Cho hàm số có đạo hàm
với mọi
. Điểm cực tiểu của hàm số đã cho là
Ta có
Bảng xét dấu đạo hàm.
Suy ra hàm số đạt cực tiểu tại
Cho hàm số có đạo hàm
với mọi
. Điểm cực tiểu của hàm số đã cho là
Ta có
Bảng xét dấu đạo hàm.
Suy ra hàm số đạt cực tiểu tại
Tìm tất cả các giá trị của tham số để hàm số
đồng biến trên
?
Ta có:
Hàm số đồng biến trên
Dễ thấy
Vậy hàm số đã cho đồng biến trên khi
.
Cho hàm số luôn nghịch biến trên
. Tập nghiệm của bất phương trình
là:
Vì hàm số luôn nghịch biến trên
nên ta có:
Vậy tập nghiệm của bất phương trình là
Cho hàm số có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào
dưới đây?
Nhìn vào đồ thị đã cho, ta có hàm số nghịch biến trên khoảng nên nghịch biến trên khoảng
.
Điểm cực đại của đồ thị hàm số là điểm
Tập xác định:
Ta có:
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta có điểm cực đại của đồ thị hàm số là .
Cho hàm số có đồ thị như hình vẽ bên
Hàm số nghịch biến trên khoảng nào sau đây?
Quan sát đồ thị nhận biết khoảng nghịch biến trên khoảng .
Cho hàm số y = f(x) có đạo hàm . Số điểm cực trị của hàm số đã cho bằng
Ta có:
=> Hàm số có 3 điểm cực trị
Tìm tất cả các giá trị thực của tham số để hàm số
có hai cực trị?
Ta có:
Để hàm số đã cho có hai cực trị thì có hai nghiệm phân biệt
Vậy với thì hàm số
có hai cực trị.
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đạt cực tiểu tại
Theo bảng biến thiên thì hàm số đạt cực tiểu tại điểm
Cho hàm số có đạo hàm
Số điểm cực trị của hàm số đã cho là
Xét dấu của đạo hàm:
Ta thấy đạo hàm đổi dấu đúng 1 lần nên hàm số đã cho có đúng 1 điểm cực trị
Hỏi hàm số đồng biến trên khoảng nào?
Ta có:
Tập xác định:
Ta có: ;
suy ra
Giới hạn: ;
Bảng biến thiên:
Vậy hàm số đồng biến trên khoảng .
Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?
Xét hàm số ta có:
Điều kiện xác định
Lại có: nên hàm số
nghịch biến trên từng khoảng xác định của nó.
Tìm tập hợp tất cả các giá trị của tham số thực để hàm số
đồng biến trên khoảng
.
Ta có: .
Hàm số đồng biến trên khoảng khi và chỉ khi
.
.
Cho hàm số có đạo hàm
. Số điểm cực trị của hàm số đã cho là:
Ta có:
Ta có bảng xét dấu:
Vậy hàm số đã cho có một điểm cực trị.
Cho hàm số có bảng biến thiên như sau
Mệnh đề nào dưới đây đúng?
Dựa vào bảng biến thiên.
Hàm số có đạo hàm trên và
đổi dấu từ âm sang dương khi đi qua
nên hàm số đạt cực tiểu tại
.
Cho hàm số xác định trên
và có bảng biến thiên như hình bên dưới
Hàm số đồng biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên, ta thấy hàm số đồng biến trên .
Cho hàm số có đạo hàm
. Số điểm cực trị của hàm số đã cho là
Ta có
.
Lập bảng xét dấu của như sau:
Ta thấy đổi dấu khi đi qua các điểm
và
, do đó hàm số
có hai điểm cực trị.
Cho hàm . Mệnh đề nào sau đây là đúng?
Tập xác định: .
Ta có ,
.
Vậy hàm số đồng biến trên khoảng
Cho hàm số có bảng xét dấu của đạo hàm như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Hàm số đã cho đồng biến trên
Trong các hàm số dưới đây, hàm số nào đồng biến trên ?
Hàm số y = x – sinx có tập các định và
Nên hàm số luôn đồng biến trên
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: