Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 5 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính vận tốc tức thời của chuyển động

    Một chuyển động thẳng xác định bởi phương trình s(t) = 4t^{3} + 6t + 2, trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc tức thời của chuyển động tại t =
2.

    Hướng dẫn:

    Vận tốc tức thời của chuyển động là:v(t)
= s'(t) = 12t^{2} + 6

    Khi t = 2,\ v(2) = 12.2^{2} + 6 =
54(m/s)

  • Câu 2: Nhận biết
    Tìm vận tốc tức thời của vật

    Một vật rơi tự do có phương trình chuyển động là s(t) = \frac{1}{2}gt^{2}, trong đó g = 9,8m/s^{2}. Tìm thời điểm mà vận tốc tức thời của vật tại thời điểm đó bằng 39,2(m/s).

    Hướng dẫn:

    Thật vậy: v(t) = s'(t) =
9,8t.

    Ta có: v(t) = 9,8t = 39,2 \Leftrightarrow
t = 4.

    Vậy vận tốc tức thời của vật đạt 39,2(m/s) tại thời điểm t = 4(s).

  • Câu 3: Thông hiểu
    Xác định vận tốc của vật khi chạm đất

    Một vật được phóng theo phương thẳng đứng lên trên từ mặt đất với vận tốc ban đầu là 19,6m/s thì độ cao h của nó (tính bằng m) sau t giây được cho bởi công thức h = 19,6t - 4,9t^{2}. Tìm vận tốc của vật khi nó chạm đất.

    Hướng dẫn:

    Tại thời điểm mà vật đạt độ cao bằng 0, ta có: 0 = 19,6t - 4,9t^{2} \Leftrightarrow 0 = t(19,6 -
4,9t) \Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} \right.

    Khi t = 4 (thời điểm vật chạm đất), ta có:19,6 - 9,8(4) = -
19,6.

    Vậy vận tốc của vật khi nó chạm đất là 19,6 m/s.

  • Câu 4: Nhận biết
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A diagram of a mathematical equationDescription automatically generated

    Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;2). Sai||Đúng

    b) Hàm số y = f(x)nghịch biến trên khoảng (0;3). Đúng||Sai

    c) Hàm số y = f(x)đạt cực đại tại x = 2. Sai||Đúng

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A diagram of a mathematical equationDescription automatically generated

    Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;2). Sai||Đúng

    b) Hàm số y = f(x)nghịch biến trên khoảng (0;3). Đúng||Sai

    c) Hàm số y = f(x)đạt cực đại tại x = 2. Sai||Đúng

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Hàm số y = f(x) đồng biến trên các khoảng ( - \infty;0)(3; + \infty).

    b) Hàm số y = f(x) nghịch biến trên khoảng (0;3).

    c) Hàm số y = f(x)đạt cực đại tại x = 0.

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4.

  • Câu 5: Thông hiểu
    Chọn phương án thích hợp

    Một cửa hàng trà sữa có đồ thị biểu diễn số ly trà sữa bán được trong một tuần như sau. Số ly trà sữa cửa hàng đó bán được nhiều nhất trong một ngày là bao nhiêu

    Hướng dẫn:

    Từ đồ thị ta thấy vào thứ 7 cửa hàng bán được nhiều nhất là 58 ly trà sữa.

  • Câu 6: Nhận biết
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A diagram of a mathematical equationDescription automatically generated

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;2). Sai||Đúng

    b) Hàm số y = f(x)nghịch biến trên khoảng (0;3). Đúng||Sai

    c) Hàm số y = f(x)đạt cực đại tại x = 2. Sai||Đúng

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A diagram of a mathematical equationDescription automatically generated

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;2). Sai||Đúng

    b) Hàm số y = f(x)nghịch biến trên khoảng (0;3). Đúng||Sai

    c) Hàm số y = f(x)đạt cực đại tại x = 2. Sai||Đúng

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Hàm số y = f(x) đồng biến trên các khoảng ( - \infty;0)(3; + \infty).

    b) Hàm số y = f(x) nghịch biến trên khoảng (0;3).

    c) Hàm số y = f(x)đạt cực đại tại x = 0.

    d) Giá trị cực tiểu của hàm số y =
f(x)y = - 4.

  • Câu 7: Nhận biết
    Xét tính đúng sai của các nhận định

    Cho đồ thị hàm số y = \frac{bx - c}{x -
a} (a,b,c\mathbb{\in R}) có đồ thị như hình vẽ bên dưới.

    A graph of a functionDescription automatically generated

    Xét tính đúng sai của các nhận định?

    a) Hàm số nghịch biến trên từng khoảng xác định. Đúng||Sai

    b) Giao điểm với trục tung là điểm có tung độ âm. Đúng||Sai

    c) Giao điểm với trục hoành là điểm có hoành độ âm. Đúng||Sai

    d) Trong các số a,b,c có hai số âm. Sai||Đúng

    Đáp án là:

    Cho đồ thị hàm số y = \frac{bx - c}{x -
a} (a,b,c\mathbb{\in R}) có đồ thị như hình vẽ bên dưới.

    A graph of a functionDescription automatically generated

    Xét tính đúng sai của các nhận định?

    a) Hàm số nghịch biến trên từng khoảng xác định. Đúng||Sai

    b) Giao điểm với trục tung là điểm có tung độ âm. Đúng||Sai

    c) Giao điểm với trục hoành là điểm có hoành độ âm. Đúng||Sai

    d) Trong các số a,b,c có hai số âm. Sai||Đúng

    a) Đúng

    b) Đúng

    c) Đúng

    d) Sai

    a) Đúng.

    Hàm số nghịch biến trên từng khoảng xác định.

    b) Đúng.

    Giao điểm với trục tung là điểm có tung độ âm.

    c) Đúng.

    Giao điểm với trục hoành là điểm có hoành độ âm.

    d) Sai.

    Tiệm cận đứng x = a > 0.

    Tiệm cận ngang y = b > 0.

    Đồ thị hàm số cắt trục tung tại điểm có tung độ \frac{c}{a} < 0 \Rightarrow c < 0 .

  • Câu 8: Thông hiểu
    Tìm số dân cao nhát của thị trấn

    Số dân của một thị trấn sau t năm kể từ năm 2022 được ước tính bởi công thức f(t) = \frac{26t + 10}{t +
5} (f(t) được tính bằng nghìn người).

    Hỏi trong khoảng thời gian từ năm 2022 đến năm 2032 dân số của thị trấn đạt giá trị lớn nhất bằng bao nhiêu?

    Hướng dẫn:

    Xét hàm số f(t) = \frac{26t + 10}{t +
5} với t \in \lbrack
0;10\rbrack suy ra f'(t) =
\frac{120}{(t + 5)^{2}} > 0,\ \ \ \forall t \in \lbrack
0;10\rbrack.

    Suy ra hàm số f(t) đồng biến trên đoạn \lbrack 1;10\rbrack.

    Vậy dân số đạt giá trị lớn nhất bằng f(10) = 18.

  • Câu 9: Nhận biết
    Tính vận tốc tức thời của vật thả rơi tự do

    Trên Mặt Trăng, quãng đường rơi tư do của một vật được cho bởi công thức h(t) = 0,81t^{2}, với t được tính bằng giây và h tính bằng mét. Hãy tính vận tốc tức thời của vật được thả rơi tự do trên Mặt Trăng tại thời điểm t = 2.

    (Nguồn: https:/www.britannica.complace/Moon)

    Hướng dẫn:

    Vận tốc tức thời của vật là: v(t) =
h'(t) = 1,62t

    Tại thời điểm t = 2thì v(2) = 1,62.2 = 3,24(m/s)

  • Câu 10: Nhận biết
    Tìm vận tốc tức thời của vật

    Một vật rơi tự do có phương trình chuyển động là s(t) = \frac{1}{2}gt^{2}, trong đó g = 9,8m/s^{2}. Tìm vận tốc tức thời của vật tại thời điểm t = 3(s).

    Hướng dẫn:

    Ta có: v(t) = s'(t) =
9,8t.

    Vận tốc tức thời của vật tại thời điểm t
= 3(s)là: v(3) = 9,8.3 =
29,4(m/s).

  • Câu 11: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x^{3} - 3x + 2. Khi đó các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x^{3} - 3x + 2. Khi đó các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) SAI vì Tập xác định của hàm số đã cho là \mathbb{R}.

    b) ĐÚNG. Thay x =
0 ta được y = 2.

    c) SAI. Ta có y' =
3x^{2} - 3. Ta thấy y'(0) = - 3
\neq 0. Suy ra hàm số không đạt cực trị tại điểm x = 0.

    d) ĐÚNG. Ta có y' =
3x^{2} - 3. Suy ra y' = 0
\Leftrightarrow x = 1\ (TM);x = - 1\ (KTM).

    y(0) = 2;y(2) = 4;y(1) = 0. Vậy giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4.

  • Câu 12: Thông hiểu
    Xét tính đúng sai của các nhận định

    Dân số của một quốc gia sau t bắt đầu từ năm 2023 được tính theo công thức N(t) = 100e^{0,012t} . Các khẳng định dưới đây đúng hay sai?

    a) Dân số của quốc gia này ở năm 2030 vượt mức 110 triệu người. Sai||Đúng

    b) Dân số của quốc gia này ở năm 2035 vượt mức 115 triệu người. Đúng||Sai

    c) Vào năm 2030 thì tốc độ tăng dân số là 1,6 triệu người/năm. Sai||Đúng

    d) Vào năm 2026 thì tốc độ tăng dân số là 1,6 triệu người/năm. Đúng||Sai

    Đáp án là:

    Dân số của một quốc gia sau t bắt đầu từ năm 2023 được tính theo công thức N(t) = 100e^{0,012t} . Các khẳng định dưới đây đúng hay sai?

    a) Dân số của quốc gia này ở năm 2030 vượt mức 110 triệu người. Sai||Đúng

    b) Dân số của quốc gia này ở năm 2035 vượt mức 115 triệu người. Đúng||Sai

    c) Vào năm 2030 thì tốc độ tăng dân số là 1,6 triệu người/năm. Sai||Đúng

    d) Vào năm 2026 thì tốc độ tăng dân số là 1,6 triệu người/năm. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Dân số của quốc gia này ở năm 2030N(7)
= 100e^{0,012.7} \approx 108,8 triệu người.

    b) Dân số của quốc gia này ở năm 2035N(12)
= 100e^{0,012.12} \approx 115,5 triệu người.

    c) Hàm tốc độ tăng dân số là N'(t) =
1,2e^{0,012t}. Ta có:

    1,2e^{0,012t} = 1,6 \Leftrightarrow t
\approx 2,34.

    Vậy thời vào năm 2026, tốc độ tăng dân số là 1,6 triệu người/năm

    d) Hàm tốc độ tăng dân số là N'(t) =
1,2e^{0,012t}. Ta có:

    1,2e^{0,012t} = 1,6 \Leftrightarrow t
\approx 2,34.

    Vậy thời vào năm 2026, tốc độ tăng dân số là 1,6 triệu người/năm.

  • Câu 13: Nhận biết
    Chọn kết luận đúng

    Hình bên cho biết sự thay đổi của nhiệt độ ở một thành phố trong một ngày. Thời điểm nào trong ngày có nhiệt độ thấp nhất ?

    Hướng dẫn:

    Từ đồ thị ta thấy thời điểm có nhiệt độ thấp nhất trong ngày là vào 4h sáng.

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động s(t) = 2 + 196t -
4,9t^{2}, trong đó t \geq
0, t(s)là thời gian chuyển động, s(m)là độ cao so với mặt đất. Sau bao lâu kể từ khi bắn thì viên đạn đạt được độ cao 1962m?

    Hướng dẫn:

    Khi viên đạn đạt được độ cao1962m, ta có phương trình:

    1962 = 2 + 196t - 4,9t^{2} \Leftrightarrow t =
20

    Vậy sau 20s kể từ khi bắn thì viên đạn đạt được độ cao 1962m.

  • Câu 15: Nhận biết
    Tính tốc độ nhỏ nhất của xe đua

    Đồ thị bên dưới là tốc độ của một chiếc xe đua trên đoạn đường đua bằng phẳng dài 3 km.

    Tốc độ nhỏ nhất của xe đua trên đoạn đường này bằng

    Hướng dẫn:

    Dựa vào đồ thị ta thấy tốc độ nhỏ nhất bằng \mathbf{70}\mathbf{km}\mathbf{/}\mathbf{h}.

  • Câu 16: Nhận biết
    Tính vận tốc tức thời của chất điểm

    Một chất điểm chuyển động của phương trình s(t) = \frac{1}{3}t^{3} - 2t^{2} + 4t + 1 trong đó t > 0, ttính bằng giây, s(t)tính bằng mét. Tính vận tốc tức thời của chất điểm tại thời điểm t =
3(s).

    Hướng dẫn:

    Vận tốc tức thời của chất điểm tại thời điểm t(s)là: v(t)
= s'(t) = t^{2} - 4t + 4.

    Vậy vận tốc tức thời của chất điểm tại thời điểm t = 3(s)là: v(3) = 3^{2} - 4.3 + 4 = 1(m/s)

  • Câu 17: Nhận biết
    Chọn đáp án đúng

    Hình bên cho biết lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh đo theo đơn vị milimet. Hãy cho biết vào tháng nào trong năm 2019 thì lượng mưa là cao nhất ?

    ANH3

    Hướng dẫn:

    Từ đồ thị ta thấy vào Tháng 9 thì lượng mưa ở Thành phố Hồ Chí Minh cao nhất trong năm 2019

  • Câu 18: Nhận biết
    Tính lợi nhuận cao nhất của doanh nghiệp

    Một doanh nghiệp dự kiến lợi nhuận khi sản xuất x sản phẩm (0
\leq x \leq 300) được cho bởi hàm số y = - x^{3} + 300x^{2} và được minh họa bằng đồ thị ở hình bên dưới.

    Cần sản xuất bao nhiêu sản phẩm để doanh nghiệp thu được lợi nhuận cao nhất?

    Hướng dẫn:

    Dựa vào đồ thị ta thấy hàm số có giá trị lớn nhất bằng 4000000 khi x
= 200

    Do đó cần sản suất 200 sản phẩm thì doanh nghiệp thu được lợi nhuận cao nhất.

  • Câu 19: Nhận biết
    Tìm vận tốc tức thời của vật tại thời điểm t

    Một chuyển động thẳng xác định bởi phương trình s(t) = - 2t^{2} + 16t + 15, trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc tức thời tại thời điểm t =
3.

    Hướng dẫn:

    Ta có s'(t) = \left( - 2t^{2} + 16t +
15 \right)^{'} = ( - 2.3t + 16) = - 4t + 16.

    Vận tốc tức thời tại thời điểm t =
3s'(3) = - 1.3 = 16 =
4(m/s).

  • Câu 20: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{x^{2} + 3x}{x
- 1}.. Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số f(x) đồng biến trên khoảng ( - \infty;1). Sai||Đúng

    b) Cực đại của hàm số f(x)1. Đúng||Sai

    c) Hàm số f(x) có ba điểm cực trị. Sai||Đúng

    d) Hàm số f(x) nghịch biến trên khoảng ( - 1;3). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x^{2} + 3x}{x
- 1}.. Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số f(x) đồng biến trên khoảng ( - \infty;1). Sai||Đúng

    b) Cực đại của hàm số f(x)1. Đúng||Sai

    c) Hàm số f(x) có ba điểm cực trị. Sai||Đúng

    d) Hàm số f(x) nghịch biến trên khoảng ( - 1;3). Sai||Đúng

    a) Sai

    b) Đúng

    c) Sai

    d) Sai

    Tập xác định: D\mathbb{=
R}\backslash\left\{ 1 \right\}.

    y' = f'(x) = \frac{x^{2} - 2x -
3}{(x - 1)^{2}}.

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 3
\end{matrix} \right..

    Bảng biến thiên:

    A graph with arrows and numbersDescription automatically generated with medium confidence

    a) Từ bảng biến thiên suy ra mệnh đề sai.

    b) Mệnh đề đúng.

    c) Hàm số chỉ có hai điểm cực trị là x =
- 1x = 3. Vậy mệnh đề sai.

    d) Do hàm số không xác định tại x =
1 thuộc ( - 1;3) nên mệnh đề sai.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (65%):
    2/3
  • Thông hiểu (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo