Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 2 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính giá trị của biểu thức

    Gọi m,n lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = |x|
+ 2 trên \lbrack - 2; -
1brack. Tính giá trị biểu thức C
= m + n?

    Hướng dẫn:

    Vì trên đoạn \lbrack - 2; -
1brack thì 0 \leq |x| \leq 2
\Leftrightarrow 2 \leq |x| + 2 \leq 4 \Rightarrow \left\{ \begin{matrix}
m = 4 \\
n = 2 \\
\end{matrix} ight.\  \Rightarrow C = 6

  • Câu 2: Thông hiểu
    Tìm m để giá trị nhỏ nhất hàm số trên đoạn cho trước

    Giá trị nhỏ nhất của hàm số y = \frac{x +
m^{2}}{x - 1} trên đoạn \lbrack -
1;0brack bằng:

    Hướng dẫn:

    Đạo hàm y' = \frac{- 1 - m^{2}}{(x -
1)^{2}} < 0,\forall x \in \lbrack - 1;0brack.

    Suy ra hàm số f(x) nghịch biến trên \lbrack - 1;0brack

    \Rightarrow \min_{\lbrack -
1;0brack}f(x) = f(0) = - m^{2}.

  • Câu 3: Nhận biết
    Xác định giá trị nhỏ nhất

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 2;3brack bằng bao nhiêu?

    Hướng dẫn:

    Giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 2;3brack bằng - 3.

  • Câu 4: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Mệnh đề nào sau dây đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.

  • Câu 5: Nhận biết
    Tìm giá trị nhỏ nhất của hàm số

    Giá trị nhỏ nhất của hàm số f(x) =
\frac{x - 3}{x + 2} trên \lbrack
0;4brack là:

    Hướng dẫn:

    Ta có: f'(x) = \frac{5}{(x +
2)^{2}};\forall x \in \lbrack 0;4brack nên hàm đồng biến trên \lbrack 0;4brack

    Do đó \min_{\lbrack 0;4brack}f(x) =
f(0)

  • Câu 6: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Giá trị trị lớn nhất của hàm số f(x) =
x^{3} - 3x^{2} - 9x + 10 trên đoạn \lbrack 0;4brack bằng

    Hướng dẫn:

    Ta có f'(x) = 3x^{2} - 6x -
9.

    f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 3(tm) \\
\end{matrix} ight.

    Do đó f(0) = 10, f(3) = - 17, f(4) = - 10.

    Vậy \max_{\lbrack 0;4brack}f(x) = f(0)
= 10

  • Câu 7: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) và có bảng biến thiên trên [-5; 7) như sau:

    Chọn khẳng định đúng

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên dễ dàng ta thấy \mathop {\min }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 2

    \mathop {\max }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 6 là sai vì f(x) sẽ nhận các giá trị 7; 8 lớn hơn 6 khi x tiến tới 7

    \mathop {\max }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 9 là sai vì f(x) không bằng 9 mà chỉ tiến đến 9 khi x dần đến 7 (x khác 7)

    Vậy chọn đáp án A.

  • Câu 8: Nhận biết
    Chọn phương án đúng

    Cho hàm số y = f(x) xác định, liên tục trên\left\lbrack - 1,\frac{5}{2}
\right\rbrackvà có đồ thị là đường cong như hình vẽ.

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số f(x) trên \left\lbrack - 1,\frac{5}{2}
\right\rbrack là:

    Hướng dẫn:

    Dựa vào đồ thị M = 4,\ \ m = -
1.

  • Câu 9: Nhận biết
    Tìm điều kiện của tham số m

    Cho hàm số y = f(x) liên tục trên \lbrack 2;5brack và có đồ thị như hình vẽ:

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 2;5brack lần lượt là M;m. Kết luận nào sau đây đúng?

    Hướng dẫn:

    Quan sát đồ thị ta thấy \left\{
\begin{matrix}
\max_{\lbrack 2;5brack}y = M = 4 \\
\min_{\lbrack 2;5brack}y = m = - 6 \\
\end{matrix} ight.\  \Rightarrow M - m = 10

  • Câu 10: Nhận biết
    Chọn mệnh đề đúng

    Xét hàm số f(x) = - \frac{4}{3}x^{3} -
2x^{2} - x - 3 trên \lbrack -
1;1brack. Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Đạo hàm f'(x) = - 4x^{2} - 4x - 1 = -(2x + 1)^2 \leq 0,\ \forall x\mathbb{\in R}.

    Suy ra hàm số f(x) nghịch biến trên đoạn \lbrack - 1;1brack nên có giá trị nhỏ nhất tại x = 1 và giá trị lớn nhất tại x = - 1.

  • Câu 11: Nhận biết
    Tính giá trị của biểu thức

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;4brack và có đồ thị như hình vẽ:

    Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;4brack. Khi đó giá trị của biểu thức S = M + m bằng bao nhiêu?

    Hướng dẫn:

    Từ đồ thị hàm số y = f(x) liên tục trên \lbrack - 1;4brack

    \Rightarrow \left\{ \begin{matrix}
M = 3 \\
m = - 1 \\
\end{matrix} ight.\  \Rightarrow S = M + m = 2

  • Câu 12: Thông hiểu
    Chọn phương án đúng

    Cho hàm số f(x) = \frac{3x - 1}{x -
3}. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn \lbrack 0;2brack.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{- 8}{(x -3)^2}.

    Ta có f'(x) < 0,\forall x \in
(0;2).

    Suy ra hàm số f(x) nghịch biến trên đoạn \lbrack 0;2brack.

    Vậy \left\{ \begin{matrix}
M = \max_{\lbrack 0;2brack}f(x) = f(0) = \frac{1}{3} \\
m = \min_{\lbrack 0;2brack}f(x) = f(2) = - 5 \\
\end{matrix} ight.\ .

  • Câu 13: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên trên đoạn \lbrack -
5;7brack như sau:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta suy ra \min_{\lbrack - 5;7brack}y = 2

  • Câu 14: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
2x^{3} + 3x^{2} - 12x + 2 trên đoạn [ - 1;2]?

    Hướng dẫn:

    Đạo hàm f'(x) = 6x^2 + 6x -12

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in \lbrack - 1;2brack \\
x = - 2 otin \lbrack - 1;2brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 1) = 15 \\
f(1) = - 5 \\
f(2) = 6 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;2brack}f(x) =
15 .

  • Câu 15: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x)xác định, liên tục trên  và có bảng biến thiên:

    Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Đáp án “Hàm số có giá trị cực tiểu bằng 1." sai vì hàm số có 2 điểm cực trị.

    Đáp án “Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng -1” sai vì hàm số có giá trị cực tiểu y = -
1 khi x = 0.

    Đáp án “Hàm số đạt cực đại tại x =
0 và đạt cực tiểu tại x = 1” sai vì hàm số không có GTLN và GTNN trên \mathbb{R}.

    Đáp án “Hàm số có đúng một cực trị” đúng vì hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = 1.

  • Câu 16: Nhận biết
    Chọn kết luận đúng

    Cho hàm số y = f(x) liên tục trên \lbrack 2;5brack và có đồ thị như hình vẽ:

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 2;5brack lần lượt là M;m. Kết luận nào sau đây đúng?

    Hướng dẫn:

    Quan sát đồ thị ta thấy \left\{\begin{matrix}\max_{\lbrack 2;5brack}y = M = 4 \\\min_{\lbrack 2;5brack}y = m = - 6 \\\end{matrix} ight.\  \Rightarrow M - m = 10

  • Câu 17: Nhận biết
    Tính giá trị lớn nhất của hàm số

    Giá trị lớn nhất của hàm số y = - x^{4} +
2x^{2} + 1 trên đoạn \lbrack -
2;5brack bằng:

    Hướng dẫn:

    Ta có: y' = - 4x^{3} + 4x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 1 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}y( - 2) = - 5 \\y( - 1) = y(1) = 2 \\y(0) = 1 \\y(5) = - 574 \\\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 2;5brack}y =y(1) = 2

  • Câu 18: Nhận biết
    Cho hàm số y = f(x) có đồ thị sau:

    Toán 12 bài 2

    Giá trị lớn nhất của hàm số trên đoạn [0;1] là:

  • Câu 19: Thông hiểu
    Chọn khẳng định đúng

    Biết giá trị lớn nhất của hàm số y =
\frac{x + m^{2}}{x - 2} trên đoạn \lbrack - 1;1brack bằng - 1. Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Ta có: y' = \frac{- 2 - m^{2}}{(x -
2)^{2}} < 0 nên giá trị lớn nhất của hàm số y = \frac{x + m^{2}}{x - 2} trên đoạn \lbrack - 1;1brack là: f( - 1) = - 1 \Leftrightarrow \frac{m^{2} - 1}{-
3} = - 1 \Leftrightarrow m = \pm 2 \in ( - 4;3)

    Vậy đáp án cần tìm là m \in ( -
4;3).

  • Câu 20: Thông hiểu
    Tìm giá trị tham số m

    Tính giá trị của tham số m biết rằng giá trị lớn nhất của hàm số y = x + \sqrt{4 - x^{2}} + m3\sqrt{2}?

    Hướng dẫn:

    Ta có: y = x + \sqrt{4 - x^{2}} +
m có tập xác định D = \lbrack -
2;2brack

    y' = 1 + \frac{- x}{\sqrt{4 -
x^{2}}};\forall x \in ( - 2;2)

    y' = 0 \Leftrightarrow 1 + \frac{-
x}{\sqrt{4 - x^{2}}} = 0 \Leftrightarrow \sqrt{4 - x^{2}} =
x

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
4 - x^{2} = x^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x = \pm \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow x = \sqrt{2}

    Ta có: \left\{ \begin{matrix}
y(2) = 2 + m \\
y( - 2) = 2 + m \\
y\left( \sqrt{2} ight) = 2\sqrt{2} + m \\
\end{matrix} ight. . Theo bài ra ta có: 2\sqrt{2} + m = 3\sqrt{2} \Leftrightarrow m =
\sqrt{2}

    Vậy đáp án cần tìm là m =
\sqrt{2}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo