Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 15 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Vị trí tương đối của đường thẳng và mặt phẳng

    Mặt phẳng \left( P ight):2x - 2y + 4z + 5 = 0  và đường thẳng (d):\left\{ \begin{array}{l}x - y + 2z + 1 = 0\\y + 2z - 3 = 0\end{array} ight. :   

    Hướng dẫn:

    Theo đề bài, ta có vecto pháp tuyến của \left( P ight):\overrightarrow n  = \left( {2, - 2,4} ight)

    Đường thẳng (d) được cho dưới dạng hệ của hai mặt phẳng: x - y + 2z + 1 = 02x + y - z - 3 = 0 cũng có 2 VTPT lần lượt \overrightarrow {{n_1}}  = \left( {1, - 1,2} ight);\overrightarrow {{n_2}}  = \left( {2,1, - 1} ight)

    Như vậy, VTCP của (d) sẽ là tích có hướng của 2 VTPT: \left( d ight):\overrightarrow a  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( { - 1,5,3} ight)

    \Rightarrow \overrightarrow n .\overrightarrow a  =  - 2 - 10 + 12 = 0

    Cho\,\,\,\,\,z = 0 \Rightarrow \left\{ \begin{array}{l}x - y =  - 1\\2x + y = 3\end{array} ight. \Rightarrow \left\{ \begin{array}{l}x = \dfrac{2}{3}\\y = \dfrac{5}{3}\end{array} ight.

    \Rightarrow A\left( {\frac{2}{3},\frac{5}{3},0} ight) \in \left( d ight) và tọa độ của A không thỏa mãn phương trình của (P).

    Vậy (d) // (P) .

  • Câu 2: Vận dụng
    Xác định phương trình thích hợp nhất

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 5 = 0 và hai điểm A( - 3;0;1),\ B(1; - 1;3). Trong các đường thẳng đi qua A và song song với (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là.

    Hướng dẫn:

    Gọi \Delta là đường thẳng cần tìm

    Gọi mặt phẳng (Q) qua A( - 3;0;1) và song song với (P). Khi đó: (Q):x - 2y + 2z + 1 = 0

    Gọi K,H lần lượt là hình chiếu của B lên \Delta,(Q). Ta có d(B,\Delta) = BK \geq BH. Do đó AH là đường thẳng cần tìm.

    (Q) có vectơ pháp tuyến \overrightarrow{n_{Q}} = (1; - 2;2)

    BH qua B và có vectơ chỉ phương \overrightarrow{a_{BH}} = \overrightarrow{n_{Q}} =
(1; - 2;2)

    BH:\left\{ \begin{matrix}
x = 1 + t \\
y = - 1 - 2t \\
z = 3 + 2t \\
\end{matrix} ight.

    \Delta đi qua điểm A( - 3;0;1) và có vectơ chỉ phương \overrightarrow{a_{\Delta}} = \overrightarrow{AH}
= \left( \frac{26}{9};\frac{11}{9}; - \frac{2}{9} ight) =
\frac{1}{9}(26;11; - 2)

    H \in BH \Rightarrow H(1 + t; - 1 - 2t;3
+ 2t)

    H \in (P) \Rightarrow t = - \frac{10}{9}
\Rightarrow H\left( - \frac{1}{9};\frac{11}{9};\frac{7}{9}
ight)

    Vậy phương trình của \Delta\Delta:\frac{x + 3}{26} = \frac{y}{11} =
\frac{z - 1}{- 2}

  • Câu 3: Vận dụng
    Viết phương trình đường phân giác

    Trong không gian Oxyz, cho hai đường thẳng cắt nhau \Delta_{1}:\frac{x +1}{1} = \frac{y - 2}{2} = \frac{z + 1}{3},\Delta_{2}:\frac{x + 1}{1} =\frac{y - 2}{2} = \frac{z + 1}{- 3}. Trong mặt phẳng \left( \Delta_{1};\Delta_{2} ight), hãy viết phương trình đường phân giác d của góc nhọn tạo bởi \Delta_{1};\Delta_{2}

    Hướng dẫn:

    Hai đường thẳng đã cho cùng đi qua điểm I(−1; 2; −1) và có các vectơ chỉ phương tương ứng là \overrightarrow{u_{1}} =
(1;2;3),\overrightarrow{u_{2}} = (1;2; - 3)

    Ta có \overrightarrow{u_{1}}.\overrightarrow{u_{2}} = -
4 < 0, suy ra góc giữa hai vectơ \overrightarrow{u_{1}}\overrightarrow{u_{2}} là góc tù.

    Lại có \left| \overrightarrow{u_{1}}
ight| = \left| \overrightarrow{u_{2}} ight|

    Kết hợp hai điều này, ta suy ra d có một vectơ chỉ phương là \overrightarrow{u} = \overrightarrow{u_{1}} -
\overrightarrow{u_{2}} = (0;0;6) = 6(0;0;1)

    Tóm lại, đường thẳng cần tìm đi qua điểm I(−1; 2; −1) và có một vectơ chỉ phương là \overrightarrow{u} =
(0;0;1)

    Vậy phương trình đường thẳng d là: \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 4: Vận dụng cao
    Viết phương trình đường thẳng

    Trong không gian Oxyz, cho mặt phẳng (P):x - 2y + 2z - 5 = 0 và hai điểm A( - 3;0;1),B(1; - 1;3). Trong các đường thẳng đi qua A và song song, (P) đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là:

    Hướng dẫn:

    Gọi (Q) là mặt phẳng qua A và song song (P).

    Ta có: ( - 3 - 2.0 + 2.1 - 5)(1 + 2.1 +
2.3 - 5) < 0=> A; B nằm về hai phía với (P).

    Gọi H là hình chiếu vuông góc của B lên (Q)=> BH cố định và d\left( B;(Q) \right) = BH.

    Gọi K là hình chiếu vuông góc của B lên bất kì qua A và nằm trong (Q) hay d//(P).

    Ta có: BK \geq BH \Leftrightarrow d(B,d)
> d(B,AH) \Rightarrow d(B,d) bé nhất bằng BH khi K \equiv H.

    Gọi \overrightarrow{n} là VTPT của (ABH) \Rightarrow \overrightarrow{n} =
\left\lbrack \overrightarrow{n_{P}},\overrightarrow{AB} \right\rbrack =
( - 2;6;7).

    d cần lập qua A, H và có VTCP \overrightarrow{u_{d}} = \left\lbrack
\overrightarrow{n},\overrightarrow{n_{P}} \right\rbrack = (26;11; -
2).

    Vậy phương trình đường thẳng d cần lập là: \frac{x + 3}{26} = \frac{y}{11} = \frac{z - 1}{-
2}

  • Câu 5: Vận dụng cao
    Ghi đáp án đúng vào ô trống

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm A(100;50;100) và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là B(50;100;50),C(150;100;100). Máy bay sẽ bay qua điểm W của đường màu BC để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm W(a;b;c), hãy tính giá trị biểu thức T = a + b -
2c.

    Đáp án: 50

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm A(100;50;100) và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là B(50;100;50),C(150;100;100). Máy bay sẽ bay qua điểm W của đường màu BC để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm W(a;b;c), hãy tính giá trị biểu thức T = a + b -
2c.

    Đáp án: 50

    Ta có: \overrightarrow{BC} =
(100;0;50)

    Đường thẳng (BC) đi qua điểm B có VTCP \overrightarrow{u} = (2;0;1)có dạng (BC):\left\{ \begin{matrix}
x = 50 + 2t \\
y = 100 \\
z = 50 + t \\
\end{matrix} ight.

    Điểm W \in (BC) \Rightarrow W(50 +
2t;100;50 + t) \overrightarrow{AW} = (2t - 50;50;t -
50)

    Ta có: \overrightarrow{AW}.\overrightarrow{BC} =
0

    \Rightarrow 2(2t - 50) + (t - 50) = 0
\Rightarrow t = 30

    Vậy H(110;100;80) \Rightarrow a + b - 2c
= 50.

  • Câu 6: Thông hiểu
    Phương trình chính tắc

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình chính tắc của cạnh AB.

    Hướng dẫn:

    (AB) là đường thẳng đi qua A và B nên có 1 vecto chỉ phương:  \overrightarrow {AB}  = \left( {1, - 3,7} ight)

    (AB) đi qua A (1, 2, -3) và nhận vecto \overrightarrow {AB}  = \left( {1, - 3,7} ight) làm 1 VTCP có phương trình chính tắc là:

     \begin{array}{l}AB:x - 1 = \frac{{y - 2}}{{ - 3}} = \frac{{z + 3}}{7}\\ \Leftrightarrow {m{ }}x - 2 = \frac{{y + 1}}{{ - 3}} = \frac{{z - 4}}{7}\\ \Leftrightarrow \,\,x - 1 = \frac{{2 - y}}{3} = \frac{{z + 3}}{7}\end{array}

  • Câu 7: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho điểm A( - 1;0;4) và đường thẳng d có phương trình \frac{x + 1}{1} = \frac{y}{1} =
\frac{z - 1}{2}. Gọi \Delta là đường thẳng đi qua A, vuông góc và cắt d.

    a) Một vectơ chỉ phương của \Delta(1;1; - 1). Đúng||Sai

    b) Đường thẳng \Delta đi qua điểm A(2;3;1). Đúng||Sai

    c) Đường thẳng \Delta có phương trình \frac{x + 1}{x} = \frac{y}{1} =
\frac{z - 4}{- 1}. Đúng||Sai

    d) Đường thẳng \Delta có phương trình \left\{ \begin{matrix}
x = 1 + t \\
y = 1 \\
z = - 4 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right). Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho điểm A( - 1;0;4) và đường thẳng d có phương trình \frac{x + 1}{1} = \frac{y}{1} =
\frac{z - 1}{2}. Gọi \Delta là đường thẳng đi qua A, vuông góc và cắt d.

    a) Một vectơ chỉ phương của \Delta(1;1; - 1). Đúng||Sai

    b) Đường thẳng \Delta đi qua điểm A(2;3;1). Đúng||Sai

    c) Đường thẳng \Delta có phương trình \frac{x + 1}{x} = \frac{y}{1} =
\frac{z - 4}{- 1}. Đúng||Sai

    d) Đường thẳng \Delta có phương trình \left\{ \begin{matrix}
x = 1 + t \\
y = 1 \\
z = - 4 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right). Sai||Đúng

    a) Đúngb) Đúngc) Đúngd) Sai

    Phương trình tham số của đường thẳng d:\left\{ \begin{matrix}
x = - 1 + t \\
y = t \\
z = 1 + 2t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Gọi M = d \cap \Delta \Rightarrow M( - 1
+ t;t;1 + 2t).

    Khi đó \overrightarrow{AM} = (t;t;2t -
3) là một VTCP của đường thẳng \Delta.

    Theo đề bài \Delta\bot d \Leftrightarrow
\overrightarrow{AM}.\overrightarrow{u_{d}} = 0

    \Leftrightarrow 1.t + 1.t + 2(2t - 3) =
0 \Leftrightarrow t = 1

    \Leftrightarrow \overrightarrow{AM} =
(1;1; - 1)

    Phương trình đường thẳng \Delta qua A( - 1;0;4) và có một VTCP \overrightarrow{AM} = (1;1; - 1) là:

    \frac{x + 1}{x} = \frac{y}{1} = \frac{z -
4}{- 1} hoặc \Delta:\left\{
\begin{matrix}
x = - 1 + t \\
y = t \\
z = 4 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Khi đó ta có

    Phương án a): Đúng vì một vectơ chỉ phương của \Delta(1;1; - 1).

    Phương án b): Đúng vì thay toạ độ điểm A(2;3;1) vào phương trình đường thẳng \Delta thoả mãn.

    Phương án c): Đúng vì đường thẳng \Delta có phương trình \frac{x + 1}{x} = \frac{y}{1} = \frac{z - 4}{-
1}.

    Phương án d): Sai vì đường thẳng \Delta có phương trình: \left\{ \begin{matrix}
x = - 1 + t \\
y = t \\
z = 4 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x + 1}{2} = \frac{y}{1} = \frac{z -
2}{1}, mặt phẳng (P):x + y - 2z + 5
= 0A(1; - 1;2). Đường thẳng \Delta cắt d(P) lần lượt tại MN sao cho A là trung điểm của đoạn thẳng MN. Phương trình đường thẳng \Delta là.

    Hướng dẫn:

    M \in d \Rightarrow M( - 1 + 2t;t;t +
2)

    A là trung điểm MN \Rightarrow N(3 - 2t; - 2 - t;2 -
t)

    N \in (P) \Rightarrow t = 2 \Rightarrow
M(3;2;4)

    \Delta đi qua điểm M(3;2;4) và có vectơ chỉ phương \overrightarrow{a_{\Delta}} = \overrightarrow{AM}
= (2;3;2)

    Vậy phương trình của \Delta\frac{x - 1}{2} = \frac{y + 1}{3} = \frac{z
- 2}{2}

  • Câu 9: Vận dụng
    Tính giá trị lớn nhất của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(0;1;3),N(10;6;0) và mặt phẳng (P):x - 2y + 2z - 10 = 0. Biết rằng tồn tại điểm I( - 10;a;b) thuộc (P) sao cho |IM - IN| đạt giá trị lớn nhất. Tính T = a + b.

    Hướng dẫn:

    Thay tọa độ điểm M và N vào vế trái phương trình mặt phẳng (P), ta có (0 - 2 + 3 - 10).(10 - 12 - 10) >
0 nên hai điểm M, N nằm cùng phía đối với mặt phẳng (P).

    Khi đó ta có |IM - IN| \leq MN và đẳng thức xảy ra khi I = MN \cap
(P)

    Phương trình tham số của đường thẳng MN là \left\{ \begin{matrix}
x = 10t \\
y = 1 + 5t \\
z = 3 - 3t \\
\end{matrix} ight.

    Tọa độ giao điểm của MN và (P) là nghiệm hệ phương trình

    \left\{ \begin{matrix}
x = 10t \\
y = 1 + 5t \\
z = 3 - 3t \\
x - 2y + 2z - 10 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 10 \\
y = - 4 \\
z = 6 \\
\end{matrix} ight.

    Vậy T = a + b = 2

  • Câu 10: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 2 + 4t \\
z = 3 + t \\
\end{matrix} \right.. Hình chiếu song song của d lên mặt phẳng (Oxz) theo phương \Delta:\frac{x + 1}{- 1} = \frac{y - 6}{- 1} =
\frac{z - 2}{1} có phương trình là:

    Hướng dẫn:

    Giao điểm của d và mặt phẳng (Oxz) là: M_{0}(5;0;5).

    Trên d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 2 + 4t \\
z = 3 + t \\
\end{matrix} ight. chọn M bất kỳ không trùng với M_{0}(5;0;5); ví dụ: M(1; - 2;3).

    Gọi A là hình chiếu song song của M lên mặt phẳng (Oxz) theo phương \Delta:\frac{x + 1}{- 1} = \frac{y - 6}{- 1} =
\frac{z - 2}{1} .

    +/ Lập phương trình d’ đi qua M và song song hoặc trùng với \Delta:\frac{x + 1}{- 1} = \frac{y
- 6}{- 1} = \frac{z - 2}{1} .

    +/ Điểm A chính là giao điểm của d’ và (Oxz)

    +/ Ta tìm được A(3;0;1)

    Hình chiếu song song của d:\left\{
\begin{matrix}
x = 1 + 2t \\
y = - 2 + 4t \\
z = 3 + t \\
\end{matrix} ight. lên mặt phẳng (Oxz) theo phương \Delta:\frac{x + 1}{- 1} = \frac{y - 6}{- 1} =
\frac{z - 2}{1} là đường thẳng đi qua M_{0}(5;0;5)A(3;0;1).

    Vậy phương trình là: \left\{
\begin{matrix}
x = 3 + t \\
y = 0 \\
z = 1 + 2t \\
\end{matrix} ight.

  • Câu 11: Vận dụng
    PTTQ của (d) khi là giao tuyến

    Cho hình hộp chữ nhật ABCD.EFGHAB = a;\,\,AD = b;\,\,AE = c trong hệ trục Oxyz  sao cho A trùng với O;\,\,\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} lần lượt trùng với  Ox,Oy,Oz . Gọi  M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của giao tuyến (d) của mặt phẳng (MNP) và (xOy)

    Hướng dẫn:

    Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:

    M\left( {a,\frac{b}{2},0} ight);\,\,\,N\left( {\frac{a}{2},0,c} ight);\,\,\,P\left( {0,b,\frac{c}{2}} ight)

    Như vậy ta tính được vecto \overrightarrow {MN}\overrightarrow {MP} theo a, b, c.

    \overrightarrow {MN}  =  - \frac{1}{2}\left( {a,b, - 2c} ight);\,\,\,\overrightarrow {MP}  =  - \frac{1}{2}\left( {2a, - b, - c} ight)

    (MNP) có vecto pháp tuyến là tích có hướng của 2 vecto  \overrightarrow {MN}\overrightarrow {MP}

    =  > \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } ight] =  - 3\left( {bc,ca,ab} ight) = \overrightarrow {{n_P}}

    (MNP) có đi qua M và nhận \overrightarrow {{n_P}} làm 1 VTCP có phương trình là:

    \begin{array}{l}\left( {MNP} ight):bc\left( {x - a} ight) + ca\left( {y - \frac{b}{2}} ight) + ab.z = 0\\ =  > \left( {MNP} ight):2bcx + 2cay + 2abz - 3abc = 0\\ =  > (d):2bcx + 2cay + 2abz - 3abc = 0;\,\,\,z = 0\end{array}

  • Câu 12: Vận dụng
    Tìm giá trị nhỏ nhất của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng (P):x - 2y + z - 1 = 0;(Q):x - 2y + z + 8 =0;(R):x - 2y + z - 4 = 0. Một đường thẳng d thay đổi cắt ba mặt (P),(Q),(R) lần lượt tại A,B,C. Tìm giá trị nhỏ nhất của T = AB^{2} + \frac{144}{AC^{2}}.

    Gợi ý:

    Nhận xét (P)//(Q)//(R)

    Sử dụng BĐT Cauchy và định lí Ta-let đánh giá biểu thức T.

    Hướng dẫn:

    Dễ dàng nhận thấy (P)//(Q)//(R).

    Kẻ đường thẳng qua B vuông góc với cả 3 mặt phẳng (P),(Q),(R) cắt (P) tại H và cắt (Q) tại K.

    Ta có BH = d\left( (Q),(P) ight) = 9;HK
= d\left( (P),(R) ight) = 3

    Khi đó ta có:

    T = AB^{2} + \frac{144}{AC^{2}} \geq
2\sqrt{AB^{2}.\frac{144}{AC^{2}}} = 24.\frac{AB}{AC} = 24.\frac{BH}{HK}
= 24.\frac{9}{3} = 72

    Vậy T_{\min} = 72.

  • Câu 13: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ  Oxyz,  cho đường thẳng d:\frac{x - 3}{2} = \frac{y + 2}{1} = \frac{z +
1}{- 1}, mặt phẳng (P):x + y + z +
2 = 0 . Gọi M là giao điểm của d(P). Gọi \Delta là đường thẳng nằm trong (P) vuông góc với d và cách M một khoảng bằng \sqrt{42}. Phương trình đường thẳng (P) là.

    Hướng dẫn:

    Gọi M = d \cap (P)

    \mathbf{M \in d \Rightarrow M}\left(
\mathbf{3}\mathbf{+}\mathbf{2}\mathbf{t}\mathbf{;}\mathbf{-}\mathbf{2}\mathbf{+
t}\mathbf{;}\mathbf{-}\mathbf{1}\mathbf{- t} ight)

    \mathbf{M \in}\left( \mathbf{P}
ight)\mathbf{\Rightarrow t = -}\mathbf{1}\mathbf{\Rightarrow M}\left(
\mathbf{1;}\mathbf{-}\mathbf{3;0} ight)

    \left( \mathbf{P} ight) có vectơ pháp tuyến \overrightarrow{\mathbf{n}_{\mathbf{P}}}\mathbf{=}\left(
\mathbf{1;1;1} ight)

    \mathbf{d} có vectơ chỉ phương \overrightarrow{\mathbf{a}_{\mathbf{d}}}\mathbf{=}\left(
\mathbf{2;1;}\mathbf{-}\mathbf{1} ight)

    \mathbf{\Delta}có vectơ chỉ phương \overrightarrow{\mathbf{a}_{\mathbf{\Delta}}}\mathbf{=}\left\lbrack
\overrightarrow{\mathbf{a}_{\mathbf{d}}}\mathbf{,}\overrightarrow{\mathbf{n}_{\mathbf{P}}}
ightbrack\mathbf{=}\left( \mathbf{2;}\mathbf{-}\mathbf{3;1}
ight)

    Gọi N(x;y;z) là hình chiếu vuông góc của M trên \Delta, khi đó \overrightarrow{MN} = (x - 1;y +
3;z).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MN}\bot\overrightarrow{a_{\Delta}} \\
N \in (P) \\
MN = \sqrt{42} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2x - 3y + z - 11 = 0 \\
x + y + z + 2 = 0 \\
(x - 1)^{2} + (y + 3)^{2} + z^{2} = 42 \\
\end{matrix} ight.

    Giải hệ ta tìm được hai điểm N(5; - 2; -
5)N( - 3; - 4;5)

    Với N(5; - 2; -
5), ta có \Delta:\frac{x - 5}{2} = \frac{y + 2}{- 3} =
\frac{z + 5}{1}

    Với N( - 3; - 4;5), ta có \Delta:\frac{x + 3}{2} = \frac{y + 4}{- 3} =
\frac{z - 5}{1}

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, cho điểm M(2\ ; - 2\ ;1) và mặt phẳng (P):\ \ 2x - 3y - z + 1 = 0. Đường thẳng đi qua M và vuông góc với (P) có phương trình là:

    Hướng dẫn:

    Gọi d là đường thẳng đi qua M và vuông góc với (P).

    Do d vuông góc với (P) nên d có một vectơ chỉ phương là \overrightarrow{u} = (2\ ; - 3\ ; -
1).

    Vậy phương trình của đường thẳng d là: \left\{\begin{matrix}x = 2 + 2t \\y = - 2- 3t \\z = 1 - t \\\end{matrix} \right..

  • Câu 15: Thông hiểu
    Tính khoảng cách giữa đường thẳng và mặt phẳng

    Trong không gian Oxyz, khoảng cách giữa đường thẳng d:\frac{x - 1}{1} =
\frac{y}{1} = \frac{z}{- 2} và mặt phẳng (P):x + y + z + 2 = 0 bằng:

    Hướng dẫn:

    Đường thẳng d qua M(1;0;0) và có vec-tơ chỉ phương \overrightarrow{a} = (1;1; - 2).

    Mặt phẳng (P) có vec-tơ pháp tuyến \overrightarrow{n} =
(1;1;1).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{a}.\overrightarrow{n} = 1.1 + 1.1 - 2.1 = 0 \\
M \notin (P) \\
\end{matrix} \right.\  \Rightarrow d//(P)

    d\left( d;(P) \right) = d\left( M;(P)
\right) = \frac{|1 + 0 + 0 + 2|}{\sqrt{1^{2} + 1^{2} + 1^{2}}} =
\sqrt{3}

  • Câu 16: Vận dụng
    Góc giữa 2 đường thẳng

    Tính góc của hai đường thẳng \left( {d'} ight):\frac{{x - 1}}{2} = \frac{{y + 3}}{4} = \frac{{z + 2}}{4}\left( d ight):x = 3 + 2t;\,\,y = 2t - 4;\,\,z = 2\,\,\,\left( {t \in R} ight).

    Hướng dẫn:

    Theo đề bài, ta có (d’) và (d) có vec-tơ chỉ phương lần lượt là:\overrightarrow a  = \left( {2,4,4} ight);\overrightarrow b  = \left( {2,2,0} ight)

    Áp dụng công thức cosin của góc giữa 2 đường thẳng, ta có:

    \Rightarrow \cos \alpha  = \frac{{\left| {2.2 + 4.2 + 4.0} ight|}}{{6.2\sqrt 2 }} = \frac{{\sqrt 2 }}{2} \Rightarrow \alpha  = {45^0}

  • Câu 17: Vận dụng cao
    Tính thể tích V của khối tứ diện

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + t \\
y = 2 - 2t \\
z = - 3 - t \\
\end{matrix} \right.d_{2}:\left\{ \begin{matrix}
x = 4 + 3t \\
y = 3 + 2t \\
z = 1 - t \\
\end{matrix} \right.. Trên đường thẳng d_{1} lấy hai điểm A; B sao cho AB = 3. Trên đường thẳng d_{2} lấy hai điểm C;D sao cho CD = 4. Tính thể tích V của khối tứ diện ABCD.

    Hướng dẫn:

    Ta có đường thẳng d_{1} đi qua điểm M_{1}(1;2; - 3) và có vec tơ chỉ phương \overrightarrow{u_{1}}(1; - 2; -
1)

    Ta có đường thẳng d_{2} đi qua điểm M_{2}(4;3;1) và có vec tơ chỉ phương \overrightarrow{u_{2}}(3;2; -
1)

    Ta có khoảng cách giữa d_{1};d_{2}d = \frac{\left| \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{1}}
\right\rbrack.\overrightarrow{M_{1}M_{2}} \right|}{\left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{1}} \right\rbrack} =
\frac{|42|}{\sqrt{16 + 4 + 64}} = \sqrt{21}

    Nhận xét rằng d_{1}\bot
d_{2}

    Thể tích khối tứ diện cần tìm là V =
\frac{1}{6}AB.CD.d.sin\alpha = \frac{1}{6}.3.4.\sqrt{21} =
2\sqrt{21}.

  • Câu 18: Vận dụng
    Tính giá trị biểu thức

    Trong hệ trục tọa độ Oxy, cho điểm M = (1; - 1;2) và hai đường thẳng d_{1} : \left\{ \begin{matrix}
x = t \\
y = 1 - t \\
z = - 1 \\
\end{matrix} ight. d_{2}:\frac{x + 1}{2} = \frac{y - 1}{1} = \frac{z
+ 2}{1}. Đường thẳng \Delta đi qua diểm M và cắt cả hai đường thẳng d_{1},d_{2} có véc tơ chỉ phương là \overrightarrow{u_{\Delta}} = (1;a;b). Tính a + b?

    Hướng dẫn:

    Gọi A,B lần lượt là giao điểm của đường thẳng \Delta với d_{1},d_{2}

    A \in d_{1} \Rightarrow A\left( t_{1};1
- t_{1}; - 1 ight);B \in d_{2} \Rightarrow B\left( - 1 + 2t_{2};1 +
t_{2}; - 2 + t_{2} ight)

    M \in \Delta \Leftrightarrow M,A,B\
\text{thẳng\ hàng~} \Leftrightarrow \overrightarrow{MA} =
k\overrightarrow{MB}(1)

    \overrightarrow{MA} = \left( t_{1} - 1;2
- t_{1}; - 3 ight);\overrightarrow{MB} = \left( 2t_{2} - 2;t_{2} +
2;t_{2} - 4 ight)

    (1) \Leftrightarrow \left\{
\begin{matrix}
t_{1} - 1 = k(2t_{2} - 2) \\
2 - t_{1} = k(t_{2} + 2) \\
- 3 = k(t_{2} - 4) \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
t_{1} - 2kt_{2} + 2k = 1 \\
- t_{1} - kt_{2} - 2k = - 2 \\
kt_{2} - 4k = - 3 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
t_{1} = 0 \\
kt_{2} = \frac{1}{3} \\
k = \frac{5}{6} \\
\end{matrix} ight.\  ight.\  ight.

    Từ t_{1} = 0 \Rightarrow A(0;1; -
1).

    Do đường thẳng \Delta đi qua điểm AM nên một vectơ chỉ phương của đường thẳng \Delta\overrightarrow{u_{\Delta}} = \overrightarrow{AM}
= (1; - 2;3).

    Vậy a = - 2,b = 3 \Rightarrow a + b =
1

  • Câu 19: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz, cho bốn đường thẳng \left( d_{1} ight):\frac{x - 3}{1} = \frac{y +1}{- 2} = \frac{z + 1}{1},\left( d_{2} ight):\frac{x}{1} = \frac{y}{-2} = \frac{z - 1}{1},\left( d_{3} ight):\frac{x - 1}{2} = \frac{y +1}{1} = \frac{z - 1}{1},\left( d_{4} ight):\frac{x}{1} = \frac{y -1}{- 1} = \frac{z - 1}{1}. Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:

    Hướng dẫn:

    Kiểm tra vị trí tương đối giữa hai đường thẳng ta thấy (d1) // (d2); (d4) cắt (d2), (d3).

    Gọi (P) là mặt phẳng chứa (d1) và (d2); (Q) là mặt phẳng chứa (d3) và (d4).

    Gọi (∆) là đường thẳng cắt cả 4 đường thẳng trên.

    Ta thấy, (∆) cắt cả (d1), (d2) suy ra (∆) ⊂ (P).

    (∆) cắt cả (d3),(d4) suy ra (∆) ⊂ (Q).

    Mà (d2), (d4) có điểm chung nên (∆) là giao tuyến của (P) và (Q), do đó có duy nhất một đường thẳng thỏa mãn.

  • Câu 20: Thông hiểu
    Tìm tọa độ hình chiếu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x + 1}{1} = \frac{y + 4}{2} =
\frac{z}{1} và điểm A(2;0;1). Hình chiếu vuông góc của A trên (∆) là điểm nào dưới đây?

    Hướng dẫn:

    Đường thẳng (∆) đi qua M(−1; −4; 0), có vectơ chỉ phương \overrightarrow{u_{(\Delta)}} = (1;\ 2;\
1)

    Phương trình tham số của đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + t \\
y = - 4 + 2t \\
z = t \\
\end{matrix} ight.

    Gọi P là hình chiếu vuông góc của A trên (∆).

    Khi đó P \in (\Delta) \Rightarrow P( - 1
+ t; - 4 + 2t;t)

    Ta có \overrightarrow{AP} = ( - 3 + t; -
4 + 2t;t - 1). Vì \overrightarrow{AP}\bot\overrightarrow{u_{(\Delta)}}
\Rightarrow \overrightarrow{AP}.\overrightarrow{u_{(\Delta)}} =
0 nên

    \Leftrightarrow 1.( - 3 + t)
+ 2.( - 4 + 2t) + 1.(t - 1) = 0 \Leftrightarrow t = 2 \Rightarrow
P(1;0;2)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo