Cho tứ diện . Đặt
gọi
là trung điểm của
Trong các khẳng định sau, khẳng định nào đúng?
Ta có:
Cho tứ diện . Đặt
gọi
là trung điểm của
Trong các khẳng định sau, khẳng định nào đúng?
Ta có:
Cho hai vectơ và
khác
. Xác định góc giữa hai vectơ
và
khi
?
Mà theo giả thiết , suy ra
Cho , góc giữa
bằng
. Chọn khẳng định sai trong các khẳng định sau?
Ta có:
Khi đó:
Vậy khẳng định sai là .
Trong không gian, cho hình lập phương . Góc giữa hai vectơ
và
bằng
Hình vẽ minh họa
Ta có: . Do đó,
Vì nên tam giác
là tam giác đều.
Suy ra
Vậy
Cho hình lập phương . Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Vì (
là hình vuông) nên
Cho tứ diện . Gọi
theo thứ tự là trung điểm
và
. Khẳng định nào sau đây đúng?
Xác định tính đúng sai của các khẳng định sau:
a) Sai||Đúng
b) Đúng||Sai
c) Sai||Đúng
d) Đúng||Sai
Cho tứ diện . Gọi
theo thứ tự là trung điểm
và
. Khẳng định nào sau đây đúng?
Xác định tính đúng sai của các khẳng định sau:
a) Sai||Đúng
b) Đúng||Sai
c) Sai||Đúng
d) Đúng||Sai
a) Vì là trung điểm của
và
nên
và
Nên .
b) Ta có:
c) Ta có:
d) Do N là trung điểm của CD nên
Cho hình chóp
Đáp án “Nếu là hình thang thì
. “ sai do nếu
là hình thang có 2 đáy lần lượt là
và
thì ta có
Cho tứ diện đều . Số đo giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Gọi M là trung điểm của CD
Ta có:
Suu ra nên số đo góc giữa hai đường thẳng
bằng
.
Chọn mệnh đề sai. Trong không gian, cho hình hộp .
Hình vẽ minh họa
Đáp án đúng theo quy tắc hình hộp
Đáp án sai
Đáp án đúng theo quy tắc hình hộp
Đáp án đúng theo quy tắc hình bình hành
Cho hình hộp với tâm
. Hãy chỉ ra đẳng thức sai trong các đẳng thức sau đây:
Ta có :(vô lí)
Cho hình chóp có
, các cạnh
đôi một vuông góc. Gọi
là trung điểm của
. Tính tích vô hướng của hai vectơ
.
Hình vẽ minh họa
Ta có:
Vậy
Cho lăng trụ tam giác có
. Hãy phân tích (biểu thị) vectơ
qua các vectơ
.
Hình vẽ minh họa
Ta có:
.
Cho hình hộp . Phân tích nào sau đây đúng?
Hình vẽ minh họa
Biến đổi biểu thức
(đúng)
Vậy phân tích đúng là .
Cho hình chóp , mặt phẳng
cắt các tia
(
là trọng tâm tam giác
) lần lượt tại các điểm
.Ta có
. Hỏi k bằng bao nhiêu?
Hình vẽ minh họa

Do là trọng tâm của
nên
Mặt khác đồng phẳng nên
.
Trong không gian, cho hai vectơ và
. Vectơ
bằng
Theo quy tắc ba điểm: .
Cho tứ diện đều cạnh bằng
. Gọi
là tâm đường tròn ngoại tiếp tam giác
. Góc giữa
và
bằng bao nhiêu?
Hình vẽ minh họa
Ta có
Suy ra .
Cho tứ diện . Trên các cạnh
và
lần lượt lấy
sao cho
,
. Gọi
lần lượt là trung điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa

«Các vectơ đồng phẳng” . Sai vì
không đồng phẳng.
« Các vectơ đồng phẳng’. Đúng vì
: đồng phẳng.
“Các vectơ đồng phẳng”. Đúng. Bằng cách biểu diễn
tương tự như trên ta có
« Các vectơ đồng phẳng”. Đúng. Ta có
.
Cho hình hộp . Gọi
là trung điểm của
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Cho hình chóp . Gọi
là giao điểm của
và
.
“Nếu thì
là hình thang ». Đúng vì
.
Vì và
thẳng hàng nên đặt
.
Mà không cùng phương nên
và
“Nếu là hình bình hành thì
. ». Đúng. Học sinh tự biến đổi bằng cách chiêm điểm
vào vế trái.
“Nếu là hình thang thì
. ». Sai. Vì nếu
là hình thang cân có 2 đáy là
thì sẽ sai.
“Nếu thì
là hình bình hành. ». Đúng. Tương tự đáp án A với
là trung điểm 2 đường chéo.
Cho hình hộp và tâm
. Hãy chỉ ra đẳng thức sai trong các đẳng thức sau?
Hình vẽ minh họa
Theo quy tắc hình bình hành suy ra đúng.
Do đối nhau và
đối nhau nên
đúng.
Do suy ra
nên
sai.
Do và
nên
đúng.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: