Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Vectơ và các phép toán vectơ trong không gian (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính góc giữa hai vecto

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} thỏa mãn \left| \overrightarrow{a} \right| =
3, \left| \overrightarrow{b}
\right| = 2\overrightarrow{a}.\overrightarrow{b} = -
3. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b}

    Hướng dẫn:

    Ta có \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|.cos\left(
\overrightarrow{a},\overrightarrow{b} ight)

    \Rightarrow \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 3}{3.2} = -
\frac{1}{2}

    \Rightarrow \left(
\overrightarrow{a},\overrightarrow{b} ight) = 120^{0}

  • Câu 2: Nhận biết
    Chọn khẳng định sai

    Trong không gian cho tứ diện ABCD, gọi M;N lần lượt là trung điểm của AD;BC. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của AD;BC suy ra \left\{ \begin{matrix}
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{AB} +
\overrightarrow{DC} ight) \\
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{BD} +
\overrightarrow{AC} ight) \\
\end{matrix} ight.

    Xét các phương án như sau:

    \overrightarrow{AB};\overrightarrow{DC};\overrightarrow{MN} đồng phẳng đúng vì \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{DC}
ight)

    \overrightarrow{AB};\overrightarrow{AC};\overrightarrow{MN} không đồng phẳng đúng vì MN không nằm trong (ABC)

    \overrightarrow{AN};\overrightarrow{CM};\overrightarrow{MN} đồng phẳng sai vì AN không nằm trong (MNC)

    \overrightarrow{BD};\overrightarrow{AC};\overrightarrow{MN} đồng phẳng đúng vì \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{BD} + \overrightarrow{AC}
ight).

  • Câu 3: Thông hiểu
    Chọn kết luận đúng

    Cho \overrightarrow{a}\overrightarrow{b}\overrightarrow{a} + 2\overrightarrow{b} vuông góc với vectơ 5\overrightarrow{a} -
4\overrightarrow{b}\left|
\overrightarrow{a} \right| = \left| \overrightarrow{b} \right|. Khi đó:

    Hướng dẫn:

    +Vì \overrightarrow{a} +
2\overrightarrow{b} vuông góc với vectơ 5\overrightarrow{a} - 4\overrightarrow{b} nên:

    \left( \overrightarrow{a} +
2\overrightarrow{b} ight).\left( 5\overrightarrow{a} -
4\overrightarrow{b} ight) = 0

    \Leftrightarrow
5{\overrightarrow{a}}^{2} - 8{\overrightarrow{b}}^{2} +
6\overrightarrow{a}\overrightarrow{b} = 0

    \Leftrightarrow
\overrightarrow{a}\overrightarrow{b} = \frac{- 5{\overrightarrow{a}}^{2}
+ 8{\overrightarrow{b}}^{2}}{6}

    Ta có \left| \overrightarrow{a} ight| =
\left| \overrightarrow{b} ight| \Leftrightarrow \left|
\overrightarrow{a} ight|^{2} = \left| \overrightarrow{b}
ight|^{2}. Suy ra \overrightarrow{a}\overrightarrow{b} =
\frac{3{\overrightarrow{a}}^{2}}{6}

    \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} =
\dfrac{\dfrac{3{\overrightarrow{a}}^{2}}{6}}{{\overrightarrow{a}}^{2}} =
\dfrac{1}{2}.

  • Câu 4: Nhận biết
    Chọn mệnh đề đúng

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Hướng dẫn:

    Nếu giá của ba vectơ cùng song song với một mặt phẳng thì ba vectơ đó đồng phẳng.

  • Câu 5: Nhận biết
    Chọn đáp án sai

    Tính chất nào sau đây sai?

    Hướng dẫn:

    Tính chất sai là: \overrightarrow{a} -
\overrightarrow{b} = \overrightarrow{b} -
\overrightarrow{a}

  • Câu 6: Thông hiểu
    Phân tích vectơ theo một vectơ cho trước

    Cho lăng trụ tam giác ABC.A'B'C'\overrightarrow{AA'} =
\overrightarrow{a},\overrightarrow{\ AB} = \overrightarrow{b,}\
\overrightarrow{AC} = \overrightarrow{c}. Hãy phân tích (biểu thị) vectơ \overrightarrow{BC'} qua các vectơ \overrightarrow{a},\
\overrightarrow{b},\ \ \overrightarrow{c}.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{BC'} =
\overrightarrow{BA} + \overrightarrow{AC'} = - \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AA'}

    = - \overrightarrow{b} +
\overrightarrow{c} + \overrightarrow{a} = \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}.

  • Câu 7: Nhận biết
    Chọn mệnh đề đúng

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Điểm M xác định bởi công thức \overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Do G là trọng tâm tam giác BCD nên \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} = 3\overrightarrow{AG}

    \Rightarrow \overrightarrow{AM} =
3\overrightarrow{AG}

    Vậy mệnh đề đúng là “M thuộc tia AGAM = 3AG”.

  • Câu 8: Thông hiểu
    Tính tích vô hướng hai vectơ

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính tích vô hướng \overrightarrow{AC}.\overrightarrow{B'C'}?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC} =
\overrightarrow{B'C'} nên \left(
\overrightarrow{AC};\overrightarrow{B'C'} ight) = \left(
\overrightarrow{AC};\overrightarrow{AD} ight) = \widehat{CAD} =
45^{0}

    Suy ra \overrightarrow{AC}.\overrightarrow{B'C'}= \left| \overrightarrow{AC} ight|.\left|\overrightarrow{B'C'} ight|.\cos\left(\overrightarrow{AC};\overrightarrow{B'C'} ight)

    =a\sqrt{2}.a.\cos45^{0} =a^{2}

  • Câu 9: Thông hiểu
    Chọn đẳng thức đúng

    Cho hình hộp ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình bình hành ABCD. Đặt \overrightarrow{AC'} =
\overrightarrow{u},\overrightarrow{CA'} =
\overrightarrow{v}, \overrightarrow{BD'} =
\overrightarrow{x}, \overrightarrow{DB'} =
\overrightarrow{y}. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    + Gọi J,\ K lần lượt là trung điểm của AB,\ CD.

    +Ta có: 2\overrightarrow{OI} =\overrightarrow{OJ} + \overrightarrow{OK}= \frac{1}{2}\left(\overrightarrow{OA} + \ \overrightarrow{OB} + \overrightarrow{OC} +\overrightarrow{OD} \right)= - \frac{1}{4}(\overrightarrow{u} +\overrightarrow{v} + \ \overrightarrow{x} +\overrightarrow{y})

  • Câu 10: Nhận biết
    Phân tích vectơ

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Hãy phân tích vectơ \overrightarrow{BD} theo các vectơ \overrightarrow{AB};\overrightarrow{AD};\overrightarrow{AA_{1}}?

    Hướng dẫn:

    Hình vẽ minh họa

    Theo quy tắc hình bình hành ta có:

    \overrightarrow{BD} =
\overrightarrow{AD} - \overrightarrow{AB} \Rightarrow
\overrightarrow{BD} = - \overrightarrow{AB} + \overrightarrow{AD} +
0.\overrightarrow{AA_{1}}

  • Câu 11: Nhận biết
    Chọn kết quả chính xác

    Cho hai vectơ \overrightarrow{u},\overrightarrow{v} đều khác \overrightarrow{0}. Khi đó \left| \overrightarrow{u} +
2\overrightarrow{v} \right|^{2} bằng

    Hướng dẫn:

    Ta có \left| \overrightarrow{u} +
2\overrightarrow{v} ight|^{2} = \left( \overrightarrow{u} +
2\overrightarrow{v} ight)^{2} = {\overrightarrow{u}}^{2} +
4{\overrightarrow{v}}^{2} +
4\overrightarrow{u}\overrightarrow{v}.

  • Câu 12: Thông hiểu
    Tìm câu sai

    Cho hình tứ diện ABCD có trọng tâm G. Mệnh đề nào sau đây sai.

    Hướng dẫn:

    Theo giả thuyết trên thì với O là một điểm bất kỳ ta luôn có:

    \overrightarrow{OG} = \frac{1}{4}\left(
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} ight).

    Ta thay điểm O bởi điểm A thì ta có:

    \overrightarrow{AG} = \frac{1}{4}\left(
\overrightarrow{AA} + \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight)

    \Leftrightarrow \overrightarrow{AG} =
\frac{1}{4}\left( \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight)

    Do vậy \overrightarrow{AG} =
\frac{2}{3}\left( \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight) là sai.

  • Câu 13: Nhận biết
    Chọn mệnh đề đúng

    Cho hình lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} =
\overrightarrow{c};\overrightarrow{BC} = \overrightarrow{d}. Trong các mệnh đề sau, mệnh đề nào đúng?

    Hướng dẫn:

    Ta có: \overrightarrow{d} =
\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB} =
\overrightarrow{c} - \overrightarrow{b}

    Do đó \overrightarrow{b} -
\overrightarrow{c} + \overrightarrow{d} =
\overrightarrow{0}

  • Câu 14: Nhận biết
    Chọn đáp án chính xác

    Trong không gian, cho hai vectơ \overrightarrow{AB}\overrightarrow{BC}. Vectơ \overrightarrow{AC} bằng

    Hướng dẫn:

    Theo quy tắc ba điểm: \overrightarrow{AC}\  = \ \overrightarrow{\
AB}\  + \ \overrightarrow{BC}.

  • Câu 15: Nhận biết
    Chọn phân tích đúng

    Cho tứ diện OABC. Gọi G là trọng tâm của tam giác ABC.Phân tích nào sau đây là đúng?

    Hướng dẫn:

    Ta có: G là trọng tâm tam giác ABC khi \overrightarrow{OG} = \frac{1}{3}\left(
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}
ight)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (67%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo