Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 8 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Đáp án là:

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Ta có \overrightarrow{AH} = (a;b;c -
1),\overrightarrow{BC} = (3;3; - 1),\overrightarrow{BH} = (a + 1;b +
2;c).

    H là chân đường cao nên ta có

    \left\{ \begin{matrix}\overrightarrow{AH}\bot\overrightarrow{BC} \\\overrightarrow{BH} = k\overrightarrow{BC} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}3a + 3b - (c - 1) = 0 \\\dfrac{a + 1}{3} = \dfrac{b + 2}{3} = \dfrac{c}{- 1} = k \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
a = 3k - 1 \\
b = 3k - 2 \\
c = - k \\
\end{matrix} ight.3(3k - 1)
+ 3(3k - 2) - ( - k - 1) = 0 \Leftrightarrow k =
\frac{8}{19}.

    Do đó H\left( \frac{5}{19}; -
\frac{14}{19}; - \frac{8}{19} ight)

    Vậy \left( \frac{5}{19} - \frac{14}{19} -
\frac{8}{19} ight).19 = - 17.

  • Câu 2: Vận dụng
    Ghi đáp án đúng vào ô trống

    Ba chiếc máy bay không người lái cùng bay lên từ một địa điểm. Sau một thời gian bay, chiếc máy bay thứ nhất cách điểm xuất phát về phía Đông 60(km) và về phía Nam 40(km), đồng thời cách mặt đất 2(km). Chiếc máy bay thứ hai cách điểm xuất phát về phía Bắc 80(km) và về phía Tây 50(km), đồng thời cách mặt đất 4(km). Chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng.

    Xác định khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó.

    Đáp án: 20,8

    Đáp án là:

    Ba chiếc máy bay không người lái cùng bay lên từ một địa điểm. Sau một thời gian bay, chiếc máy bay thứ nhất cách điểm xuất phát về phía Đông 60(km) và về phía Nam 40(km), đồng thời cách mặt đất 2(km). Chiếc máy bay thứ hai cách điểm xuất phát về phía Bắc 80(km) và về phía Tây 50(km), đồng thời cách mặt đất 4(km). Chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng.

    Xác định khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó.

    Đáp án: 20,8

    Chọn hệ trục tọa độ Oxyz, với gốc đặt tại điểm xuất phát của hai chiếc máy bay, mặt phẳng (Oxy) trùng với mặt đất, trục Ox hướng về phía Bắc, trục Oy hướng về phía Tây, trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo kilômét (xem hình vẽ).

    Chiếc máy bay thứ nhất có tọa độ ( - 40;
- 60;2).

    Chiếc máy bay thứ hai có tọa độ (80;50;4).

    Do chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng nên ở vị trí trung điểm, suy ra chiếc máy bay thứ ba có tọa độ \left( \frac{- 40 + 80}{2};\frac{- 60 +
50}{2};\frac{2 + 4}{2} ight) = (20; - 5;3).

    Khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó là:

    \sqrt{20^{2} + ( - 5)^{2} + 3^{2}}
\approx 20,8(km).

  • Câu 3: Vận dụng cao
    Ghi đáp án đúng vào ô trống

    Trong không gian Oxyz, cho ba điểmA(1\ ;\ \ 1\ ;\ \ 1), B( - 1\ ;\ \ 2\ ;\ \ 0),C(3\ ;\ \  - 1\ ;\ \ 2)M là điểm thuộc mặt phẳng (\alpha):2x - y + 2z + 7 = 0. Tính giá trị nhỏ nhất của P = \left| \
3\overrightarrow{MA} + 5\overrightarrow{MB} -
7\overrightarrow{MC}\  \right|.

    Đáp án: 27

    Đáp án là:

    Trong không gian Oxyz, cho ba điểmA(1\ ;\ \ 1\ ;\ \ 1), B( - 1\ ;\ \ 2\ ;\ \ 0),C(3\ ;\ \  - 1\ ;\ \ 2)M là điểm thuộc mặt phẳng (\alpha):2x - y + 2z + 7 = 0. Tính giá trị nhỏ nhất của P = \left| \
3\overrightarrow{MA} + 5\overrightarrow{MB} -
7\overrightarrow{MC}\  \right|.

    Đáp án: 27

    Gọi I(x\ ;y\ ;\ z) sao cho 3\overrightarrow{IA} + 5\overrightarrow{IB} -
7\overrightarrow{IC} = \overrightarrow{0} (1).

    Ta có: \left\{ \begin{matrix}
3(1 - x) + 5( - 1 - x) - 7(3 - x) = 0 \\
3(1 - y) + 5(2 - y) - 7( - 1 - y) = 0 \\
3(1 - z) + 5(0 - z) - 7(2 - z) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 23 \\
y = 20 \\
z = - 11 \\
\end{matrix} ight. .

    Suy ra I( - 23\ ;\ 20\ ;\  -
11).

    Xét P = \left| 3\overrightarrow{MA} +
5\overrightarrow{MB} - 7\overrightarrow{MC} ight|

    = \left| 3\left( \overrightarrow{MI} +\overrightarrow{IA} ight) + 5\left( \overrightarrow{MI}+\overrightarrow{IB} ight) - 7\left( \overrightarrow{MI} +\overrightarrow{IC} ight) ight|

    P = \left| \overrightarrow{MI} + \left(
3\overrightarrow{IA} + 5\overrightarrow{IB} - 7\overrightarrow{IC}
ight) ight|.

    Từ (1) ta có P = \left| \overrightarrow{MI} ight| =
MI.

    P_{\min} khi MI ngắn nhất hay M là hình chiếu vuông góc của I lên mặt phẳng (\alpha).

    Khi đó: P_{\min} = d\left( I,(\alpha)
ight) = \frac{\left| 2.( - 23) - 20 + 2.( - 11) + 7
ight|}{\sqrt{2^{2} + ( - 1)^{2} + 2^{2}}} = 27.

  • Câu 4: Vận dụng
    Xác định tính đúng sai của từng phương án

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    a) Sai: Hình chiếu của điểm M trên trục Oy có tọa độ là (0;3;0)

    b) Đúng: Vì N là trung điểm của ME

    \Leftrightarrow \left\{ \begin{matrix}- 1 = \dfrac{2 + x_{E}}{2} \\1 = \dfrac{3 + y_{E}}{2} \\1 = \dfrac{- 1 + z_{E}}{2} \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{E} = - 4 \\y_{E} = - 1 \\z_{E} = 3 \\\end{matrix} \Rightarrow E( - 4; - 1;3) ight.\  ight..

    c) Đúng: Ta có \overrightarrow{NM} =
(3;2; - 2);\overrightarrow{NP} = (2;m - 2;2).

    \bigtriangleup MNP vuông tại N \Leftrightarrow\overrightarrow{NM}.\overrightarrow{NP} = 0

    \Leftrightarrow 3.2 + 2.(m - 2) + ( -
2).2 = 0 \Leftrightarrow m = 1.

    d) Sai.

    Gọi J(x;y;z) thỏa 3\overrightarrow{JM} - \overrightarrow{JN} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - ( - 1 - x) = 0 \\3(3 - y) - (1 - y) = 0 \\3( - 1 - z) - (1 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{7}{2} \\y = 4 \\z = - 2 \\\end{matrix} ight.\  ight.

    Suy ra J\left( \frac{7}{2};4; - 2
ight).

    Khi đó T = |3\overrightarrow{IM} -
\overrightarrow{IN}| = |3\overrightarrow{IJ} + 3\overrightarrow{JM} -
\overrightarrow{IJ} - \overrightarrow{JN}| = |2\overrightarrow{IJ}| =
2IJ.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của J trên (Oxy)

    \Leftrightarrow I\left( \frac{7}{2};4;0 ight).

    Vậy a = \frac{7}{2};b = 4;c =
0.

    Suy ra 2a+b+c=11

  • Câu 5: Vận dụng
    Ghi đáp án đúng vào ô trống

    Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D'A(0;0;0), B(2;0;0), D( 0 ; 2 ; 0 ), A'(0;0;2). Gọi M,\ N lần lượt là trung điểm của CD,AA' (xem hình vẽ bên dưới). Biết rằng \cos\lbrack
B,MN,D'brack = m, tính giá trị 14m.

    Đáp án: -10

    Đáp án là:

    Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D'A(0;0;0), B(2;0;0), D( 0 ; 2 ; 0 ), A'(0;0;2). Gọi M,\ N lần lượt là trung điểm của CD,AA' (xem hình vẽ bên dưới). Biết rằng \cos\lbrack
B,MN,D'brack = m, tính giá trị 14m.

    Đáp án: -10

    Ta có M,\ N lần lượt là trung điểm của CD,AA', suy ra M(1;\ 2;\ 0),\ N(0;\ 0;\ 1)

    \Rightarrow \overrightarrow{MN} = ( -
1;\  - 2;\ 1)

    \Rightarrow MN:\left\{ \begin{matrix}
x = t \\
y = 2t \\
z = 1 - t \\
\end{matrix} ight.

    Gọi H(t;2t;1 - t);H'(u;2u;1 -
u) thứ tự là hình chiếu của B ; D ' trên MN

    \overrightarrow{BH}(t - 2;2t;1 -
t);\overrightarrow{D'H'}(u;2u - 2; - 1 - u) vuông góc với \overrightarrow{MN} = ( - 1;\  - 2;\
1)

    \Leftrightarrow \left\{ \begin{matrix}
2 - t - 4t + 1 - t = 0 \\
- u - 4u + 4 - 1 - u = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{2} \\
u = \frac{1}{2} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{BH}\left( -
\frac{3}{2};1;\frac{1}{2} ight);\overrightarrow{D'H'}\left(
\frac{1}{2}; - 1; - \frac{3}{2} ight)

    \Rightarrow \cos\lbrack
B,MN,D'brack = \cos\left(
\overrightarrow{BH},\overrightarrow{D'H'} ight)= \frac{-
\frac{3}{4} - 1 - \frac{3}{4}}{\sqrt{\frac{9}{4} + 1 +
\frac{1}{4}}.\sqrt{\frac{9}{4} + 1 + \frac{1}{4}}} = -
\frac{5}{7}

    \Rightarrow \cos\lbrack
B,MN,D'brack = - \frac{5}{7} = m \Rightarrow 14m = -
10

  • Câu 6: Thông hiểu
    Định các giá trị của x và y

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2; - 1;5),B(5; - 5;7) và điểm M \in (Oxy). Tìm tọa độ điểm M để ba điểm A;B;M thẳng hàng?

    Hướng dẫn:

    Ta có: M \in (Oxy) \Rightarrow
M(x;y;0)

    Lại có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 2;3;1) \\
\overrightarrow{AM} = (x - 2;y + 2; - 1) \\
\end{matrix} ight.

    Vì ba điểm A; B; M thẳng hàng nên \overrightarrow{AB};\overrightarrow{AM} cùng phương

    \Leftrightarrow \frac{x - 2}{- 2} =
\frac{y + 2}{3} = \frac{- 1}{1} \Leftrightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 5 \\
\end{matrix} ight.\  \Rightarrow M(4; - 5;0)

    Vậy đáp án cần tìm là M(4; -
5;0).

  • Câu 7: Vận dụng
    Tìm tọa độ điểm D

    Trong không gian vói hệ trục tọa độ Oxyz, cho hình thang cân ABCD có hai đáy AB, CD thỏa mãn CD = 2AB và diện tích bằng 27, đỉnh A( -
1; - 1;0), phương trình đường thẳng chứa cạnh CD\frac{x
- 2}{2} = \frac{y + 1}{2} = \frac{z - 3}{1} . Tìm tọa độ điểm D biết x_{B} > x_{A}.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi điểm H là hình chiếu vuông góc của A lên đường thẳng CD.

    Khi đó H(2 + 2t; - 1 + 2t;3 + t)\Rightarrow \overrightarrow{AH} = (3 + 2t;2t;3 + t) .

    Đường thẳng CD có vtcp là: \overrightarrow{u}(2;2;1).

    Ta có:

    \overrightarrow{AH}\bot\overrightarrow{u}
\Rightarrow \overrightarrow{AH}.\overrightarrow{u} = 0

    \Rightarrow 2(3 + 2t) + 2.2t + 3 + t = 0

    \Leftrightarrow t = - 1 \Rightarrow H(0; -
3;2) \Rightarrow AH = 3.

    Đường thẳng AB đi qua A và song song với CD \Rightarrow phương trình ABlà: \frac{x
+ 1}{2} = \frac{y + 1}{2} = \frac{z}{1}

    B \in AB \Rightarrow B( - 1 + 2a; - 1 +
2a;a) \Rightarrow AB = 3|a|
\Rightarrow CD = 6|a|

    Theo bài ra ta có:

    S_{ABCD} = \frac{AB +
CD}{2}.AH\Leftrightarrow \frac{3|a| + 6|a|}{2}.3 =
27 \Leftrightarrow |a| = 2
\Leftrightarrow \left\lbrack \begin{matrix}
a = 2 \\
a = - 2 \\
\end{matrix} ight.

    Với a = - 2 \Rightarrow B( - 5; - 5; -
2) .

    Với a = 2 \Rightarrow B(3;3; -
2)

    Ta có: \overrightarrow{DH} =
\frac{1}{2}\overrightarrow{AB} \Rightarrow D( - 2; - 5;1)

  • Câu 8: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Giả sử \overrightarrow{u} =
(x,y,z).

    Ta có \overrightarrow{i}(1,0,0);\overrightarrow{j}(0,1,0);\overrightarrow{k}(0,0,1)

    cos^{2}(\overrightarrow{u},\overrightarrow{i}) +
cos^{2}(\overrightarrow{u},\overrightarrow{j}) +
cos^{2}(\overrightarrow{u},\overrightarrow{k})

    = \left( \frac{x}{\sqrt{x^{2} + y^{2} +
z^{2}}} ight)^{2} + \left( \frac{y}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2} + \left( \frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2}

    = \frac{x^{2} + y^{2} + z^{2}}{x^{2} +
y^{2} + z^{2}} = 1

    Vậy T = 1

  • Câu 9: Vận dụng
    Tìm tập hợp điểm M trong không gian

    Trong không gian tọa độ Oxyz, cho A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm M trong không gian thỏa mãn M không trùng với các điểm A, B, C và \widehat{AMB} = \widehat{BMC} =
\widehat{CMA} = 90^{0}

    Hướng dẫn:

    Gọi M(x;y;z)

    Ta có: \widehat{AMB} = \widehat{BMC} =
\widehat{CMA} = 90^{0}\Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AM}.\overrightarrow{BM} = 0 \\
\overrightarrow{BM}.\overrightarrow{CM} = 0 \\
\overrightarrow{CM}.\overrightarrow{AM} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x(x - 2) + y(y - 2) + z^{2} = 0 \\
x^{2} + y(y - 2) + z(z - 2) = 0 \\
x(x - 2) + y^{2} + z(z - 2) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 2x - 2y = 0 \\
x^{2} + y^{2} + z^{2} - 2y - 2z = 0 \\
x^{2} + y^{2} + z^{2} - 2x - 2z = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 2x - 2y = 0 \\
x = z \\
y = z \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
3x^{2} - 4x = 0 \\
x = y = z \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
M(0;0;0) \\
M\left( \dfrac{4}{3};\dfrac{4}{3};\dfrac{4}{3} ight) \\
\end{matrix} ight..

  • Câu 10: Thông hiểu
    Tính giá trị biểu thức T

    Trong không gian Oxyz, cho hình thang cân\ ABCD có các đáy lần lượt là AB,CD. Biết A(3;1; - 2), B( - 1;3;2), C( - 6;3;6)D(a;b;c) với a;b;c\mathbb{\in R}. Tính T = a + b + c.

    Hướng dẫn:

    Cách 1: Ta có \overrightarrow{AB} = ( -
4;2;4);\overrightarrow{CD} = (a + 6;b - 3;c - 6)

    Do ABCD là hình thang cân nên \overrightarrow{CD} =
k\overrightarrow{AB}\left( k\mathbb{\in R} ight) hay \frac{a + 6}{- 2} = \frac{b - 3}{1} = \frac{c -
6}{2}

    \Rightarrow \left\{ \begin{matrix}
b = \frac{- a}{2} \\
c = - a \\
\end{matrix} ight.. Vậy D\left(
a;\frac{- a}{2}; - a ight).

    Lại có

    AC = BD \Leftrightarrow AC^{2} =
BD^{2}

    \Leftrightarrow ( - 9)^{2} + 2^{2} +
8^{2} = (a + 1)^{2} + \left( \frac{a}{2} + 3 ight)^{2} + (a +
2)^{2}

    \Leftrightarrow a^{2} + 4a - 60 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = 6 \\
a = - 10 \\
\end{matrix} ight..

    Với a = - 10 \Rightarrow D( -
10;5;10). Kiểm tra thấy: \overrightarrow{AB} = \overrightarrow{CD} .

    Với a = 6 \Rightarrow D(6; - 3; -6).

    Kiểm tra thấy: ( - 3).\overrightarrow{AB}
= \overrightarrow{CD} . Do đó, T =
a + b + c = 6 - 3 - 6 = - 3.

    Cách 2

    Ta có \overrightarrow{AB} = ( -
4;2;4);\overrightarrow{CD} = (a + 6;b - 3;c - 6)

    Do ABCD là hình thang cân nên \overrightarrow{AB};_{}\overrightarrow{CD} ngược hướng hay \frac{a + 6}{- 2} = \frac{b
- 3}{1} = \frac{c - 6}{2} < 0

    \Leftrightarrow \left\{ \begin{matrix}
b = \frac{- a}{2} \\
c = - a \\
a > - 6 \\
\end{matrix} ight.. Vậy D\left(
a;\frac{- a}{2}; - a ight) với a
> - 6 .

    Lại có

    AC = BD \Leftrightarrow AC^{2} =
BD^{2}

    \Leftrightarrow ( - 9)^{2} + 2^{2} +
8^{2} = (a + 1)^{2} + \left( \frac{a}{2} + 3 ight)^{2} + (a +
2)^{2}

    \Leftrightarrow a^{2} + 4a - 60 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = 6 \\
a = - 10(L) \\
\end{matrix} ight..

    Với a = 6 \Rightarrow D(6; - 3; -
6).

    Do đó, T = a + b + c = 6 - 3 - 6 = -
3.

    Cách 3

    + Viết phương trình mặt phẳng trung trực của đoạn thẳng AB

    + Gọi mp (\alpha) là mặt phẳng trung trực của đoạn thẳng AB, suy ra mp (\alpha) đi qua trung điểm I(1\ ;\ 2\ ;0) của đoạn thẳng AB và có một vectơ pháp tuyến là \overrightarrow{n} =
\frac{1}{2}\overrightarrow{AB} = ( - 2\ ;1\ ;\ 2), suy ra phương trình của mp (\alpha)là: (\alpha): - 2x + y + 2z = 0.

    + Vì C,D đối xứng nhau qua mp(\alpha)nên

    D(6\ ;\  - 3\ ;\  - 6) \Rightarrow a =
6;b = - 3;c = - 6 \Rightarrow T = a
+ b + c = - 3

  • Câu 11: Vận dụng cao
    Ghi đáp án vào ô trống

    Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt E(0;0;6), giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là A_{1}(0;1;0),A_{2}\left( \frac{\sqrt{3}}{2}; -\frac{1}{2};0 ight),A_{3}\left( -\frac{\sqrt{3}}{2}; - \frac{1}{2};0 ight). Biết rằng trọng lượng của chiếc máy là 240\ N, tác dụng lên các giá đỡ theo các lực \overrightarrow{F_{1}},\overrightarrow{F_{2}},\overrightarrow{F_{3}} như hình.

    Tính tích vô hướng của \overrightarrow{F_{1}} \cdot\overrightarrow{F_{3}} (làm tròn đến chữ số hàng đơn vị).

    Đáp án: 6311

    Đáp án là:

    Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt E(0;0;6), giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là A_{1}(0;1;0),A_{2}\left( \frac{\sqrt{3}}{2}; -\frac{1}{2};0 ight),A_{3}\left( -\frac{\sqrt{3}}{2}; - \frac{1}{2};0 ight). Biết rằng trọng lượng của chiếc máy là 240\ N, tác dụng lên các giá đỡ theo các lực \overrightarrow{F_{1}},\overrightarrow{F_{2}},\overrightarrow{F_{3}} như hình.

    Tính tích vô hướng của \overrightarrow{F_{1}} \cdot\overrightarrow{F_{3}} (làm tròn đến chữ số hàng đơn vị).

    Đáp án: 6311

    Ta có: \left\{ \begin{matrix}\overrightarrow{EA_{1}} = (0;1; - 6) \\\overrightarrow{EA_{2}} = \left( \frac{\sqrt{3}}{2}; - \frac{1}{2}; - 6ight) \\\overrightarrow{EA_{3}} = \left( - \frac{\sqrt{3}}{2}; - \frac{1}{2}; -6 ight) \\\end{matrix} ight.

    \Rightarrow EA_{1} = EA_{2} = EA_{3} =\sqrt{37}.

    Suy ra, \left| \overrightarrow{F_{1}}ight| = \left| \overrightarrow{F_{2}} ight| = \left|\overrightarrow{F_{3}} ight| (vì chân bằng nhau, giá đỡ cân bằng, trọng lực tác dụng đều lên 3 chân của giá đỡ).

    Do đó: \left\{ \begin{matrix}\overrightarrow{F_{1}} = k\overrightarrow{EA_{1}} = (0;k; - 6k) \\\overrightarrow{F_{2}} = k\overrightarrow{EA_{2}} = \left(\frac{\sqrt{3}}{2}k; - \frac{1}{2}k; - 6k ight) \\\overrightarrow{F_{3}} = k\overrightarrow{EA_{3}} = \left( -\frac{\sqrt{3}}{2}k; - \frac{1}{2}k; - 6k ight) \\\end{matrix} ight.

    \Rightarrow \overrightarrow{F_{1}} +\overrightarrow{F_{2}} + \overrightarrow{F_{3}} = (0;0; -18k).

    \overrightarrow{F_{1}} +\overrightarrow{F_{2}} + \overrightarrow{F_{3}} = \overrightarrow{P} =(0;0; - 240).

    Suy ra - 18k = - 240 \Leftrightarrow k =\frac{40}{3}.

    Từ đó \left\{ \begin{matrix}\overrightarrow{F_{1}} = \left( 0;\frac{40}{3}; - 80 ight) \\\overrightarrow{F_{2}} = \left( \frac{20\sqrt{3}}{3}; - \frac{20}{3}; -80 ight) \\\overrightarrow{F_{3}} = \left( - \frac{20\sqrt{3}}{3}; - \frac{20}{3};- 80 ight) \\\end{matrix} ight..

    Vậy \overrightarrow{F_{1}}.\overrightarrow{F_{3}} =0.\left( \frac{- 20\sqrt{3}}{3} ight) + \frac{40}{3}\left( -\frac{20}{3} ight) + ( - 80).( - 80) \approx 6311.

  • Câu 12: Vận dụng
    Ghi đáp án vào ô trống

    Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài 10\ m, chiều rộng 6\ m và cao 4\ m. Người ta trang trí một chiếc đèn chùm I ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn J treo chính giữa bức tường 6\ m và cách trần nhà 1\ m. Hỏi hai chiếc bóng đèn I,Jcách nhau bao nhiêu m? (Làm tròn đến hàng phần mười).

    Đáp án: 5,1

    Đáp án là:

    Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài 10\ m, chiều rộng 6\ m và cao 4\ m. Người ta trang trí một chiếc đèn chùm I ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn J treo chính giữa bức tường 6\ m và cách trần nhà 1\ m. Hỏi hai chiếc bóng đèn I,Jcách nhau bao nhiêu m? (Làm tròn đến hàng phần mười).

    Đáp án: 5,1

    Hình vẽ minh họa

    Chọn hệ trục tọa độ như hình vẽ. Khi đó ta có tọa độ các điểm A(6;0;0),B(0;10;0),C(0;0;4).

    Từ đó ta suy ra tọa độ các điểm D(6;10;0),F(6;10;4).

    Đèn chùm I được đặt tại vị trí chính giữa trần nhà có dạng hình chữ nhật nên vị trí đặt là trung điểm của hai đường chéo CFEG nên ta có I(3;5;4)

    Gọi J_{1} là hình chiếu của bóng đèn J lên nền nhà. Khi đó J_{1} là trung điểm của BD nên J_{1}(3;10;0), do đó J(3;10;3).

    Vậy ta tính được

    \overrightarrow{IJ} = (0;5; - 1)
\Rightarrow IJ = \left| \overrightarrow{IJ} ight| = \sqrt{5^{2} + ( -
1)^{2}} = \sqrt{26} \approx 5,1\ (m)

  • Câu 13: Thông hiểu
    Ghi đáp án vào ô trống

    Sự chuyển động của máy bay A được thể hiện trong không gian Oxyz như sau: Máy bay khởi hành từ B(0;0;2) chuyển động thẳng đều (Tính theo phút) với vận tốc được biểu thị theo véc tơ \overrightarrow{v}(1;4;5). Sau khi khởi hành được 30 phút, máy bay ở vị trí M(x;y;z). Tính P = 3x + y + z

    Đáp án: 362

    Đáp án là:

    Sự chuyển động của máy bay A được thể hiện trong không gian Oxyz như sau: Máy bay khởi hành từ B(0;0;2) chuyển động thẳng đều (Tính theo phút) với vận tốc được biểu thị theo véc tơ \overrightarrow{v}(1;4;5). Sau khi khởi hành được 30 phút, máy bay ở vị trí M(x;y;z). Tính P = 3x + y + z

    Đáp án: 362

    Ta có:

    Quãng đường máy bay di chuyển là:

    BM = \left| \overrightarrow{v} ight|.t
\Rightarrow \overrightarrow{BM} = \overrightarrow{v}.30 =
(30;120;150)

    \Rightarrow \left\{ \begin{matrix}
x = 30 \\
y = 120 \\
z - 2 = 150 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
x = 30 \\
y = 120 \\
z = 152 \\
\end{matrix} ight.\  ight.

    Khi đó: P = 3.30 + 120 + 152 =
362

  • Câu 14: Vận dụng
    Ghi đáp án đúng vào chỗ trống

    Một kho chứa hàng có dạng hình lăng trụ đứng ABFPE.DCGQH với ABFE là hình chữ nhật

    EFP là tam giác cân tại P. Gọi T là trung điểm của DC. Các kích thước của kho chứa lần lượt là AB = 6m;AE = 5m; AD =
8m; QT = 7m. Người ta mô hình hoá nhà kho bằng cách chọn hệ trục toạ độ có gốc toạ độ là điểm O thuộc đoạn AD sao cho OA
= 2m và các trục toạ độ tương ứng như hình vẽ dưới đây.

    Để lắp camera quan sát trong nhà kho tại vị trí trung điểm của FG và đầu thu dữ liệu đặt tại vị trí O, người ta thiết kế đường dây cáp nối từ O đến K sau đó nối thẳng đến camera, rồi nối lại từ camera đến thẳng điểm Q. Độ dài đoạn cáp nối tối thiểu bằng bao nhiêu mét (làm tròn đến hàng phần chục và đầu dây nối không đáng kể ).

    Đáp án: 16,7

    Đáp án là:

    Một kho chứa hàng có dạng hình lăng trụ đứng ABFPE.DCGQH với ABFE là hình chữ nhật

    EFP là tam giác cân tại P. Gọi T là trung điểm của DC. Các kích thước của kho chứa lần lượt là AB = 6m;AE = 5m; AD =
8m; QT = 7m. Người ta mô hình hoá nhà kho bằng cách chọn hệ trục toạ độ có gốc toạ độ là điểm O thuộc đoạn AD sao cho OA
= 2m và các trục toạ độ tương ứng như hình vẽ dưới đây.

    Để lắp camera quan sát trong nhà kho tại vị trí trung điểm của FG và đầu thu dữ liệu đặt tại vị trí O, người ta thiết kế đường dây cáp nối từ O đến K sau đó nối thẳng đến camera, rồi nối lại từ camera đến thẳng điểm Q. Độ dài đoạn cáp nối tối thiểu bằng bao nhiêu mét (làm tròn đến hàng phần chục và đầu dây nối không đáng kể ).

    Đáp án: 16,7

    Với hệ trục toạ độ đã chọn ta có O(0;0;0), K(0;0;5), F(2;6;5), G(
- 6;6;5), Q( - 6;3;7).

    Gọi I là trung điểm của FG, ta có I(
- 2;6;5)

    Do đó OK = 5; \overrightarrow{KI} = ( - 2;6;0) \Rightarrow KI =
\sqrt{4 + 36} = 2\sqrt{10}; \overrightarrow{IQ} = ( - 4; - 3;2) \Rightarrow IQ
= \sqrt{16 + 9 + 4} = \sqrt{29}.

    Vậy độ dài đoạn cáp nối tối thiểu là: OK
+ KI + IQ = 5 + 2\sqrt{10} + \sqrt{29} \approx 16,7\ m.

  • Câu 15: Thông hiểu
    Chọn mệnh đề sai

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (2; - 2; - 4)\overrightarrow{b} = (1; - 1;1). Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = (3; - 3; - 3) đúng

    \left\{ \begin{matrix}
\overrightarrow{a} = 2(1; - 1; - 2) \\
\overrightarrow{b} = (1; - 1;1) \\
\end{matrix} ight. suy ra Hai vectơ \overrightarrow{a};\overrightarrow{b} không cùng phương.

    Vậy mệnh đề sai là: “Hai vectơ \overrightarrow{a};\overrightarrow{b} cùng phương”.

  • Câu 16: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian Oxyz, cho hai điểm A(1;2; - 2)B\left( \frac{8}{3};\frac{4}{3};\frac{8}{3}
\right). Biết I(a;b;c) là tâm của đường tròn nội tiếp tam giác OAB. Giá trị của a - b + c bằng

    Hướng dẫn:

    Tính được OA = 3;OB = 4;AB =
5

    Ta có: OA.\overrightarrow{IB} +
OB.\overrightarrow{IA} + AB.\overrightarrow{IO} =
\overrightarrow{0}

    \Leftrightarrow
\left\{ \begin{matrix}
3\left( \dfrac{8}{3} - x ight) + 4(1 - x) + 5( - x) = 0 \\
3\left( \dfrac{4}{3} - x ight) + 4(2 - y) + 5( - y) = 0 \\
3\left( \dfrac{8}{3} - x ight) + 4( - 2 - z) + 5( - z) = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 0 \\
\end{matrix} ight.

    Vậy, I(1;1;0) , suy ra a - b + c = 0.

  • Câu 17: Vận dụng
    Ghi đáp án đúng vào ô trống

    Trong một căn phòng dạng hình hộp chữ nhật với chiều dài 10 m có 1 cây quạt hộp Q đặt ở sàn nhà và 3 ổ cắm điện A,B,C trên tường. Chọn hệ trục tọa độ như hình vẽ sau (đơn vị: mét). Biết cây quạt cách tường (Oxz) 3 m và cách tường (Oyz) 6 m; các ổ cắm điện cách mặt sàn 40 cm, ổ cắm A và B cách bức tường chứa ổ cắm C lần lượt 7 m và 1 m, ổ cắm C cách bức tường chứa 2 ổ cắm còn lại 1,5 m.

    Dây điện của quạt hộp Q cần dài tối thiểu bao nhiêu để có thể cắm tới cả 3 ổ A,\ B,\ C (Đáp án làm tròn đến hàng phần trăm)

    Đáp án: 6,20||6,2

    Đáp án là:

    Trong một căn phòng dạng hình hộp chữ nhật với chiều dài 10 m có 1 cây quạt hộp Q đặt ở sàn nhà và 3 ổ cắm điện A,B,C trên tường. Chọn hệ trục tọa độ như hình vẽ sau (đơn vị: mét). Biết cây quạt cách tường (Oxz) 3 m và cách tường (Oyz) 6 m; các ổ cắm điện cách mặt sàn 40 cm, ổ cắm A và B cách bức tường chứa ổ cắm C lần lượt 7 m và 1 m, ổ cắm C cách bức tường chứa 2 ổ cắm còn lại 1,5 m.

    Dây điện của quạt hộp Q cần dài tối thiểu bao nhiêu để có thể cắm tới cả 3 ổ A,\ B,\ C (Đáp án làm tròn đến hàng phần trăm)

    Đáp án: 6,20||6,2

    Tọa độ cây quạt Q là Q(6;3;0)

    Tọa độ các ổ cắm điện A, B, C lần lượt là: A\left( 7;0;\frac{2}{5} ight),\ \ B\left(
1;0;\frac{2}{5} ight),\ \ C\left( 0;\frac{3}{2};\frac{2}{5}
ight)

    AQ = 3,19,\ BQ \approx 5,84,\ CQ \approx
6,20.

  • Câu 18: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Trong không gian Oxyz , cho vectơ \overrightarrow{OA} = (2; - 1;5),B(5; -
5;7). Xét sự đúng sai của các khẳng định sau:

    a) Tọa độ của điểm A(2; - 1;5). Đúng||Sai

    b) Gọi C(a;b;c) thỏa mãn ∆ABC nhận G(1;1;1) làm trọng tâm. Khi đó a + b +
c = - 4 . Đúng||Sai

    c) Nếu A;B;M(x;y;1) thẳng hàng thì tổng x + y = 3 . Đúng||Sai

    d) Cho N \in (Oxy) để ∆ABN vuông cân tại A. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz , cho vectơ \overrightarrow{OA} = (2; - 1;5),B(5; -
5;7). Xét sự đúng sai của các khẳng định sau:

    a) Tọa độ của điểm A(2; - 1;5). Đúng||Sai

    b) Gọi C(a;b;c) thỏa mãn ∆ABC nhận G(1;1;1) làm trọng tâm. Khi đó a + b +
c = - 4 . Đúng||Sai

    c) Nếu A;B;M(x;y;1) thẳng hàng thì tổng x + y = 3 . Đúng||Sai

    d) Cho N \in (Oxy) để ∆ABN vuông cân tại A. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng

    a) Ta có:

    Tọa độ của điểm A(2; - 1;5).

    b) G là trọng tâm tam giác ABC

    \Leftrightarrow \left\{ \begin{matrix}1 = \dfrac{2 + 5 + x_{C}}{3} \\1 = \dfrac{- 1 - 5 + y_{C}}{3} \\1 = \dfrac{5 + 7 + x_{C}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{C} = - 4 \\y_{C} = 9 \\x_{C} = - 9 \\\end{matrix} ight.\  \Rightarrow C( - 4;9; - 9)

    \Rightarrow a + b + c = - 4

    c) Ta có: \overrightarrow{AB} = (3; -
4;2);\overrightarrow{AC} = (x - 2;y + 1; - 4)

    Ba điểm A, B, M thằng hàng khi và chỉ khi

    \overrightarrow{AM} =
k\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}
x - 2 = 3k \\
y + 1 = k.( - 4) \\
- 4 = k.2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = 7 \\
k = - 2 \\
\end{matrix} ight.

    Suy ra x + y = 3

    d) Ta có: N \in (Oxy) \Rightarrow N =
(x;y;0)

    \Rightarrow \overrightarrow{AN} = (x -
2;y + 1; - 5),\overrightarrow{AB} = (3; - 4;2)

    Ta có ∆ABN vuông cân tại A \Leftrightarrow \left\{ \begin{matrix}
AN\bot AB(*) \\
AN = AB(**) \\
\end{matrix} ight.

    Từ (*) \Leftrightarrow
\overrightarrow{AN}\bot\overrightarrow{AB} \Leftrightarrow 3(x - 2) -
4(y + 1) - 10 = 0

    \Leftrightarrow 3x - 4y = 20
\Leftrightarrow y = \frac{3}{4}x - 5

    Từ (**) AN^{2} = AB^{2} \Leftrightarrow
(x - 2)^{2} + (y + 1)^{2} + 25 = 9 + 16 + 4

    \Leftrightarrow (x - 2)^{2} + \left(
\frac{3x}{4} - 4 ight)^{2} = 4 \Leftrightarrow x =
\frac{16}{5}

    \Rightarrow y = - \frac{13}{5}
\Rightarrow N\left( \frac{16}{5}; - \frac{13}{5};0 ight)

    Vậy x_{N} + y_{N} =
\frac{3}{5}

  • Câu 19: Vận dụng
    Ghi đáp án đúng vào ô trống

    Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều ABC.A'B'C', có cạnh bên bằng cạnh đáy và dài 30 mét. Kiến trúc sư muốn xây dựng một cây cầu MN bắc xuyên tòa nhà (điểm đầu thuộc cạnh A'C, điểm cuối thuộc cạnh BC') và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho MN ngắn nhất (như hình vẽ).

    Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 72

    Đáp án là:

    Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều ABC.A'B'C', có cạnh bên bằng cạnh đáy và dài 30 mét. Kiến trúc sư muốn xây dựng một cây cầu MN bắc xuyên tòa nhà (điểm đầu thuộc cạnh A'C, điểm cuối thuộc cạnh BC') và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho MN ngắn nhất (như hình vẽ).

    Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 72

    Để độ dài cây cầu MN ngắn nhất thì MN là đoạn vuông góc chung của hai đường thẳng A^{'}CBC^{'}.

    Đặt hệ trục Oxyz như hình vẽ:

    Khi đó C( - 15;0;0),B(15;0;0),\ C'( - 15;0;0),\
A'(0;15\sqrt{3};30)

    Do đó MN = d(A'C;BC') =
\frac{30\sqrt{39}}{13}

    Số tiền cần làm cây cầu ngắn nhất là 5.\frac{30\sqrt{39}}{13} \approx 72(tỷ đồng)

  • Câu 20: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo