Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 18 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án vào ô trống

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Đáp án là:

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Gọi A là biến cố: "Chị Hoa bị nhiễm bệnh khi tiếp xúc người bệnh mà không đeo khẩu trang" và B : "Chị Hoa bị nhiễm bệnh khi tiếp xúc với người bệnh dù có đeo khẩu trang”.

    Dễ thấy \overline{A},\overline{B} là hai biến cố độc lập.

    Xác suất để chị Hoa không nhiễm bệnh trong cả hai lần tiếp xúc với người bệnh là

    P(\overline{A}\overline{B}) =
P(\overline{A}) \cdot P(\overline{B}) = 0,2 \cdot 0,9 =
0,18.

    Gọi P là xác suất để chị Hoa bị lây bệnh khi tiếp xúc người bệnh, ta có:

    P = 1 - P(\overline{A}\overline{B}) = 1
- 0,18 = 0,82.

  • Câu 2: Thông hiểu
    Tính xác suất để Hà được chọn vào đội tuyển

    Để được chọn vào đội tuyển học sinh giỏi môn Toán cấp thành phố, mỗi thí sinh phải vượt qua hai vòng thi. Bạn Hà tham dự cuộc tuyển chọn này. Xác suất để Hà qua được vòng thứ nhất là 0,8. Nếu qua được vòng thứ nhất thì xác suất để Hà qua được vòng thứ hai là 0,7. Xác suất để bạn Hà được chọn vào đội tuyển này là

    Hướng dẫn:

    Gọi A là biến cố: “Hà qua được vòng thứ nhất” và B là biến cố: “Hà qua được vòng thứ hai”. Khi đó biến cố: “Hà được chọn vào đội tuyển” là AB.

    Ta có P(AB) = P(A).P\left( B\left| A
\right.\  \right) = 0,8.0,7 = 0,56.

  • Câu 3: Vận dụng
    Ghi kết quả bài toán vào ô trống

    Áo sơ mi G9 trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 95% sản phẩm làm ra qua được lần kiểm tra thứ nhất, và 92% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Xác suất để 1 chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu là \frac{a}{b} với \frac{a}{b} là phân số tối giản. Tính a + b.

    Đáp án: 937

    Đáp án là:

    Áo sơ mi G9 trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 95% sản phẩm làm ra qua được lần kiểm tra thứ nhất, và 92% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Xác suất để 1 chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu là \frac{a}{b} với \frac{a}{b} là phân số tối giản. Tính a + b.

    Đáp án: 937

    Gọi A là biến cố “qua được lần kiểm tra đầu tiên” \Rightarrow P(A) = 0,95

    Gọi B là biến cố “qua được lần kiểm tra thứ 2” \Rightarrow P\left( B|A ight) =
0,92

    Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện A và B hay ta đi tính P(A \cap B)

    Ta có:

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)}

    \Rightarrow P(A \cap B) = P\left( B|A
ight).P(A)

    = 0,95.0,92 =
\frac{437}{500}

    Suy ra a + b = 937.

  • Câu 4: Vận dụng
    Chọn đáp án đúng

    Theo thống kê ở các gia đình có hai con thì xác suất để con thứ nhất và con thứ hai là đều con trai là 0,27 và hai con đều là gái là 0,23, còn xác suất con thứ nhất và con thứ hai có một trai và một gái là đồng khả năng. Biết khi xét một gia đình được chọn ngẫu nhiên có con thứ nhất là con gái, tìm xác suất để con thứ hai là trai.

    Hướng dẫn:

    Gọi A là 'con thứ nhất là con trai' và B là 'con thứ hai là con trai' thì theo đề bài ta có:

    P(AB) = 0,27, P(\bar{A}\bar{B}) = 0,23P(A\bar{B}) = P(\bar{A}B) = 0,25

    Ta cần tìm B \mid \bar{A}.

    Ta có

    P\left( B\mid\bar{A} ight) =
\frac{P\left( B\bar{A} ight)}{P\left( \bar{A} ight)} = \frac{P\left(
B\bar{A} ight)}{P\left( \bar{A}B ight) + P\left( \bar{A}\bar{B}
ight)}= \frac{0,25}{0,25 + 0,23} \simeq
0,5208

  • Câu 5: Vận dụng
    Tính xác suất của biến cố

    Chọn ngẫu nhiên lần lượt các số a, b phân biệt thuộc tập hợp \left\{ 3^{k} \mid k \in N,1 \leq k \leq 10
ight\}. Tính xác suất để \log_{a}b là một số nguyên dương.

    Gợi ý:

    Sử dụng công thức tính xác suất xảy ra biến cố A:P(A) = \frac{n_{A}}{n_{\Omega}}.

    Hướng dẫn:

    Phép thử: "Chọn ngẫu nhiên lần lượt các số a, b phân biệt thuộc tập hợp \left\{ 3^{k} \mid k \in N,1
\leq k \leq 10 ight\}

    Biến cố A: "\log_{a}b là một số nguyên dương".

    \Rightarrow n_{\Omega} = 10.9 =
90

    + Giả sử a = 3^{k_{1}},b =
3^{k_{2}}\left( k_{1} eq k_{2} ight) \Rightarrow log_{a}b =
log_{3^{k_{1}}}\left( 3^{k_{2}} ight) = \frac{k_{2}}{k_{1}} là một số nguyên dương

    k_{2}

    10

    9

    8

    7

    6

    5

    4

    3

    2

    k_{1} 1;2;5 1;3 1;2;4

    1

    1;2;3

    1

    1;2

    1

    1

    \Rightarrow n_{A} = 17 \Rightarrow P(A)
= \frac{n_{A}}{n_{\Omega}} = \frac{17}{90}.

  • Câu 6: Vận dụng
    Tính xác suất người không nhiễm bệnh

    Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm người (trong đó 91\% người không nhiễm bệnh). Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là 85\%, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là 7\%. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.

    Hướng dẫn:

    Gọi A: “Người được chọn ra không nhiễm bệnh”.

    Và B: “Người được chọn ra có phản ứng dương tính”

    Theo bài ta có: P(A) = 0,91;P\left( B|A
ight) = 0,07;P\left( B|\overline{A} ight) = 0,85

    P\left( \overline{A} ight) = 1 - P(A)
= 0,09

     

    P\left( \overline{B}|\overline{A}
ight) = 1 - P\left( B|\overline{A} ight) = 1 - 0,85 =
0,15

    Ta có sơ đồ hình cây như sau:

    Vậy P\left( A\overline{B} ight) =
0,91.0,93 = 0,8463

  • Câu 7: Vận dụng cao
    Tính xác suất theo yêu cầu

    Một tổ có 15 sinh viên trong đó có 5 sinh viên học giỏi môn Toán. Cần chia làm 5 nhóm, mỗi nhóm 3 sinh viên. Tính xác suất để nhóm nào cũng có một sinh viên học giỏi môn Toán?

    Hướng dẫn:

    Gọi A_{i} là biến cố 'nhóm thứ i có 1 người giỏi Toán' và A là sự kiện nhóm nào cũng có người giỏi Toán, thì dễ dàng nhận thấy:

    A =
A_{1}A_{2}A_{3}A_{4}A_{5}

    Ta có:

    P\left( A_{1} ight) =
\frac{C_{5}^{1}C_{10}^{2}}{C_{15}^{3}} = \frac{45}{91}

    P\left( A_{2} \mid A_{1} ight) =
\frac{C_{4}^{1}C_{8}^{2}}{C_{12}^{3}} = \frac{28}{55}

    P\left( A_{3} \mid A_{1}A_{2} ight) =
\frac{C_{3}^{1}C_{6}^{2}}{C_{9}^{3}} = \frac{15}{28}

    P\left( A_{4} \mid A_{1}A_{2}A_{3}
ight) = \frac{C_{2}^{1}C_{4}^{2}}{C_{6}^{3}} =
\frac{3}{5}

    P\left( A_{5} \mid A_{1}A_{2}A_{3}A_{4}
ight) = \frac{C_{1}^{1}C_{2}^{2}}{C_{3}^{3}} = 1

    Áp dụng công thức xác suất của tích ta có:

    P(A) = P\left( A_{1} ight)P\left(
A_{2} \mid A_{1} ight)P\left( A_{3} \mid A_{1}A_{2} ight)P\left(
A_{4} \mid A_{1}A_{2}A_{3} ight)P\left( A_{5} \mid
A_{1}A_{2}A_{3}A_{4} ight)

    = \frac{C_{5}^{1}}{C_{15}^{3}} \cdot
\frac{C_{4}^{2}}{C_{12}^{3}} \cdot \frac{C_{3}^{1}}{C_{9}^{3}} \cdot
\frac{C_{2}^{1}}{C_{6}^{3}} \cdot
\frac{C_{1}^{2}}{C_{3}^{3}} \simeq 0,0809

  • Câu 8: Vận dụng cao
    Tính xác suất bắn trúng

    Cuối tuần M đến sân chơi để bắn cung, biết khoảng cách bắn tên thay đổi liên tục và khả năng bạn M bắn trúng bia tỉ lệ nghịch với khoảng cách bắn. M bắn lần đầu ở khoảng cách 20m với xác suất trúng bia là 0,5, nếu bị trượt M bắn tiếp mũi tên thứ hai ở khoảng cách 30m, nếu lại trượt M bắn mũi tên thứ ba ở khoảng cách 40m. Tính xác suất để M bắn trúng bia?

    Hướng dẫn:

    Gọi A là biến cố “M bắn trúng bia ở lần thứ nhất”

    Gọi B là biến cố “M bắn trúng bia ở lần thứ hai”

    Gọi C là biến cố “M bắn trúng bia ở lần thứ ba”

    Ta có: P(A) = 0,5

    Vì xác suất bắn trúng bia trong mỗi lần bắn tỷ lệ nghịch với khoảng cách bắn nên ta có:

    \left\{ \begin{matrix}P\left( B|\overline{A} ight) = \dfrac{20.0,5}{30} = \dfrac{1}{3} \\P\left( C|\overline{A}.\overline{B} ight) = \dfrac{20.0,5}{40} =\dfrac{1}{4} \\\end{matrix} ight.

    Ta có sơ đồ cây như sau:

    Xác suất để M bắn trúng bia là:

    P(A) + P\left( \overline{A}B ight) +
P\left( \overline{A}\overline{B}C ight) = 0,5 + 0,5.\frac{1}{3} +
0,5.\frac{2}{3}.\frac{1}{4} = 0,75

  • Câu 9: Vận dụng cao
    Ghi đáp án vào ô trống

    Một xí nghiệp mỗi ngày sản xuất ra 1000 sản phẩm trong đó có 15 sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).

    Đáp án: 0,02

    Đáp án là:

    Một xí nghiệp mỗi ngày sản xuất ra 1000 sản phẩm trong đó có 15 sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).

    Đáp án: 0,02

    Xét các biến cố:

    A_{1}: Sản phẩm lấy ra lần thứ nhất bị lỗi.

    Khi đó, ta có: P\left( A_{1} ight) =
\frac{15}{1000}; P\left(
\overline{A_{1}} ight) = \frac{197}{200}.

    A_{2}: Sản phẩm lấy ra lần thứ hai bị lỗi.

    Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn 999 sản phẩm và trong đó có 14 sản phẩm lỗi nên ta có: P\left( A_{2}\left| A_{1} ight.\  ight) =
\frac{14}{999}, suy ra P\left(
\overline{A_{2}}\left| A_{1} ight.\  ight) =
\frac{985}{999}.

    Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn 999 sản phẩm trong đó có 15sản phẩm lỗi nên ta có: P\left( A_{2}\left| \overline{A_{1}}
ight.\  ight) = \frac{15}{999}, suy ra P\left( \overline{A_{2}}\left| \overline{A_{1}}
ight.\  ight) = \frac{328}{333}.

    Khi đó, xác suất để sản phẩm lấy ra lần thứ hai bị lỗi là:

    P\left( A_{2} ight) = P\left(
A_{2}\left| A_{1} ight.\  ight).P\left( A_{1} ight) + P\left(
A_{2}\left| \overline{A_{1}} ight.\  ight).P\left( \overline{A_{1}}
ight)

    = \frac{14}{999}.\frac{15}{1000} +
\frac{15}{999}.\frac{197}{200} \approx 0,02.

    Đáp số: 0,02.

  • Câu 10: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,7;P\left( \overline{B} ight) =
0,6.

    a) P\left( A|B ight) = 0,6 Sai|| Đúng

    b) P\left( B|\overline{A} ight) =
0,4 Đúng||Sai

    c) P\left( \overline{A}|B ight) =
0,4 Sai|| Đúng

    d) P\left( \overline{B}|\overline{A}
ight) = 0,6 Đúng||Sai

    Đáp án là:

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,7;P\left( \overline{B} ight) =
0,6.

    a) P\left( A|B ight) = 0,6 Sai|| Đúng

    b) P\left( B|\overline{A} ight) =
0,4 Đúng||Sai

    c) P\left( \overline{A}|B ight) =
0,4 Sai|| Đúng

    d) P\left( \overline{B}|\overline{A}
ight) = 0,6 Đúng||Sai

    Ta có: \left\{ \begin{matrix}
P(A) = 0,7 \Rightarrow P\left( \overline{A} ight) = 0,3 \\
P\left( \overline{B} ight) = 0,6 \Rightarrow P(B) = 1 - 0,6 = 0,4 \\
\end{matrix} ight.

    Do hai biến cố AB là hai biến cố độc lập nên \overline{B}A;\overline{A}B; \overline{B}\overline{A} độc lập với nhau.

    a) AB là hai biến cố độc lập nên: P\left( A|B ight) = P(A) = 0,7 eq
0,6

    b) \overline{A}B là hai biến cố độc lập nên: P\left( B|\overline{A} ight) = P(B) =
0,4

    c) \overline{A}Blà hai biến cố độc lập nên: P\left( \overline{A}|B ight) = P\left(
\overline{A} ight) = 0,3 eq 0,4

    d) \overline{B}\overline{A} là hai biến cố độc lập nên: P\left( \overline{B}|\overline{A} ight) =
P\left( \overline{B} ight) = 0,6

  • Câu 11: Vận dụng
    Tính xác suất theo yêu cầu

    Tung một con xúc sắc hai lần độc lập nhau. Biết rằng lần tung thứ nhất được số chấm chẵn. Tính xác suất tổng số chấm hai lần tung bằng 4?

    Hướng dẫn:

    Gọi Ti: "Tổng số nốt hai lần tung bằng i" (i = 1, 6)

    Nj,k: "Số nốt trên lần tung thứ j bằng k" (j = 1, 2; k = 1, 6)

    Ta tìm

    P\left( T_{i}|N_{1,2} \cup N_{1,4} \cup N_{1,6} ight) = \frac{P\left( N_{1,2} \cup N_{2;2} ight)}{P\left(N_{1,2} \cup N_{1,4} \cup N_{1,6} ight)}= \dfrac{\left( \dfrac{1}{6}ight)^{2}}{\dfrac{1}{2}} = \dfrac{1}{18}

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Một cuộc khảo sát 1000 người về hoạt động thể dục thấy có 80\% số người thích đi bộ và 60\% thích đạp xe vào buổi sáng và tất cả mọi người đều tham gia ít nhất một trong hai hoạt động trên. Chọn ngẫu nhiên một người hoạt động thể dục. Nếu gặp được người thích đi xe đạp thì xác suất mà người đó không thích đi bộ là bao nhiêu?

    Hướng dẫn:

    Gọi A là "người thích đi bộ", B là "người thích đi xe đạp"

    Theo giả thiết: P(A) = 0,8' P(B) = 0,6; P(A + B) = 1.

    Ta có:

    P\left( \bar{A}\mid B ight) =
\frac{P\left( \bar{A}B ight)}{P(B)} = \frac{P(B) -
P(AB)}{P(B)}

    = \frac{P(B) + \lbrack P(A + B) - P(A) -
P(B)brack}{P(B)}

    = \frac{P(A + B) - P(A)}{P(B)} = \frac{1
- 0,8}{0,6} \simeq 0,3333

  • Câu 13: Vận dụng
    Tìm giá trị xác suất

    Một tập gồm 10 chứng từ, trong đó có 2 chứng từ không hợp lệ. Một cán bộ kế toán rút ngẫu nhiên 1 chứng từ và tiếp đó rút ngẫu nhiên 1 chứng từ khác để kiểm tra. Tính xác suất để cả 2 chứng từ rút ra đều hợp lệ?

    Hướng dẫn:

    Gọi A là biến cố cả 2 chứng từ rút ra đều hợp lệ

    B là biến cố trong 3 chứng từ rút ra, chỉ có chứng từ thứ 3 không hợp lệ.

    Theo yêu cầu của đầu bài ta phải tính xác xác suất P(A), P(B).

    Nếu gọi Ai là biến cố chứng từ rút ra lần thứ i là hợp lệ} (i = 1,3).

    Khi đó ta có: A = A_1 . A_2B = A_1 . A_2 . A_3

    Vì vậy các xác suất cần tìm là:

    P(A) = P\left( A_{1}.\ A_{2} ight) =
P\left( A_{1} ight).P\left( A_{2}|A_{1} ight) =
\frac{8}{10}.\frac{7}{9} = \frac{28}{45}

    P(B) = P\left( A_{1}.\
A_{2}.\overline{A_{3}} ight)

    = P\left( A_{1} ight).P\left(
A_{2}|A_{1} ight).P\left( \overline{A_{3}}|A_{1}.\ A_{2}
ight)

    = \frac{8}{10}.\frac{7}{9}.\frac{2}{8} =
\frac{7}{45}

  • Câu 14: Vận dụng
    Ghi đáp án vào ô trống

    Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)

    Đáp án : 0,93

    Đáp án là:

    Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)

    Đáp án : 0,93

    Gọi A là biến cố “qua được lần kiểm tra đầu tiên” \Rightarrow P(A) = 0,98

    Gọi B là biến cố “qua được lần kiểm tra thứ 2” \Rightarrow P\left( B|A ight) =
0,95

    Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên, hay ta đi tính P(A \cap
B).

    Ta có

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)}

    \Rightarrow P(A \cap B) = P\left( B|A
ight).P(A) = 0,95.0,98 = \frac{931}{1000} \approx 0,93

  • Câu 15: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A,B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) AB là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai||Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai||Đúng

    Đáp án là:

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A,B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) AB là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai||Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai||Đúng

    Đề bài: P(A) = 0,5 \Rightarrow P\left(
\overline{A} ight) = 0,5;P(B) = 0,6 \Rightarrow P\left( \overline{B}
ight) = 0,4

    P(A \cap B) = 0,4

    a) A,B độc lập \Leftrightarrow P(A \cap B) =
P(A).P(B)

    0,4 eq 0,5.0,6 nên A,B không độc lập

    b) Gọi C là biến cố thắng thầu đúng 1 dự án

    P(C) = P\left( A \cap \overline{B}
ight) + P\left( \overline{A} \cap B ight) = P(A) - P(A \cap B) +
P(B) - P(A \cap B) = P(A) + P(B) -
2P(A \cap B) = 0,5 + 0,6 - 2.0,4 = 0,3

    c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1

    P(D) = P\left( B|A ight) = \frac{P(B
\cap A)}{P(A)} = \frac{0,4}{0,5} = 0,8

    d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”

    P(E) = P\left( B|\overline{A} ight) =
\frac{P\left( B \cap \overline{A} ight)}{P\left( \overline{A}
ight)}

    = \frac{P(B) - P(A \cap B)}{P\left(
\overline{A} ight)} = \frac{0,6 - 0,4}{0,5} = 0,4

  • Câu 16: Vận dụng cao
    Tính xác suất có điều kiện

    Trong một đội tuyển có ba vận động viên A,\ \ BC thi đấu với xác suất chiến thắng lần lượt là 0,6;\ \ 0,70,8. Giả sử mỗi người thi đấu một trận độc lập với nhau. Tính xác suất để A thua trong trường hợp đội tuyển thắng hai trận.

    Hướng dẫn:

    Gọi A là biến cố “vận động viên A chiến thắng”, ta có P(A) = 0,6;

    B là biến cố “vận động viên B chiến thắng” thì P(B) = 0,7;

    C là biến cố “vận động viên C chiến thắng” thì P(C) = 0,8.

    Gọi D là biến cố “đội tuyển thắng hai trận”. Ta có

    P(D) = P\left( AB\overline{C} \right) +
P\left( A\overline{B}C \right) + P\left( \overline{A}BC \right) =
0,452.

    Vậy xác suất cần tính là

    P\left(\overline{A}\left| D \right.\  \right) = \frac{P\left( \overline{A}D\right)}{P(D)} = \frac{P\left( \overline{A}BC \right)}{P(D)}=\frac{0,4.0,7.0,8}{0,452} = \frac{56}{113}.

  • Câu 17: Vận dụng cao
    Chọn kết quả chính xác

    Để thành lập đội tuyển quốc gia về một môn học, người ta tổ chức một cuộc thi tuyển gồm 3 vòng. Vòng thứ nhất lấy 80\% thí sinh; vòng thứ hai lấy 70\% thí sinh đã qua vòng thứ nhất và vòng thứ ba lấy 45\% thí sinh đã qua vòng thứ hai. Để vào được đội tuyển, thí sinh phải vượt qua được cả 3 vòng thi. Tính xác suất để một thí sinh bất kỳ bị loại ở vòng thứ hai, biết rằng thí sinh này bị loại?

    Hướng dẫn:

    Gọi A_{i} là "thí sinh vượt qua vòng thứ i ' thì ta có P\left( A_{1} ight) = 0,8,P\left( A_{2} \mid
A_{1} ight) = 0,7P\left(
A_{3} \mid A_{1}A_{2} ight) = 0,45

    Gọi A là biến cố thí sinh được vào đội tuyển thì A xảy ra nếu thí sinh vượt qua cả 3 vòng, nghĩa là A =
A_{1}A_{2}A_{3}

    P(A) = P\left( A_{1}A_{2}A_{3} ight) =
P\left( A_{1} ight)P\left( A_{2} \mid A_{1} ight)P\left( A_{3} \mid
A_{1}A_{2} ight)= 0,8.0,7.0,45 = 0,252

    Gọi C là biến cố "thí sinh bị loại ở vòng 2, biết thí sinh này bị loại'.

    Ta biểu diễn C = A_{1}\overline{A_{2}}
\mid \bar{A}.

    P(C) = \frac{P\left\lbrack \left(A_{1}\overline{A_{2}} ight)\bar{A} ightbrack}{P(\bar{A})} =\frac{P\left( A_{1}\overline{A_{2}} ight)}{P(\bar{A})}A_{1}\overline{A_{2}} \subset \bar{A}

    = \frac{P\left( A_{1} ight)P\left(
\overline{A_{2}} \mid A_{1} ight)}{P(\bar{A})}= \frac{0,8.(1 - 0,7)}{1 - 0,252} \simeq
0,3208

  • Câu 18: Thông hiểu
    Xác định công thức đúng

    Cho ba biến cố A;B;C độc lập từng đôi thỏa mãn P(A) = P(B) = P(C) =
pP(ABC) = 0. Xác định P\left( A\overline{B}\overline{C}
ight)?

    Hướng dẫn:

    Ta có:

    P\left( A\overline{B}\overline{C}
ight) = P\left( A\overline{B} ight) - P\left( A\overline{B}C
ight)

    = p(1 - p) - p^{2} = p -
2p^{2}

  • Câu 19: Vận dụng cao
    Tính xác suất của biến cố

    Một bài trắc nghiệm có 10 câu hỏi, mỗi câu hỏi có 4 phương án lựa chọn trong đó có 1 đáp án đúng được 5 điểm và mỗi câu trả lời sai bị trừ đi 2 điểm. Một học sinh không học bài nên đánh hàng loạt một câu trả lời. Tìm xác suất để học sinh này nhận điểm dưới 1.

    Gợi ý:

    Tìm xác suất để học sinh trả lời câu đúng và câu sai.

    Gọi x là câu trả lời đúng. Từ đó tính số điểm học sinh đạt được theo x.

    Từ giả thiết học sinh được điểm dưới 1 tìm x

    Từ đó sử dụng quy tắc cộng xác suất để tìm xác suất của bài toán

    Hướng dẫn:

    Xác suất để học sinh trả lời đúng 1 câu là \frac{1}{4} và trả lời sai 1 câu là \frac{3}{4}.

    Gọi x là số câu trả lời đúng \Rightarrow 10 - x là số câu trả lời sai.

    Số điểm học sinh đạt được là: 5x - 2.(10
- x) = 7x - 20

    Học sinh nhận được điểm dưới 1 khi 7x -
20 < 1 \Leftrightarrow x < 3

    x\mathbb{\in Z \Rightarrow}x \in \{
0;1;2\}

    Gọi A_{i}(i = 0,1,2) là biến cố: "Học sinh trả lời đúng i câu"

    A là biến cố "Học sinh nhận điểm dưới 1"

    Suy ra A = A_{0} \cup A_{1} \cup
A_{2}P(A) = P\left( A_{0}ight) + P\left( A_{1} ight) + P\left( A_{2} ight)

    P\left( A_{i} ight) =
C_{10}^{i}.\left( \frac{1}{4} ight)^{i}.\left( \frac{3}{4} ight)^{10
- i} nên P(A) = \sum_{i =
0,}^{2}C_{10}^{i}.\left( \frac{1}{4} ight)^{i}.\left( \frac{3}{4}
ight)^{10 - i} = 0,5256

  • Câu 20: Vận dụng
    Tính xác suất để hai đứa trẻ là con gái

    Một gia đình có 2 đứa trẻ. Biết rằng có ít nhất 1 đứa trẻ là con gái. Hỏi xác suất 2 đứa trẻ đều là con gái là bao nhiêu? Cho biết xác suất để một đứa trẻ là trai hoặc gái là bằng nhau.

    Hướng dẫn:

    Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.

    Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng:

    (trai, trai), (gái, gái), (gái, trai), (trai, gái).

    Gọi A là biến cố “Cả hai đứa trẻ đều là con gái”

    Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”

    Ta có P(A) = \frac{1}{4};P(B) =
\frac{3}{4}

    Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:

    P(A \cap B) = P(A) =
\frac{1}{4}

    Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là

    P\left( A|B \right) = \frac{P(A \cap
B)}{P(B)} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo