Cho hàm số trên đoạn
. Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Tính giá trị biểu thức
.
Xét hàm số trên đoạn
ta có:
=> là hàm số nghịch biến trên
=>
Cho hàm số trên đoạn
. Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Tính giá trị biểu thức
.
Xét hàm số trên đoạn
ta có:
=> là hàm số nghịch biến trên
=>
Gọi giá trị nhỏ nhất của hàm số trên đoạn
là
. Chọn khẳng định đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên suy ra
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn lần lượt là
. Kết luận nào sau đây đúng?
Quan sát đồ thị ta thấy
Cho hàm số . Giả sử
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Khi đó giá trị của biểu thức
là:
Ta có:
Vậy
Cho hàm số xác định, liên tục trên
và có đồ thị là đường cong như hình vẽ.
Giá trị lớn nhất và giá trị nhỏ nhất
của hàm số
trên
là:
Dựa vào đồ thị .
Tìm tất cả các giá trị thực của tham số để giá trị nhỏ nhất của hàm số
trên
bằng
?
Ta có:
Xét
Mà và
Khi đó
Theo đề bài ra ta có:
Vậy đáp án cần tìm là .
Cho hàm số liên tục trên đoạn
có đồ thị như hình vẽ:
Tìm giá trị nhỏ nhất của hàm số trên đoạn ?
Trên đoạn ta có:
và
Vậy .
Cho hàm số . Tìm giá trị lớn nhất
và giá trị nhỏ nhất
của hàm số trên đoạn
Đạo hàm
Ta có
Cho hàm số y = f(x) và có bảng biến thiên trên [-2; 3) như sau:

Giá trị lớn nhất của hàm số trên đoạn [-2; 3] bằng:
Từ đồ thị của hàm số y = f(x) ta thấy hàm số y = f(x) xác định và liên tục trên đoạn [-2; 3]
Ta có: f(x) ∈ [-2; 3] với =>
Tìm giá trị lớn nhất của hàm số trên đoạn
Đạo hàm
Ta có
Cách 2. Sử dụng chức năng MODE 7 và nhập hàm với thiết lập Start 1, End
Step
.
Quan sát bảng giá trị ta thấy giá trị lớn nhất
bằng
khi
Cho hàm số liên tục và có bảng biến thiên trên đoạn
như hình vẽ bên. Khẳng định nào sau đây đúng?
Dựa vào bảng biến thiên ta thấy: tại
.
Suy ra .
Tìm giá trị nhỏ nhất của hàm số trên đoạn
Tập xác định
Với ta có:
Ta có: khi
.
Xác định giá trị lớn nhất của hàm số
Điều kiện xác định:
Đặt ta có:
Ta có:
Khi đó:
Do đó:
Xét hàm số
Ta xác được
Cho hàm số liên tục và có đồ thị trên đoạn
như hình vẽ bên. Tổng giá trị lớn nhất và nhỏ nhất của hàm số
trên đoạn
bằng
Dựa vào đồ thị hàm số ta có
,
Khi đó
Tìm giá trị nhỏ nhất của hàm số trên đoạn
?
Ta có:
Ta có: .
Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:
Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:
f’(x) = 3x3 – 3
f’(x) = 0 =>
Tính được f(0) = 5; f(1) = 3; f(2) = 7
Vậy
Cho hàm số có bảng biến thiên như sau:
Giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng bao nhiêu?
Giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng
.
Trên đoạn hàm số
có giá trị nhỏ nhất bằng bao nhiêu?
Tập xác định
Ta có:
Trên đoạn hàm số đã cho nghịch biến
Cho hàm số có bảng biến thiên trên
như sau:
Mệnh đề nào dưới đây đúng?
Dựa vào bảng biến thiên trên , ta có:
.
Cho hàm số xác định và liên tục trên
có bảng biến thiên như sau:
Giá trị lớn nhất của hàm số trên
là:
Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn là
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: