Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 2 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án thích hợp

    Đợt xuất khẩu gạo của tính B kéo dài trong 20 ngày. Người ta nhận thấy có lượng xuất khẩu gạo tính theo ngày thứ t được xác định bởi công thức S(t) = t^{3} - 24t^{2} + 144t +
2500. Hỏi trong mấy ngày đó, ngày thứ mấy có số lượng xuất khẩu gạo cao nhất?

    Gợi ý:

    Khảo sát hàm số, tìm giá trị lớn nhất của S(t).

    Từ đó kết luận ngày xuất khẩu gạo cao nhất.

    Hướng dẫn:

    Xét hàm số S(t) = t^{3} - 24t^{2} + 144t
+ 2500 với 1 \leq t \leq
20.

    Ta có: S^{'}(t) = 3t^{2} - 48t +
144

    S^{'}(t) = 0 \Rightarrow 3t^{2} -
48t + 144 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 4 \in \lbrack 1;20brack \\
t = 12 \in \lbrack 1;20brack \\
\end{matrix} ight.

    Lại có: S(1) = 2621;S(4) = 2756;S(12) =
2500;S(20) = 3780.

    Do đó: \max_{\lbrack 1;20brack}S(t) =
S(20) = 3780.

    Vậy ngày thứ 20 là ngày có số lượng gạo xuất khẩu cao nhất.

  • Câu 2: Nhận biết
    Tìm giá trị nhỏ nhất của hàm số trên đoạn

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2brack có đồ thị như hình vẽ:

    Tìm giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 2;2brack?

    Hướng dẫn:

    Trên đoạn \lbrack - 2;2brack ta có: f(x) \geq - 1f(x) = - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 1 \\
\end{matrix} ight.

    Vậy \min_{\lbrack - 2;2brack}y = -
1.

  • Câu 3: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Mệnh đề nào sau dây đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.

  • Câu 4: Nhận biết
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) xác định trên tập D và một số thực M. Xét tính đúng sai của các khẳng định sau:

    a) Nếu f(x) \leq M,\forall x \in
D thì \underset{D}{\max f(x)} =
M. Sai|| Đúng

    b) Nếu f(x) \geq M,\forall x \in
D thì \underset{D}{\min f(x)} =
M. Sai|| Đúng

    c) Nếu f(x) = M,\forall x \in D thì \underset{D}{\max f(x)} = M. Đúng||Sai

    d) Nếu f(x) = M,\forall x \in D thì \underset{D}{\min f(x)} = M. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định trên tập D và một số thực M. Xét tính đúng sai của các khẳng định sau:

    a) Nếu f(x) \leq M,\forall x \in
D thì \underset{D}{\max f(x)} =
M. Sai|| Đúng

    b) Nếu f(x) \geq M,\forall x \in
D thì \underset{D}{\min f(x)} =
M. Sai|| Đúng

    c) Nếu f(x) = M,\forall x \in D thì \underset{D}{\max f(x)} = M. Đúng||Sai

    d) Nếu f(x) = M,\forall x \in D thì \underset{D}{\min f(x)} = M. Đúng||Sai

    a) Khẳng định này sai, cần bổ sung thêm điều kiện \exists x_{0} \in D để f\left( x_{0} ight) = M.

    b) Khẳng định này sai, cần bổ sung thêm điều kiện \exists x_{0} \in D để f\left( x_{0} ight) = M.

    c) Nếu f(x) = M,\forall x \in D thì f(x) là hàm hằng trên D (đồ thị là đường thẳng nằm ngang).

    Suy ra \underset{D}{\max f(x)} = M.

    d) Nếu f(x) = M,\forall x \in D thì f(x) là hàm hằng trên D (đồ thị là đường thẳng nằm ngang).

    Suy ra\underset{D}{\min f(x)} = M.

  • Câu 5: Thông hiểu
    Ghi đáp án đúng vào ô trống

    Cho hàm số y = e^{x}\left( x^{2} - 3
\right), gọi M =
\frac{a}{e^{b}}\left( a\mathbb{\in N},b\mathbb{\in N} \right) là giá trị lớn nhất của hàm số trên đoạn \lbrack - 5; - 2\rbrack. Tính giá trị của biểu thức P = a + b?

    Đáp án: 9

    Đáp án là:

    Cho hàm số y = e^{x}\left( x^{2} - 3
\right), gọi M =
\frac{a}{e^{b}}\left( a\mathbb{\in N},b\mathbb{\in N} \right) là giá trị lớn nhất của hàm số trên đoạn \lbrack - 5; - 2\rbrack. Tính giá trị của biểu thức P = a + b?

    Đáp án: 9

    Ta có: y' = e^{x}\left( x^{2} + 2x -
3 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 3 \in \lbrack - 5; - 2brack \\
x = 1 otin \lbrack - 5; - 2brack \\
\end{matrix} ight.

    Ta có y( - 5) = \frac{22}{e^{5}};y( - 3)
= \frac{6}{e^{3}};y( - 2) = \frac{1}{e^{2}}.

    Khi đó \max_{\lbrack - 5; - 2brack}y =
\frac{6}{e^{3}} \Rightarrow a = 6;b = 3 \Rightarrow a + b =
9.

  • Câu 6: Nhận biết
    Tính giá trị nhỏ nhất

    Cho hàm số y = f(x) có bảng biến thiên như hình bên. Giá trị nhỏ nhất của hàm số y = f(x) trên \lbrack - 1\ ;\ 1brack bằng:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số y = f(x) trên \lbrack - 1\ ;\ 1brack bằng - 2.

  • Câu 7: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x) liên tục trên \lbrack - 1;5brack và có đồ thị như hình vẽ:

    Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack -
1;5brack?

    Hướng dẫn:

    Từ đồ thị hàm số ta có: \max_{\lbrack -
1;5brack}y = 3;\min_{\lbrack - 1;5brack}y = - 2

    Khi đó \max_{\lbrack - 1;5brack}y -
\min_{\lbrack - 1;5brack}y = 5.

  • Câu 8: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có bảng biến thiên như sau:

    Giá trị lớn nhất của hàm số y =
f(x) trên \lbrack
1;5brack là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn \lbrack 1;5brack3.

  • Câu 9: Nhận biết
    Tìm GTLN của hàm số

    Trên khoảng (0; +∞) thì hàm số y = -x3 + 3x + 1

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' =  - 3{x^2} + 3 \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    Từ bảng biến thiên => Hàm số có giá trị lớn nhất bằng 3

  • Câu 10: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Mệnh đề nào sau dây đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.

  • Câu 11: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số có bảng biến thiên như hình dưới đây.

    Chọn khẳng định đúng

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta nhận thấy đạo hàm của hàm số đổi dấu từ dương sang âm qua nghiệm 0 nên hàm số đạt cực đại tại 0 và giá trị cực đại của hàm số bằng 0.

  • Câu 12: Nhận biết
    Tính giá trị biểu thức P

    Biết rằng hàm số f(x) = x^{3} - 3x^{2} -
9x + 28 đạt giá trị nhỏ nhất trên \lbrack 0;4brack tại điểm x_{0}. Khi đó giá trị biểu thức P = x_{0} + 2021 bằng:

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 6x -
9

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f(0) = 28 \\
f(3) = 1 \\
f(4) = 8 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;4brack}f(x) =
1 khi x = 3

    Suy ra x_{0} = 3 \Rightarrow P = x_{0} +
2021 = 2024.

  • Câu 13: Thông hiểu
    Tìm tất cả các giá trị của tham số m

    Cho hàm số f(x) = x^{3} + \left( m^{2} +1 \right)x + m^{2} - 2 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;2\rbrack bằng 7.

    Hướng dẫn:

    Đạo hàmf'(x) = 3x^{2} + m^{2} + 1> 0,\ \forall x\mathbb{\in R}.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0;2brack

    \Rightarrow \min_{\lbrack 0;2brack}f(x)= f(0) = m^{2} - 2

    Theo bài ra: \min_{\lbrack0;2brack}f(x) = 7 \Leftrightarrow m^{2} - 2 = 7 \Leftrightarrow m =\pm 3.

  • Câu 14: Nhận biết
    Xác định tính đúng sai của từng phương án

    Hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có bảng biến thiên như sau.

    Gọi Mm lần lượt là GTLN và GTNN của hàm số trên \lbrack - 1;3brack. Xét tính đúng sai của các khẳng định sau:

    a) m = f(2) Sai|| Đúng

    b) M = f(4) Sai|| Đúng

    c) m = f( - 1) Đúng||Sai

    d) M = f(0) Đúng||Sai

    Đáp án là:

    Hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có bảng biến thiên như sau.

    Gọi Mm lần lượt là GTLN và GTNN của hàm số trên \lbrack - 1;3brack. Xét tính đúng sai của các khẳng định sau:

    a) m = f(2) Sai|| Đúng

    b) M = f(4) Sai|| Đúng

    c) m = f( - 1) Đúng||Sai

    d) M = f(0) Đúng||Sai

    Dựa vào bảng biến thiên trên \lbrack -
1;3brack ta có:

    m = f( - 1) = 0

    M = f(0) = 5

  • Câu 15: Thông hiểu
    Xác định thời điểm vận tốc lớn nhất

    Một chất điểm chuyển động với quy luật S(t) = 6t^{2} - t^{3}. Thời điểm t (giây) tại vận tốc v(m/s) của chuyển động đạt giá trị lớn nhất là:

    Hướng dẫn:

    Vận tốc của chuyển động là:

    v(t) = S'(t) = 12t - 3t^{2} = 12 -
3(2 - t)^{2} \leq 12;\forall t

    Vậy vận tốc đạt giá trị lớn nhất bằng 12m/s khi t =
2.

  • Câu 16: Nhận biết
    Chọn đáp án đúng

    Giá trị lớn nhất của hàm số y = x^{3} +
2x^{2} - 7x - 3 trên đoạn \lbrack -
1;2brack bằng:

    Hướng dẫn:

    Ta có: y' = 3x^{2} + 4x -
7

    y' = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = 1 \\x = - \dfrac{7}{3} \\\end{matrix} ight.

    Khi đó: \left\{ \begin{matrix}
y(1) = - 7 \\
y(2) = - 1 \\
y( - 1) = 5 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;2brack}y = y( -
1) = 5

  • Câu 17: Nhận biết
    Tìm giá trị biểu thức T

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x)
= \frac{2x - 1}{x + 2} trên đoạn \lbrack 0;2brack. Giá trị biểu thức T = 2m + 4M là:

    Hướng dẫn:

    Ta có: y' = \frac{5}{(x + 2)^{2}}
> 0;\forall x eq - 2 nên hàm số đồng biến trên \lbrack 0;2brack

    \Rightarrow \left\{ \begin{matrix}\max_{\lbrack 0;2brack}y = f(2) = \dfrac{3}{4} \\\min_{\lbrack 0;2brack}y = f(0) = - \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow T = 2m + 4M = 2.

  • Câu 18: Thông hiểu
    Tính giá trị của biểu thức

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có đồ thị như hình vẽ bên. Gọi M,mlần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 1;3brack. Giá trị của M + m

    Hướng dẫn:

    Dựa vào đồ thị ta thấy GTLN của hàm số trên đoạn \lbrack - 1;3brackM = 2 đạt được tại x = - 1 và GTNN của hàm số số trên đoạn \lbrack - 1;3brackm = - 4 đạt được tại x = 2

    \Rightarrow M + m = 2 + ( - 4) = -
2

  • Câu 19: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = x^{3} + 5x + 7. Giá trị lớn nhất của hàm số trên đoạn\lbrack
- 5;0brack bằng bao nhiêu?

    Hướng dẫn:

    Ta có: Hàm số đã cho xác định và liên túc trên đoạn \lbrack - 5;0brack

    y' = 3x^{2} + 5 > 0;\forall x \in
\lbrack - 5;0brack

    Suy ra hàm số đồng biến trên \lbrack -
5;0brack

    Vậy \max_{\lbrack - 5;0brack}y = y(0) =
7.

  • Câu 20: Nhận biết
    Chọn kết luận đúng

    Cho hàm số y = f(x) liên tục trên \lbrack 2;5brack và có đồ thị như hình vẽ:

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 2;5brack lần lượt là M;m. Kết luận nào sau đây đúng?

    Hướng dẫn:

    Quan sát đồ thị ta thấy \left\{\begin{matrix}\max_{\lbrack 2;5brack}y = M = 4 \\\min_{\lbrack 2;5brack}y = m = - 6 \\\end{matrix} ight.\  \Rightarrow M - m = 10

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo