Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Chân trời sáng tạo Bài 1 (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm R

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    Tốc độ

    Tần số

    40 ≤ x < 50

    4

    50 ≤ x < 60

    5

    60 ≤ x < 70

    7

    70 ≤ x < 80

    4

    Xác định khoảng biến thiên R của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 80 - 40 = 40

  • Câu 2: Thông hiểu
    Chọn kết luận đúng

    Bạn Trang thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ lớp 12C và lớp 12D ở bảng sau:

    Chiều cao (cm)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    Số học sinh nữ lớp 12C

    2

    7

    12

    3

    0

    1

    Số học sinh nữ lớp 12D

    5

    9

    8

    2

    1

    0

    Sử dụng khoảng biến thiên, hãy cho biết chiều cao của học sinh nữ lớp nào có độ phân tán lớn hơn.

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12C là: 185 – 155 = 30 (cm).

    Trong mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12D, khoảng đầu tiên chứa dữ liệu là [155; 160) và khoảng cuối cùng chứa dữ liệu là [175; 180).

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12D là: 180 – 155 = 25 (cm).

    Vậy nếu căn cứ theo khoảng biến thiên thì chiều cao của học sinh nữ lớp 12C có độ phân tán lớn hơn lớp 12D.

  • Câu 3: Nhận biết
    Xác định nhóm chứa tứ phân vị thứ nhất

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Hướng dẫn:

    Ta có: \frac{n}{4} = \frac{20}{4} =
51 + 3 < 5 < 1 + 3 +
8 nên tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \lbrack 16;17)

  • Câu 4: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Bạn An rất thích chạy bộ. Thời gian chạy bộ mỗi ngày trong thời gian gần đây của bạn An được thống kê lại ở bảng sau:

    Thời gian (phút)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số ngày

    6

    6

    4

    1

    1

    Hãy tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trong bảng trên.

    Hướng dẫn:

    Cỡ mẫu n = 18.

    Gọi x_{1};x_{2};...;x_{18} là mẫu số liệu gốc gồm thời gian của 18 ngày chạy bộ của bạn An được sắp xếp theo thứ tự không giảm.

    Ta có: x_{1},...,x_{6} \in \lbrack20;25);\ \ x_{7},...,x_{12} \in \lbrack 25;30);\ \ x_{13},...,x_{16} \in\lbrack 30;35);\ \ x_{17} \in \lbrack 35;40);\ \ x_{18} \in \lbrack40;45)

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{5} \in \lbrack 20;25).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 20 + \frac{\frac{18}{4} - 0}{6}\cdot (25 - 20) = 23,75.

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{14} \in \lbrack 30;35).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 30 + \frac{\frac{3 \cdot 18}{4} -(6 + 6)}{4} \cdot (35 - 30) = 31,875.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q}=31,875-23,75=8,125.

  • Câu 5: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Dưới đây là bảng thống kê số giờ tự học ở nhà trong 3 ngày nghỉ của học sinh lớp 12 như sau:

    Giờ

    [1; 2)

    [2; 3)

    [3; 4)

    [4; 5)

    [5; 6)

    Số học sinh

    8

    10

    12

    9

    3

    Xét tính đúng sai của các khẳng định sau:

    a) Tứ phân vị thứ nhất của mẫu số liệu bằng 2,25 (giờ). Đúng||Sai

    b) Tứ phân vị thứ hai của mẫu số liệu lớn hơn 4 (giờ). Sai||Đúng

    c) Tứ phân vị thứ ba của mẫu số liệu bằng \frac{25}{6}. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu là số nguyên. Sai||Đúng

    Đáp án là:

    Dưới đây là bảng thống kê số giờ tự học ở nhà trong 3 ngày nghỉ của học sinh lớp 12 như sau:

    Giờ

    [1; 2)

    [2; 3)

    [3; 4)

    [4; 5)

    [5; 6)

    Số học sinh

    8

    10

    12

    9

    3

    Xét tính đúng sai của các khẳng định sau:

    a) Tứ phân vị thứ nhất của mẫu số liệu bằng 2,25 (giờ). Đúng||Sai

    b) Tứ phân vị thứ hai của mẫu số liệu lớn hơn 4 (giờ). Sai||Đúng

    c) Tứ phân vị thứ ba của mẫu số liệu bằng \frac{25}{6}. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu là số nguyên. Sai||Đúng

    Ta có

    Giờ

    [1; 2)

    [2; 3)

    [3; 4)

    [4; 5)

    [5; 6)

    Số học sinh

    8

    10

    12

    9

    3

    Tần số tích lũy

    8

    18

    30

    39

    42

    a) Đúng: Ta có số phần tử của mẫu là: n =
42 \Rightarrow \frac{n}{4} = 10,5

    Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10,5.

    Xét nhóm 2 là nhóm [2;3) có s = 2;h =
1;n_{2} = 10 và nhóm 1 là nhóm [1; 2) có cf_{1} = 8

    Áp dụng công thức tứ phân vị thứ nhất của mẫu số liệu có:

    Q_{1} = 2 + \frac{10,5 - 8}{10}.1 =
2,25(giờ)

    b) Sai: Ta có số phần tử của mẫu là n =
42 \Rightarrow \frac{n}{2} = 21

    cf_{2} = 18 < 21 < cf_{3} =
30 suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 21.

    Xét nhóm 3 là nhóm [3; 4) có r = 3;d =
1;n_{3} = 12 và nhóm 2 là nhóm [2;3) có cf_{2} = 18.

    Áp dụng công thức ta có trung vị của mẫu số liệu là:

    M_{e} = 3 + \frac{21 - 18}{12}.1 =
3,25(giờ)

    Vậy tứ phân vị thứ 2 là Q_{2} = M_{e} =
3,25

    c) Đúng: Ta có số phần tử của mẫu là: \frac{3n}{4} = 31,5

    Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 31,5.

    Xét nhóm 4 là nhóm [4;5) có t = 4;l =
1;n_{4} = 9 và nhóm 3 là nhóm [3; 4) có cf_{3} = 30.

    Áp dụng công thức tứ phân vị thứ ba của mẫu số liệu có:

    Q_{3} = 4 + \frac{31,5 - 30}{9}.1 =
\frac{25}{6}(giờ)

    d) Sai: Khoảng tứ phân vị của mẫu số liệu bằng \Delta Q = Q_{3} - Q_{1} =
\frac{23}{12}.

  • Câu 6: Thông hiểu
    Ghi đáp án vào ô trống

    Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12A được cho trong bảng sau:

    Thời gian (phút)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số học sinh

    9

    17

    8

    6

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 7,2

    Đáp án là:

    Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12A được cho trong bảng sau:

    Thời gian (phút)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số học sinh

    9

    17

    8

    6

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 7,2

    Cỡ mẫu là n = 9 + 17 + 8 + 6 =
40. Gọi x_{1},\ \ x_{2},\ \ ...,\ \
x_{40} là thời gian hoàn thành bài kiểm tra môn Toán của 40 học sinh và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{10} + x_{11} ight) nên nhóm chứa tứ phân vị thứ nhất là nhóm \lbrack 30;35) và ta có: Q_{1} = 30 + \frac{10 - 9}{17}.5 \approx
30,3

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{30} + x_{31} ight) nên nhóm chứa tứ phân vị thứ ba là nhóm \lbrack 35;40) và ta có: Q_{3} = 35 + \frac{30 - 26}{8}.5 =
37,5

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 7,2.

  • Câu 7: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Khoảng biến thiên của mẫu số liệu ghép nhóm được cho ở bảng sau là bao nhiêu?

    Nhóm

    \lbrack 15;22) \lbrack 22;29) \lbrack 29;36) \lbrack 36;43) \lbrack 43;50)

    Tần số

    1 6 21 21 11
    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là 50 – 15 = 35

  • Câu 8: Vận dụng
    Ghi đáp án vào ô trống

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Đáp án là:

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Lập mẫu số liệu ghép nhóm bao gồm cả tần số tích luỹ nhu ở Báng 8 .

    Số phần tử của mẫu là n = 40. Ta có: \frac{n}{2} = \frac{40}{2} = 2015 < 20 < 22. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 20 . Xét nhóm 3 có r = 50;d = 5;n_{3} = 7 và nhóm 2 có

    Nhóm

    Tần sồ

    Tần số tích luỹ

    \lbrack 40;45)

    4

    4

    \lbrack 45;50)

    11

    15

    \lbrack 50;55)

    7

    22

    \lbrack 55;60)

    8

    30

    \lbrack 60;65)

    8

    38

    \lbrack 65;70)

    2

    2

     

    n = 40

     

    cf_{2} = 15.

    Trung vị của mẫu số liệu ghép nhóm đó là:

    M_{e} = 50 + \left( \frac{20 - 15}{7}
ight) \cdot 5 = \frac{375}{7}(\ km/h).

    Suy ra a = 375.

  • Câu 9: Nhận biết
    Chọn đáp án thích hợp

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    \lbrack 14;\ \ 15) \lbrack 15;\ \ 16) \lbrack 16;\ \ 17) \lbrack 17;\ \ 18) \lbrack 18;\ \ 19)

    Số con hổ

    1 3 8 6 2

    Số đặc trưng nào không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng?

    Hướng dẫn:

    Đáp án đúng là Khoảng tứ phân vị.

  • Câu 10: Vận dụng
    Chọn kết luận đúng nhất

    Thống kê điểm kiểm tra môn Toán giữa kì I của bốn lớp 12 của một trường THPT cho bởi bảng sau:

    Điểm

    \lbrack 5;6) \lbrack 6;7) \lbrack 7;8) \lbrack 8;9) \lbrack 9;10\rbrack

    Lớp 12B1

    7 3 15 12 4

    Lớp 12B2

    5 9 12 11 3

    Lớp 12B3

    10 10 9 6 1

    Lớp 12B4

    14 3 15 9 1

    Nhà trường muốn đánh giá mức độ “học đều” môn Toán của các lớp. Nếu xét theo khoảng tứ phân vị thì điểm kiểm tra môn Toán giữa kì I của lớp nào đồng đều nhất?

    Hướng dẫn:

    Lớp 12B1:

    n = 7 + 3 + 15 + 12 + 4 =
41

    Q_{1} = 7 + \frac{\frac{41}{4} - (7 +
3)}{15} \cdot 1 = \frac{421}{60}, Q_{3} = 8 + \frac{\frac{41 \cdot 3}{4} - (7 + 3 +
15)}{12} \cdot 1 = \frac{407}{48}.

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{117}{80}.

    Lớp 12B2:

    n = 5 + 9 + 12 + 11 + 3 =
40

    Q_{1} = 6 + \frac{\frac{40}{4} - 5}{9}
\cdot 1 = \frac{59}{9}, Q_{3} = 8 +
\frac{\frac{40 \cdot 3}{4} - (5 + 9 + 12)}{11} \cdot 1 =
\frac{92}{11}.

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{179}{99}.

    Lớp 12B3:

    n = 10 + 10 + 9 + 6 + 1 =
36

    Q_{1} = 5 + \frac{\frac{36}{4}}{10} \cdot
1 = \frac{59}{10}, Q_{3} = 7 +
\frac{\frac{36 \cdot 3}{4} - (10 + 10)}{9} \cdot 1 =
\frac{70}{9}.

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{169}{90}.

    Lớp 12B4:

    n = 14 + 3 + 15 + 9 + 1 =
42

    Q_{1} = 5 + \frac{\frac{42}{4}}{14} \cdot
1 = \frac{23}{4}, Q_{3} = 7 +
\frac{\frac{42 \cdot 3}{4} - (14 + 3)}{15} \cdot 1 =
\frac{239}{30}.

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{133}{60}.

    Ta thấy khoảng tứ phân vị của lớp 12B1 nhỏ nhất nên nếu xét theo khoảng tứ phân vị thì điểm kiểm tra môn Toán giữa kì I của lớp 12B1 đồng đều nhất.

  • Câu 11: Thông hiểu
    Tìm tứ phân vị thứ ba của mẫu số liệu

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Tính Q_{3}?

    Hướng dẫn:

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow
\frac{3N}{4} = 45

    => Nhóm chứa tứ phân vị thứ ba là [150; 200) (vì 45 nằm giữa hai tần số tích lũy 40 va 57)

    Khi đó \left\{ \begin{matrix}l = 150;\dfrac{3N}{4} = 45;m = 40;f = 17 \\c = 200 - 150 = 50 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 150 + \frac{45 -
40}{17}.50 = \frac{2800}{17}

  • Câu 12: Nhận biết
    Tính thể tích theo yêu cầu

    Khi thống kê chiều cao (đơn vị: centimét) của học sinh lớp 12A, người ta thu được mẫu số liệu ghép nhóm như Bảng sau.

    Nhóm

    Tần số

    [155; 160)

    2

    [160; 165)

    5

    [165; 170)

    21

    [170; 175)

    11

    [175; 1800

    11

    N = 40

    Khoảng biến thiên của mẫu số liệu ghép nhóm đó bằng:

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm ta có đầu mút trái của nhóm 1 là a_{1} = 155, đầu mút phải của nhóm 5 là a_{5} = 180.

    Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là R = a_{5} - a_{1} = 180 - 155 = 25

  • Câu 13: Nhận biết
    Chọn đáp án đúng

    Điều tra cân nặng của 50 bé trai 6 tháng tuổi, người ta được kết quả ở bảng sau. Khoảng biến thiên của mẫu số liệu ghép nhóm là bao nhiêu?

    Nhóm

    [80;100)

    [100;120)

    [120;140)

    [140;160)

    [160;180)

    [180;200)

    Tần số

    3

    5

    6

    8

    6

    2

    n = 30

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    200 – 80 = 120

  • Câu 14: Thông hiểu
    Tìm độ lệch chuẩn của mẫu số liệu đó

    Một mẫu số liệu ghép nhóm về chiều cao của một lớp (đơn vị là centimét) có phương sai là 6,25. Độ lệch chuẩn của mẫu số liệu đó bằng:

    Hướng dẫn:

    Độ lệch chuẩn của mẫu số liệu là: \sqrt{6,25} = 2,5.

  • Câu 15: Thông hiểu
    Tìm khoảng biến thiên của mẫu số liệu

    Dưới đây là thống kê thời gian 100 lần đi làm bằng xe bus từ nhà đến trường của bạn Lan:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Hướng dẫn:

    Ta có:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Tần số tích lũy

    22

    60

    87

    95

    99

    100

    Cỡ mẫu N = 100 \Rightarrow \frac{N}{4} =
25

    => Nhóm chứa tứ phân vị thứ nhất là [18; 21)

    Do đó: l = 18;m = 22,f = 38;c = 21 - 18 =
3

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 18 + \frac{25 - 22}{38}.3 =\frac{693}{38}

    N = 100 \Rightarrow \frac{3N}{4} =
75

    => Nhóm chứa tứ phân vị thứ ba là [21; 24)

    Do đó: l = 21;m = 60,f = 27;c =
3

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 21 + \frac{75 - 60}{27}.3 =\frac{68}{3}

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} \approx
4,43

  • Câu 16: Thông hiểu
    Xác định khoảng tứ phân vị của mẫu số liệu

    Bạn Chi rất thích nhảy hiện đại. Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn Chi được thống kê lại ở bảng sau:

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Cỡ mẫu n = 18

    Gọi x_{1};x_{2};\ldots;x_{18} là mẫu số liệu gốc về thời gian tập nhảy mỗi ngày của bạn Chi được xếp theo thứ tự không giảm.

    Ta có: x_{1};\ldots;x_{6} \in \lbrack20;25);x_{7};\ldots;x_{12} \in \lbrack 25;30);x_{13};\ldots;x_{16} \in\lbrack 30;35);x_{17};\in \lbrack 35;40);x_{18} \in \lbrack40;45)

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{5} \in \lbrack 20;25). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{1} = 20 + \frac{\frac{18}{4}}{6}(25 - 20) =
23,75

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{14} \in \lbrack 30;35). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: Q_{3} = 30 + \frac{\frac{3.18}{4} - (6 + 6)}{4}(35
- 30) = 31,875

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} = 8,125

  • Câu 17: Nhận biết
    Xác định khoảng biến thiên của mẫu số liệu

    Người ta thống kê tốc độ của một số xe ôtô di chuyển qua một trạm kiểm soát trên đường cao tốc trong một khoảng thời gian ở bảng sau:

    Tốc độ (km/h)

    [75; 80)

    [80; 85)

    [85; 90)

    [90; 95)

    [95; 100)

    Số xe

    15

    22

    28

    34

    19

    Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là:

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 100 - 75 = 25 km/h.

  • Câu 18: Thông hiểu
    Tính tứ phân vị thứ nhất

    Tìm tứ phân vị thứ nhất của mẫu số liệu sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [30; 35)

    2

    Hướng dẫn:

    Ta có:

    Thời gian

    Số học sinh

    Tần số tích lũy

    [0; 5)

    6

    6

    [5; 10)

    10

    16

    [10; 15)

    11

    27

    [15; 20)

    9

    36

    [20; 25)

    1

    37

    [25; 30)

    1

    38

    [30; 35)

    2

    40

    Cỡ mẫu là: N = 40 \Rightarrow \frac{N}{4}
= 10

    => Nhóm chứa tứ phân vị thứ nhất là [5; 10) (vì 10 nằm giữa hai tần số tích lũy 6 và 16)

    Khi đó \left\{ \begin{matrix}l = 5;\dfrac{N}{4} = 10;m = 6;f = 10 \\c = 10 - 5 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 5 + \frac{10 -
6}{10}.5 = 7

  • Câu 19: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho mẫu số liệu ghép nhóm về chiều cao (đơn vị: cm) của cây trong vườn nghiên cứu như sau:

    Chiều cao

    [40; 45)

    [45; 50)

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    Số cây

    5

    10

    7

    9

    7

    4

    Xét tính đúng sai của các khẳng định sau:

    a) Nhóm [45; 50) có tần số tích luỹ là 15. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 30. Đúng||Sai

    c) Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{3n}{4} là nhóm [55; 60). Sai||Đúng

    d) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là Q_{3} > 61. Sai||Đúng

    Đáp án là:

    Cho mẫu số liệu ghép nhóm về chiều cao (đơn vị: cm) của cây trong vườn nghiên cứu như sau:

    Chiều cao

    [40; 45)

    [45; 50)

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    Số cây

    5

    10

    7

    9

    7

    4

    Xét tính đúng sai của các khẳng định sau:

    a) Nhóm [45; 50) có tần số tích luỹ là 15. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 30. Đúng||Sai

    c) Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{3n}{4} là nhóm [55; 60). Sai||Đúng

    d) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là Q_{3} > 61. Sai||Đúng

    a) Đúng: Nhóm [45;50) có tần số tích luỹ là 5 + 10 = 15.

    b) Đúng: Khoảng biến thiên là 70 – 40 = 30

    c) Sai: Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{n}{2} = 31,5 là nhóm [60; 65).

    d) Sai: Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{n}{2} = 31,5 là nhóm [60; 65).

    Đầu mút trái, độ dài và tần số của nhóm [60; 65) lần lượt là s = 60;h = 5;n_{2} = 7.

    Tần số tích luỹ của nhóm liền trước là cf_{4} = 31 nên tứ phân vị thứ ba là:

    Q_{1} = 60 + \left( \frac{31,5 - 31}{7}
ight).5 \approx 60,36

  • Câu 20: Thông hiểu
    Tìm mốt của mẫu số liệu ghép nhóm

    Khảo sát thời gian tập thể dục của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:

    Mốt của mẫu số liệu trên là

    Hướng dẫn:

    Mốt M_{0} chứa trong nhóm \lbrack 40;60).

    Do đó: u_{m} = 40;u_{m + 1} =
60

    \Rightarrow u_{m + 1} - u_{m} = 60 - 40 =
20;n_{m - 1} = 9;n_{m} = 12;n_{m +
1} = 10

    M_{0} = 40 + \frac{12 - 9}{\begin{matrix}
(12 - 9)\  + \ (1 \\
\end{matrix}2 - 10)}(60 - 40) = 52.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo