Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Vectơ và các phép toán vectơ trong không gian (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn kết luận đúng

    Trong không gian cho hình hộp ABCD.A'B'C'D'. Khi đó \overrightarrow{CD} + \overrightarrow{CB} +
\overrightarrow{CC'} bằng:

    Hướng dẫn:

    Theo quy tắc hình hộp ta có \overrightarrow{CD} + \overrightarrow{CB} +\overrightarrow{CC'} = \overrightarrow{CA'}.

  • Câu 2: Nhận biết
    Chọn đáp án đúng

    Cho tứ diện ABCD với AB\bot AC,\ \ AB\bot BD. Gọi P,\ \ Q lần lượt là trung điểm của ABCD. Góc giữa PQAB là?

    Hướng dẫn:

    Ta có: \overrightarrow{AB}.\overrightarrow{PQ}
\Rightarrow AB\bot PQ

    Vậy góc giữa PQAB90^{0}.

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Cho hình lập phương ABCD.A'B'C'D'. Phân tích vectơ \overrightarrow{AC'} theo các vectơ \overrightarrow{AB};\overrightarrow{AD};\overrightarrow{AA'}?

    Hướng dẫn:

    Ta có phép cộng vectơ đối với hình vuông ABCD: \overrightarrow{AB} + \overrightarrow{AD} =
\overrightarrow{AC}

    Khi đó ta có: \overrightarrow{AC'} =
\overrightarrow{AC} + \overrightarrow{AA'} =
\overrightarrow{AA'} + \overrightarrow{AB} +
\overrightarrow{AD}

  • Câu 4: Nhận biết
    Chọn đáp án sai

    Tính chất nào sau đây sai?

    Hướng dẫn:

    Tính chất sai là: \overrightarrow{a} -
\overrightarrow{b} = \overrightarrow{b} -
\overrightarrow{a}

  • Câu 5: Nhận biết
    Chọn khẳng định chưa chính xác

    Cho ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Điều kiện nào sau đây không kết luận được ba vectơ đó đồng phẳng?

    Hướng dẫn:

    Hai vectơ còn lại có thể không cùng phương nên ba vectơ có thể không đồng phẳng.

  • Câu 6: Nhận biết
    Tính góc giữa hai vecto

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{EG}?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: EG//AC (do ACGE là hình chữ nhật)

    \Rightarrow \left(
\overrightarrow{AB},\overrightarrow{EG} ight) = \left(
\overrightarrow{AB},\overrightarrow{AC} ight) = \widehat{BAC} =
45{^\circ}

  • Câu 7: Nhận biết
    Hoàn thành mệnh đề

    Cho hai đường thẳng aa' lần lượt có vectơ chỉ phương là \overrightarrow{u}\overrightarrow{u'}. Nếu \varphi là góc giữa hai đường thẳng aa' thì:

    Hướng dẫn:

    Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vectơ chỉ phương của chúng nên đáp án cần tìm là \cos\varphi = \left| \cos\left(
\overrightarrow{u};\overrightarrow{u'} ight) ight|.

  • Câu 8: Nhận biết
    Chọn đẳng thức đúng

    Gọi O là tâm của hình lập phương ABCD.A'B'C'D'. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Theo quy tắc hình hộp ta có: \overrightarrow{AC'} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'}

    O là trung điểm của AC' suy ra \overrightarrow{AO} =
\frac{1}{2}\overrightarrow{AC'} = \frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'}
ight)

  • Câu 9: Thông hiểu
    Chọn đáp án đúng

    Trong không gian cho hình hộp ABCD.A'B'C'D'\overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AC} =
\overrightarrow{b};\overrightarrow{AA'} =
\overrightarrow{c}. Gọi I là trung điểm của B'C', K là giao điểm của A'IB'D'. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Vì I là trung điểm của B’C’ suy ra \overrightarrow{A'B'} +
\overrightarrow{A'C'} = 2\overrightarrow{A'I}

    Và K là giao điểm của A'I';B'D' nên theo định lí Talet \Rightarrow
\overrightarrow{A'K} =
\frac{2}{3}\overrightarrow{A'I}

    Ta có: \overrightarrow{AK} =
\overrightarrow{AA'} + \overrightarrow{A'K} =
\overrightarrow{AA'} +
\frac{2}{3}\overrightarrow{A'I}

    = \overrightarrow{AA'} +
\frac{1}{3}\left( \overrightarrow{A'B'} +
\overrightarrow{A'C'} ight) = \frac{1}{3}\overrightarrow{a} +
\frac{1}{3}\overrightarrow{b} + \overrightarrow{c}

    Khi đó

    \overrightarrow{DK} =
\overrightarrow{DA} + \overrightarrow{AK} = \overrightarrow{CB} +
\overrightarrow{AK} = \left( \overrightarrow{AB} - \overrightarrow{AC}
ight) + \overrightarrow{AK}

    = \overrightarrow{a} -
\overrightarrow{b} + \frac{1}{3}\overrightarrow{a} +
\frac{1}{3}\overrightarrow{b} + \overrightarrow{c} =
\frac{4}{3}\overrightarrow{a} - \frac{2}{3}\overrightarrow{b} +
\overrightarrow{c}

    Vậy \overrightarrow{DK} =
\frac{1}{3}\left( 4\overrightarrow{a} - 2\overrightarrow{b} +
3\overrightarrow{c} ight).

  • Câu 10: Thông hiểu
    Tìm khẳng định sai

    Cho tứ diệnABCD. Gọi M,\ N lần lượt là trung điểm của AB,\ CDG là trung điểm củaMN. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    M,\ N,\ \ G lần lượt là trung điểm của AB,\ CD,MN theo quy tắc trung điểm:

    \overrightarrow{GA} +
\overrightarrow{GB} = 2\overrightarrow{GM};\overrightarrow{GC} +
\overrightarrow{GD} = 2\overrightarrow{GN};\overrightarrow{GM} +
\overrightarrow{GN} = \overrightarrow{0}

    Suy ra:\overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0} hay \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = - \overrightarrow{GD}.

  • Câu 11: Thông hiểu
    Chọn đẳng thức đúng

    Cho hình lăng trụ tam giác ABC.A_{1}B_{1}C_{1}. Đặt \overrightarrow{AA_{1}} =
\overrightarrow{a},\overrightarrow{AB} =
\overrightarrow{b},\overrightarrow{AC} =
\overrightarrow{c},\overrightarrow{BC} =
\overrightarrow{d},trong các đẳng thức sau, đẳng thức nào đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    + Dễ thấy: \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}
\Rightarrow \overrightarrow{b} + \overrightarrow{d} - \overrightarrow{c}
= \overrightarrow{0}.

  • Câu 12: Nhận biết
    Chọn mệnh đề đúng

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Hướng dẫn:

    Nếu giá của ba vectơ cùng song song với một mặt phẳng thì ba vectơ đó đồng phẳng.

  • Câu 13: Nhận biết
    Phân tích vectơ

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{EG}?

    Hướng dẫn:

    Hình vẽ minh họa

    \overrightarrow{EG} =
\overrightarrow{AC} (AEGC là hình chữ nhật) nên \left(
\overrightarrow{AB};\overrightarrow{EG} ight) = \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = \widehat{BAC} =
45^{0}(AEGC là hình vuông)

  • Câu 14: Nhận biết
    Chọn đáp án chính xác

    Trong không gian, cho hai vectơ \overrightarrow{AB}\overrightarrow{BC}. Vectơ \overrightarrow{AC} bằng

    Hướng dẫn:

    Theo quy tắc ba điểm: \overrightarrow{AC}\  = \ \overrightarrow{\
AB}\  + \ \overrightarrow{BC}.

  • Câu 15: Thông hiểu
    Chọn đáp án chính xác

    Trong không gian, cho hình chóp S.ABC với G là trọng tâm của tam giác ABC. Khi đó \overrightarrow{SA} + \overrightarrow{SB} +
\overrightarrow{SC} bằng.

    Hướng dẫn:

    Do G là trọng tâm của tam giác ABC nên \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}.

    Áp dụng quy tắc ba điểm, ta có:

    \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC}

    = \left( \overrightarrow{SG} +
\overrightarrow{GA} ight) + \left( \overrightarrow{SG} +
\overrightarrow{GB} ight) + \left( \overrightarrow{SG} +
\overrightarrow{GC} ight).

    = 3\overrightarrow{SG} + \left(\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} ight)= 3\overrightarrow{SG}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (67%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo