Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 5 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn phương án thích hợp

    Mực nước biển trung bình tại trường sa từ năm 2013 đến năm 2019 được cho bởi biểu đồ trong hình bên dưới.

    Trong khoảng thời gian từ năm 2016 đến năm 2019, năm nào mực nước biển trung bình tại trường sa cao nhất ?

    Hướng dẫn:

    Nhìn vào biểu đồ ta thấy, tại năm 2018 mực nước biển trung bình tại trường sa cao nhất bằng 242\
mm.

  • Câu 2: Thông hiểu
    Chọn kết luận đúng

    Để điều chỉnh nhiệt độ trong phòng, một hệ thống điều hòa không khí được phép hoạt động trong 10 phút. Gọi T là nhiệt độ phòng ở phút thứ t được cho bởi công thức T = - 0,008t^{3} - 0,16t + 28 với t \in \lbrack 1;10\rbrack. Trong thời gian 10 phút kể từ khi hệ thống điều hòa không khí bắt đầu hoạt động, nhiệt độ trong phòng tăng hay giảm?

    Hướng dẫn:

    Xét hàm số T = - 0,008t^{3} - 0,16t +
28 với t \in \lbrack
1;10\rbrack.

    T' = - 0,024t^{2} - 0,16 <
0,\forall t \in \lbrack 1;10\rbrack.

    Suy ra hàm số T nghịch biến trên đoạn \lbrack 1;10\rbrack. Vậy trong thời gian 10 phút kể từ khi hệ thống làm mát bắt đầu hoạt động, nhiệt độ trong phòng giảm.

  • Câu 3: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) có đạo hàm f'(x) = - x(x - 2)^{2}(x - 3),\forall x\mathbb{\in R}. Xét tính đúng sai của các nhận định dưới đây:

    a) Hàm số có ba điểm cực trị. Sai||Đúng

    b) \min_{x \in ( - \infty;2)}f(x) =
f(0). Đúng||Sai

    c) \max_{x \in \lbrack 0;4\rbrack}f(x) =
f(3). Đúng||Sai

    d) \max_{}f\left( e^{x} + e^{- x} \right)
= f(3). Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) có đạo hàm f'(x) = - x(x - 2)^{2}(x - 3),\forall x\mathbb{\in R}. Xét tính đúng sai của các nhận định dưới đây:

    a) Hàm số có ba điểm cực trị. Sai||Đúng

    b) \min_{x \in ( - \infty;2)}f(x) =
f(0). Đúng||Sai

    c) \max_{x \in \lbrack 0;4\rbrack}f(x) =
f(3). Đúng||Sai

    d) \max_{}f\left( e^{x} + e^{- x} \right)
= f(3). Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Đúng

    Ta có f'(x) = - x(x - 2)^{2}(x - 3) =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
x = 3
\end{matrix} \right..

    BBT:

    Từ bảng biến thiên ta thấy giá trị lớn nhất của hàm số f(x) trên đoạn \lbrack 0\ ;\ 4\rbrackf(3).

    d) Ta có: e^{x} + e^{- x} \geq
2\sqrt{e^{x}.e^{- x}} = 2\overset{}{\rightarrow}\max_{}f\left( e^{x} +
e^{- x} \right) = f(3).

  • Câu 4: Nhận biết
    Tính vận tốc tức thời của chuyển động

    Một chuyển động thẳng xác định bởi phương trình s(t) = 4t^{3} + 6t + 2, trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc tức thời của chuyển động tại t =
2.

    Hướng dẫn:

    Vận tốc tức thời của chuyển động là:v(t)
= s'(t) = 12t^{2} + 6

    Khi t = 2,\ v(2) = 12.2^{2} + 6 =
54(m/s)

  • Câu 5: Nhận biết
    Tính lợi nhuận cao nhất của doanh nghiệp

    Một doanh nghiệp dự kiến lợi nhuận khi sản xuất x sản phẩm (0
\leq x \leq 300) được cho bởi hàm số y = - x^{3} + 300x^{2} và được minh họa bằng đồ thị ở hình bên dưới.

    Cần sản xuất bao nhiêu sản phẩm để doanh nghiệp thu được lợi nhuận cao nhất?

    Hướng dẫn:

    Dựa vào đồ thị ta thấy hàm số có giá trị lớn nhất bằng 4000000 khi x
= 200

    Do đó cần sản suất 200 sản phẩm thì doanh nghiệp thu được lợi nhuận cao nhất.

  • Câu 6: Nhận biết
    Tìm vận tốc tức thời của vật

    Một vật rơi tự do có phương trình chuyển động là s(t) = \frac{1}{2}gt^{2}, trong đó g = 9,8m/s^{2}. Tìm vận tốc tức thời của vật tại thời điểm t = 3(s).

    Hướng dẫn:

    Ta có: v(t) = s'(t) =
9,8t.

    Vận tốc tức thời của vật tại thời điểm t
= 3(s)là: v(3) = 9,8.3 =
29,4(m/s).

  • Câu 7: Thông hiểu
    Tính gia tốc tức thời của tàu con thoi

    Kính viễn vọng không gian Hubble được triển khai vào ngày 24 tháng 4 năm 1990, bởi tàu con thoi Discovery. Vận tốc của tàu con thoi trong nhiệm vụ này từ khi xuất phát tại t =
0 (s) cho đến khi tên lửa đẩy nhiên liệu rắn bị loại bỏ ở t = 126 (s) được xác định theo phương trình sau:

    v(t) = 0,001302t^{3} - 0,09029t^{2} +
23,61t - 3,083(f/s).

    (Nguồn: James Stewan, Calculus)

    Tính gia tốc tức thời của tàu con thoi trên tại thời điểm t = 100 (s) (làm tròn kết quả đến hàng phần nghìn).

    Hướng dẫn:

    Gia tốc tức thời của tàu con thoi tại thời điểm t (s) là:

    a(t) = v'(t) = 0,003906t^{2} -
0,18058t + 23,61\left( ft/s^{2} \right).

    Gia tốc tức thời của tàu con thoi tại thời điểm t = 100 (s) là:

    a(100) = 0,003906 \cdot 100^{2} -
0,18058 \cdot 100 + 23,61 = 44,612\left( ft/s^{2} \right).

  • Câu 8: Nhận biết
    Xét tính đúng sai của các nhận định

    Cho đồ thị hàm số y = \frac{bx - c}{x -
a} (a,b,c\mathbb{\in R}) có đồ thị như hình vẽ bên dưới.

    A graph of a functionDescription automatically generated

    Xét tính đúng sai của các nhận định?

    a) Hàm số nghịch biến trên từng khoảng xác định. Đúng||Sai

    b) Giao điểm với trục tung là điểm có tung độ âm. Đúng||Sai

    c) Giao điểm với trục hoành là điểm có hoành độ âm. Đúng||Sai

    d) Trong các số a,b,c có hai số âm. Sai||Đúng

    Đáp án là:

    Cho đồ thị hàm số y = \frac{bx - c}{x -
a} (a,b,c\mathbb{\in R}) có đồ thị như hình vẽ bên dưới.

    A graph of a functionDescription automatically generated

    Xét tính đúng sai của các nhận định?

    a) Hàm số nghịch biến trên từng khoảng xác định. Đúng||Sai

    b) Giao điểm với trục tung là điểm có tung độ âm. Đúng||Sai

    c) Giao điểm với trục hoành là điểm có hoành độ âm. Đúng||Sai

    d) Trong các số a,b,c có hai số âm. Sai||Đúng

    a) Đúng

    b) Đúng

    c) Đúng

    d) Sai

    a) Đúng.

    Hàm số nghịch biến trên từng khoảng xác định.

    b) Đúng.

    Giao điểm với trục tung là điểm có tung độ âm.

    c) Đúng.

    Giao điểm với trục hoành là điểm có hoành độ âm.

    d) Sai.

    Tiệm cận đứng x = a > 0.

    Tiệm cận ngang y = b > 0.

    Đồ thị hàm số cắt trục tung tại điểm có tung độ \frac{c}{a} < 0 \Rightarrow c < 0 .

  • Câu 9: Nhận biết
    Tính vận tốc tức thời của chất điểm

    Một chất điểm chuyển động của phương trình s(t) = \frac{1}{3}t^{3} - 2t^{2} + 4t + 1 trong đó t > 0, ttính bằng giây, s(t)tính bằng mét. Tính vận tốc tức thời của chất điểm tại thời điểm t =
3(s).

    Hướng dẫn:

    Vận tốc tức thời của chất điểm tại thời điểm t(s)là: v(t)
= s'(t) = t^{2} - 4t + 4.

    Vậy vận tốc tức thời của chất điểm tại thời điểm t = 3(s)là: v(3) = 3^{2} - 4.3 + 4 = 1(m/s)

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát, có phương trình chuyển động x
= 4cos\left( \pi t - \frac{2\pi}{3} \right) + 3, trong đó \ t tính bằng giây và x tính bằng centimet. Tìm thời điểm mà vận tốc của con lắc bẳng 0.

    Hướng dẫn:

    Ta có: v = x' = - 4\pi\sin\left( \pi
t - \frac{2\pi}{3} \right)

    Vận tốc của con lắc bẳng 0

    => v = - 4\pi\sin\left( \pi t -
\frac{2\pi}{3} \right) = 0 = > t = \frac{2\pi}{3}(s)

  • Câu 11: Nhận biết
    Tính vận tốc tức thời của vật thả rơi tự do

    Trên Mặt Trăng, quãng đường rơi tư do của một vật được cho bởi công thức h(t) = 0,81t^{2}, với t được tính bằng giây và h tính bằng mét. Hãy tính vận tốc tức thời của vật được thả rơi tự do trên Mặt Trăng tại thời điểm t = 2.

    (Nguồn: https:/www.britannica.complace/Moon)

    Hướng dẫn:

    Vận tốc tức thời của vật là: v(t) =
h'(t) = 1,62t

    Tại thời điểm t = 2thì v(2) = 1,62.2 = 3,24(m/s)

  • Câu 12: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} - 3x + 1}{x +
2}\ \ \ (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là D =
\mathbb{R}\backslash\left\{ - 2 \right\}. Đúng||Sai

    b) Đồ thị (C) có tiệm cận ngang y = - 2. Sai||Đúng

    c) Đồ thị (C) có tiệm cận xiên y = x - 5. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị (C) cắt hai trục tọa độ tại điểm A,B. Diện tích tam giác OAB bằng \frac{25}{2}. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{x^{2} - 3x + 1}{x +
2}\ \ \ (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là D =
\mathbb{R}\backslash\left\{ - 2 \right\}. Đúng||Sai

    b) Đồ thị (C) có tiệm cận ngang y = - 2. Sai||Đúng

    c) Đồ thị (C) có tiệm cận xiên y = x - 5. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị (C) cắt hai trục tọa độ tại điểm A,B. Diện tích tam giác OAB bằng \frac{25}{2}. Đúng||Sai

    a) Hàm số xác định khi x + 2 \neq 0
\Leftrightarrow x \neq - 2. Tập xác định D = \mathbb{R}\backslash\left\{ - 2
\right\}.

    Do đó mệnh đề đúng.

    b) Ta có: \lim_{x \rightarrow + \infty}y
= \lim_{x \rightarrow + \infty}\frac{x^{2} - 3x + 1}{x + 2} = +
\infty\lim_{x \rightarrow -
\infty}y = \lim_{x \rightarrow - \infty}\frac{x^{2} - 3x + 1}{x + 2} = -
\infty.

    Suy ra đồ thị hàm số không có tiệm cận ngang. Do đó mệnh đề sai.

    c) Ta có \lim_{x \rightarrow +
\infty}\left\lbrack \frac{x^{2} - 3x + 1}{x + 2} - (x - 5) \right\rbrack
= 0

    \lim_{x \rightarrow - \infty}\left\lbrack
\frac{x^{2} - 3x + 1}{x + 2} - (x - 5) \right\rbrack = 0

    Vậy đồ thị có đường tiệm cận xiên là y =
x - 5. Do đó mệnh đề đúng.

    d) Đường tiệm cận xiên y = x - 5 cắt hai trục tọa độ O\ x,Oy lần lượt tại A(5;0);\ B(0; - 5).

    Tam giác OAB vuông tại O, có

    OA = \left| \overrightarrow{OA} \right| =
\sqrt{5^{2} + 0^{2}} = 5

    OB = \left| \overrightarrow{OB} \right| =
\sqrt{0^{2} + ( - 5)^{2}} = 5.

    Diện tích tam giác OAB bằng: \frac{1}{2}.OA.OB = \frac{1}{2}.5.5 =
\frac{25}{2}. Do đó mệnh đề đúng.

  • Câu 13: Nhận biết
    Xét tính đúng sai của các nhận định

    Cho hàm số bậc bốn y = f(x). Hàm số y = f'(x) có đồ thị như hình dưới đây

    Xét tính đúng sai của các nhận định sau:

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty\ ;\ 0). Sai||Đúng

    b) Hàm số  y = f(x)  đồng biến trên khoảng ( - 1\ ;\ 1). Đúng||Sai

    c) Hàm số y = f(x) nghịch biến trên khoảng ( - \infty\ ;\ 0). Sai||Đúng

    d) Hàm số y = f(x) nghịch biến trên khoảng (1\ ;\ 2). Đúng||Sai

    Đáp án là:

    Cho hàm số bậc bốn y = f(x). Hàm số y = f'(x) có đồ thị như hình dưới đây

    Xét tính đúng sai của các nhận định sau:

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty\ ;\ 0). Sai||Đúng

    b) Hàm số  y = f(x)  đồng biến trên khoảng ( - 1\ ;\ 1). Đúng||Sai

    c) Hàm số y = f(x) nghịch biến trên khoảng ( - \infty\ ;\ 0). Sai||Đúng

    d) Hàm số y = f(x) nghịch biến trên khoảng (1\ ;\ 2). Đúng||Sai

    a) Saib) Đúngc) Said) Đúng

    a) Sai, vì dựa vào đồ thị thì f'(x)
> 0 \forall x \in ( - 1\ ;\ 1)
\cup (2\ ;\  + \infty).

    b) Đúng, vì dựa vào đồ thị thì f'(x)
> 0 \forall x \in ( - 1\ ;\
1).

    c) Sai, vì dựa vào đồ thị thì f'(x)
< 0 \forall x \in ( - \infty\
;\  - 1) \cup (1\ ;\ 2).

    d) Đúng, vì dựa vào đồ thị thì f'(x)
< 0 \forall x \in (1\ ;\
2).

  • Câu 14: Nhận biết
    Tìm vận tốc tức thời của chuyển động

    Một vật chuyển động có quãng đường được xác định bởi phương trình s(t) = 2t^{2} + 5t + 2, trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc tức thời tại thời điểm t =
4.

    Hướng dẫn:

    Ta có s'(t) = 4t + 5,s'(4) =
21m/s

  • Câu 15: Nhận biết
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A diagram of a mathematical equationDescription automatically generated

    Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;2). Sai||Đúng

    b) Hàm số y = f(x)nghịch biến trên khoảng (0;3). Đúng||Sai

    c) Hàm số y = f(x)đạt cực đại tại x = 2. Sai||Đúng

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A diagram of a mathematical equationDescription automatically generated

    Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;2). Sai||Đúng

    b) Hàm số y = f(x)nghịch biến trên khoảng (0;3). Đúng||Sai

    c) Hàm số y = f(x)đạt cực đại tại x = 2. Sai||Đúng

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Hàm số y = f(x) đồng biến trên các khoảng ( - \infty;0)(3; + \infty).

    b) Hàm số y = f(x) nghịch biến trên khoảng (0;3).

    c) Hàm số y = f(x)đạt cực đại tại x = 0.

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4.

  • Câu 16: Nhận biết
    Tìm vận tốc tức thời của vật

    Một vật rơi tự do có phương trình chuyển động là s(t) = \frac{1}{2}gt^{2}, trong đó g = 9,8m/s^{2}. Tìm thời điểm mà vận tốc tức thời của vật tại thời điểm đó bằng 39,2(m/s).

    Hướng dẫn:

    Thật vậy: v(t) = s'(t) =
9,8t.

    Ta có: v(t) = 9,8t = 39,2 \Leftrightarrow
t = 4.

    Vậy vận tốc tức thời của vật đạt 39,2(m/s) tại thời điểm t = 4(s).

  • Câu 17: Nhận biết
    Tìm vận tốc tức thời của vật tại thời điểm t

    Một chuyển động thẳng xác định bởi phương trình s(t) = - 2t^{2} + 16t + 15, trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc tức thời tại thời điểm t =
3.

    Hướng dẫn:

    Ta có s'(t) = \left( - 2t^{2} + 16t +
15 \right)^{'} = ( - 2.3t + 16) = - 4t + 16.

    Vận tốc tức thời tại thời điểm t =
3s'(3) = - 1.3 = 16 =
4(m/s).

  • Câu 18: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x^{3} - 3x + 2. Khi đó các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x^{3} - 3x + 2. Khi đó các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) SAI vì Tập xác định của hàm số đã cho là \mathbb{R}.

    b) ĐÚNG. Thay x =
0 ta được y = 2.

    c) SAI. Ta có y' =
3x^{2} - 3. Ta thấy y'(0) = - 3
\neq 0. Suy ra hàm số không đạt cực trị tại điểm x = 0.

    d) ĐÚNG. Ta có y' =
3x^{2} - 3. Suy ra y' = 0
\Leftrightarrow x = 1\ (TM);x = - 1\ (KTM).

    y(0) = 2;y(2) = 4;y(1) = 0. Vậy giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4.

  • Câu 19: Nhận biết
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A diagram of a mathematical equationDescription automatically generated

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;2). Sai||Đúng

    b) Hàm số y = f(x)nghịch biến trên khoảng (0;3). Đúng||Sai

    c) Hàm số y = f(x)đạt cực đại tại x = 2. Sai||Đúng

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A diagram of a mathematical equationDescription automatically generated

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;2). Sai||Đúng

    b) Hàm số y = f(x)nghịch biến trên khoảng (0;3). Đúng||Sai

    c) Hàm số y = f(x)đạt cực đại tại x = 2. Sai||Đúng

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Hàm số y = f(x) đồng biến trên các khoảng ( - \infty;0)(3; + \infty).

    b) Hàm số y = f(x) nghịch biến trên khoảng (0;3).

    c) Hàm số y = f(x)đạt cực đại tại x = 0.

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4.

  • Câu 20: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ sau

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;3).Đúng||Sai

    b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số y = f(x) là 2. Sai||Đúng

    c) Hàm số y = f(x)có hai cực trị trái dấu. Sai||Đúng

    d) Phương trình đường thẳng qua 2 điểm cực trị của đồ thị hàm số y = f(x)d:y = - 3x. Đúng||Sai

    Đáp án là:

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ sau

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;3).Đúng||Sai

    b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số y = f(x) là 2. Sai||Đúng

    c) Hàm số y = f(x)có hai cực trị trái dấu. Sai||Đúng

    d) Phương trình đường thẳng qua 2 điểm cực trị của đồ thị hàm số y = f(x)d:y = - 3x. Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    a) Hàm số y = f(x) đồng biến trên các khoảng ( - \infty; - 1)(1; + \infty).

    b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1. Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là 3 - 1 = 2.

    c) Hàm số y = f(x) có hai cực trị là x = \pm 1.

    d) Gọi d:y = ax + b là đường thẳng qua hai điểm cực trị A( - 1;3),B(1; -
1).

    A,B \in d \Rightarrow \left\{\begin{matrix}- a + b = 3 \\a + b = - 1\end{matrix} \right.\Rightarrow \left\{ \begin{matrix}a = - 2 \\b = 1\end{matrix} \right.\  \Rightarrow d:y = - 2x + 1

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (65%):
    2/3
  • Thông hiểu (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo