Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Vectơ và các phép toán trong không gian (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Khẳng định nào đúng

    Cho tứ diện ABCD. Đặt \overrightarrow{AB} = \overrightarrow{a},\ \
\overrightarrow{AC} = \overrightarrow{b},\ \ \overrightarrow{AD} =
\overrightarrow{c}, gọi M là trung điểm của BC. Trong các khẳng định sau, khẳng định nào đúng?

    Hướng dẫn:

    Ta có: \overrightarrow{DM} =
\overrightarrow{DA} + \overrightarrow{AB} +
\overrightarrow{BM}

    = \overrightarrow{AB} -
\overrightarrow{AD} + \frac{1}{2}\overrightarrow{BC}

    = \overrightarrow{AB} -
\overrightarrow{AD} + \frac{1}{2}\left( \overrightarrow{BA} +
\overrightarrow{AC} ight)

    = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} - \overrightarrow{AD}

    = \frac{1}{2}\overrightarrow{a} +
\frac{1}{2}\overrightarrow{b} - \overrightarrow{c} = \frac{1}{2}\left(
\overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}
ight).

  • Câu 2: Nhận biết
    Xác định góc giữa hai vecto

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} \right|.\left| \overrightarrow{b}
\right|?

    Hướng dẫn:

    Mà theo giả thiết \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|, suy ra \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) = - 1 \Rightarrow \left(
\overrightarrow{a},\overrightarrow{b} ight) = 180^{0}

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Cho \left| \overrightarrow{a} ight| =
3;\left| \overrightarrow{b} ight| = 5, góc giữa \overrightarrow{a};\overrightarrow{b} bằng 120^{0}. Chọn khẳng định sai trong các khẳng định sau?

    Hướng dẫn:

    Ta có: \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|\cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = 3.5.cos120^{0} = -
\frac{15}{2}

    Khi đó:

    \left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} +
2\overrightarrow{a}.\overrightarrow{b} + {\overrightarrow{b}}^{2} = 9 -
15 + 25 = 19

    \left( \overrightarrow{a} -
\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} -
2\overrightarrow{a}.\overrightarrow{b} + {\overrightarrow{b}}^{2} = 9 +
15 + 25 = 49

    \left( \overrightarrow{a} -
2\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} -
4\overrightarrow{a}.\overrightarrow{b} + 4{\overrightarrow{b}}^{2} = 9 +
30 + 100 = 139

    \left( \overrightarrow{a} +
2\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} +
4\overrightarrow{a}.\overrightarrow{b} + 4{\overrightarrow{b}}^{2} = 9 -
30 + 100 = 79

    Vậy khẳng định sai là \left| \overrightarrow{a} +
2\overrightarrow{b} ight| = 9.

  • Câu 4: Thông hiểu
    Tính góc giữa hai vectơ

    Trong không gian, cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai vectơ \overrightarrow{BD}\ \overrightarrow{B'C} bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{BD}\  = \ \
\overrightarrow{B'D'}. Do đó,

    \left( \overrightarrow{BD}\ ,\
\overrightarrow{B'C} ight)\  = \ \left(
\overrightarrow{B'D'}\ ,\ \overrightarrow{B'C} ight)\  =
\widehat{\ D'B'C}

    B'C\  = \ CD'\  = \
D'B'nên tam giác B'CD'là tam giác đều.

    Suy ra \widehat{\ D'B'C}\  = \
60{^\circ}

    Vậy \left( \overrightarrow{BD}\ ,\
\overrightarrow{B'C} ight)\  = \ 60{^\circ}

  • Câu 5: Nhận biết
    Tính góc giữa hai vectơ

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{DH}?

    Hướng dẫn:

    Hình vẽ minh họa

    \overrightarrow{DH} =
\overrightarrow{AE} (ADHE là hình vuông) nên \left(
\overrightarrow{AB};\overrightarrow{DH} ight) = \left(
\overrightarrow{AB};\overrightarrow{AE} ight) = \widehat{BAE} =
90^{0}

  • Câu 6: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    Đáp án là:

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    a) Vì M, N là trung điểm của ABCD nên \overrightarrow{MC} + \overrightarrow{MD} =
2\overrightarrow{MN}\overrightarrow{NA} + \overrightarrow{NB} =
2\overrightarrow{NM}

    Nên \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
\overrightarrow{0}.

    b) Ta có:

    \overrightarrow{AC} +
\overrightarrow{BD} = \overrightarrow{AM} + \overrightarrow{MC} +
\overrightarrow{BM} + \overrightarrow{MD}

    = \left( \overrightarrow{AM} +
\overrightarrow{BM} ight) + \left( \overrightarrow{MC} +
\overrightarrow{MD} ight)

    = \overrightarrow{0} +
2\overrightarrow{MN} = 2\overrightarrow{MN}

    c) Ta có:

    \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{AC} + \overrightarrow{CD} +
\overrightarrow{BD} + \overrightarrow{DC}

    = \left( \overrightarrow{AC} +
\overrightarrow{BD} ight) + \left( \overrightarrow{CD} +
\overrightarrow{DC} ight) = \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{MN}

    d) Do N là trung điểm của CD nên \overrightarrow{AC} + \overrightarrow{AD} =
2\overrightarrow{AN}

  • Câu 7: Thông hiểu
    Tìm câu sai trong các câu đã cho

    Cho hình chóp S.ABCD.

    Hướng dẫn:

    Đáp án Nếu ABCD là hình thang thì \overrightarrow{SB} + 2\overrightarrow{SD} =
\overrightarrow{SA} + 2\overrightarrow{SC}. sai do nếu ABCD là hình thang có 2 đáy lần lượt là ADBC thì ta có \overrightarrow{SD} + 2\overrightarrow{SB} =
\overrightarrow{SC} + 2\overrightarrow{SA}.

  • Câu 8: Thông hiểu
    Tính góc giữa hai đường thẳng

    Cho tứ diện đều ABCD. Số đo giữa hai đường thẳng ABCD bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M là trung điểm của CD

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CD}.\overrightarrow{AM} = \overrightarrow{0} \\
\overrightarrow{CD}.\overrightarrow{MB} = \overrightarrow{0} \\
\end{matrix} ight.

    \Rightarrow
\overrightarrow{CD}.\overrightarrow{AB} = \overrightarrow{CD}.\left(
\overrightarrow{AM} + \overrightarrow{MB} ight) =
\overrightarrow{CD}.\overrightarrow{AM} +
\overrightarrow{CD}.\overrightarrow{MB} =
\overrightarrow{0}

    Suu ra \overrightarrow{AB}\bot\overrightarrow{CD} nên số đo góc giữa hai đường thẳng AB;CD bằng 90^{0}.

  • Câu 9: Thông hiểu
    Tìm câu sai

    Chọn mệnh đề sai. Trong không gian, cho hình hộp ABCD\ .A'B'C'D'.

    Hướng dẫn:

    Hình vẽ minh họa

    Đáp án \overrightarrow{AC'}\  = \
\overrightarrow{AB}\ \  + \ \ \overrightarrow{AD}\  + \ \
\overrightarrow{AA'}\ đúng theo quy tắc hình hộp

    Đáp án \overrightarrow{BD}\  = \
\overrightarrow{BA}\ \  + \ \ \overrightarrow{BC}\ \  + \
\overrightarrow{BB'} sai

    Đáp án \overrightarrow{CA'}\  = \
\overrightarrow{CB}\ \  + \ \ \overrightarrow{CD}\  + \ \
\overrightarrow{CC'}\ đúng theo quy tắc hình hộp

    Đáp án \overrightarrow{C'A'}\  =
\ \overrightarrow{C'B'}\ \  + \ \ \overrightarrow{C'D'} đúng theo quy tắc hình bình hành

  • Câu 10: Thông hiểu
    Chỉ ra đẳng thức sai

    Cho hình hộp ABCD.A'B'C'D' với tâm O. Hãy chỉ ra đẳng thức sai trong các đẳng thức sau đây:

    Hướng dẫn:

    Ta có :\overrightarrow{AB} +
\overrightarrow{AA'} = \overrightarrow{AD} +
\overrightarrow{DD'} \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{AD\ }(vô lí)

  • Câu 11: Thông hiểu
    Tính tích vô hướng của hai vectơ

    Cho hình chóp OABCOA = OB = OC = 1, các cạnh OA;OB;OC đôi một vuông góc. Gọi M là trung điểm của AB. Tính tích vô hướng của hai vectơ \overrightarrow{OC};\overrightarrow{MA}.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{OA}.\overrightarrow{MA} =
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{BA} =
\frac{1}{2}\overrightarrow{OC}.\left( \overrightarrow{OA} -
\overrightarrow{OB} ight)

    =
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{OA} -
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{OB} = 0 - 0 =
0

    Vậy \overrightarrow{OA}.\overrightarrow{MA} =
0

  • Câu 12: Thông hiểu
    Phân tích vectơ theo một vectơ cho trước

    Cho lăng trụ tam giác ABC.A'B'C'\overrightarrow{AA'} =
\overrightarrow{a},\overrightarrow{\ AB} = \overrightarrow{b,}\
\overrightarrow{AC} = \overrightarrow{c}. Hãy phân tích (biểu thị) vectơ \overrightarrow{BC'} qua các vectơ \overrightarrow{a},\
\overrightarrow{b},\ \ \overrightarrow{c}.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{BC'} =
\overrightarrow{BA} + \overrightarrow{AC'} = - \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AA'}

    = - \overrightarrow{b} +
\overrightarrow{c} + \overrightarrow{a} = \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}.

  • Câu 13: Thông hiểu
    Phân tích vectơ

    Cho hình hộp ABCD.EFFH. Phân tích nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Biến đổi biểu thức

    \overrightarrow{AE} = \frac{1}{2}\left(
\overrightarrow{AF} + \overrightarrow{AH} - \overrightarrow{AC}
ight)

    \Leftrightarrow 2\overrightarrow{AE} =
\overrightarrow{AF} + \overrightarrow{CH}

    \Leftrightarrow \overrightarrow{AE} +
\left( \overrightarrow{AE} - \overrightarrow{AF} ight) =
\overrightarrow{CH}

    \Leftrightarrow \overrightarrow{BA} +
\overrightarrow{AE} = \overrightarrow{CH}

    \Leftrightarrow \overrightarrow{BE} =
\overrightarrow{CH} (đúng)

    Vậy phân tích đúng là \overrightarrow{AE}
= \frac{1}{2}\left( \overrightarrow{AF} + \overrightarrow{AH} -
\overrightarrow{AC} ight).

  • Câu 14: Vận dụng
    Tính giá trị của k

    Cho hình chóp S.ABC, mặt phẳng (\alpha) cắt các tia SA,SB,SC,SG( G là trọng tâm tam giác ABC) lần lượt tại các điểm A',B',C',G'.Ta có \frac{SA}{SA'} + \frac{SB}{SB'} +
\frac{SC}{SC'} = k\frac{SG}{SG'}. Hỏi k bằng bao nhiêu?

    Hướng dẫn:

    Hình vẽ minh họa

    Do G là trọng tâm của \Delta ABC nên \overrightarrow{GA} + \overrightarrow{GB} +\overrightarrow{GC} = \overrightarrow{0}

    \Rightarrow3\overrightarrow{SG} = \overrightarrow{SA} + \overrightarrow{SB} +\overrightarrow{SC}

    \begin{matrix}
\Leftrightarrow 3\frac{SG}{SG'}\overrightarrow{SG'} =
\frac{SA}{SA'}\overrightarrow{SA'} +
\frac{SB}{SB'}\overrightarrow{SB'} \\
+ \frac{SC}{SC'}\overrightarrow{SC'} \\
\end{matrix}

    Mặt khác A',B',C',G' đồng phẳng nên

    \frac{SA}{SA'} + \frac{SB}{SB'} +
\frac{SC}{SC'} = 3\frac{SG}{SG'}.

  • Câu 15: Nhận biết
    Chọn đáp án chính xác

    Trong không gian, cho hai vectơ \overrightarrow{AB}\overrightarrow{BC}. Vectơ \overrightarrow{AC} bằng

    Hướng dẫn:

    Theo quy tắc ba điểm: \overrightarrow{AC}\  = \ \overrightarrow{\
AB}\  + \ \overrightarrow{BC}.

  • Câu 16: Thông hiểu
    Tính số đo góc giữa hai đường thẳng

    Cho tứ diện ABCD đều cạnh bằng a. Gọi O là tâm đường tròn ngoại tiếp tam giác BCD. Góc giữa AOCD bằng bao nhiêu?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có \overrightarrow{AO}.\overrightarrow{CD} = \left(
\overrightarrow{CO} - \overrightarrow{CA}
ight)\overrightarrow{CD}

    =
\overrightarrow{CO}.\overrightarrow{CD} -
\overrightarrow{CA}.\overrightarrow{CD}= CO.CD.\cos30^{0} -CA.CD.\cos60^{0}

    =
\frac{a\sqrt{3}}{3}.a.\frac{\sqrt{3}}{2} - a.a.\frac{1}{2} =
\frac{a^{2}}{2} - \frac{a^{2}}{2} = 0.

    Suy ra AO\bot CD.

  • Câu 17: Vận dụng
    Tìm khẳng định sai

    Cho tứ diện ABCD. Trên các cạnh ADBC lần lượt lấy M,Nsao cho AM
= 3MD, BN = 3NC. Gọi P,Q lần lượt là trung điểm của ADBC. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Hình vẽ minh họa

    «Các vectơ \overrightarrow{BD},\overrightarrow{AC},\overrightarrow{MN} đồng phẳng” . Sai vì

    \left\{ \begin{matrix}
  \overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AC}  + \overrightarrow {CN}  \hfill \\
  \overrightarrow {MN}  = \overrightarrow {MD}  + \overrightarrow {DB}  + \overrightarrow {BN}  \hfill \\ 
\end{matrix}  \right.\Rightarrow \left\{ \begin{matrix}
  \overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AC}  + \overrightarrow {CN}  \hfill \\
  \overrightarrow {3MN}  = \overrightarrow {3MD}  + 3\overrightarrow {DB}  + 3\overrightarrow {BN}  \hfill \\ 
\end{matrix}  \right.

    \Rightarrow 4\overrightarrow {MN}  = \overrightarrow {AC}  - 3\overrightarrow {BD}  + \frac{1}{2}\overrightarrow {BC} \mathbf{\Rightarrow} \overrightarrow{BD},\overrightarrow{AC},\overrightarrow{MN} không đồng phẳng.

    « Các vectơ \overrightarrow{MN},\overrightarrow{DC},\overrightarrow{PQ} đồng phẳng’. Đúng vì \left\{ \begin{gathered}
  \overrightarrow {MN}  = \overrightarrow {MP}  + \overrightarrow {PQ}  + \overrightarrow {QN}  \hfill \\
  \overrightarrow {MN}  = \overrightarrow {MD}  + \overrightarrow {DC}  + \overrightarrow {CN}  \hfill \\ 
\end{gathered}  \right.

    \Rightarrow 2\overrightarrow {MN}  = \overrightarrow {PQ}  + \overrightarrow {DC}  \Rightarrow \overrightarrow {MN}  = \frac{1}{2}\left( {\overrightarrow {PQ}  + \overrightarrow {DC} } \right)

    \mathbf{\Rightarrow}\overrightarrow{MN},\overrightarrow{DC},\overrightarrow{PQ}: đồng phẳng.

    “Các vectơ \overrightarrow{AB},\overrightarrow{DC},\overrightarrow{PQ} đồng phẳng”. Đúng. Bằng cách biểu diễn \overrightarrow{PQ} tương tự như trên ta có \overrightarrow{PQ} = \frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{DC} \right).

    « Các vectơ \overrightarrow{AB},\overrightarrow{DC},\overrightarrow{MN} đồng phẳng”. Đúng. Ta có \overrightarrow{MN} =
\frac{1}{4}\overrightarrow{AB} +
\frac{1}{4}\overrightarrow{DC}.

  • Câu 18: Thông hiểu
    Chọn khẳng định đúng

    Cho hình hộp ABCD.A_{1}B_{1}C_{1}D_{1}. Gọi M là trung điểm của AD. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{C_{1}M} =
\overrightarrow{C_{1}C} + \overrightarrow{CM} = \overrightarrow{C_{1}C}
+ \frac{1}{2}\left( \overrightarrow{CA} + \overrightarrow{CD}
ight)

    = \overrightarrow{C_{1}C} +
\frac{1}{2}\left( \overrightarrow{C_{1}A_{1}} +
\overrightarrow{C_{1}D_{1}} ight)

    = \overrightarrow{C_{1}C} +
\frac{1}{2}\left( \overrightarrow{C_{1}B_{1}} +
\overrightarrow{C_{1}D_{1}} + \overrightarrow{C_{1}D_{1}}
ight)

    = \overrightarrow{C_{1}C} +
\overrightarrow{C_{1}D_{1}} +
\frac{1}{2}\overrightarrow{C_{1}B_{1}}

  • Câu 19: Thông hiểu
    Tìm câu sai

    Cho hình chóp S.ABCD. Gọi O là giao điểm của ACBD.

    Hướng dẫn:

    Nếu \overrightarrow{SA}
+ \overrightarrow{SB} + 2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO} thì ABCD là hình thang ». Đúng vì \overrightarrow{SA} +
\overrightarrow{SB} + 2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO}SC\bot(BIH).

    O,A,CBIH thẳng hàng nên đặt \overrightarrow{OA} = k\overrightarrow{OC};OB =
m\overrightarrow{OD}

    \Rightarrow (k + 1)\overrightarrow{OC} +
(m + 1)\overrightarrow{OD} = \overrightarrow{0}.

    \overrightarrow{OC},\overrightarrow{OD} không cùng phương nên k = - 2m = - 2 \Rightarrow \frac{OA}{OC} =
\frac{OB}{OD} = 2 \Rightarrow AB//CD.

    Nếu ABCD là hình bình hành thì \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{SD} =
4\overrightarrow{SO}. ». Đúng. Học sinh tự biến đổi bằng cách chiêm điểm O vào vế trái.

    Nếu ABCD là hình thang thì \overrightarrow{SA} +
\overrightarrow{SB} + 2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO}. ». Sai. Vì nếu ABCD là hình thang cân có 2 đáy là AD,BC thì sẽ sai.

    Nếu \overrightarrow{SA}
+ \overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{SD} =
4\overrightarrow{SO} thì ABCD là hình bình hành. ». Đúng. Tương tự đáp án A với k = - 1,m = - 1 \Rightarrow O là trung điểm 2 đường chéo.

  • Câu 20: Thông hiểu
    Tìm đẳng thức chưa chính xác

    Cho hình hộp ABCD.A'B'C'D và tâm O. Hãy chỉ ra đẳng thức sai trong các đẳng thức sau?

    Hướng dẫn:

    Hình vẽ minh họa

    Theo quy tắc hình bình hành suy ra \overrightarrow{AC'} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} đúng.

    Do \overrightarrow{AB};\overrightarrow{CD} đối nhau và \overrightarrow{BC'};\overrightarrow{D'A} đối nhau nên \overrightarrow{AB} +
\overrightarrow{BC'} + \overrightarrow{CD} +
\overrightarrow{D'A} = \overrightarrow{0} đúng.

    Do \overrightarrow{AB} +
\overrightarrow{AA'} = \overrightarrow{AB'};\overrightarrow{AD}
+ \overrightarrow{DD'} = \overrightarrow{AD'} suy ra \overrightarrow{AB} =
\overrightarrow{AD} nên \overrightarrow{AB} + \overrightarrow{AA'} =
\overrightarrow{AD} + \overrightarrow{DD'} sai.

    Do \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CC'} =
\overrightarrow{AC'}\overrightarrow{AD'} +
\overrightarrow{D'O} + \overrightarrow{OC'} =
\overrightarrow{AC'} nên \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CC'} = \overrightarrow{AD'} +
\overrightarrow{D'O} + \overrightarrow{OC'} đúng.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo