảng sau?
Quan sát hình vẽ ta thấy:
và
Vậy hàm số nghịch biến trên khoảng
.
Cho hàm số có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng:
Dựa vào bảng biến thiên suy ra hàm số đạt cực tiểu tại và
; giá trị cực tiểu bằng
.
Cho hàm số có bảng biến thiên như sau:
Hàm số nghịch biến trong khoảng nào?
Từ bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng .
Hàm số đồng biến trên khoảng
Ta có y’ = 8x => y’ = 0 => x = 0
=> y’ > 0 => x > 0
=> y’ < 0 => x < 0
Vậy hàm số đồng biến trên khoảng
Cho hàm số liên tục trên
và có đạo hàm
. Khẳng định nào sau đây đúng?
Ta có: do đó hàm số
nghịch biến trên
Do
Cho hàm số có bảng xét dấu đạo hàm như sau:
Mệnh đề nào dưới đây đúng?
Hàm số có
đổi dấu từ + sang – khi
đi qua điểm
Vậy hàm số đạt cực đại tại
.
Cho hàm số có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là:
Quan sát đồ thị của hàm số đã cho ta có:
Hàm số có ba điểm cực trị.
Cho hàm số có đồ thị như hình vẽ:
Hàm số nghịch biến trên khoảng nào dưới đây?
Từ đồ thị hàm số ta thấy hàm số đồng biến trên khoảng
Xét hàm số ta có:
Suy ra hàm số nghịch biến trên khoảng
.
Cho hàm số có đạo hàm
,
. Mệnh đề nào dưới đây đúng?
Do hàm số có đạo hàm
nên hàm số đồng biến trên khoảng
.
Cho hàm số . Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số nghịch biến trên tập xác định
Hay hàm số nghịch biến trên các khoảng .
Cho hàm số . Mệnh đề nào dưới đây là đúng?
Ta có:
+) TXĐ: .
+) , do đó hàm số đồng biến trên
.
Hỏi có bao nhiêu số nguyên để hàm số
nghịch biến trên khoảng
.
Ta có
Hàm số đã cho nghịch biến trên khoảng
.
* Trường hợp 1: .
+ Với , ta được
(luôn đúng), suy ra
(nhận).
+ Với , ta được
, suy ra
(loại).
* Trường hợp 2: .
Ta có
.
Để
.
Tổng hợp lại, ta có tất cả giá trị cần tìm là
.
Vì , suy ra
, nên có 2 giá trị nguyên của tham số
.
Để hàm số (với
là tham số) đạt cực tiểu tại
thì tham số
thuộc khoảng nào sau đây?
Tập xác định
Ta có:
Hàm số đạt cực tiểu tại
Khi
Ta có: suy ra hàm số đạt cực tiểu tại
Vậy thì hàm số đạt cực tiểu tại
.

Hàm số đạt giá trị cực tiểu tại:
Hàm số có đạo hàm
, với
. Hỏi hàm số
có bao nhiêu điểm cực trị?
Ta có:
Bảng biến thiên
Từ bảng biến thiên của hàm số ta thấy hàm số
có đúng một cực trị.
Cho hàm số . Khẳng định nào sau đây đúng?
Ta có:
Ta có bảng xét dấu như sau:
Vậy hàm số có đúng một cực trị.
Cho hàm số có đạo hàm
, với mọi
. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Ta có: .
Đồng thời nên ta chọn đáp án theo đề bài là
.
Cho các hàm số sau: . Có bao nhiêu hàm số có đúng một điểm cực trị?
Ta có:
có
và
đổi dấu khi
qua nghiệm đó nên hàm số có đúng 1 điểm cực trị.
có
và
đổi dấu khi
qua các nghiệm đó nên hàm số có 3 điểm cực trị.
; y’ không xác định khi
và y’ đổi dấu khi
qua
nên hàm số có hai điểm cực trị.
và y’ đổi dấu khi x qua các nghiệm đó nên hàm số có hai điểm cực trị.
Vậy chỉ có một hàm số có đúng một cực trị.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: