Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 15 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính khoảng cách từ O đến (P)

    Trong không gian với hệ toạ độ Oxyz, cho điểm A(2;5;3) và đường thẳng d:\frac{x - 1}{2} = \frac{y}{1} = \frac{z -
2}{2}. Gọi (P) là mặt phẳng chứa d sao cho khoảng cách từ điểm A đến (P) là lớn nhất. Khoảng cách từ gốc tọa độ O đến (P) bằng:

    Hướng dẫn:

    Gọi K là hình chiếu vuông góc của A trên d và H là hình chiếu vuông góc của A trên (P) thì d(A,(P)) = AH ≤ AK không đổi.

    Vậy d(A,(P)) lớn nhất khi và chỉ khi H ≡ K, khi đó (P) là mặt phẳng chứa d và vuông góc với AK.

    Ta tìm được (P):x - 4y + z - 3 = 0
\Rightarrow d\left( O;(P) ight) = \frac{3}{\sqrt{18}} =
\frac{1}{\sqrt{2}}.

  • Câu 2: Thông hiểu
    Tính khoảng cách giữa đường thẳng và mặt phẳng

    Trong không gian Oxyz, khoảng cách giữa đường thẳng d:\frac{x - 1}{1} =
\frac{y}{1} = \frac{z}{- 2} và mặt phẳng (P):x + y + z + 2 = 0 bằng:

    Hướng dẫn:

    Đường thẳng d qua M(1;0;0) và có vec-tơ chỉ phương \overrightarrow{a} = (1;1; - 2).

    Mặt phẳng (P) có vec-tơ pháp tuyến \overrightarrow{n} =
(1;1;1).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{a}.\overrightarrow{n} = 1.1 + 1.1 - 2.1 = 0 \\
M \notin (P) \\
\end{matrix} \right.\  \Rightarrow d//(P)

    d\left( d;(P) \right) = d\left( M;(P)
\right) = \frac{|1 + 0 + 0 + 2|}{\sqrt{1^{2} + 1^{2} + 1^{2}}} =
\sqrt{3}

  • Câu 3: Thông hiểu
    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian Oxyz, cho điểm A(0;1;1) và hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 \\
y = - 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\frac{x - 1}{3} = \frac{y - 2}{1} =
\frac{z}{1}. Gọi d là đường thẳng đi qua điểm A, cắt đường thẳng d_{1} và vuông góc với đường thẳng d_{2}. Đường thẳng d đi qua điểm nào trong các điểm dưới đây?

    Hướng dẫn:

    Gọi \left\{ \begin{matrix}
B = d_{1} \cap d \\
B \in d_{1} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
B( - 1; - 1 + t;t) \\
\overrightarrow{AB} = ( - 1;t - 2;t - 1) \\
\end{matrix} ight.

    d_{2} có một vectơ chỉ phương \overrightarrow{u} = (3;1;1).

    Do d\bot d_{2} nên \overrightarrow{u}.\overrightarrow{AB} = 0
\Leftrightarrow - 3 + t - 2 + t - 1 = 0

    \Leftrightarrow t = 3 \Rightarrow
\overrightarrow{AB} = ( - 1;1;2)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AN} = (2;0;6);\overrightarrow{AQ} = (3;1;4) \\
\overrightarrow{AP} = ( - 2; - 4;10);\overrightarrow{AM} = (1; - 1; - 2)
\\
\end{matrix} ight.

    Suy ra đường thẳng d đi qua M.

  • Câu 4: Vận dụng
    Tìm phương trình đường thẳng thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x}{2} = \frac{y - 1}{- 1} = \frac{z +
2}{1}d_{2}:\left\{
\begin{matrix}
x = - 1 + 2t \\
y = 1 + t \\
z = 3 \\
\end{matrix} \right.. Phương trình đường thẳng vuông góc với (P):7x + y - 4z = 0 và cắt hai đường thẳng d_{1},\ d_{2} là:

    Hướng dẫn:

    Gọi d là đường thẳng cần tìm

    Gọi A = d \cap d_{1},B = d \cap
d_{2}

    A \in d_{1} \Rightarrow A(2a;1 - a; - 2
+ a)

    B \in d_{2} \Rightarrow B( - 1 + 2b;1 +
b;3)

    \overrightarrow{AB} = ( - 2a + 2b - 1;a
+ b; - a + 5)

    (P)có vectơ pháp tuyến \overrightarrow{n_{P}} = (7;1; - 4)

    d\bot(P) \Leftrightarrow
\overrightarrow{AB},\overrightarrow{n_{p}} cùng phương

    \Leftrightarrow có một số k thỏa \overrightarrow{AB} =
k\overrightarrow{n_{p}}

    \Leftrightarrow \left\{ \begin{matrix}
- 2a + 2b - 1 = 7k \\
a + b = k \\
- a + 5 = - 4k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 2a + 2b - 7k = 1 \\
a + b - k = 0 \\
- a + 4k = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 2 \\
k = - 1 \\
\end{matrix} ight.

    d đi qua điểm A(2;0; - 1) và có vectơ chỉ phương \overrightarrow{a_{d}} = \overrightarrow{n_{P}} =
(7;1 - 4)

    Vậy phương trình của d\frac{x - 2}{7} = \frac{y}{1} = \frac{z + 1}{-
4}

  • Câu 5: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho điểm A(1;2;3) và đường thẳng d:\frac{x + 4}{- 2} = \frac{y - 3}{- 3} = \frac{z
- 3}{1}.

    a) Đường thẳng \Delta song song với đường thẳng d có một véctơ chỉ phương là: \overrightarrow{u_{\Delta}} = (4; - 2;4). Sai||Đúng

    b) Đường thẳng \Delta đi qua điểm A và song song với đường thẳng d có phương trình là: \left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + 3t \\
z = 3 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R}
\right).Đúng||Sai

    c) Điểm K(3;5;2) thuộc vào đường thẳng \Delta đi qua điểm A và song song với đường thẳng d. Đúng||Sai

    d) Đường thẳng \Delta đi qua điểm A và song song với đường thẳng d có phương trình là: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{-
1}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho điểm A(1;2;3) và đường thẳng d:\frac{x + 4}{- 2} = \frac{y - 3}{- 3} = \frac{z
- 3}{1}.

    a) Đường thẳng \Delta song song với đường thẳng d có một véctơ chỉ phương là: \overrightarrow{u_{\Delta}} = (4; - 2;4). Sai||Đúng

    b) Đường thẳng \Delta đi qua điểm A và song song với đường thẳng d có phương trình là: \left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + 3t \\
z = 3 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R}
\right).Đúng||Sai

    c) Điểm K(3;5;2) thuộc vào đường thẳng \Delta đi qua điểm A và song song với đường thẳng d. Đúng||Sai

    d) Đường thẳng \Delta đi qua điểm A và song song với đường thẳng d có phương trình là: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{-
1}. Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Đúng

    Đường thẳng d có một véctơ chỉ phương \overrightarrow{u_{d}} = ( - 2; -
3;1).

    Đường thẳng \Delta đi qua A và song song với d nhận \overrightarrow{u_{d}}
= ( - 2; - 3;1) làm một véctơ chỉ phương, nên đường thẳng \Delta có phương trình là:

    \left\{ \begin{matrix}
x = 1 - 2t \\
y = 2 - 3t \\
z = 3 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) hoặc \left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + 3t \\
z = 3 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) hoặc\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{-
1}.

    Khi đó ta có

    Phương án a): Sai vì một vectơ chỉ phương của \Delta\begin{matrix}
\\
\overrightarrow{u} = ( - 2; - 3;1)
\end{matrix}.

    Phương án b): Đúng vì đường thẳng \Delta có phương trình: \left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + 3t \\
z = 3 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    Phương án c): Đúng vì thay toạ độ điểm K(3;5;2) vào phương trình đường thẳng \Delta thoả mãn.

    Phương án d): Đúng vì đường thẳng \Delta có phương trình: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{-
1}.

  • Câu 6: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, gọi d đi qua điểm A(1; - 1;2), song song với (P):2x - y - z + 3 = 0, đồng thời tạo với đường thẳng \Delta:\frac{x + 1}{1} = \frac{y
- 1}{- 2} = \frac{z}{2} một góc lớn nhất. Phương trình đường thẳng d là.

    Hướng dẫn:

    \Delta có vectơ chỉ phương \overrightarrow{a_{\Delta}} = (1; -
2;2)

    d có vectơ chỉ phương \overrightarrow{a_{d}} = (a;b;c)

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (2; - 1; -
1)

    d//(P) nên \overrightarrow{a_{d}}\bot\overrightarrow{n_{P}}
\Leftrightarrow \overrightarrow{a_{d}}.\overrightarrow{n_{P}} = 0
\Leftrightarrow 2a - b - c = 0 \Leftrightarrow c = 2a - b

    \cos(\Delta,d) = \frac{|5a -
4b|}{3\sqrt{5a^{2} - 4ab + 2b^{2}}} = \frac{1}{3}\sqrt{\frac{(5a -
4b)^{2}}{5a^{2} - 4ab + 2b^{2}}}

    Đặt t = \frac{a}{b}, ta có: \cos(\Delta,d) = \frac{1}{3}\sqrt{\frac{(5t
- 4)^{2}}{5t^{2} - 4t + 2}}

    Xét hàm số f(t) = \frac{(5t -
4)^{2}}{5t^{2} - 4t + 2}, ta suy ra được: \max f(t) = f\left( - \frac{1}{5} ight) =
\frac{5\sqrt{3}}{3}

    Do đó: \max\left\lbrack \cos(\Delta,d)
ightbrack = \sqrt{\frac{5\sqrt{3}}{27}} \Leftrightarrow t = -
\frac{1}{5} \Rightarrow \frac{a}{b} = - \frac{1}{5}

    Chọn a = 1 \Rightarrow b = - 5,c =
7

    Vậy phương trình đường thẳng d\frac{x - 1}{1} = \frac{y + 1}{- 5} =
\frac{z - 2}{7}

  • Câu 7: Vận dụng
    Tính tổng các phần tử của tập S

    Trong không gian Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{2} =
\frac{y}{1} = \frac{z}{3},d_{2}:\left\{ \begin{matrix}
x = 1 + t \\
y = 2 + t \\
z = m \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Gọi S là tập hợp tất cả các số m sao cho d_{1},d_{2} chéo nhau và khoảng cách giữa chúng bằng \frac{5}{\sqrt{19}}. Tính tổng tất cả các phần tử của S.

    Hướng dẫn:

    Vectơ chỉ phương của d_{1},d_{2}\overrightarrow{u_{1}} =
(2;1;3),\overrightarrow{u_{2}} = (1;1;0)

    Khi đó: \overrightarrow{n} = \left\lbrack
\overrightarrow{u_{1}},\overrightarrow{u_{2}} ightbrack = ( -
3;3;1).

    Gọi (P) là mặt phẳng chứa d_{1} song song với d_{2}.

    Tức là, (P) qua A(1;0;0) và nhận \overrightarrow{n} làm vectơ pháp tuyến.

    Ta có phương trình (P):3x - 3y - z - 3 =
0

    Xét điểm B(1;2;m) \in d_{2}. Do d_{1},d_{2} chéo nhau nên B otin (P) \Leftrightarrow m eq -
6.

    Lại có:

    d\left( d_{1};d_{2} ight) =
\frac{5}{\sqrt{19}} \Leftrightarrow d\left( B;(P) ight) =
\frac{5}{\sqrt{19}}

    \Leftrightarrow \frac{|3 - 6 - m -
3|}{\sqrt{19}} = \frac{5}{\sqrt{19}} \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 1 \\
m = - 11 \\
\end{matrix} ight.

    Vậy tổng các phần tử của S là - 1 - 11 =
- 12.

  • Câu 8: Vận dụng cao
    Viết phương trình đường thẳng

    Trong không gian Oxyz, cho mặt phẳng (P):x - 2y + 2z - 5 = 0 và hai điểm A( - 3;0;1),B(1; - 1;3). Trong các đường thẳng đi qua A và song song, (P) đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là:

    Hướng dẫn:

    Gọi (Q) là mặt phẳng qua A và song song (P).

    Ta có: ( - 3 - 2.0 + 2.1 - 5)(1 + 2.1 +
2.3 - 5) < 0=> A; B nằm về hai phía với (P).

    Gọi H là hình chiếu vuông góc của B lên (Q)=> BH cố định và d\left( B;(Q) \right) = BH.

    Gọi K là hình chiếu vuông góc của B lên bất kì qua A và nằm trong (Q) hay d//(P).

    Ta có: BK \geq BH \Leftrightarrow d(B,d)
> d(B,AH) \Rightarrow d(B,d) bé nhất bằng BH khi K \equiv H.

    Gọi \overrightarrow{n} là VTPT của (ABH) \Rightarrow \overrightarrow{n} =
\left\lbrack \overrightarrow{n_{P}},\overrightarrow{AB} \right\rbrack =
( - 2;6;7).

    d cần lập qua A, H và có VTCP \overrightarrow{u_{d}} = \left\lbrack
\overrightarrow{n},\overrightarrow{n_{P}} \right\rbrack = (26;11; -
2).

    Vậy phương trình đường thẳng d cần lập là: \frac{x + 3}{26} = \frac{y}{11} = \frac{z - 1}{-
2}

  • Câu 9: Vận dụng
    Viết PT tổng quát

    Cho hình hộp chữ nhật ABCD.EFGH có AB = a; AD = b; AE = c trong hệ trục Oxyz sao cho A trùng với O;\,\,\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} lần lượt trùng với Ox, Oy, Oz . Gọi M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của đường thẳng MN.

    Hướng dẫn:

    Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:

    M\left( {a,\frac{b}{2},0} ight);\,\,\,N\left( {\frac{a}{2},0,c} ight) =  > \,\,\overrightarrow {MN}  = \left( { - \frac{a}{2}, - \frac{b}{2},c} ight)

    (MN) là đường thẳng đi qua M và nhận vecto \overrightarrow {MN} là 1 VTCP có PT là:

    =  > \frac{{2\left( {x - a} ight)}}{{ - a}} = \frac{{2y - b}}{{ - b}} = \frac{z}{c} =  > \left\{ \begin{array}{l}2bx - 2ay - ab = 0\\2cx + az - 2ac = 0\end{array} ight.

  • Câu 10: Vận dụng
    Tính giá trị của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2; - 2),B(2;2; - 4). Giả sử I(a;b;c) là tâm đường tròn ngoại tiếp tam giác OAB. Tính T = a^{2} + b^{2} + c^{2}.

    Hướng dẫn:

    Ta có OA = AB = 2\sqrt{2} nên tam giác OAB cân tại OAB, vì vậy I thuộc đường trung tuyến qua A(d):\left\{ \begin{matrix}
x = 1 + t \\
y = 1 - t \\
z = - 2 \\
\end{matrix} \right.\  \Rightarrow I(1 + t;1 - t; - 2)

    IA = IO \Leftrightarrow t = 0
\Rightarrow I(2;0; - 2)

    Do đó T = 8

  • Câu 11: Vận dụng cao
    Tính giá trị nhỏ nhất của đoạn thẳng

    Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1; 0; 0), B(3; 2; 1), C\left( -
\frac{5}{3};\frac{4}{3};\frac{8}{3} ight) và M thay đổi sao cho hình chiếu của M lên mặt phẳng (ABC) nằm trong tam giác ABC và các mặt phẳng (MAB),(MBC),(MCA) hợp với mặt phẳng (ABC) các góc bằng nhau. Tính giá trị nhỏ nhất của OM.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi H là hình chiếu của M lên mặt phẳng (ABC).

    Giả thiết suy ra H là tâm đường tròn nội tiếp tam giác ABC nên thỏa mãn

    BC.\overrightarrow{HA} +
AC.\overrightarrow{HB} + AB.\overrightarrow{HC} =
\overrightarrow{0}

    Ta có AB = 3, AC = 4, BC = 5, suy ra

    \left\{ \begin{matrix}
5(x - 1) + 4(x - 3) + 3x + 5 = 0 \\
5y + 4(y - 2) + 3y - 4 = 0\  \\
5z + 4(z - 1) + 3z - 8 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow H(1;1;1)

    Phương trình đường thẳng MH nhận \overrightarrow{u} =
\overrightarrow{n_{ABC}} làm vectơ chỉ phương nên MH là: \left\{ \begin{matrix}
x\  = \ 1\  + \ t \\
y\  = \ 1\  - \ 2t \\
z\  = \ 1\  + \ 2t \\
\end{matrix} ight.

    Khi đó: OM_{\min} = \frac{\left|
\left\lbrack \overrightarrow{MH};\overrightarrow{OH} ightbrack
ight|}{\left| \overrightarrow{MH} ight|} =
\frac{\sqrt{26}}{3}

  • Câu 12: Vận dụng
    Xác định phương trình thích hợp nhất

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 5 = 0 và hai điểm A( - 3;0;1),\ B(1; - 1;3). Trong các đường thẳng đi qua A và song song với (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là.

    Hướng dẫn:

    Gọi \Delta là đường thẳng cần tìm

    Gọi mặt phẳng (Q) qua A( - 3;0;1) và song song với (P). Khi đó: (Q):x - 2y + 2z + 1 = 0

    Gọi K,H lần lượt là hình chiếu của B lên \Delta,(Q). Ta có d(B,\Delta) = BK \geq BH. Do đó AH là đường thẳng cần tìm.

    (Q) có vectơ pháp tuyến \overrightarrow{n_{Q}} = (1; - 2;2)

    BH qua B và có vectơ chỉ phương \overrightarrow{a_{BH}} = \overrightarrow{n_{Q}} =
(1; - 2;2)

    BH:\left\{ \begin{matrix}
x = 1 + t \\
y = - 1 - 2t \\
z = 3 + 2t \\
\end{matrix} ight.

    \Delta đi qua điểm A( - 3;0;1) và có vectơ chỉ phương \overrightarrow{a_{\Delta}} = \overrightarrow{AH}
= \left( \frac{26}{9};\frac{11}{9}; - \frac{2}{9} ight) =
\frac{1}{9}(26;11; - 2)

    H \in BH \Rightarrow H(1 + t; - 1 - 2t;3
+ 2t)

    H \in (P) \Rightarrow t = - \frac{10}{9}
\Rightarrow H\left( - \frac{1}{9};\frac{11}{9};\frac{7}{9}
ight)

    Vậy phương trình của \Delta\Delta:\frac{x + 3}{26} = \frac{y}{11} =
\frac{z - 1}{- 2}

  • Câu 13: Thông hiểu
    Phương trình đường trung tuyến

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tham số của trung tuyến AM ?

    Hướng dẫn:

     Vì AM là trung tuyến nên M là trung điểm của BC. Gọi M\left( {{x_M},{y_M},{z_M}} ight)

    Từ tọa độ của B và C, ta tính được tọa độ của M là nghiệm của hệ:

    \begin{array}{l}\left\{ \begin{array}{l}{x_M} = \frac{{2 + 3}}{2}\\{y_M} = \frac{{ - 1 - 2}}{2}\\{z_M} = \frac{{4 + 5}}{2}\end{array} ight.\\ \Rightarrow M\left( {\frac{5}{2}, - \frac{3}{2},\frac{9}{2}} ight)\end{array}

    Ta có 1 vecto chỉ phương của (AM) là \overrightarrow {AM}  = \left( {\frac{3}{2}, - \frac{7}{2},\frac{{15}}{2}} ight) = \frac{1}{2}\left( {3, - 7,15} ight)

    (AM) là đường thẳng đi qua A (1,2,-3) và nhận vecto (3,-7,15) làm 1 VTCP có phương trình là:

    \begin{array}{l}\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 - 7t\\z = 15t - 3\end{array} ight.\\(t \in R)\end{array}  

  • Câu 14: Vận dụng
    Định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 1;1),\ B( - 1;2;3) và đường thẳng \Delta\ :\frac{x + 1}{- 2} = \frac{y - 2}{1}
= \frac{z - 3}{3}. Phương trình đường thẳng đi qua điểm A, đồng thời vuông góc với hai đường thẳng AB\Delta

    Hướng dẫn:

    Gọi d là đường thẳng cần tìm và có vectơ chỉ phương \overrightarrow{a_{d}}

    \overrightarrow{AB} = ( -
2;3;2)

    \Delta có vectơ chỉ phương \overrightarrow{a_{\Delta}} = ( -
2;1;3)

    \left\{ \begin{matrix}
d\bot AB \\
d\bot\Delta \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\overrightarrow{a_{d}}\bot\overrightarrow{AB} \\
\overrightarrow{a_{d}}\bot\overrightarrow{a_{\Delta}} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{a_{d}} =
\left\lbrack \overrightarrow{AB};\overrightarrow{a_{\Delta}}
ightbrack = (7;2;4)

    Vậy phương trình chính tắc của d\frac{x - 1}{7} = \frac{y + 1}{2} =
\frac{z - 1}{4}

  • Câu 15: Thông hiểu
    Viết phương trình tham số

    Viết phương trình tham số của đường thẳng \left( d ight):\,\left\{ \begin{array}{l}2x - 3y + z - 4 = 0\\2x + 5y - 3z + 4 = 0\end{array} ight.

    Hướng dẫn:

     Theo đề bài, đường thẳng d là giao của 2 mặt phẳng, ta gọi 2 mặt phẳng (P) và (Q) tương ứng lần lượt là:\left( P ight):2x - 3y + z - 4 = 0;\,\left( Q ight):2x + 5y - 3z + 4 = 0

    Mp (P) và (Q) có 2 vecto pháp tuyến tương ứng là: \overrightarrow {{n_1}}  = \left( {2, - 3,1} ight);\overrightarrow {{n_2}}  = \left( {2,5, - 3} ight)

    Từ đây ta suy ra vecto chỉ phương của đường thẳng (d) là tích có hướng của 2 VTPT:

    \overrightarrow a  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( {4,8,16} ight) \Leftrightarrow \overrightarrow a  = 4\left( {1,2,4} ight)

    Cho y = 0, ta có:

    y = 0 \Rightarrow \left\{ \begin{array}{l}2x + z = 4\\2x - 3z =  - 4\end{array} ight.\, \Leftrightarrow x = 1;z = 2

    Đường thẳng (d) đi qua A( 1, 0, 2) và nhận vecto (1,2,4) làm 1 VTCP có PTTS là:

    A\left( {1,0,2} ight) \in \left( d ight) \Rightarrow \left( d ight)\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z = 2 + 4t\end{array} ight.\,\,;t \in R

  • Câu 16: Vận dụng
    Chọn kết quả chính xác

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 5 = 0 và hai điểm A(−3; 0; 1), B(1; −1; 3). Trong các đường thẳng đi qua A và song song với (P), đường thẳng nào cách B một khoảng cách nhỏ nhất?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi d là đường thẳng cần tìm.

    Gọi (Q) là mặt phẳng qua A(−3; 0; 1) và song song với (P): x − 2y + 2z − 5 = 0.

    ⇒ (Q): x − 2y + 2z + 1 = 0d ⊂ (Q).

    Gọi H, K lần lượt là hình chiếu của B lên d và (Q) thì BH > BK.

    Do đó d(B; d) nhỏ nhất khi và chỉ khi H ≡ K.

    Đường thẳng BK đi qua B(1; −1; 3) và vuông góc với (Q) \Rightarrow BK:\left\{ \begin{matrix}
x = 1 + t \\
y = - 1 - 2t \\
z = 3 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Lại có: K = BK \cap (Q) \Rightarrow K =
\left( \frac{- 1}{9};\frac{11}{9};\frac{7}{9} ight)

    Đường thẳng d qua A và nhận \overrightarrow{AK} = \left(
\frac{26}{9};\frac{11}{9};\frac{- 2}{9} ight) làm vectơ chỉ phương nên đường thẳng cần tìm là: \frac{x +
3}{26} = \frac{y}{11} = \frac{z - 1}{- 2}.

  • Câu 17: Vận dụng
    Chọn đáp án đúng

    Trong không gian Oxyz, cho hai điểm A (2; 1; 1), B (0; 3; −1). Điểm M nằm trên mặt phẳng (P) : 2x + y + z − 4 = 0 sao cho MA + MB nhỏ nhất là:

    Hướng dẫn:

    Thay tọa độ của A, B vào vế trái của phương trình mặt phẳng (P) : 2x + y + z − 4 = 0 ta được: (2.2 + 1 + 1 − 4) (2.0 + 3 − 1 − 4) = −4 < 0

    Suy ra A, B nằm về hai phía của mặt phẳng (P).

    Vậy MA + MB ≥ AB dấu “ = ” xảy ra khi M = AB ∩ (P).

    Ta có \overrightarrow{AB} = ( - 2;2; -
2) chọn vtcp của đường thẳng AB: \overrightarrow{u} = (1; - 1;1).

    Vậy phương trình đường thẳng AB: \left\{
\begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Tọa độ (x; y; z) của M là nghiệm hệ:

    \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 1 + t \\
2x + y + z - 4 = 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 1 + t \\
2(2 + t) + (1 - t) + (1 + t) - 4 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = 0 \\
t = - 1 \\
\end{matrix} ight.\  \Rightarrow M(1;2;0)

  • Câu 18: Thông hiểu
    Vị trí tương đối của hai đường thẳng

    Hai đường thẳng (D):\frac{x - 1}{2} = y +
3 = \frac{z - 2}{3};\ \ \ \ \ (d):\frac{x + 2}{3} = \frac{y - 1}{2} =
\frac{z + 4}{4}.

    Hướng dẫn:

    A(1, - 3,2) \in (D)(D) có vecto chỉ phương \overrightarrow{a} = (2,1,3)

    B(-2,1,-4) \in (d)(d) có vecto chỉ phương \overrightarrow{b} = (3,2,4)

    \overrightarrow{AB} = ( - 3,4, - 6)\Rightarrow \left\lbrack \overrightarrow{a},\overrightarrow{b}
\right\rbrack.\overrightarrow{AB} = ( - 2,1,1).( - 3,4, - 6) = 4 \neq
0

    \Rightarrow (D)(d) chéo nhau.

  • Câu 19: Vận dụng cao
    Tìm điểm thuộc đường thẳng

    Trong không gian với hệ tọa độ (d), cho đường thẳng

    \left( d_{1} \right):\frac{x - 1}{1} =
\frac{y - 2}{2} = \frac{z + 1}{- 2}, \left( d_{2} \right):\frac{x - 2}{2} = \frac{y -
2}{4} = \frac{z}{- 4}, \left( d_{3}
\right):\left\{ \begin{matrix}
x = t \\
y = t \\
z = t \\
\end{matrix} \right., \left(
d_{4} \right):\left\{ \begin{matrix}
x = 1 + t' \\
y = 2t' \\
z = 1 - t' \\
\end{matrix} \right.. Gọi (d) là đường thẳng cắt cả bốn đường thẳng trên. Điểm nào sau đây thuộc đường thẳng (d)?

    Hướng dẫn:

    \left( d_{1} \right) đi qua điểm M_{1}(1;2;0) và có VTCP \overrightarrow{u_{1}} = (1;2; - 2).

    \left( d_{2} \right) đi qua điểm M_{2}(2;2;0) và có VTCP \overrightarrow{u_{2}} = (2;4; - 4).

    \overrightarrow{M_{1}M_{2}} =
(1;0;0).

    \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} \right\rbrack =
\overrightarrow{0}\left\lbrack
\overrightarrow{u_{1}};\overrightarrow{M_{1}M_{2}} \right\rbrack = (0; -
2; - 2) \neq \overrightarrow{0} nên \left( d_{1} \right) song song với \left( d_{2} \right).

    Gọi (P) là mặt phẳng chứa hai đường thẳng \left( d_{1} \right)\left( d_{2} \right).

    (P) đi qua điểm M_{1}(1;2;0) và có \overrightarrow{n_{P}} = \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{M_{1}M_{2}} \right\rbrack = (0; -
2; - 2) hay \overrightarrow{n} =
(0;1;1) có phương trình 0(x - 1) +
1(y - 2) + 1(z - 0) = 0 \Leftrightarrow y + z - 2 = 0.

    Gọi A = \left( d_{3} \right) \cap
(P). Xét hệ phương trình \left\{
\begin{matrix}
x = t \\
y = t \\
z = t \\
y + z - 2 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 1 \\
t = 1 \\
\end{matrix} \right.\  \Rightarrow A(1;1;1).

    Gọi B = \left( d_{4} \right) \cap
(P). Xét hệ phương trình \left\{
\begin{matrix}
x = 1 + t' \\
y = 2t' \\
z = 1 - t' \\
y + z - 2 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 2 \\
z = 0 \\
t' = 1 \\
\end{matrix} \right.\  \Rightarrow B(2;2;0).

    (d) đi qua điểm A(1;1;1) và có VTCP \overrightarrow{AB} = (1;1; - 1) có phương trình \left\{ \begin{matrix}
x = 1 + t \\
y = 1 + t \\
z = 1 - t \\
\end{matrix} \right..

    \overrightarrow{AB} không cùng phương với \overrightarrow{u_{1}} nên (d) thỏa mãn.

    Dễ thấy D(4;4; - 2) \in (d).

  • Câu 20: Vận dụng
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0; −1; 2), B(1; 1; 2) và đường thẳng d:\frac{x + 1}{1} =
\frac{y}{1} = \frac{z - 1}{1}. Biết điểm M(a; b; c) thuộc đường thẳng d sao cho tam giác MAB có diện tích nhỏ nhất. Khi đó giá trị T = a + 2b + 3c bằng:

    Hướng dẫn:

    S_{MAB} =
\frac{1}{2}.AB.d(M,AB) nên SMAB nhỏ nhất khi d(M, AB) nhỏ nhất. Phương trình của AB:\left\{ \begin{matrix}
x = t \\
y = - 1 + 2t \\
z = 2 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Dễ dàng kiểm tra AB và d chéo nhau.

    Gọi H là hình chiếu của M lên đường thẳng AB.

    Khi đó d(M, AB) = MH nhỏ nhất khi MH là đoạn vuông góc chung của d và AB.

    Ta có: M \in d \Rightarrow M( - 1 + s;s;1
+ s),H \in AB

    \Rightarrow H(t; - 1 +
2t;2)

    \Rightarrow \overrightarrow{MH} = (t - s
+ 1;2t - s - 1;1 - s)

    Vectơ chỉ phương của d và AB theo thứ tự là \overrightarrow{u} = (1;1;1),\overrightarrow{v} =
(1;2;0)

    \left\{ \begin{matrix}\overrightarrow{MH}\bot\overrightarrow{u} \\\overrightarrow{MH}\bot\overrightarrow{v} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}1(t - s + 1) + 1(2t - s - 1) + 1(1 - s) = 0\  \\1(t - s + 1) + 2(2t - s - 1) + 0(1 - s) = 0 \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}t = 1 \\s = \dfrac{4}{3} \\\end{matrix} ight.

    Vậy M\left(
\frac{1}{3};\frac{4}{3};\frac{7}{3} ight) \Rightarrow T =
10

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo