Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Vectơ và các phép toán vectơ trong không gian (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đẳng thức đúng

    Cho tứ diện ABCD. Đặt \overrightarrow{AB} =
\overrightarrow{a},\overrightarrow{AC} =
\overrightarrow{b},\overrightarrow{AD} = \overrightarrow{c}, gọi G là trọng tâm của tam giácBCD. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M là trung điểm BC.

    \overrightarrow{AG} =
\overrightarrow{AB} + \overrightarrow{BG}

    = \overrightarrow{a} +
\frac{2}{3}\overrightarrow{BM} = \overrightarrow{a} +
\frac{2}{3}.\frac{1}{2}\left( \overrightarrow{BC} + \overrightarrow{BD}
ight)

    \ \ \ \ \ \ \ \  = \overrightarrow{a} +
\frac{1}{3}\left( \overrightarrow{AC} - \overrightarrow{AB} +
\overrightarrow{AD} - \overrightarrow{AB} ight)

    = \overrightarrow{a} + \frac{1}{3}\left(
- 2\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} ight)
= \frac{1}{3}\left( \overrightarrow{a} + \overrightarrow{b} +
\overrightarrow{c} ight).

  • Câu 2: Nhận biết
    Chọn mệnh đề đúng

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Điểm M xác định bởi công thức \overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Do G là trọng tâm tam giác BCD nên \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} = 3\overrightarrow{AG}

    \Rightarrow \overrightarrow{AM} =
3\overrightarrow{AG}

    Vậy mệnh đề đúng là “M thuộc tia AGAM = 3AG”.

  • Câu 3: Nhận biết
    Chọn phân tích đúng

    Cho tứ diện OABC. Gọi G là trọng tâm của tam giác ABC.Phân tích nào sau đây là đúng?

    Hướng dẫn:

    Ta có: G là trọng tâm tam giác ABC khi \overrightarrow{OG} = \frac{1}{3}\left(
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}
ight)

  • Câu 4: Nhận biết
    Xác định mệnh đề đúng

    Cho tứ diện ABCD. Điểm N xác định bởi công thức \overrightarrow{AN} = \overrightarrow{AB} +
\overrightarrow{AC} - \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC} -
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AN} -
\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{AD}
\Leftrightarrow \overrightarrow{BN} = \overrightarrow{AD}

    Vậy N là đỉnh thứ tư của hình bình hành CDBN.

  • Câu 5: Thông hiểu
    Xác định khẳng định sai

    Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng nhau.

    Hướng dẫn:

    Ta có: \overrightarrow{BB'}.\overrightarrow{BD} =
\overrightarrow{BB'}.\left( \overrightarrow{BA} +
\overrightarrow{BC} ight) =
\overrightarrow{BB'}.\overrightarrow{BA} +
\overrightarrow{BB'}.\overrightarrow{BC}

    = BB'.BA\left(
\cos\widehat{B'BA} + cos\widehat{B'BC} ight)

    AA'B'BABCD là hai hình thoi bằng nhau nên

    + \widehat{B'BA} = \widehat{B'BC}
\Rightarrow \overrightarrow{BB'}.\overrightarrow{BD} eq 0 suy ra BB' không vuông góc với BD

    + \widehat{B'BA} + \widehat{B'BC}= 180^{0}\Rightarrow \cos\widehat{B'BA} = - \cos\widehat{B'BC}\Rightarrow \overrightarrow{BB'}.\overrightarrow{BD} = 0 suy ra BB'\bot BD

    Nên đáp án BB'\bot BD có thể sai vì chưa có điều kiện của góc \widehat{B'BA}\widehat{B'BC}

  • Câu 6: Nhận biết
    Phân tích vectơ

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Hãy phân tích vectơ \overrightarrow{BD} theo các vectơ \overrightarrow{AB};\overrightarrow{AD};\overrightarrow{AA_{1}}?

    Hướng dẫn:

    Hình vẽ minh họa

    Theo quy tắc hình bình hành ta có:

    \overrightarrow{BD} =
\overrightarrow{AD} - \overrightarrow{AB} \Rightarrow
\overrightarrow{BD} = - \overrightarrow{AB} + \overrightarrow{AD} +
0.\overrightarrow{AA_{1}}

  • Câu 7: Nhận biết
    Chọn mệnh đề đúng

    Cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Do \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng nên \left(
\overrightarrow{a},\overrightarrow{b} ight) = 0^{0} \Rightarrow
\cos\left( \overrightarrow{a},\overrightarrow{b} ight) =
1.

    Vậy \overrightarrow{a}.\overrightarrow{b}
= \left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.

  • Câu 8: Nhận biết
    Chọn khẳng định chưa chính xác

    Cho ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Điều kiện nào sau đây không kết luận được ba vectơ đó đồng phẳng?

    Hướng dẫn:

    Hai vectơ còn lại có thể không cùng phương nên ba vectơ có thể không đồng phẳng.

  • Câu 9: Thông hiểu
    Tính góc giữa hai đường thẳng

    Cho tứ diện SABCSA = SB = SC = AB = AC = aBC = a\sqrt{2}. Tính góc giữa hai đường thẳng SCAB?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left(\overrightarrow{SA};\overrightarrow{AB} ight) = 120^{0}; AC^{2} + AB^{2} = BC^{2} suy ra AC\bot AB. Ta có:

    \cos\left(\overrightarrow{SC};\overrightarrow{AB} ight) =\frac{\overrightarrow{SC}.\overrightarrow{AB}}{\left|\overrightarrow{SC} ight|.\left| \overrightarrow{AB} ight|} =\frac{\left( \overrightarrow{SA} + \overrightarrow{AC}ight).\overrightarrow{AB}}{\left| \overrightarrow{SC} ight|.\left|\overrightarrow{AB} ight|}

    =\dfrac{\overrightarrow{SA}.\overrightarrow{AB} +\overrightarrow{AC}.\overrightarrow{AB}}{a^{2}} = \dfrac{-\dfrac{a^{2}}{2} + 0}{a^{2}} = - \dfrac{1}{2}

    \Rightarrow \left(\overrightarrow{SC};\overrightarrow{AB} ight) = 120^{0}. Vậy góc giữa hai đường thẳng cần tìm là 180^{0}- 120^{0} = 60^{0}

  • Câu 10: Nhận biết
    Xác định mệnh đề không chính xác

    Cho tứ diện đều ABCD. Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Vì tứ diện ABCD là tứ diện đều nên có các cặp cạnh đối vuông góc

    Suy ra \overrightarrow{AC}.\overrightarrow{BD} =
\overrightarrow{AD}.\overrightarrow{BC} =
\overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{0}

    Vậy mệnh đề chưa chính xác là: \overrightarrow{AD}.\overrightarrow{CD} =
\overrightarrow{AC}.\overrightarrow{DC} =
\overrightarrow{0}.

  • Câu 11: Thông hiểu
    Xác định góc giữa cặp vecto

    Cho tứ diện ABCDAB = AC = AD\widehat{BAC} = \widehat{BAD} = 60^{0}. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{CD} ?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có

    \overrightarrow{AB}.\overrightarrow{CD}
= \overrightarrow{AB}.\left( \overrightarrow{AD} - \overrightarrow{AC}
ight) = \overrightarrow{AB}.\overrightarrow{AD} -
\overrightarrow{AB}.\overrightarrow{AC}

    = AB.AD.\cos60^{0} - AB.AC.\cos60^{0} =0

    \Rightarrow \left(
\overrightarrow{AB},\overrightarrow{CD} ight) = 90^{0}

  • Câu 12: Nhận biết
    Tìm mệnh đề đúng

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Hướng dẫn:

    Ta có: \overrightarrow{AB} =
3\overrightarrow{AC} - 4\overrightarrow{AD} thỏa mãn biểu thức \overrightarrow{c} = m\overrightarrow{a} +
n\overrightarrow{b} (với m;n duy nhất) của định lí về các vectơ đồng phẳng.

    Vậy đáp án đúng là: “Nếu \overrightarrow{AB} = 3\overrightarrow{AC} -
4\overrightarrow{AD} thì bốn điểm A,B,C,D đồng phẳng.”

  • Câu 13: Nhận biết
    Chọn phương án thích hợp

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABC. Khi đó:

    Hướng dẫn:

    Ta có:

    G là trọng tâm tam giác ABC nên \overrightarrow{GA} + \overrightarrow{GB} +\overrightarrow{GC} = \overrightarrow{0}

    \Rightarrow \overrightarrow{GD} +\overrightarrow{DA} + \overrightarrow{GD} + \overrightarrow{DB} +\overrightarrow{GD} + \overrightarrow{DC} =\overrightarrow{0}

    \Rightarrow \overrightarrow{DA} +\overrightarrow{DB} + \overrightarrow{DC} + 3\overrightarrow{GD} =\overrightarrow{0}

    \Rightarrow \overrightarrow{DA} +\overrightarrow{DB} + \overrightarrow{DC} - 3\overrightarrow{DG} =\overrightarrow{0}

    \Rightarrow \overrightarrow{DA} +\overrightarrow{DB} + \overrightarrow{DC} =3\overrightarrow{DG}.

  • Câu 14: Nhận biết
    Chọn đẳng thức đúng

    Gọi O là tâm của hình lập phương ABCD.A'B'C'D'. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Theo quy tắc hình hộp ta có: \overrightarrow{AC'} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'}

    O là trung điểm của AC' suy ra \overrightarrow{AO} =
\frac{1}{2}\overrightarrow{AC'} = \frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'}
ight)

  • Câu 15: Thông hiểu
    Tính góc giữa hai đường thẳng

    Cho tứ diện ABCD đều cạnh bằng a. Gọi O là tâm đường tròn ngoại tiếp tam giác BCD. Góc giữa AOCD bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M là trung điểm của CD

    Vì ABCD là tứ diện đều nên AM\bot
CD;OM\bot CD

    Ta có: \overrightarrow{CD}.\overrightarrow{AO} =
\overrightarrow{CD}.\left( \overrightarrow{AM} + \overrightarrow{MO}
ight)

    =
\overrightarrow{CD}.\overrightarrow{AM} +
\overrightarrow{CD}.\overrightarrow{MO} =
\overrightarrow{0}

    Suy ra \overrightarrow{CD}\bot\overrightarrow{AO} nên số đo góc giữa hai đường thẳng bằng 90^{0}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (67%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo