Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Chân trời sáng tạo Bài 1 (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định tính đúng sai của các nhận định

    Kết quả khảo sát năng suất (đơn vị: tấn/ha) của một số thửa ruộng được minh họa ở biểu đồ sau:

    Kết quả khảo sát năng suất (đơn vị: tấn/ha) của một số thửa ruộng được minh họa ở biểu đồ sau: (ảnh 1)

    a) Có 6 thửa ruộng đã được khảo sát. Sai||Đúng

    b) Khoảng biến thiên của mẫu số liệu trên là 1,2 (tấn/ha). Đúng||Sai

    c) Khoảng tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là Q_{1} = 5,8625. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là 0,4675. Đúng||Sai

    Đáp án là:

    Kết quả khảo sát năng suất (đơn vị: tấn/ha) của một số thửa ruộng được minh họa ở biểu đồ sau:

    Kết quả khảo sát năng suất (đơn vị: tấn/ha) của một số thửa ruộng được minh họa ở biểu đồ sau: (ảnh 1)

    a) Có 6 thửa ruộng đã được khảo sát. Sai||Đúng

    b) Khoảng biến thiên của mẫu số liệu trên là 1,2 (tấn/ha). Đúng||Sai

    c) Khoảng tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là Q_{1} = 5,8625. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là 0,4675. Đúng||Sai

    A.

    B.

    C.

    D.

    SAI

    ĐÚNG

    ĐÚNG

    ĐÚNG

    a) Số thửa ruộng được khảo sát là: n = 3 + 4 + 6 + 5 + 5 + 2 = 25.

    b) Từ biểu đồ, ta có bảng tần số ghép nhóm của mẫu số liệu như sau:

     Khoảng biến thiên của mẫu số liệu đã cho là: R = 6,7 – 5,5 = 1,2 (tấn/ha).

    c) Cỡ mẫu n = 25.

    Gọi x_{1};...;x_{25}là mẫu số liệu gốc về năng suất của một số thửa ruộng được khảo sát được xếp theo thứ tự không giảm.

    Ta có

    x_{1};x_{2};x_{3} \in [5,5; 5,7),

    x_{4};...;x_{7} \in [5,7; 5,9),

    x_{8};...;x_{13} \in [5,9; 6,1),

    x_{14};...;x_{18} \in [6,1; 6,3),

    x_{19};...;x_{23} \in [6,3; 6,5),

    x_{24};x_{25} \in [6,5; 6,7).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{x_{6} + x_{7}}{2} \in [5,7; 5,9).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{1} = 5,7 + \frac{\frac{25}{4} - 3}{4}(5,9 -
5,7) = 5,8625

    d) Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{x_{19} +x_{20}}{2} \in [6,3; 6,5).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 6,3 + \frac{\frac{3.25}{4} - (3 + 4 + 6 +5)}{5}(6,5- 6,3) = 6,33

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta_{Q} = Q_{3} - Q_{1} = 6,33 - 5,8625 =
0,4675

  • Câu 2: Vận dụng
    Chọn đáp án đúng

    Cho biểu đồ thống kê thời gian tập thể dục buổi sáng của hai người A và B

    Gọi khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A và B lần lượt là \Delta_{Q_{A}};\Delta_{Q_{B}}. Chọn kết luận đúng?

    Hướng dẫn:

    Ta có:

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    A

    5

    12

    8

    3

    2

    Tần số tích lũy

    5

    17

    25

    28

    30

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 12;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +
\frac{\frac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 5}{12}.5 =
\frac{505}{24}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 17,f = 8;c =
5

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 25 + \frac{22,5 - 17}{8}.5 =
\frac{455}{16}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A là:

    \Delta_{Q_{A}} = Q_{3} - Q_{1} =
\frac{355}{48} \approx 7,4.

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    B

    0

    25

    5

    0

    0

    Tần số tích lũy

    0

    25

    30

    0

    0

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 0}{25}.5 =\frac{43}{2}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 20 + \dfrac{22,5 - 0}{25}.5 =\dfrac{49}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của B là:

    \Delta_{Q_{B}} = Q_{3} - Q_{1} =
3.

    Vậy kết luận đúng là: \Delta_{Q_{A}} >
\Delta_{Q_{B}}.

  • Câu 3: Thông hiểu
    Tìm tứ phân vị thứ ba của mẫu số liệu ghép nhóm

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Khi đó giá trị tứ phân vị thứ ba là:

    Hướng dẫn:

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{3N}{4} =
31,5

    => Nhóm chứa Q_{3} là [60; 80)

    (Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 60;m = 26,f = 10;c = 80
- 60 = 20

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 60 + \frac{31,5 - 26}{10}.20 =71.

  • Câu 4: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Chọn kết luận đúng? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Hướng dẫn:

    Ta có:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Tần số tích lũy

    24

    86

    120

    141

    150

    Cỡ mẫu N = 150 \Rightarrow \frac{N}{4} =
37,5

    => Nhóm chứa tứ phân vị thứ nhất là [250; 300)

    Do đó: l = 250;m = 24,f = 62;c =
50

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 250 + \frac{37,5 - 24}{62}.50 \approx260,89

    N = 150 \Rightarrow \frac{3N}{4} =
112,5

    => Nhóm chứa tứ phân vị thứ ba là [300; 350)

    Do đó: l = 300;m = 86,f = 34;c =
50

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 300 + \dfrac{112,5 - 84}{34}.50 \approx338,97

    Vậy \Delta_{Q} = Q_{3} - Q_{1} \approx
78,08

  • Câu 5: Vận dụng
    Tìm giá trị ngoại lệ

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tìm giá trị ngoại lệ của mẫu số liệu?

    Hướng dẫn:

    Ta có:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tần số tích lũy

    5

    17

    42

    86

    100

    N = 100 \Rightarrow \frac{N}{4} =
25 => Nhóm chứa tứ phân vị thứ nhất là: [8,8; 9,0)

    \Rightarrow \left\{ \begin{matrix}l = 8,8,\dfrac{N}{4} = 25,m = 17,f = 25 \\c = 9,0 - 8,8 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\frac{\dfrac{N}{4} - m}{f}.c \Rightarrow Q_{1} = 8,8 + \frac{25 -17}{25}.0,2 = \frac{1108}{125}

    \frac{3N}{4} = 75 => Nhóm chứa tứ phân vị thứ ba là: [9,0; 9,2)

    \Rightarrow \left\{ \begin{matrix}l = 9,0,\dfrac{3N}{4} = 75,m = 42,f = 44 \\c = 9,2 - 9,0 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\frac{\dfrac{3N}{4} - m}{f}.c \Rightarrow Q_{3} = 9,0 + \frac{75 -42}{44}.0,2 = \frac{183}{20}

    Suy ra khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 0,286.

    Giá trị x trong mẫu số liệu là giá trị ngoại lệ nếu \left\lbrack \begin{matrix}
x < Q_{1} - 1,5\Delta_{Q} \\
x > Q_{3} + 1,5\Delta_{Q} \\
\end{matrix} ight.

    Ta có: x < Q_{1} - 1,5\Delta_{Q} =
8,435

    Vậy giá trị ngoại lệ cần tìm là 8,4.

  • Câu 6: Nhận biết
    Xác định khoảng biến thiên của mẫu số liệu

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14;15)

    [15;16)

    [16;17)

    [17;18)

    [18;19)

    Số con

    1

    3

    8

    6

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là:

    Hướng dẫn:

    Khoảng biến thiên: 19 - 14 = 5.

  • Câu 7: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Cho mẫu số liệu ghép nhóm:

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Tìm khoảng biến thiên?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 50 - 0 = 50.

  • Câu 8: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho mẫu số liệu ghép nhóm dưới đây:

    Nhóm

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Tần số

    2

    6

    8

    9

    3

    2

    Xét tính đúng sai của các khẳng định sau?

    a) Khoảng biến thiên của mẫu số liệu R = 5. Đúng||Sai

    b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm bằng Q_{1} = 57,26. Sai||Đúng

    c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm bằng Q_{3} = 56,35. Sai||Đúng

    d) Khoảng tứ phân vị của mẫu số liệu \Delta Q = 2,34. Đúng||Sai

    Đáp án là:

    Cho mẫu số liệu ghép nhóm dưới đây:

    Nhóm

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Tần số

    2

    6

    8

    9

    3

    2

    Xét tính đúng sai của các khẳng định sau?

    a) Khoảng biến thiên của mẫu số liệu R = 5. Đúng||Sai

    b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm bằng Q_{1} = 57,26. Sai||Đúng

    c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm bằng Q_{3} = 56,35. Sai||Đúng

    d) Khoảng tứ phân vị của mẫu số liệu \Delta Q = 2,34. Đúng||Sai

    a) Đúng: Từ mẫu số liệu bảng trên ta có khoảng biến thiên của mẫu số liệu R = 5

    Ta có: n = 260 \Rightarrow \frac{n}{4} =
65

    ⇒ Suy ra nhóm chứa tứ phân vị thứ nhất là nhóm [55; 56).

    b) Sai: Áp dụng công thức:

    Q_{1} = u_{m} + \dfrac{\dfrac{in}{4} -C}{n_{m}}.\left( u_{m + 1} - u_{m} ight)

    \Rightarrow Q_{1} = a_{2} +
\frac{\frac{n}{4} - m_{1}}{m_{2}}.\left( a_{3} - a_{2}
ight)

    = 55 + \frac{65 - 52}{58}.1 =
55,22

    c) Sai: Ta có \frac{3n}{4} = 195 suy ra nhóm chứa tứ phân vị thứ ba là nhóm [57;58).

    \Rightarrow Q_{3} = a_{4} +
\frac{\frac{3n}{4} - \left( m_{1} + m_{2} + m_{3} ight)}{m_{4}}.\left(
a_{5} - a_{4} ight)

    = 57 + \frac{195 - 167}{50}.(58 - 57) =
57,56

    d) Đúng: Suy ra khoảng tứ phân vị của mẫu số liệu trên là \Delta Q = Q_{3} - Q_{1} = 2,34.

  • Câu 9: Nhận biết
    Xác định khoảng biến thiên của mẫu số liệu ghép nhóm

    Bảng sau thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch ở một nông trường.

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là

    Hướng dẫn:

    Khoảng biên thiên bằng u_{k + 1} -
u_{1} = 450 - 250 = 200

  • Câu 10: Thông hiểu
    Xác định trung vị của mẫu số liệu ghép nhóm

    Điểm thi giữa kỳ 1 môn toán của một lớp học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:

    Điểm thi

    [1,5; 4,5)

    [4,5; 7,5)

    [7,5; 10,5)

    Số học sinh

    7

    18

    10

    Trung vị của mẫu số liệu ghép nhóm trên là

    Hướng dẫn:

    Cỡ mẫu là n = 7 + 18 + 10 =
35.

    Gọi x_{1},x_{2},\ldots,x_{35} là số điểm của 35 học sinh và giả sử dãy này được sắp xếp theo thứ tự không giảm. Khi đó, trung vị là x_{18} thuộc nhóm \lbrack 4,5;7,5).

    Ta xác định được n = 35,n_{m} = 18,C =
7,u_{m} = 4,5,u_{m + 1} = 7,5.

    Trung vị của mẫu số liệu ghép nhóm là:

    M_{e} = 4,5 + \dfrac{\dfrac{35}{2} -7}{18}(7,5 - 4,5) = 6,25.

  • Câu 11: Thông hiểu
    Tìm khoảng biến thiên của mẫu số liệu

    Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:

    160

    161

    161

    162

    162

    162

    163

    163

    163

    164

    164

    164

    164

    165

    165

    165

    165

    165

    166

    166

    166

    166

    167

    167

    168

    168

    168

    168

    169

    169

    170

    171

    171

    172

    172

    174

    Chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 4 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau. Khi đó khoảng biến thiên của mẫu số liệu sau khi ghép nhóm là:

    Hướng dẫn:

    Khoảng biến thiên là 174 - 160 =
14

    Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4.

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.

    Khi đó ta có các nhóm là: \lbrack
160;164),\lbrack 164;168),\lbrack 168;172),\lbrack 172;176)

    Vậy bảng dữ liệu ghép nhóm đúng là:

    Vậy khoảng biến thiên của mẫu số liệu sau khi ghép nhóm là R = 176 - 160 = 16.

  • Câu 12: Nhận biết
    Xác định nhóm chứa tứ phân vị thứ nhất

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14;15)

    [15;16)

    [16;17)

    [17;18)

    [18;19)

    Số con

    1

    3

    8

    6

    2

    Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu ghép nhóm đã cho là:

    Hướng dẫn:

    Ta có: \frac{n}{4} = \frac{20}{4} =
51 + 3 < 5 < 1 + 3 +
8 nên tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm [16;17).

  • Câu 13: Thông hiểu
    Xác định tính đúng sai của các nhận định

    Bảng thống kê thời gian (đơn vị: phút) tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình và bạn An:

    a) Khoảng biến thiên của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 20. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình là 28. Sai||Đúng

    c) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 22. Sai||Đúng

    d) Dựa vào khoảng tứ phân vị của hai mẫu số liệu trên thì thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình phân tán hơn bạn An. Đúng||Sai

    Đáp án là:

    Bảng thống kê thời gian (đơn vị: phút) tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình và bạn An:

    a) Khoảng biến thiên của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 20. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình là 28. Sai||Đúng

    c) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 22. Sai||Đúng

    d) Dựa vào khoảng tứ phân vị của hai mẫu số liệu trên thì thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình phân tán hơn bạn An. Đúng||Sai

    a) Khoảng biến thiên của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 35 - 15 = 20

    Mệnh đề đúng.

    b) Cỡ mẫu là: 28. Gọi x_{1}\ ;\ x_{2}\
;...;\ x_{28} là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình đã được sắp xếp theo thứ tự không giảm. Nên tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{7} + x_{8} \right) nên nhóm chứa tứ phân vị thứ nhất là nhóm \lbrack 20\ ;25)và ta có Q_{1} = 20 + \frac{\left( \frac{1.28}{4} - 5
\right)}{10}.5 = 21

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{21} + x_{22} \right) nên nhóm chứa tứ phân vị thứ ba là nhóm \lbrack 25\ ;30) và ta có Q_{3} = 25 + \frac{\left(\frac{3.28}{4} - 15\right)}{10}.5 = 28

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 28 - 21 =
7

    Mệnh đề Sai.

    c) Cỡ mẫu là: 28. Gọi x_{1}\ ;\ x_{2}\
;...;\ x_{28} thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm. Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{7} + x_{8}
\right) nên nhóm chứa tứ phân vị thứ nhất là nhóm \lbrack 20\ ;25)và ta có Q_{1} = 20 + \frac{\left( \frac{1.28}{4} - 5
\right)}{5}.5 = 22

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{21} + x_{22} \right) nên nhóm chứa tứ phân vị thứ ba là nhóm \lbrack 25\ ;30)và ta có Q_{3} = 25 + \frac{\left( \frac{3.28}{4} - 10
\right)}{15}.5 = 26

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 26 - 22 =
4

    Mệnh đề Sai.

    d) Do 4 <7 nên thời gian tập thể dục mỗi buổi sáng trong tháng 2 năm 2023 của bạn Bình phân tán hơn bạn An.

    Mệnh đề đúng.

  • Câu 14: Nhận biết
    Tìm khoảng biến thiên mẫu số liệu ghép nhóm

    Mỗi ngày bác T đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác T trong 20 ngày được thống kê lại ở bảng sau:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là: 4,2 - 2,7 = 1,5(km)

  • Câu 15: Thông hiểu
    Tìm tứ phân vị thứ nhất

    Tìm tứ phân vị thứ nhất trong bảng dữ liệu dưới đây:

    Nhóm

    Tần số

    [0; 20)

    16

    [20; 40)

    12

    [40; 60)

    25

    [60; 80)

    15

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Kết quả làm tròn đến chữ số thập phân thứ nhất.

    Hướng dẫn:

    Ta có:

    Nhóm

    Tần số

    Tần số tích lũy

    [0; 20)

    16

    16

    [20; 40)

    12

    28

    [40; 60)

    25

    53

    [60; 80)

    15

    68

    [80; 100)

    12

    80

    [100; 120)

    10

    90

    Tổng

    N = 90

     

    Ta có: \frac{N}{4} = 22,5

    => Nhóm chứa tứ phân vị thứ nhất là: [20; 40)

    Khi đó ta có: \left\{ \begin{matrix}l = 20;\dfrac{N}{4} = 22,5 \\m = 16,f = 12,d = 20 \\\end{matrix} ight.

    Tứ phân vị thứ nhất được tính như sau:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 20 + \frac{22,5 -
16}{12}.20 \approx 30,8

  • Câu 16: Nhận biết
    Chọn kết luận đúng

    Cho bảng thống kê chiều cao (đơn vị: cm) của học sinh lớp 12A và lớp 12B như sau:

    Chiều cao

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    12A

    2

    7

    12

    3

    0

    1

    12B

    5

    9

    8

    2

    1

    0

    Giả sử khoảng biến thiên của mẫu số liệu chiều cao học sinh lớp 12A và 12B lần lượt là R_{1};R_{2}. Chọn kết luận đúng?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu chiều cao lớp 12A là R_{1} = 185 - 155 = 30.

    Khoảng biến thiên của mẫu số liệu chiều cao lớp 12B là R_{2} = 180 - 155 = 25.

    Vậy R_{1} > R_{2} là kết luận đúng.

  • Câu 17: Thông hiểu
    Ghi đáp án vào ô trống

    Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12A được cho trong bảng sau:

    Thời gian (phút)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số học sinh

    9

    17

    8

    6

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 7,2

    Đáp án là:

    Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12A được cho trong bảng sau:

    Thời gian (phút)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số học sinh

    9

    17

    8

    6

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 7,2

    Cỡ mẫu là n = 9 + 17 + 8 + 6 =
40. Gọi x_{1},\ \ x_{2},\ \ ...,\ \
x_{40} là thời gian hoàn thành bài kiểm tra môn Toán của 40 học sinh và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{10} + x_{11} ight) nên nhóm chứa tứ phân vị thứ nhất là nhóm \lbrack 30;35) và ta có: Q_{1} = 30 + \frac{10 - 9}{17}.5 \approx
30,3

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{30} + x_{31} ight) nên nhóm chứa tứ phân vị thứ ba là nhóm \lbrack 35;40) và ta có: Q_{3} = 35 + \frac{30 - 26}{8}.5 =
37,5

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 7,2.

  • Câu 18: Thông hiểu
    Xác định tính đúng sai của các nhận định

    Số cuộc điện thoại một người thực hiện mỗi ngày trong 30 ngày được lựa chọn ngẫu nhiên được thống kê trong bảng sau:

    a) Số cuộc gọi trung bình mỗi ngày là: 8,1. Sai||Đúng

    b) Nhóm chứa tứ phân vị thứ nhất là \lbrack 5.5;8,5). Đúng||Sai

    c) Nhóm chứa tứ phân vị thứ ba là \lbrack
11,5;14,5). Sai||Đúng

    d) Khoảng biến thiên của mẫu số liệu trên là 15. Đúng||Sai

    Đáp án là:

    Số cuộc điện thoại một người thực hiện mỗi ngày trong 30 ngày được lựa chọn ngẫu nhiên được thống kê trong bảng sau:

    a) Số cuộc gọi trung bình mỗi ngày là: 8,1. Sai||Đúng

    b) Nhóm chứa tứ phân vị thứ nhất là \lbrack 5.5;8,5). Đúng||Sai

    c) Nhóm chứa tứ phân vị thứ ba là \lbrack
11,5;14,5). Sai||Đúng

    d) Khoảng biến thiên của mẫu số liệu trên là 15. Đúng||Sai

    Ta viết lại bảng tần số ghép nhóm theo giá trị đại diện là:

    a) Số cuộc gọi trung bình mỗi ngày là:

    \overline{x} = \frac{4.5 + 7.13 + 10.7 +
13.3 + 16.2}{30} = 8,4.

    Vậy a) sai.

    b) Cỡ mẫu n = 5 + 13 + 7 + 3 + 2 =
30.

    Gọi x_{1};\ x_{2};\ \ldots;\ x_{30}là thời gian hoàn mỗi cuộc gọi và được sắp xếp theo thứ tự không giảm.

    Có tứ phân vị thứ nhất Q_{1} =
x_{8}x_{8} \in \lbrack
5.5;8,5) nên b) đúng

    c) Tứ phân vị thứ ba Q_{3} =
x_{23}x_{23} \in \lbrack
8,5;11,5) nên c) sai

    d) Khoảng biến thiên của mẫu số liệu trên là R = 17,5 - 2,5 = 15. Vậy d) đúng.

  • Câu 19: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Đo chiều cao (tính bằngcm) của 500 học sinh trong một trường THPT ta thu được kết quả như sau:

    Chiều cao

    \lbrack 150;\ 154) \lbrack 154;\ 158) \lbrack 158;\ 162) \lbrack 162;\ 166) \lbrack 166;\ 170)

    Số học sinh

    25

    50

    200

    175

    50

    Khoảng biến thiên của mẫu số liệu trên là

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu trên là R = 170 - 150 = 20

  • Câu 20: Thông hiểu
    Tìm tứ phân vị thứ ba của mẫu số liệu

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Tính Q_{3}?

    Hướng dẫn:

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow
\frac{3N}{4} = 45

    => Nhóm chứa tứ phân vị thứ ba là [150; 200) (vì 45 nằm giữa hai tần số tích lũy 40 va 57)

    Khi đó \left\{ \begin{matrix}l = 150;\dfrac{3N}{4} = 45;m = 40;f = 17 \\c = 200 - 150 = 50 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 150 + \frac{45 -
40}{17}.50 = \frac{2800}{17}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo