Cho tứ diện . Gọi
lần lượt là trung điểm của
. Đặt
. Khẳng định nào sau đây đúng?
Ta có:
Vậy khẳng định đúng .
Cho tứ diện . Gọi
lần lượt là trung điểm của
. Đặt
. Khẳng định nào sau đây đúng?
Ta có:
Vậy khẳng định đúng .
Trong không gian, cho hình lập phương . Góc giữa hai vectơ
và
bằng
Hình vẽ minh họa
Ta có: . Do đó,
Vì nên tam giác
là tam giác đều.
Suy ra
Vậy
Trong không gian cho tứ diện đều . Khẳng định nào sau đây sai?
Tứ diện đều nên
không thể vuông góc với
.
Vậy khẳng định sai là: “”.
Trong các mệnh đề sau, mệnh đề nào sai?
Bằng quy tắc 3 điểm ta nhận thấy rằng: đúng với mọi điểm
nằm trong không gian chứ không phải chỉ riêng 4 điểm đồng phẳng.
Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu giá của ba vectơ cùng song song với một mặt phẳng thì ba vectơ đó đồng phẳng.
Cho hình hộp chữ nhật có
và đặt
. Lấy điểm
thỏa
và điểm
thỏa
. (Quan sát hình vẽ).
Xác định tính đúng sai của các khẳng định sau:
a) Đúng||Sai
b) Sai||Đúng
c) , với
là các số thực. Đúng||Sai
d) . Đúng||Sai
Cho hình hộp chữ nhật có
và đặt
. Lấy điểm
thỏa
và điểm
thỏa
. (Quan sát hình vẽ).
Xác định tính đúng sai của các khẳng định sau:
a) Đúng||Sai
b) Sai||Đúng
c) , với
là các số thực. Đúng||Sai
d) . Đúng||Sai
a) Đúng: Ta có
b) Sai:
c) Đúng:
(vì đôi một vuông góc nên
.
Ta có
.
d) Đúng:
Suy ra .
Cho tứ diện . Gọi
là trọng tâm của tam giác
.Phân tích nào sau đây là đúng?
Ta có: là trọng tâm tam giác
khi
Cho hình chóp có đáy
là hình bình hành. Đặt
. Khẳng định nào sau đây đúng?
Gọi là tâm hình bình hành
. Khi đó:
Vậy .
Tích vô hướng của 2 vectơ trong không gian được tính bằng:
Theo định nghĩa tích vô hướng của hai vecto, ta có: .
Cho hình hộp CÓ
. Giá trị của
bằng:
Ta có:
Vậy .
Cho tứ diện đều . Mệnh đề nào sau đây sai?
Vì tứ diện là tứ diện đều nên có các cặp cạnh đối vuông góc
Suy ra
Vậy mệnh đề chưa chính xác là: .
Cho ba vectơ . Điều kiện nào sau đây không kết luận được ba vectơ đó đồng phẳng?
Hai vectơ còn lại có thể không cùng phương nên ba vectơ có thể không đồng phẳng.
Cho hình hộp Khẳng định nào dưới đây là sai?
Theo quy tắc hình hộp ta có:
Vậy đáp án sai là:
Cho hình hộp . Gọi
và
lần lượt là trung điểm của
và
. Vectơ nào sau đây bằng
?
Ta có cùng hướng với
và
, suy ra
Cho tứ diện với
. Gọi
lần lượt là trung điểm của
và
. Góc giữa
và
là?
Ta có:
Vậy góc giữa và
là
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: