Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 2 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính giá trị nhỏ nhất của hàm số

    Giá trị nhỏ nhất của hàm số f\left( x ight) = \left( {x + 1} ight)\left( {x + 2} ight)\left( {x + 3} ight)\left( {x + 4} ight) + 2019 là:

    Hướng dẫn:

    Tập xác định D = \mathbb{R}

    Biến đổi f(x) như sau:

    \begin{matrix}  f\left( x ight) = \left( {x + 1} ight)\left( {x + 2} ight)\left( {x + 3} ight)\left( {x + 4} ight) + 2019 \hfill \\  f\left( x ight) = \left( {{x^2} + 5x + 4} ight)\left( {{x^2} + 5x + 6} ight) + 2019 \hfill \\ \end{matrix}

    Đặt t = {x^2} + 5x + 4 \Rightarrow t = {\left( {x + \frac{5}{2}} ight)^2} - \frac{9}{4} \geqslant  - \frac{9}{4};\forall x \in \mathbb{R}

    Hàm số đã cho trở thành

    f\left( y ight) = {t^2} + 2t + 2019 = {\left( {t + 1} ight)^2} + 2018 \geqslant 2018,\forall t \geqslant  - \frac{9}{4}

    Vậy giá trị nhỏ nhất của hàm số đã cho bằng 2018 tại t =  - 1

  • Câu 2: Nhận biết
    Chọn phương án đúng

    Cho hàm số y = f(x) xác định, liên tục trên\left\lbrack - 1,\frac{5}{2}
\right\rbrackvà có đồ thị là đường cong như hình vẽ.

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số f(x) trên \left\lbrack - 1,\frac{5}{2}
\right\rbrack là:

    Hướng dẫn:

    Dựa vào đồ thị M = 4,\ \ m = -
1.

  • Câu 3: Nhận biết
    Khẳng định nào sau đây đúng?
  • Câu 4: Nhận biết
    Xác định tính đúng sai của từng phương án

    Hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có bảng biến thiên như sau.

    Gọi Mm lần lượt là GTLN và GTNN của hàm số trên \lbrack - 1;3brack. Xét tính đúng sai của các khẳng định sau:

    a) m = f(2) Sai|| Đúng

    b) M = f(4) Sai|| Đúng

    c) m = f( - 1) Đúng||Sai

    d) M = f(0) Đúng||Sai

    Đáp án là:

    Hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có bảng biến thiên như sau.

    Gọi Mm lần lượt là GTLN và GTNN của hàm số trên \lbrack - 1;3brack. Xét tính đúng sai của các khẳng định sau:

    a) m = f(2) Sai|| Đúng

    b) M = f(4) Sai|| Đúng

    c) m = f( - 1) Đúng||Sai

    d) M = f(0) Đúng||Sai

    Dựa vào bảng biến thiên trên \lbrack -
1;3brack ta có:

    m = f( - 1) = 0

    M = f(0) = 5

  • Câu 5: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
x^{3} - 2x^{2} - 4x + 1 trên đoạn \lbrack 1;3brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 3x^{2} - 4x -
4

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \in \lbrack 1;3brack \\
x = - \frac{2}{3} otin \lbrack 1;3brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(1) = - 4 \\
f(2) = - 7 \\
f(3) = - 2 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
2

    Cách 2. Sử dụng chức năng MODE 7 và nhập hàm f(X) = X^{3} - 2X^{2} - 4X + 1 với thiết lập Start 1, End 3, Step 0,2.

    Quan sát bảng giá trị F(X) ta thấy giá trị lớn nhất F(X) bằng - 2 khi X = 3.

  • Câu 6: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
2x^{3} + 3x^{2} - 12x + 2 trên đoạn [ - 1;2]?

    Hướng dẫn:

    Đạo hàm f'(x) = 6x^2 + 6x -12

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in \lbrack - 1;2brack \\
x = - 2 otin \lbrack - 1;2brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 1) = 15 \\
f(1) = - 5 \\
f(2) = 6 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;2brack}f(x) =
15 .

  • Câu 7: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) và có bảng biến thiên trên \lbrack - 5;7) như sau:

    Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên, ta nhận thấy:

    Hàm số có giá trị nhỏ nhất bằng 2, đạt tại x
= 1 \in \lbrack - 5;7).

    Ta có \left\{ \begin{matrix}
f(x) \leq 9,\forall x \in \lbrack - 5;7) \\
\lim_{x ightarrow 7^{-}}f(x) = 9 \\
\end{matrix} ight..

    7 otin \lbrack - 5;7) nên không tồn tại x_{0} \in \lbrack -
5;7) sao cho f\left( x_{0} ight)
= 9.

    Do đó hàm số không đạt GTLN trên \lbrack
- 5;7).

    Vậy \min_{\lbrack - 5;7)}f(x) =
2 và hàm số không đạt giá trị lớn nhất trên \lbrack - 5;7).

  • Câu 8: Nhận biết
    Chọn kết luận đúng

    Cho hàm số y = f(x) liên tục trên \lbrack 2;5brack và có đồ thị như hình vẽ:

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 2;5brack lần lượt là M;m. Kết luận nào sau đây đúng?

    Hướng dẫn:

    Quan sát đồ thị ta thấy \left\{\begin{matrix}\max_{\lbrack 2;5brack}y = M = 4 \\\min_{\lbrack 2;5brack}y = m = - 6 \\\end{matrix} ight.\  \Rightarrow M - m = 10

  • Câu 9: Nhận biết
    GTLN của hàm số trên khoảng là bao nhiêu?

    Cho hàm số y = f(x) và có bảng biến thiên trên [-2; 3) như sau:

    GTLN của hàm số trên khoảng là bao nhiêu?

    Giá trị lớn nhất của hàm số trên đoạn [-2; 3] bằng:

    Hướng dẫn:

    Từ đồ thị của hàm số y = f(x) ta thấy hàm số y = f(x) xác định và liên tục trên đoạn [-2; 3]

    Ta có: f(x) ∈ [-2; 3] với \forall x \in \mathbb{R} => \mathop {\max }\limits_{\left[ { - 2;3} ight]} f\left( x ight) = f\left( 3 ight) = 4

  • Câu 10: Thông hiểu
    Xác định thời điểm số lượng cá thể giảm

    Sự ảnh hưởng khi sử dụng một loại thuốc với cá thể X được một nhà sinh học mô tả bởi hàm số P(t) = \frac{t + 1}{t^{2} + t + 4}, trong đó P(t) là số lượng cá thể sau t giờ sử dụng thuốc. Vào thời điểm nào thì số lượng cá thể X bắt đầu giảm?

    Hướng dẫn:

    Xét P(t) = \frac{t + 1}{t^{2} + t +
4} ta có: P'(t) = \frac{- t^{2}
- 2t + 3}{\left( t^{2} + t + 4 ight)^{2}} = \frac{(t - 1)( - t -
3)}{\left( t^{2} + t + 4 ight)^{2}}

    P'(t) = 0 \Leftrightarrow \frac{(t -
1)( - t - 3)}{\left( t^{2} + t + 4 ight)^{2}} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = - 3 \\
t = 1 \\
\end{matrix} ight.

    Ta thấy hàm số đạt cực đại tại t =
1P'(t) < 0;\forall t \in
(1; + \infty) nên sau 1 giờ thì cá thể bắt đầu giảm.

  • Câu 11: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Cho hàm số y = f(x) xác định, liên tục trên \lbrack - 1;4brack và có đồ thị như hình vẽ

    Giá trị lớn nhất của hàm số y =
f(x) trên \lbrack -
1;4brack

    Hướng dẫn:

    Từ đồ thị hàm số, ta thấy hàm số đạt giá trị lớn nhất bằng 3 tại x = 1.

  • Câu 12: Nhận biết
    Cho hàm số y = f(x) có đồ thị sau:

    Toán 12 bài 2

    Giá trị nhỏ nhất của hàm số trên đoạn [0;1] là:

  • Câu 13: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Mệnh đề nào sau dây đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.

  • Câu 14: Nhận biết
    Tính giá trị biểu thức P

    Biết rằng hàm số f(x) = x^{3} - 3x^{2} -
9x + 28 đạt giá trị nhỏ nhất trên \lbrack 0;4brack tại điểm x_{0}. Khi đó giá trị biểu thức P = x_{0} + 2021 bằng:

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 6x -
9

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f(0) = 28 \\
f(3) = 1 \\
f(4) = 8 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;4brack}f(x) =
1 khi x = 3

    Suy ra x_{0} = 3 \Rightarrow P = x_{0} +
2021 = 2024.

  • Câu 15: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x^{3} - 3x + 2. Khi đó nhận định nào đúng, nhận định nào sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x^{3} - 3x + 2. Khi đó nhận định nào đúng, nhận định nào sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) SAI vì Tập xác định của hàm số đã cho là \mathbb{R}.

    b) ĐÚNG. Thay x =
0 ta được y = 2.

    c) SAI. Ta có y' =
3x^{2} - 3. Ta thấy y'(0) = - 3
\neq 0. Suy ra hàm số không đạt cực trị tại điểm x = 0.

    d) ĐÚNG. Ta có y' =
3x^{2} - 3.Suy ra y' = 0
\Leftrightarrow x = 1\ (TM);x = - 1\ (KTM).

    y(0) = 2;y(2) = 4;y(1) = 0. Vậy giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4.

  • Câu 16: Nhận biết
    Tính tổng min và max của hàm số trên đoạn

    Cho hàm số f(x) liên tục trên \lbrack - 1;5brack và có đồ thị trên đoạn \lbrack - 1;5brack như hình vẽ bên dưới. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên đoạn \lbrack - 1;5brack bằng

    Hướng dẫn:

    Từ đồ thị ta thấy: \left\{ \begin{matrix}
M = \max_{\lbrack - 1;5brack}f(x) = 3 \\
n = \min_{\lbrack - 1;5brack}f(x) = - 2 \\
\end{matrix} ight.\  \Rightarrow M + n = 1.

  • Câu 17: Nhận biết
    Chọn mệnh đề đúng

    Xét hàm số f(x) = - \frac{4}{3}x^{3} -
2x^{2} - x - 3 trên \lbrack -
1;1brack. Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Đạo hàm f'(x) = - 4x^{2} - 4x - 1 = -(2x + 1)^2 \leq 0,\ \forall x\mathbb{\in R}.

    Suy ra hàm số f(x) nghịch biến trên đoạn \lbrack - 1;1brack nên có giá trị nhỏ nhất tại x = 1 và giá trị lớn nhất tại x = - 1.

  • Câu 18: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Xác định giá trị lớn nhất của hàm số f(x)
= x^{3} - 3x + 2 trên đoạn \lbrack
- 1;3brack?

    Hướng dẫn:

    Ta có: f'(x) = 3x^{2} -
3

    \Rightarrow f'(x) = 0
\Leftrightarrow 3x^{2} - 3 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \in \lbrack - 1;3brack \\
x = - 1 \in \lbrack - 1;3brack \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
f( - 1) = 4 \\
f(1) = 0 \\
f(3) = 20 \\
\end{matrix} ight.\  \Rightarrow \underset{\lbrack - 1;3brack}{\max
f(x)} = 20 \Leftrightarrow x = 3

    Vậy đáp án cần tìm là 20.

  • Câu 19: Thông hiểu
    Tính giá trị của biểu thức

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có đồ thị như hình vẽ bên. Gọi M,mlần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 1;3brack. Giá trị của M + m

    Hướng dẫn:

    Dựa vào đồ thị ta thấy GTLN của hàm số trên đoạn \lbrack - 1;3brackM = 2 đạt được tại x = - 1 và GTNN của hàm số số trên đoạn \lbrack - 1;3brackm = - 4 đạt được tại x = 2

    \Rightarrow M + m = 2 + ( - 4) = -
2

  • Câu 20: Nhận biết
    Tính tổng M + m

    Giả sử M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =
x^{3} - 3x + 2 trên đoạn \lbrack
0;2brack. Khi đó tổng của Mm bằng bao nhiêu?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 3 \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
y(0) = 2 \\
y(1) = 0 \\
y(2) = 4 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
M = 4 \\
m = 0 \\
\end{matrix} ight.\  \Rightarrow M + m = 4

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo