Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Vectơ và các phép toán vectơ trong không gian (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn khẳng định đúng

    Cho hình chóp S.ABCDS.ABCDcó đáy ABCDABCD là hình bình hành. Gọi M,NM,N lần lượt là các điểm thuộc đoạn thẳng SA,SBSA,SB sao cho SM = \frac{1}{2}AM;\ SN = \frac{1}{2}BNSM=12AM; SN=12BN. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}SM = \dfrac{1}{2}AM \\SN = \dfrac{1}{2}BN \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}SM = \dfrac{1}{3}SA \\SN = \dfrac{1}{3}SB \\\end{matrix} ight.

    \Rightarrow MN = \frac{1}{3}AB =\frac{1}{3}CD.

    Nên \overrightarrow{MN} = -\frac{1}{3}\overrightarrow{CD}.

  • Câu 2: Nhận biết
    Hoàn thành mệnh đề

    Cho hai đường thẳng aaaa lần lượt có vectơ chỉ phương là \overrightarrow{u}u\overrightarrow{uu. Nếu \varphiφ là góc giữa hai đường thẳng aaaa thì:

    Hướng dẫn:

    Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vectơ chỉ phương của chúng nên đáp án cần tìm là \cos\varphi = \left| \cos\left(
\overrightarrow{u};\overrightarrow{u'} ight) ight|.

  • Câu 3: Nhận biết
    Chọn khẳng định đúng

    Trong không gian cho hai đường thẳng a;ba;b lần lượt có vectơ chỉ phương \overrightarrow{u};\overrightarrow{v}u;v. Gọi \alphaα là góc giữa hai đường thẳng a;ba;b. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Khẳng định đúng: “Nếu a\bot b thì \overrightarrow{u}.\overrightarrow{v} =
\overrightarrow{0}”.

  • Câu 4: Thông hiểu
    Chọn khẳng định đúng

    Cho hai vectơ \overrightarrow{a},\overrightarrow{b}a,b thỏa mãn: \left| \overrightarrow{a} \right|
= 4;\left| \overrightarrow{b} \right| = 3;\left| \overrightarrow{a} -
\overrightarrow{b} \right| = 4|a|=4;|b|=3;|ab|=4. Gọi \alphaα là góc giữa hai vectơ \overrightarrow{a},\overrightarrow{b}a,b. Chọn khẳng định đúng?

    Hướng dẫn:

    Ta có: (\overrightarrow{a} -
\overrightarrow{b})^{2} = \left| \overrightarrow{a} ight|^{2} + \left|
\overrightarrow{b} ight|^{2} - 2\overrightarrow{a}.\overrightarrow{b}
\Rightarrow \overrightarrow{a}.\overrightarrow{b} =
\frac{9}{2}.

    Do đó: cos\ \alpha =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{3}{8}.

  • Câu 5: Nhận biết
    Tính tổng ba vectơ

    Cho hình hộp ABCD.EFFHABCD.EFFH. Tính tổng \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE}AB+AD+AE?

    Hướng dẫn:

    Hình vẽ minh họa

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE} = \overrightarrow{AC} +
\overrightarrow{AE} = \overrightarrow{AG}

  • Câu 6: Nhận biết
    Chọn phương án thích hợp

    Cho tứ diện ABCDABCD. Gọi GG là trọng tâm tam giác ABCABC. Khi đó:

    Hướng dẫn:

    Ta có:

    G là trọng tâm tam giác ABC nên \overrightarrow{GA} + \overrightarrow{GB} +\overrightarrow{GC} = \overrightarrow{0}

    \Rightarrow \overrightarrow{GD} +\overrightarrow{DA} + \overrightarrow{GD} + \overrightarrow{DB} +\overrightarrow{GD} + \overrightarrow{DC} =\overrightarrow{0}

    \Rightarrow \overrightarrow{DA} +\overrightarrow{DB} + \overrightarrow{DC} + 3\overrightarrow{GD} =\overrightarrow{0}

    \Rightarrow \overrightarrow{DA} +\overrightarrow{DB} + \overrightarrow{DC} - 3\overrightarrow{DG} =\overrightarrow{0}

    \Rightarrow \overrightarrow{DA} +\overrightarrow{DB} + \overrightarrow{DC} =3\overrightarrow{DG}.

  • Câu 7: Nhận biết
    Xác định số vectơ thỏa mãn yêu cầu

    Cho bốn điểm A;B;C;DA;B;C;D trong không gian. Hỏi có bao nhiêu vectơ khác \overrightarrow{0}0 có điểm đầu và điểm cuối là 44 điểm?

    Hướng dẫn:

    Lấy A làm gốc ta được 3 vectơ \overrightarrow{AB};\overrightarrow{AC};\overrightarrow{AD}. Tương tự đối với B;C;D ta được 4.3 = 12 vectơ.

  • Câu 8: Thông hiểu
    Xác định độ lớn góc giữa hai vectơ

    Cho hình chóp S.ABCS.ABCSA = SB = SCSA=SB=SC\widehat{ASB} = \widehat{BSC} =
\widehat{CSA}ASB^=BSC^=CSA^. Góc giữa cặp vectơ \overrightarrow{SA}SA\overrightarrow{BC}BC là:

    Hướng dẫn:

    Ta có: \overrightarrow{SA}.\overrightarrow{BC} =
\overrightarrow{SA}.\left( \overrightarrow{SC} - \overrightarrow{SB}
ight)

    =
\overrightarrow{SA}.\overrightarrow{SC} -
\overrightarrow{SA}.\overrightarrow{SB}

    = \left| \overrightarrow{SA}ight|.\left| \overrightarrow{SC} ight|.\cos\widehat{ASC} - \left|\overrightarrow{SA} ight|.\left| \overrightarrow{SB}ight|.\cos\widehat{ASB} = 0

    Vậy góc giữa cặp vectơ \overrightarrow{SA}\overrightarrow{BC}90^{0}.

  • Câu 9: Nhận biết
    Chọn đáp án chính xác

    Trong không gian, cho hai vectơ \overrightarrow{AB}AB\overrightarrow{BC}BC. Vectơ \overrightarrow{AC}AC bằng

    Hướng dẫn:

    Theo quy tắc ba điểm: \overrightarrow{AC}\  = \ \overrightarrow{\
AB}\  + \ \overrightarrow{BC}.

  • Câu 10: Thông hiểu
    Chọn mệnh đề đúng

    Cho tứ diện ABCDABCD. Gọi M;NM;N lần lượt là tung điểm của AB;CDAB;CD. Chọn mệnh đề đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AD} +
\overrightarrow{DN} \\
\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BC} +
\overrightarrow{CN} \\
\end{matrix} ight.

    Cộng hai vế của hai đẳng thức trên ta có:

    2\overrightarrow{MN} =
\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN} +
\overrightarrow{MB} + \overrightarrow{BC} +
\overrightarrow{CN}

    \Leftrightarrow 2\overrightarrow{MN} =
\left( \overrightarrow{MA} + \overrightarrow{MB} ight) + \left(
\overrightarrow{AD} + \overrightarrow{BC} ight) + \left(
\overrightarrow{DN} + \overrightarrow{CN} ight)

    \Leftrightarrow 2\overrightarrow{MN} =
\overrightarrow{AD} + \overrightarrow{BC} \Leftrightarrow
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{AD} +
\overrightarrow{BC} ight)

  • Câu 11: Nhận biết
    Chọn mệnh đề đúng

    Cho hình lăng trụ tam giác ABC.AABC.ABC. Đặt \overrightarrow{AAAA=a;AB=b;AC=c;BC=d. Trong các mệnh đề sau, mệnh đề nào đúng?

    Hướng dẫn:

    Ta có: \overrightarrow{d} =
\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB} =
\overrightarrow{c} - \overrightarrow{b}

    Do đó \overrightarrow{b} -
\overrightarrow{c} + \overrightarrow{d} =
\overrightarrow{0}

  • Câu 12: Nhận biết
    Phân tích vectơ

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}ABCD.A1B1C1D1. Hãy phân tích vectơ \overrightarrow{BD}BD theo các vectơ \overrightarrow{AB};\overrightarrow{AD};\overrightarrow{AA_{1}}AB;AD;AA1?

    Hướng dẫn:

    Hình vẽ minh họa

    Theo quy tắc hình bình hành ta có:

    \overrightarrow{BD} =
\overrightarrow{AD} - \overrightarrow{AB} \Rightarrow
\overrightarrow{BD} = - \overrightarrow{AB} + \overrightarrow{AD} +
0.\overrightarrow{AA_{1}}

  • Câu 13: Nhận biết
    Chọn kết luận đúng

    Trong không gian cho hình hộp ABCD.AABCD.ABCD. Khi đó \overrightarrow{CD} + \overrightarrow{CB} +
\overrightarrow{CCCD+CB+CC bằng:

    Hướng dẫn:

    Theo quy tắc hình hộp ta có \overrightarrow{CD} + \overrightarrow{CB} +\overrightarrow{CC'} = \overrightarrow{CA'}.

  • Câu 14: Nhận biết
    Chọn khẳng định sai

    Trong không gian cho tứ diện đều ABCDABCD. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Tứ diện ABCD đều nên \overrightarrow{AD} không thể vuông góc với \overrightarrow{DC}.

    Vậy khẳng định sai là: “\overrightarrow{AD}\bot\overrightarrow{DC}”.

  • Câu 15: Thông hiểu
    Tính góc giữa hai đường thẳng

    Cho tứ diện ABCDABCD đều cạnh bằng aa. Gọi OO là tâm đường tròn ngoại tiếp tam giác BCDBCD. Góc giữa AOAOCDCD bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M là trung điểm của CD

    Vì ABCD là tứ diện đều nên AM\bot
CD;OM\bot CD

    Ta có: \overrightarrow{CD}.\overrightarrow{AO} =
\overrightarrow{CD}.\left( \overrightarrow{AM} + \overrightarrow{MO}
ight)

    =
\overrightarrow{CD}.\overrightarrow{AM} +
\overrightarrow{CD}.\overrightarrow{MO} =
\overrightarrow{0}

    Suy ra \overrightarrow{CD}\bot\overrightarrow{AO} nên số đo góc giữa hai đường thẳng bằng 90^{0}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (67%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng