Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Vectơ và các phép toán trong không gian (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính tỉ số hai cạnh

    Cho hình hộp ABCD.A'B'C'D'. Một đường thẳng \Delta cắt các đường thẳng AA',BC,C'D' lần lượt tại M,N,P sao cho \overrightarrow{NM} =
2\overrightarrow{NP}. Tính \frac{MA}{MA'}.

    Hướng dẫn:

    Hình vẽ minh họa

    Đặt \overrightarrow{AD} =
\overrightarrow{a},\overrightarrow{AB} =
\overrightarrow{b},\overrightarrow{AA'} =
\overrightarrow{c}.

    M \in AA' nên \overrightarrow{AM} = k\overrightarrow{AA'} =
k\overrightarrow{c}

    N \in BC \Rightarrow \overrightarrow{BN}
= l\overrightarrow{BC} = l\overrightarrow{a}, P \in C'D' \Rightarrow
\overrightarrow{C'P} = m\overrightarrow{b}

    Ta có \overrightarrow{NM} =
\overrightarrow{NB} + \overrightarrow{BA} + \overrightarrow{AM} = -
l\overrightarrow{a} - \overrightarrow{b} +
k\overrightarrow{c}

    \overrightarrow{NP} =
\overrightarrow{BN} + \overrightarrow{BB'} +
\overrightarrow{B'C'} + \overrightarrow{C'P} = (1 -
l)\overrightarrow{a} + m\overrightarrow{b} +
\overrightarrow{c}

    Do \overrightarrow{NM} =
2\overrightarrow{NP} \Rightarrow - l\overrightarrow{a} -
\overrightarrow{b} + k\overrightarrow{c} = 2\lbrack(1 -
l)\overrightarrow{a} + m\overrightarrow{b} +
\overrightarrow{c}\rbrack

    \Leftrightarrow \left\{ \begin{matrix}
- l = 2(1 - l) \\
- 1 = 2m \\
k = 2 \\
\end{matrix} \right.\  \Leftrightarrow k = 2,m = - \frac{1}{2},l =
2.

    Vậy \frac{MA}{MA'} =
2.

  • Câu 2: Nhận biết
    Chọn kết quả chính xác

    Cho hai vectơ \overrightarrow{u},\overrightarrow{v} đều khác \overrightarrow{0}. Khi đó \left| \overrightarrow{u} +
2\overrightarrow{v} \right|^{2} bằng

    Hướng dẫn:

    Ta có \left| \overrightarrow{u} +
2\overrightarrow{v} ight|^{2} = \left( \overrightarrow{u} +
2\overrightarrow{v} ight)^{2} = {\overrightarrow{u}}^{2} +
4{\overrightarrow{v}}^{2} +
4\overrightarrow{u}\overrightarrow{v}.

  • Câu 3: Thông hiểu
    Tính góc giữa các cặp vectơ

    Cho tứ diện ABCDAB = AC = AD\widehat{BAC} = \widehat{BAD} =
60^{0};\widehat{CAD} = 90^{0}. Gọi I;J lần lượt là trung điểm của AB;CD. Hãy xác định góc giữa các cặp vectơ \overrightarrow{AB}\overrightarrow{IJ}?

    Hướng dẫn:

    Hình vẽ minh họa

    Xét tam giác ICD có I là trung điểm đoạn CD \Rightarrow \overrightarrow{IJ} =
\frac{1}{2}\left( \overrightarrow{IC} + \overrightarrow{ID}
ight)

    Tam giác ABC có AB = AC\widehat{BAC} = 60^{0} suy ra tam giác ABC đều suy ra CI\bot AB

    Tương tự ta cũng có tam giác ABD đều nên DI\bot AB

    Ta có: \overrightarrow{IJ}.\overrightarrow{ÂB} =
\frac{1}{2}\left( \overrightarrow{IC} + \overrightarrow{ID}
ight).\overrightarrow{AB} =
\frac{1}{2}\overrightarrow{IC}.\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{ID}.\overrightarrow{AB} = 0

    \Rightarrow
\overrightarrow{IJ}\bot\overrightarrow{AB} \Rightarrow \left(
\overrightarrow{IJ};\overrightarrow{AB} ight) = 90^{0}

  • Câu 4: Thông hiểu
    Chọn phương án đúng

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u}\overrightarrow{v} tạo với nhau một góc 120{^\circ}\left| \overrightarrow{u} \right| = 2, \left| \overrightarrow{v} \right| =
5. Tính \left| \overrightarrow{u} +
\overrightarrow{v} \right|

    Hướng dẫn:

    Ta có:

    \left( \left| \overrightarrow{u} +
\overrightarrow{v} ight| ight)^{2} = \left( \overrightarrow{u} +
\overrightarrow{v} ight)^{2}

    = {\overrightarrow{u}}^{2} +
2\overrightarrow{u}\overrightarrow{v} +
{\overrightarrow{v}}^{2}

    = \left| \overrightarrow{u} ight|^{2}
+ 2\left| \overrightarrow{u} ight|.\left| \overrightarrow{v}
ight|\cos\left( \overrightarrow{u};\ \overrightarrow{v} ight) +
\left| \overrightarrow{v} ight|^{2}

    = 2^{2} + 2.2.5.\left( - \frac{1}{2}
ight) + 5^{2} = 19.

    Suy ra \left| \overrightarrow{u} +
\overrightarrow{v} ight| = \sqrt{19}.

  • Câu 5: Thông hiểu
    Chọn đẳng thức đúng

    Cho tứ diện ABCD. Đặt \overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AD} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi M là trung điểm của BC. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Vì M là trung điểm của BC nên suy ra \overrightarrow{BM} =
\frac{1}{2}\overrightarrow{BC}

    Ta có: \overrightarrow{DM} =
\overrightarrow{DA} + \overrightarrow{AB} + \overrightarrow{BM} =
\overrightarrow{AB} - \overrightarrow{AD} +
\frac{1}{2}\overrightarrow{BC}

    = \overrightarrow{AB} -
\overrightarrow{AD} + \frac{1}{2}\left( \overrightarrow{BA} +
\overrightarrow{AC} ight) = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} - \overrightarrow{AD}

    = \frac{1}{2}\overrightarrow{a} +
\frac{1}{2}\overrightarrow{b} - \overrightarrow{c} = \frac{1}{2}\left(
\overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}
ight)

  • Câu 6: Thông hiểu
    Tìm khẳng định sai

    Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào dưới đây là sai?

    Hướng dẫn:

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC}

    Vậy đáp án sai là: \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{A'A} =
\overrightarrow{AC}.

  • Câu 7: Thông hiểu
    Tìm khẳng định sai

    Cho hình hộp ABCD.A_{1}B_{1}C_{1}D_{1}. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Hình vẽ minh họa

    \overrightarrow{BC} + \overrightarrow{BA}
= \overrightarrow{B_{1}A_{1}} + \overrightarrow{B_{1}C_{1}} đúng vì \left\{ \begin{matrix}
\overrightarrow{BC} = \overrightarrow{B_{1}C_{1}} \\
\overrightarrow{BA} = \overrightarrow{B_{1}A_{1}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{BC} +
\overrightarrow{BA} = \overrightarrow{B_{1}A_{1}} +
\overrightarrow{B_{1}C_{1}}

    \overrightarrow{AD} +
\overrightarrow{D_{1}C_{1}} + \overrightarrow{D_{1}A_{1}} =
\overrightarrow{DC} đúng vì \overrightarrow{AD} + \overrightarrow{D_{1}C_{1}}
+ \overrightarrow{D_{1}A_{1}} = \overrightarrow{AD} +
\overrightarrow{DC} + \overrightarrow{DA} = \overrightarrow{AC} +
\overrightarrow{DA} = \overrightarrow{DC}

    \overrightarrow{BC} + \overrightarrow{BA}
+ \overrightarrow{BB_{1}} = \overrightarrow{BD_{1}} đúng vì \overrightarrow{BD_{1}} =
\overrightarrow{BC} + \overrightarrow{BA} +
\overrightarrow{BB_{1}}

    \overrightarrow{BA} +
\overrightarrow{DD_{1}} + \overrightarrow{BD_{1}} =
\overrightarrow{BC} sai vì

    \overrightarrow{BA} +
\overrightarrow{DD_{1}} + \overrightarrow{BD_{1}} = \overrightarrow{BA}
+ \overrightarrow{BB_{1}} + \overrightarrow{BD_{1}} =
\overrightarrow{BA_{1}} + \overrightarrow{BD_{1}} eq
\overrightarrow{BC}

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Cho tứ diện ABCD. Gọi M;N lần lượt là trung điểm của các cạnh AB;CD. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{MN} = k.\left( \overrightarrow{AC}
+ \overrightarrow{BD} ight)?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có N là trung điểm của CD nên \overrightarrow{MC} + \overrightarrow{MD} =
2\overrightarrow{MN}

    M là trung điểm của AB nên \overrightarrow{MA} + \overrightarrow{MB} =
\overrightarrow{0}

    Suy ra \overrightarrow{MN} =
\frac{1}{2}.\left( \overrightarrow{MC} + \overrightarrow{MD}
ight)

    = \frac{1}{2}.\left( \overrightarrow{MA}
+ \overrightarrow{AC} + \overrightarrow{MB} + \overrightarrow{BD}
ight)

    = \frac{1}{2}.\left( \overrightarrow{AC}
+ \overrightarrow{BD} ight)

    \Rightarrow \overrightarrow{MN} =
\frac{1}{2}.\left( \overrightarrow{AC} + \overrightarrow{BD} ight)
\Rightarrow k = \frac{1}{2}

  • Câu 9: Nhận biết
    Chọn mệnh đề đúng

    Cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Do \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng nên \left(
\overrightarrow{a},\overrightarrow{b} ight) = 0^{0} \Rightarrow
\cos\left( \overrightarrow{a},\overrightarrow{b} ight) =
1.

    Vậy \overrightarrow{a}.\overrightarrow{b}
= \left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.

  • Câu 10: Thông hiểu
    Ghi đáp án vào ô trống

    Trong không gian, cho hai vectơ \overrightarrow{a}\overrightarrow{b} có cùng độ dài bằng 6. Biết độ dài của vectơ \overrightarrow{a} + 2\overrightarrow{b} bằng 6\sqrt{3}. Biết số đo góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b}x độ. Giá trị của x là bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian, cho hai vectơ \overrightarrow{a}\overrightarrow{b} có cùng độ dài bằng 6. Biết độ dài của vectơ \overrightarrow{a} + 2\overrightarrow{b} bằng 6\sqrt{3}. Biết số đo góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b}x độ. Giá trị của x là bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu
    Chọn đáp án thích hợp

    Trong không gian cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Khi đó \overrightarrow{SA} + \overrightarrow{SB} +
\overrightarrow{SC} + \overrightarrow{SD} bằng.

    Hướng dẫn:

    Do O là tâm của hình bình hành ABCD nên \overrightarrow{OA} + \overrightarrow{OB} +
\overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}.

    Áp dụng quy tắc ba điểm, ta có

    \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC} +
\overrightarrow{SD}

    = \left( \overrightarrow{SO} +
\overrightarrow{OA} ight) + \left( \overrightarrow{SO} +
\overrightarrow{OB} ight) + \left( \overrightarrow{SO} +
\overrightarrow{OC} ight) + \left( \overrightarrow{SO} +
\overrightarrow{OD} ight)

    = 4\overrightarrow{SO}

  • Câu 12: Thông hiểu
    Tìm đẳng thức chưa chính xác

    Cho hình hộp ABCD.A'B'C'D và tâm O. Hãy chỉ ra đẳng thức sai trong các đẳng thức sau?

    Hướng dẫn:

    Hình vẽ minh họa

    Theo quy tắc hình bình hành suy ra \overrightarrow{AC'} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} đúng.

    Do \overrightarrow{AB};\overrightarrow{CD} đối nhau và \overrightarrow{BC'};\overrightarrow{D'A} đối nhau nên \overrightarrow{AB} +
\overrightarrow{BC'} + \overrightarrow{CD} +
\overrightarrow{D'A} = \overrightarrow{0} đúng.

    Do \overrightarrow{AB} +
\overrightarrow{AA'} = \overrightarrow{AB'};\overrightarrow{AD}
+ \overrightarrow{DD'} = \overrightarrow{AD'} suy ra \overrightarrow{AB} =
\overrightarrow{AD} nên \overrightarrow{AB} + \overrightarrow{AA'} =
\overrightarrow{AD} + \overrightarrow{DD'} sai.

    Do \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CC'} =
\overrightarrow{AC'}\overrightarrow{AD'} +
\overrightarrow{D'O} + \overrightarrow{OC'} =
\overrightarrow{AC'} nên \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CC'} = \overrightarrow{AD'} +
\overrightarrow{D'O} + \overrightarrow{OC'} đúng.

  • Câu 13: Thông hiểu
    Tìm câu sai trong các câu đã cho

    Cho hình chóp S.ABCD.

    Hướng dẫn:

    Đáp án Nếu ABCD là hình thang thì \overrightarrow{SB} + 2\overrightarrow{SD} =
\overrightarrow{SA} + 2\overrightarrow{SC}. sai do nếu ABCD là hình thang có 2 đáy lần lượt là ADBC thì ta có \overrightarrow{SD} + 2\overrightarrow{SB} =
\overrightarrow{SC} + 2\overrightarrow{SA}.

  • Câu 14: Thông hiểu
    Tính góc giữa hai đường thẳng

    Cho tứ diện đều ABCD. Số đo giữa hai đường thẳng ABCD bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M là trung điểm của CD

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CD}.\overrightarrow{AM} = \overrightarrow{0} \\
\overrightarrow{CD}.\overrightarrow{MB} = \overrightarrow{0} \\
\end{matrix} ight.

    \Rightarrow
\overrightarrow{CD}.\overrightarrow{AB} = \overrightarrow{CD}.\left(
\overrightarrow{AM} + \overrightarrow{MB} ight) =
\overrightarrow{CD}.\overrightarrow{AM} +
\overrightarrow{CD}.\overrightarrow{MB} =
\overrightarrow{0}

    Suu ra \overrightarrow{AB}\bot\overrightarrow{CD} nên số đo góc giữa hai đường thẳng AB;CD bằng 90^{0}.

  • Câu 15: Vận dụng
    Chọn đáp án đúng

    Cho lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi điểm I \in CC' sao cho \overrightarrow{C'I} =
\frac{1}{3}\overrightarrow{C'C}, G là trọng tâm tứ diện BAB'C'. Biểu diễn vectơ \overrightarrow{IG} qua các vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Đáp án nào dưới đây đúng?

    Hướng dẫn:

    Ta có G là trọng tâm của tứ diện BA'B'C' nên

    4\overrightarrow{IG} =
\overrightarrow{IB} + \overrightarrow{IA'} +
\overrightarrow{IB'} + \overrightarrow{IC'}

    \Leftrightarrow 4\overrightarrow{IG} =
\left( \overrightarrow{IC} + \overrightarrow{CB} ight) + \left(
\overrightarrow{IC'} + \overrightarrow{C'A'} ight) +
\left( \overrightarrow{IC'} + \overrightarrow{C'B'} ight)
+ \overrightarrow{IC'}

    \Leftrightarrow 4\overrightarrow{IG} =
\overrightarrow{IC'} + \left( 2\overrightarrow{IC'} +
\overrightarrow{IC} ight) + \left( \overrightarrow{CB} +
\overrightarrow{C'B'} ight) +
\overrightarrow{C'A'}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{CC'} + \overrightarrow{0} +
2\overrightarrow{CB} - \overrightarrow{AC}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{AA'} + 2\overrightarrow{CB} -
\overrightarrow{AC}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{a} + 2\left( \overrightarrow{b} -
\overrightarrow{c} ight) - \overrightarrow{c}

    \Leftrightarrow \overrightarrow{IG} =
\frac{1}{4}\left( \frac{1}{3}\overrightarrow{a} + \overrightarrow{b} -
2\overrightarrow{c} ight)

  • Câu 16: Thông hiểu
    Chọn khẳng định đúng

    Cho tứ diện ABCD. Đặt \overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AD} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi G là trọng tâm tam giác BCD. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M là trung điểm của CD suy ra \overrightarrow{BG} =
\frac{2}{3}\overrightarrow{BM}

    Ta có: \overrightarrow{AG} =
\overrightarrow{AB} + \overrightarrow{BG} = \overrightarrow{AB} +
\frac{2}{3}\overrightarrow{BM}

    = \overrightarrow{AB} +
\frac{2}{3}.\frac{1}{2}\left( \overrightarrow{BC} + \overrightarrow{BD}
ight) = \overrightarrow{AB} + \frac{1}{3}\left( \overrightarrow{BC} +
\overrightarrow{BD} ight)

    = \overrightarrow{AB} +
\frac{1}{3}\left( \overrightarrow{AC} - \overrightarrow{AB} +
\overrightarrow{AD} - \overrightarrow{AB} ight)

    = \frac{1}{3}\left( \overrightarrow{AB}
+ \overrightarrow{AB} + \overrightarrow{AD} ight) = \frac{1}{3}\left(
\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}
ight)

  • Câu 17: Thông hiểu
    Xét tính đúng sai của mỗi kết luận

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a (tham khảo hình vẽ).

    Các khẳng định sau đúng hay sai?

    a) \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{AD}. Đúng||Sai

    b) \overrightarrow{AC'} =
\overrightarrow{AD} + \overrightarrow{AB} +
\overrightarrow{AA'}. Đúng||Sai

    c) \left(
\overrightarrow{AC},\overrightarrow{B'C'} ight) =
45^{\circ}. Đúng||Sai

    d) \overrightarrow{AC}.\overrightarrow{B'C'}
= \frac{\sqrt{2}a^{2}}{2}. Sai||Đúng

    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a (tham khảo hình vẽ).

    Các khẳng định sau đúng hay sai?

    a) \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{AD}. Đúng||Sai

    b) \overrightarrow{AC'} =
\overrightarrow{AD} + \overrightarrow{AB} +
\overrightarrow{AA'}. Đúng||Sai

    c) \left(
\overrightarrow{AC},\overrightarrow{B'C'} ight) =
45^{\circ}. Đúng||Sai

    d) \overrightarrow{AC}.\overrightarrow{B'C'}
= \frac{\sqrt{2}a^{2}}{2}. Sai||Đúng

    a) Vì ABCD là hình bình hành nên \overrightarrow{AB} + \overrightarrow{AD} =
\overrightarrow{AC}.

    b) Vì ABCD.A'B'C'D' là hình hộp nên \overrightarrow{AD} +
\overrightarrow{AB} + \overrightarrow{AA'} =
\overrightarrow{AC'}.

    c) Vì \overrightarrow{B'C'} =
\overrightarrow{AD} nên \left(
\overrightarrow{AC},\overrightarrow{B'C'} ight) = \left(
\overrightarrow{AC},\overrightarrow{AD} ight) = \widehat{CAD} =
45^{0}.

    d) Tam giác ADC vuông tại D nên AC =
\sqrt{AD^{2} + DC^{2}} = \sqrt{2}a.

    Ta có

    \overrightarrow{AC}.\overrightarrow{B'C'}
= \left| \overrightarrow{AC} ight|.\left|
\overrightarrow{B'C'} ight|.cos\left(
\overrightarrow{AC},\overrightarrow{B'C'} ight)

    = \sqrt{2}a.a.cos45^{0} =
a^{2}.

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Trong không gian cho hình hộp ABCD.A'B'C'D'\overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AC} =
\overrightarrow{b};\overrightarrow{AA'} =
\overrightarrow{c}. Gọi I là trung điểm của B'C', K là giao điểm của A'IB'D'. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Vì I là trung điểm của B’C’ suy ra \overrightarrow{A'B'} +
\overrightarrow{A'C'} = 2\overrightarrow{A'I}

    Và K là giao điểm của A'I';B'D' nên theo định lí Talet \Rightarrow
\overrightarrow{A'K} =
\frac{2}{3}\overrightarrow{A'I}

    Ta có: \overrightarrow{AK} =
\overrightarrow{AA'} + \overrightarrow{A'K} =
\overrightarrow{AA'} +
\frac{2}{3}\overrightarrow{A'I}

    = \overrightarrow{AA'} +
\frac{1}{3}\left( \overrightarrow{A'B'} +
\overrightarrow{A'C'} ight) = \frac{1}{3}\overrightarrow{a} +
\frac{1}{3}\overrightarrow{b} + \overrightarrow{c}

    Khi đó

    \overrightarrow{DK} =
\overrightarrow{DA} + \overrightarrow{AK} = \overrightarrow{CB} +
\overrightarrow{AK} = \left( \overrightarrow{AB} - \overrightarrow{AC}
ight) + \overrightarrow{AK}

    = \overrightarrow{a} -
\overrightarrow{b} + \frac{1}{3}\overrightarrow{a} +
\frac{1}{3}\overrightarrow{b} + \overrightarrow{c} =
\frac{4}{3}\overrightarrow{a} - \frac{2}{3}\overrightarrow{b} +
\overrightarrow{c}

    Vậy \overrightarrow{DK} =
\frac{1}{3}\left( 4\overrightarrow{a} - 2\overrightarrow{b} +
3\overrightarrow{c} ight).

  • Câu 19: Thông hiểu
    Chọn mệnh đề đúng

    Cho tứ diện ABCD. Gọi M;N lần lượt là tung điểm của AB;CD. Chọn mệnh đề đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AD} +
\overrightarrow{DN} \\
\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BC} +
\overrightarrow{CN} \\
\end{matrix} ight.

    Cộng hai vế của hai đẳng thức trên ta có:

    2\overrightarrow{MN} =
\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN} +
\overrightarrow{MB} + \overrightarrow{BC} +
\overrightarrow{CN}

    \Leftrightarrow 2\overrightarrow{MN} =
\left( \overrightarrow{MA} + \overrightarrow{MB} ight) + \left(
\overrightarrow{AD} + \overrightarrow{BC} ight) + \left(
\overrightarrow{DN} + \overrightarrow{CN} ight)

    \Leftrightarrow 2\overrightarrow{MN} =
\overrightarrow{AD} + \overrightarrow{BC} \Leftrightarrow
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{AD} +
\overrightarrow{BC} ight)

  • Câu 20: Nhận biết
    Xác định góc giữa hai vecto

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} \right|.\left| \overrightarrow{b}
\right|?

    Hướng dẫn:

    Mà theo giả thiết \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|, suy ra \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) = - 1 \Rightarrow \left(
\overrightarrow{a},\overrightarrow{b} ight) = 180^{0}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo