Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 2 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính giá trị biểu thức 3M + m

    Cho hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight]. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Tính giá trị biểu thức 3M + m.

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight] ta có:

    f'\left( x ight) = \frac{8}{{{{\left( {x - 3} ight)}^2}}} < 0

    => f\left( x ight) là hàm số nghịch biến trên \left( {0;2} ight)

    => \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 2 ight) =  - 5} \\   {\mathop {\max f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 0 ight) = \dfrac{1}{3}} \end{array}} ight. \Rightarrow 3M + m =  - 2

  • Câu 2: Nhận biết
    Chọn khẳng định đúng

    Gọi giá trị nhỏ nhất của hàm số y =
\frac{x - 1}{x + 1} trên đoạn \lbrack 0;3brackm. Chọn khẳng định đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y' = \frac{2}{(x + 1)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên \lbrack
0;3brack suy ra \min_{\lbrack
0;3brack}y = f(0) = - 1 = m

  • Câu 3: Nhận biết
    Tìm điều kiện của tham số m

    Cho hàm số y = f(x) liên tục trên \lbrack 2;5brack và có đồ thị như hình vẽ:

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 2;5brack lần lượt là M;m. Kết luận nào sau đây đúng?

    Hướng dẫn:

    Quan sát đồ thị ta thấy \left\{
\begin{matrix}
\max_{\lbrack 2;5brack}y = M = 4 \\
\min_{\lbrack 2;5brack}y = m = - 6 \\
\end{matrix} ight.\  \Rightarrow M - m = 10

  • Câu 4: Nhận biết
    Tính giá trị biểu thức

    Cho hàm số y = \frac{2x + 3}{x -
2}. Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 0;1brack. Khi đó giá trị của biểu thức S = M + m là:

    Hướng dẫn:

    Ta có: y' = \frac{- 7}{(x - 2)^{2}}
< 0;\forall x \in \lbrack 0;1brack

    Vậy \left\{ \begin{matrix}M = y(0) = - \dfrac{3}{2} \\m = y(1) = - 5 \\\end{matrix} ight.\  \Rightarrow S = M + m = -\dfrac{13}{2}

  • Câu 5: Nhận biết
    Chọn phương án đúng

    Cho hàm số y = f(x) xác định, liên tục trên\left\lbrack - 1,\frac{5}{2}
\right\rbrackvà có đồ thị là đường cong như hình vẽ.

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số f(x) trên \left\lbrack - 1,\frac{5}{2}
\right\rbrack là:

    Hướng dẫn:

    Dựa vào đồ thị M = 4,\ \ m = -
1.

  • Câu 6: Thông hiểu
    Chọn đáp án chính xác

    Tìm tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số f(x) = - x^{3} - 3x^{2} + m trên \lbrack - 1;1brack bằng 0?

    Hướng dẫn:

    Ta có: f'(x) = - 3x^{2} -
6x

    Xét f'(x) = 0 \Leftrightarrow -
3x^{2} - 6x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 2 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f( - 1) = m - 2 \\
f(0) = m \\
f(1) = m - 4 \\
\end{matrix} ight.m - 4
< m - 2 < m

    Khi đó \min_{\lbrack - 1;1brack}f(x) =
f(1) = m - 4

    Theo đề bài ra ta có:

    \min_{\lbrack - 1;1brack}f(x) = 0
\Leftrightarrow m - 4 = 0 \Leftrightarrow m = 4

    Vậy đáp án cần tìm là m = 4.

  • Câu 7: Nhận biết
    Tìm giá trị nhỏ nhất của hàm số trên đoạn

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2brack có đồ thị như hình vẽ:

    Tìm giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 2;2brack?

    Hướng dẫn:

    Trên đoạn \lbrack - 2;2brack ta có: f(x) \geq - 1f(x) = - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 1 \\
\end{matrix} ight.

    Vậy \min_{\lbrack - 2;2brack}y = -
1.

  • Câu 8: Nhận biết
    Tìm min max của hàm số f(x)

    Cho hàm số f(x) = - 2x^{4} + 4x^{2} +10. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn [0;2]

    Hướng dẫn:

    Đạo hàm f'(x) = - 8x^{3} +8x

    f'(x) = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = 0 \in \lbrack 0;2brack \\x = 1 \in \lbrack 0;2brack \\x = - 1 otin \lbrack 0;2brack \\\end{matrix} ight.

    Ta có \left\{ \begin{matrix}f(0) = 10 \\f(1) = 12 \\f(2) = - 6 \\\end{matrix} ight. \RightarrowM = \max_{\lbrack 0;2brack}f(x) = 12;\ m = \min_{\lbrack0;2brack}f(x) = - 6

  • Câu 9: Nhận biết
    GTLN của hàm số trên khoảng là bao nhiêu?

    Cho hàm số y = f(x) và có bảng biến thiên trên [-2; 3) như sau:

    GTLN của hàm số trên khoảng là bao nhiêu?

    Giá trị lớn nhất của hàm số trên đoạn [-2; 3] bằng:

    Hướng dẫn:

    Từ đồ thị của hàm số y = f(x) ta thấy hàm số y = f(x) xác định và liên tục trên đoạn [-2; 3]

    Ta có: f(x) ∈ [-2; 3] với \forall x \in \mathbb{R} => \mathop {\max }\limits_{\left[ { - 2;3} ight]} f\left( x ight) = f\left( 3 ight) = 4

  • Câu 10: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
x^{3} - 2x^{2} - 4x + 1 trên đoạn \lbrack 1;3brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 3x^{2} - 4x -
4

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \in \lbrack 1;3brack \\
x = - \frac{2}{3} otin \lbrack 1;3brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(1) = - 4 \\
f(2) = - 7 \\
f(3) = - 2 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
2

    Cách 2. Sử dụng chức năng MODE 7 và nhập hàm f(X) = X^{3} - 2X^{2} - 4X + 1 với thiết lập Start 1, End 3, Step 0,2.

    Quan sát bảng giá trị F(X) ta thấy giá trị lớn nhất F(X) bằng - 2 khi X = 3.

  • Câu 11: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trên đoạn \lbrack - 1\ ;\
3brack như hình vẽ bên. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy: \max_{\lbrack - 1;3brack}f(x) = 5 tại x = 0.

    Suy ra \max_{\lbrack - 1;3brack}f(x) =
f(0).

  • Câu 12: Nhận biết
    Chọn đáp án đúng

    Tìm giá trị nhỏ nhất của hàm số y = x^{3}
- 3x^{2} - 9x + 5 trên đoạn \lbrack
- 2;2brack

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Với x \in \lbrack - 2;2brack ta có: y' = 3x^{2} - 6x - 9 \Rightarrow
y' = 0 \Leftrightarrow x = - 1

    Ta có: \left\{ \begin{matrix}
y( - 2) = 3 \\
y( - 1) = 10 \\
y(2) = - 17 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack - 2;2brack}y = -
17 khi x = 2.

  • Câu 13: Thông hiểu
    Xác định giá trị lớn nhất của hàm số

    Xác định giá trị lớn nhất của hàm số y = \sqrt {x - 1}  + \sqrt {3 - x}  - 2\sqrt { - {x^2} + 4x - 3}

    Hướng dẫn:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {x - 1 \geqslant 0} \\   {3 - x \geqslant 0} \end{array} \Rightarrow x \in \left[ {1;3} ight]} ight.

    Đặt \sqrt {x - 1}  + \sqrt {3 - x}  = t ta có:

    \begin{matrix}  t' = \dfrac{1}{{2\sqrt {x - 1} }} - \dfrac{1}{{\sqrt {3 - x} }} \hfill \\  t' = 0 \Rightarrow x = 2 \hfill \\ \end{matrix}

    Ta có: t\left( 1 ight) = t\left( 3 ight) = \sqrt 2  \to \sqrt 2  \leqslant t \leqslant 2

    Khi đó:

    \begin{matrix}  {t^2} = 2 + 2\sqrt {\left( {x - 1} ight)\left( {3 - x} ight)}  \hfill \\   = 2 + 2\sqrt { - {x^2} + 4x - 3}  \hfill \\   \Leftrightarrow 2\sqrt { - {x^2} + 4x - 3}  = {t^2} - 2 \hfill \\ \end{matrix}

    Do đó: y = f\left( t ight) = t - \left( {{t^2} - 2} ight) =  - {t^2} + t + 2

    Xét hàm số f\left( t ight) = t - \left( {{t^2} - 2} ight);\forall t \in \left[ {\sqrt 2 ;2} ight]

    Ta xác được \mathop {\max f\left( t ight) = \sqrt 2 }\limits_{\left[ {\sqrt 2 ;2} ight]}  \Rightarrow \mathop {\max y = \sqrt 2 }\limits_{\left[ {\sqrt 2 ;2} ight]}

  • Câu 14: Thông hiểu
    Tính tổng min max của hàm số trên đoạn cho trước

    Cho hàm số y = f(x) liên tục và có đồ thị trên đoạn \lbrack - 2;\
4brack như hình vẽ bên. Tổng giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) trên đoạn \lbrack - 2;\ 4brack bằng

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta có

    m = \underset{x \in \lbrack - 2\ ;\
4brack}{Min}f(x) = - 4, M =
\underset{x \in \lbrack - 2\ ;\ 4brack}{Max}f(x) = 7

    Khi đó M + m = 3

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Tìm giá trị nhỏ nhất của hàm số y = x^{2}
+ \frac{8}{x} trên đoạn \left\lbrack \frac{1}{2};2
ightbrack?

    Hướng dẫn:

    Ta có: y' = 2x - \frac{8}{x^{2}} =
\frac{2x^{3} - 8}{x^{2}}

    \Rightarrow y' = 0 \Leftrightarrow
\frac{2x^{3} - 8}{x^{2}} = 0 \Leftrightarrow x^{3} = 4 \Leftrightarrow x
= \sqrt[3]{4}

    Ta có: \left| \begin{matrix}f\left( \dfrac{1}{2} ight) = \dfrac{65}{4} \\f(2) = 8 \\f\left( \sqrt[3]{4} ight) = 6\sqrt[3]{2} \\\end{matrix} ight.\  \Rightarrow \min_{\left\lbrack\frac{1}{2};\frac{1}{2} ightbrack}y = 6\sqrt[3]{2}.

  • Câu 16: Nhận biết
    Tìm giá trị nhỏ nhất của hàm số

    Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:

    Hướng dẫn:

    Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:

    f’(x) = 3x3 – 3

    f’(x) = 0 =>\left\{ {\begin{array}{*{20}{c}}  {0 \leqslant x \leqslant 2} \\   {3{x^2} - 3 = 0} \end{array}} ight. \Rightarrow x = 1

    Tính được f(0) = 5; f(1) = 3; f(2) = 7

    Vậy \mathop {\min }\limits_{\left[ {0;2} ight]} f\left( x ight) = f\left( 1 ight) = 3

  • Câu 17: Nhận biết
    Xác định giá trị nhỏ nhất

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 2;3brack bằng bao nhiêu?

    Hướng dẫn:

    Giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 2;3brack bằng - 3.

  • Câu 18: Nhận biết
    Tìm GTNN của hàm số

    Trên đoạn \lbrack 0;1brack hàm số y = \sqrt{4 - 3x} có giá trị nhỏ nhất bằng bao nhiêu?

    Hướng dẫn:

    Tập xác định D = \left( -
\infty;\frac{4}{3} ightbrack

    Ta có: y' = \frac{- 3}{2\sqrt{4 -
3x}} < 0;\forall x < \frac{4}{3}

    Trên đoạn \lbrack 0;1brack hàm số đã cho nghịch biến

    \Rightarrow \min_{\lbrack 0;1brack}y =
y(1) = 1

  • Câu 19: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên trên \lbrack - 5;7) như sau:

    Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

     Dựa vào bảng biến thiên trên \lbrack -
5;7) , ta có: \underset{\lbrack -
5;7)}{Min}f(x) = f(1) = 2 .

  • Câu 20: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có bảng biến thiên như sau:

    Giá trị lớn nhất của hàm số y =
f(x) trên \lbrack
1;5brack là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn \lbrack 1;5brack3.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo