Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Vectơ và các phép toán vectơ trong không gian (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính góc giữa hai đường thẳng

    Cho hình hộp ABCD.A'B'C'D' có các cạnh đều bằng a và các góc \widehat{B'A'D'} =
60^{0},\widehat{B'A'A} = \widehat{D'A'A} =
120^{0}. Tính diện tích các tứ giác A'B'CDACC'A'.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{A'C} =
\overrightarrow{a} + \overrightarrow{b} +
\overrightarrow{c},\overrightarrow{B'D} = \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}

    \Rightarrow
\overrightarrow{A'C}.\overrightarrow{B'D} = \left(
\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}
\right)\left( \overrightarrow{a} - \overrightarrow{b} +
\overrightarrow{c} \right) = 0

    \Rightarrow A'C\bot B'D nên S_{A'B'DC} =
\frac{1}{2}A'C.B'D.

    Dễ dàng tính được A'C =a\sqrt{2},B'D = a\sqrt{2}

    \Rightarrow S_{A'B'CD} =\frac{1}{2}a\sqrt{2}a.\sqrt{2} = a^{2}

    S_{AA'C'C} = AA'AC\sin\left(
\overrightarrow{AA'},\overrightarrow{AC} \right), AA' = a,Ac = a\sqrt{3}.

    Tính được \sin\left(
\overrightarrow{AA'},\overrightarrow{AC} \right) = \sqrt{1 -
cos^{2}\left( \overrightarrow{AA'},\overrightarrow{AC} \right)} =
\frac{\sqrt{6}}{3}

    Vậy S_{AA'C'C} =
AA'AC\sin\left( \overrightarrow{AA'},\overrightarrow{AC} \right)
= a.a\sqrt{3}.\frac{\sqrt{6}}{3} = a^{2}\sqrt{2}.

  • Câu 2: Vận dụng
    Chọn kết quả đúng

    Cho hình hộp đứng ABCD.A'B'C'D', trong đó mặt đáy là hình bình hành với \widehat{DAB}
= 120{^\circ}. Biết độ dài các cạnh AB = 25cm,AD = 12cmAA' = 12cm. Tính \left| \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'} \right|.

    Hướng dẫn:

    Theo quy tắc hình hộp, ta có \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'} = \overrightarrow{AC'},

    Vậy \left| \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} \right| = \left|
\overrightarrow{AC'} \right| = AC'

    Với AC' = \sqrt{AC^{2} +
A{A'}^{2}}

    Trong đó: AA' = 12(cm)

    Do tổng hai góc kề của một hình bình hành là 180{^\circ} nên ta có góc \widehat{ABC} = 60{^\circ}

    Áp dụng định lý cosin trong tam giác ABC, ta có:

    AC^{2} = AB^{2} + BC^{2} - 2AB.BC.cos\widehat{ABC}

    = 25^{2} + 12^{2} - 2.25.12.cos60{^0} = 469.

    Vậy AC' = \sqrt{AC^{2} +
A{A'}^{2}} = \sqrt{469 + 144} = \sqrt{613}(cm).

  • Câu 3: Thông hiểu
    Tính diện tích toàn phần hình trụ

    Cắt một hình trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3a. Tính diện tích toàn phần của hình trụ đã cho.

    Hướng dẫn:

    Do thiết diện qua trục của hình trụ là một hình vuông có cạnh bằng 3anên ta có bán kính đáy R = \frac{3a}{2} và độ dài đường sinh l=3a.

    Diện tích toàn phần hình trụ là: \frac{27\pi a^{2}}{2}

  • Câu 4: Vận dụng
    Chọn khẳng định sai

    Cho hình chóp S.ABCD. Gọi O là giao điểm của ACBD. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Hình vẽ minh họa

    “Nếu \overrightarrow{SA} +
\overrightarrow{SB} + 2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO} thì ABCD là hình thang » Đúng

    \overrightarrow{SA} + \overrightarrow{SB} +
2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO}SC\bot(BIH).

    O,A,CBIH thẳng hàng nên đặt \overrightarrow{OA} = k\overrightarrow{OC};OB =
m\overrightarrow{OD}

    \Rightarrow (k + 1)\overrightarrow{OC} +
(m + 1)\overrightarrow{OD} = \overrightarrow{0}.

    \overrightarrow{OC},\overrightarrow{OD} không cùng phương nên k = - 2m = - 2

    \Rightarrow \frac{OA}{OC} = \frac{OB}{OD} = 2
\Rightarrow AB//CD.

    “Nếu ABCD là hình bình hành thì \overrightarrow{SA} + \overrightarrow{SB} +
\overrightarrow{SC} + \overrightarrow{SD} =
4\overrightarrow{SO}.“. Đúng.

    Hs tự biến đổi bằng cách chêm điểm O vào vế trái.

    “Nếu ABCD là hình thang thì \overrightarrow{SA} + \overrightarrow{SB} +
2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO}. ». Sai.

    Vì nếu ABCD là hình thang cân có 2 đáy là AD,BC thì sẽ sai.

    “Nếu \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{SD} =
4\overrightarrow{SO} thì ABCD là hình bình hành ». Đúng.

    Tương tự đáp án A với k = - 1,m = - 1 \Rightarrow
O là trung điểm 2 đường chéo.

  • Câu 5: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Vận dụng
    Tìm giá trị của k

    Gọi M,\ N lần lượt là trung điểm của các cạnh ACBD của tứ diện ABCD. Gọi I là trung điểm đoạn MNP là 1 điểm bất kỳ trong không gian. Tìm giá trị của k thích hợp điền vào đẳng thức vectơ: \overrightarrow{PI} =
k\left( \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}
+ \overrightarrow{PD} \right).

    Hướng dẫn:

    Ta có \overrightarrow{PA} +
\overrightarrow{PC} = 2\overrightarrow{PM}, \overrightarrow{PB} + \overrightarrow{PD} =
2\overrightarrow{PN}

    nên \overrightarrow{PA} +
\overrightarrow{PB}\overrightarrow{+ PC} + \overrightarrow{PD} =
2\overrightarrow{PM} + 2\overrightarrow{PN}

    = 2(\overrightarrow{PM} +
\overrightarrow{PN}) = 2.2.\overrightarrow{PI} =
4\overrightarrow{PI}

    Vậy k = \frac{1}{4}

  • Câu 7: Vận dụng
    Tìm khẳng định sai

    Cho hình hộp ABCD.A'B'C'D'. Gọi IK lần lượt là tâm của hình bình hành ABB’A’BCC'B'. Khẳng định nào sau đây sai ?

    Hướng dẫn:

    “Bốn điểm I, K, C, A đồng phẳng ». Đúng vì \overrightarrow{IK},\overrightarrow{AC} cùng thuộc (B'AC)

    \overrightarrow{IK} =
\frac{1}{2}\overrightarrow{AC} =
\frac{1}{2}\overrightarrow{A'C'}”. Đúng vì \overrightarrow{IK} = \overrightarrow{IB'} +\overrightarrow{B'K}= \frac{1}{2}\left( \overrightarrow{a} +\overrightarrow{b} \right) + \frac{1}{2}\left( - \overrightarrow{a} +\overrightarrow{c} \right)= \frac{1}{2}\left( \overrightarrow{b} +\overrightarrow{c} \right)= \frac{1}{2}\overrightarrow{AC} =\frac{1}{2}\overrightarrow{A'C'}.

    “Ba vectơ \overrightarrow{BD};\overrightarrow{IK};\overrightarrow{B'C'} không đồng phẳng ». Sai vì \overrightarrow{IK} = \overrightarrow{IB'} +\overrightarrow{B'K}= \frac{1}{2}\left( \overrightarrow{a} +\overrightarrow{b} \right) + \frac{1}{2}\left( - \overrightarrow{a} +\overrightarrow{c} \right)= \frac{1}{2}\left( \overrightarrow{b} +\overrightarrow{c} \right).

    \Rightarrow \overrightarrow{BD} +
2\overrightarrow{IK} = - \overrightarrow{b} + \overrightarrow{c} +
\overrightarrow{b} + \overrightarrow{c} = 2\overrightarrow{c} =
2\overrightarrow{B'C'} \Rightarrow Ba vectơ đồng phẳng.

    \overrightarrow{BD} +
2\overrightarrow{IK} = 2\overrightarrow{BC}”. Đúng vì theo câu trên\Rightarrow \overrightarrow{BD} +
2\overrightarrow{IK} = - \overrightarrow{b} + \overrightarrow{c} +
\overrightarrow{b} + \overrightarrow{c} = 2\overrightarrow{c} =
2\overrightarrow{B'C'} = 2\overrightarrow{BC}.

  • Câu 8: Vận dụng
    Phân tích vectơ

    Cho hình hộp ABCD.A'B'C'D'. Điểm M được xác định bởi đẳng thức vectơ \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} + \overrightarrow{MD} + \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = \overrightarrow{0}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Gọi \left\{ \begin{matrix}
O = AC \cap BD \\
O' = A'C' \cap B'D' \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0} \\
\overrightarrow{OA'} + \overrightarrow{OB'} +
\overrightarrow{OC'} + \overrightarrow{OD'} = \overrightarrow{0}
\\
\end{matrix} ight.

    Ta có:

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} +
\overrightarrow{MD}

    = \left( \overrightarrow{MO} +
\overrightarrow{OA} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OB} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OC} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OD} ight)

    = \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} +
4\overrightarrow{MO} = \overrightarrow{0} + 4\overrightarrow{MO} =
4\overrightarrow{MO}

    Tương tự ta cũng có: \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = 4\overrightarrow{MO'}

    Từ đó suy ra

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} +
\overrightarrow{MA'} + \overrightarrow{MB'} +
\overrightarrow{MC'} + \overrightarrow{MD'} =
\overrightarrow{0}

    \Leftrightarrow 4\overrightarrow{MO} +
4\overrightarrow{MO'} = \overrightarrow{0} \Leftrightarrow 4\left(
\overrightarrow{MO} + \overrightarrow{MO'} ight) =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{MO} +
\overrightarrow{MO'} = \overrightarrow{0}

    Vậy điểm M cần tìm là trung điểm của OO'.

  • Câu 9: Vận dụng cao
    Tính giá trị nhỏ nhất của biểu thức T

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. Tìm giá trị nhỏ nhất của biểu thức T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}?

    Hướng dẫn:

    Đặt \overrightarrow{OA} =
\overrightarrow{a};\overrightarrow{OB} =
\overrightarrow{b};\overrightarrow{OC} = \overrightarrow{c}. Khi đó \overrightarrow{OM} =
x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} với x;y;z là ba số có tổng bằng 1.

    Ta có:

    \overrightarrow{AM} =
\overrightarrow{OM} - \overrightarrow{OA} = (x - 1)\overrightarrow{a} +
y\overrightarrow{b} + z\overrightarrow{c}

    \Rightarrow {\overrightarrow{AM}}^{2} =
(x - 1)^{2}{\overrightarrow{a}}^{2} + y^{2}{\overrightarrow{b}}^{2} +
z^{2}{\overrightarrow{c}}^{2}

    \Rightarrow \frac{MA^{2}}{OA^{2}} = (x -
1)^{2} + y^{2}.\frac{b^{2}}{a^{2}} +
z^{2}.\frac{c^{2}}{a^{2}}

    Tương tự ta được

    \Rightarrow \left\{ \begin{matrix}\dfrac{MB^{2}}{OB^{2}} = (y - 1)^{2} + z^{2}.\dfrac{c^{2}}{b^{2}} +x^{2}.\dfrac{a^{2}}{b^{2}} \\\dfrac{MC^{2}}{OC^{2}} = (z - 1)^{2} + x^{2}.\dfrac{a^{2}}{c^{2}} +y^{2}.\dfrac{b^{2}}{c^{2}} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    + (x - 1)^{2} + (y - 1)^{2} + (z -
1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight)

    - \left( x^{2} + y^{2} + z^{2} ight) +
(x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight) - 2(x + y + z) + 3

    Ta biết rằng H là chân đường cao kẻ từ đỉnh O của tứ diện vuông OABC khi và chỉ khi H là trực tâm của tam giác ABC. Hơn nữa \left\{ \begin{matrix}\dfrac{1}{a^{2}} + \dfrac{1}{b^{2}} + \dfrac{1}{c^{2}} = \dfrac{1}{OH^{2}}\\x^{2}a^{2} + y^{2}b^{2} + z^{2}c^{2} = OM^{2} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}} = \frac{OM^{2}}{OH^{2}} +
1 \geq 1 + 1 = 2

    Dấu "=" xảy ra khi và chỉ khi OM = OH hay M trùng H.

    Vậy min T = 2, đạt được khi M trùng H hay M là trực tâm của tam giác ABC.

  • Câu 10: Vận dụng cao
    Chọn phương án thích hợp

    Một chiếc ô tô được đặt trên mặt đáy dưới cùa một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật ABCD, mặt phẳng (ABCD) song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc E của chiếc cần cẩu sao cho các đoạn dây cáp EA,EB,EC,ED có độ dài bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc bằng 60{^\circ}. Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng.

    A screenshot of a computerDescription automatically generated

    Tính trọng lượng của chiếc xe ô tô (làm tròn đến hàng đơn vị), biết rằng các lực căng \overrightarrow{F_{1}},\
\overrightarrow{F_{2}},\ \overrightarrow{F_{3}},\
\overrightarrow{F_{4}} đều có cường độ là 4700N và trọng lượng của khung sắt là 3000N.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi A_{1},\ B_{1},\ C_{1},D_{1} lần lượt là các điểm sao cho \overrightarrow{EA_{1}} = \overrightarrow{F_{1}},\
\overrightarrow{EB_{1}} = \overrightarrow{F_{2}},\
\overrightarrow{EC_{1}} = \overrightarrow{F_{3}},\
\overrightarrow{ED_{1}} = \overrightarrow{F_{4}}.

    EA,EB,EC,ED có độ dài bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc bằng 60^{o} nên EA_{1},EB_{1},EC_{1},ED_{1} có độ dài bằng nhau và cùng tạo với mặt phẳng \left(
A_{1}B_{1}C_{1}D_{1} \right) một góc bằng 60^{o}.

    ABCD là hình chữ nhật nên A_{1}B_{1}C_{1}D_{1} cũng là hình chữa nhật.

    Gọi O là tâm của hình chữ nhật A_{1}B_{1}C_{1}D_{1}. Ta suy ra EO\bot\left( A_{1}B_{1}C_{1}D_{1}
\right).

    Do đó góc giữa đường thẳng EA_{1} và mặt phẳng \left( A_{1}B_{1}C_{1}D_{1} \right) bằng góc \widehat{EA_{1}O} suy ra \widehat{EA_{1}O} = 60^{o}.

    Ta có \left| \overrightarrow{F_{1}}
\right| = \left| \overrightarrow{F_{2}} \right| = \left|
\overrightarrow{F_{3}} \right| = \left| \overrightarrow{F_{4}} \right| =
4700N nên EA_{1} = EB_{1} = EC_{1}
= ED_{1} = 4700N.

    Tam giác EOA_{1} vuông tại O nên EO =
EA_{1}.sin\widehat{EA_{1}O} = 4700.sin60{^\circ} =
2350\sqrt{3}.

    Ta có:

    \overrightarrow {{F_1}}  + \,\overrightarrow {{F_2}}  + \,\overrightarrow {{F_3}}  + \overrightarrow {{F_4}}

    = \overrightarrow {E{A_1}}  + \,\overrightarrow {E{B_1}}  + \overrightarrow {E{C_1}}  + \overrightarrow {E{D_1}}

    = 4\overrightarrow {EO}  + \overrightarrow {O{A_1}}  + \overrightarrow {O{C_1}}  + \,\overrightarrow {O{B_1}}  + \overrightarrow {O{D_1}}  = 4\overrightarrow {EO}.

    Vì chiếc khung sắt chứa xe ô tô ở vị trí cân bằng nên \overrightarrow{F_{1}} + \ \overrightarrow{F_{2}}
+ \ \overrightarrow{F_{3}} + \overrightarrow{F_{4}} =
\overrightarrow{P}, với \overrightarrow{P} là trọng lực tác dụng lên khung sắt chứa xe ô tô.

    Suy ra trọng lượng của khung sắt chứa chiếc xe ô tô là: \left| \overrightarrow{P} \right| = 4\left|
\overrightarrow{EO} \right| = 4.2350\sqrt{3} =
9400\sqrt{3}N

    Vì trọng lượng của khung sắt là 3000N nên trọng lượng của chiếc xe ô tô là: 9400\sqrt{3} - 3000 \approx
13281N.

  • Câu 11: Vận dụng cao
    Ghi đáp án đúng vào ô trống

    Cho tam giác ABC có ba góc đều là góc nhọn. Gọi Glà trọng tâm tam giác ABC, Hlà chân đường cao hạ từ A xuống cạnh BC thỏa mãn: \overrightarrow{BH} =\frac{1}{5}\overrightarrow{BC}. Điểm I đi động trên BC sao cho \overrightarrow{BI} =\frac{m}{n}\overrightarrow{BC}(Trong đó \frac{m}{n} là phân số tối giản, m,\ n\mathbb{\in Z},\ n eq 0). Tính giá trị biểu thức Q = m + n khi độ dài véc tơ \overrightarrow{IA} +\overrightarrow{GC} đạt giá trị nhỏ nhất.

    Đáp án: 9

    Đáp án là:

    Cho tam giác ABC có ba góc đều là góc nhọn. Gọi Glà trọng tâm tam giác ABC, Hlà chân đường cao hạ từ A xuống cạnh BC thỏa mãn: \overrightarrow{BH} =\frac{1}{5}\overrightarrow{BC}. Điểm I đi động trên BC sao cho \overrightarrow{BI} =\frac{m}{n}\overrightarrow{BC}(Trong đó \frac{m}{n} là phân số tối giản, m,\ n\mathbb{\in Z},\ n eq 0). Tính giá trị biểu thức Q = m + n khi độ dài véc tơ \overrightarrow{IA} +\overrightarrow{GC} đạt giá trị nhỏ nhất.

    Đáp án: 9

    Hình vẽ minh họa

    Gọi Plà trung điểm của AC, E là điểm đối xứng của P qua G.

    Khi đó tứ giác AGCE có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên AGCE là hình bình hành.

    \Rightarrow \overrightarrow{GC} =\overrightarrow{AE}.

    + Dựng EF\bot BC\ \ (F \inBC).

    Ta có: \left| \overrightarrow{IA} +\overrightarrow{GC} ight| = \left| \overrightarrow{IA} +\overrightarrow{AE} ight| = \left| \overrightarrow{IE} ight| = IE\geq EF.

    Do đó \left| \overrightarrow{IA} +\overrightarrow{GC} ight| nhỏ nhất khi I \equiv F.

    + Ta có: \overrightarrow{BH} =\frac{1}{5}\overrightarrow{BC} \Rightarrow \overrightarrow{HC} =\frac{4}{5}\overrightarrow{BC}.

    + Gọi Q là hình chiếu vuông góc của P lên BC (Q \inBC).

    Ta có:

    \frac{BP}{BE} = \frac{3GP}{BP + PE} =\frac{3GP}{3GP + GP} = \frac{3}{4}.

    + Do PQ // EF(vì cùng vuông góc với BC).

    Nên \Delta BPQ\Delta BEF đồng dạng

    \Rightarrow \frac{BQ}{BF} = \frac{BP}{BE}= \frac{3}{4} \Rightarrow\overrightarrow{BF} = \frac{4}{3}\overrightarrow{BQ}.

    + \Delta AHCP là trung điểm ACPQ // AH (do cùng vuông góc với BC).

    \Rightarrow PQ là đường trung bình.

    Khi đó, Q là trung điểm HC hay \overrightarrow{HQ} =\frac{1}{2}\overrightarrow{HC} =\frac{2}{5}\overrightarrow{BC}.

    \overrightarrow{BF} =\frac{4}{3}\overrightarrow{BQ} = \frac{4}{3}(\overrightarrow{BH} +\overrightarrow{HQ}) = \frac{4}{3}(\frac{1}{5}\overrightarrow{BC} +\frac{2}{5}\overrightarrow{BC}) =\frac{4}{5}\overrightarrow{BC}

    Vậy M = 4 + 5 = 9.

  • Câu 12: Thông hiểu
    Xác định góc giữa hai vectơ

    Cho tứ diện ABCDAB = AC = AD\widehat{BAC} = \widehat{BAD} = 60^{0}. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{CD}?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{AB}.\left( \overrightarrow{AD} - \overrightarrow{AC}
ight) = \overrightarrow{AB}.\overrightarrow{AD} -
\overrightarrow{AB}.\overrightarrow{AC}

    = \left| \overrightarrow{AB}ight|.\left| \overrightarrow{AD} ight|.\cos\left(\overrightarrow{AB};\overrightarrow{AD} ight) - \left|\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|.\cos\left(\overrightarrow{AB};\overrightarrow{AC} ight)

    = \left| \overrightarrow{AB}ight|.\left| \overrightarrow{AD} ight|.\cos60^{0} - \left|\overrightarrow{AB} ight|.\left| \overrightarrow{AC}ight|.\cos60^{0}

    AC = AD \Rightarrow
\overrightarrow{AB}.\overrightarrow{CD} = 0 \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{CD} ight) = 90^{0}

  • Câu 13: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Cho điểm M thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức P =\sqrt{3}MA + MB + MC + MD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Cho điểm M thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức P =\sqrt{3}MA + MB + MC + MD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Thông hiểu
    Chọn khẳng định đúng

    Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành ABEFK là tâm của hình bình hành BCGF. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Vì I; K lần lượt là trung điểm của AF và CF suy ra IK là đường trung bình tam giác AFC suy ra IK // AC => IK // (ABCD)

    Mà GF // (ABCD); BD \subset
(ABCD) suy ra \overrightarrow{BD};\overrightarrow{IK};\overrightarrow{GF} đồng phẳng.

  • Câu 15: Vận dụng cao
    Tìm giá trị nhỏ nhất của biểu thức

    Cho hình chóp S.ABCSA = a,SB = b,SC = c. Một mặt phẳng (\alpha) luôn đi qua trọng tâm của tam giác ABC, cắt các cạnh SA,SB,SC lần lượt tại A',B',C'. Tìm giá trị nhỏ nhất của \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}}.

    Hướng dẫn:

    Gọi G là trọng tâm của tam giác ABC. Ta có 3\overrightarrow{SG} = \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC}

    =
\frac{SA}{SA'}\overrightarrow{SA'} +
\frac{SB}{SB'}\overrightarrow{SB'} +
\frac{SC}{SC'}\overrightarrow{SC'}.

    G,A',B',C' đồng phẳng nên \frac{SA}{SA'} +\frac{SB}{SB'} + \frac{SC}{SC'} = 3\Leftrightarrow\frac{a}{SA'} + \frac{b}{SB'} + \frac{c}{SC'} =3

    Theo BĐT Cauchy schwarz:

    Ta có \left( \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}} \right)\left( a^{2} +
b^{2} + c^{2} \right) \geq \left( \frac{a}{SA'} + \frac{b}{SB'}
+ \frac{c}{SC'} \right)^{2}

    \Leftrightarrow \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}} \geq \frac{9}{a^{2} +
b^{2} + c^{2}}.

    Đẳng thức xảy ra khi

    \frac{1}{aSA'} = \frac{1}{bSB'} =
\frac{1}{cSC'} kết hợp với \frac{a}{SA'} + \frac{b}{SB'} +
\frac{c}{SC'} = 3 ta được;

    SA' = \frac{a^{2} + b^{2} + c^{2}}{3a},SB'
= \frac{a^{2} + b^{2} + c^{2}}{3b},SC' = \frac{a^{2} + b^{2} +
c^{2}}{3c}.

    Vậy GTNN của \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}}\frac{9}{a^{2} + b^{2} + c^{2}}.

  • Câu 16: Vận dụng
    Chọn mệnh đề đúng

    Cho tam giác ABC vuông tại A và có hai đỉnh B;C nằm trên mặt phẳng (P). Gọi A' là hình chiếu vuông góc của đỉnh A lên (P). Trong các mệnh đề sau, mệnh đề nào đúng?

    Hướng dẫn:

    Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì

    \overrightarrow{A'B}.\overrightarrow{A'C}
= \overrightarrow{A'A}.\overrightarrow{A'C} +
\overrightarrow{AB}.\overrightarrow{A'C}

    =
\overrightarrow{AB}.\overrightarrow{A'C} =
\overrightarrow{AB}.\left( \overrightarrow{A'A} +
\overrightarrow{AC} ight)

    =
\overrightarrow{AB}.\overrightarrow{A'A} = -
\overrightarrow{AB}.\overrightarrow{AA'} < 0 suy ra góc \widehat{BA'C} là góc tù.

  • Câu 17: Vận dụng cao
    Tính tỉ số hai cạnh

    Cho hình hộp ABCD.A'B'C'D'. Xác định vị trí các điểm M,N lần lượt trên ACDC' sao cho MN//BD'. Tính tỉ số \frac{MN}{BD'} bằng?

    Hướng dẫn:

    Hình vẽ minh họa

    \overrightarrow{BA} =
\overrightarrow{a},\overrightarrow{BC} =
\overrightarrow{b},\overrightarrow{BB'} =
\overrightarrow{c}.

    Giả sử \overrightarrow{AM} =
x\overrightarrow{AC},\overrightarrow{DN} =
y\overrightarrow{DC'}.

    Dễ dàng có các biểu diễn \overrightarrow{BM} = (1 - x)\overrightarrow{a} +
x\overrightarrow{b}\overrightarrow{BN} = (1 - y)\overrightarrow{a} +
\overrightarrow{b} + y\overrightarrow{c}.

    Từ đó suy ra \overrightarrow{MN} = (x -
y)\overrightarrow{a} + (1 - x)\overrightarrow{b} + y\overrightarrow{c}\
\ (1)

    Để MN//BD' thì \overrightarrow{MN} = z\overrightarrow{BD'} =
z\left( \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}
\right)\ \ \ (2)

    Từ (1)(2) ta có: (x
- y)\overrightarrow{a} + (1 - x)\overrightarrow{b} +
y\overrightarrow{c}\ \  = z\left( \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} \right)

    \Leftrightarrow (x - y -
z)\overrightarrow{a} + (1 - x - z)\overrightarrow{b} + (y -
z)\overrightarrow{c} = \overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}
x - y - z = 0 \\
1 - x - z = 0 \\
y - z = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = \frac{2}{3} \\
y = \frac{1}{3} \\
z = \frac{1}{3} \\
\end{matrix} \right..

    Vậy các điểm M,N được xác định bởi \overrightarrow{AM} =
\frac{2}{3}\overrightarrow{AC},\overrightarrow{DN} =
\frac{1}{3}\overrightarrow{DC'}.

    Ta cũng có \overrightarrow{MN} =
z\overrightarrow{BD'} = \frac{1}{3}\overrightarrow{BD'}
\Rightarrow \frac{MN}{BD'} = \frac{1}{3}.

  • Câu 18: Vận dụng
    Tính diện tích thiết diện

    Cho hình chóp S.ABCSA = SB = SC = a, \widehat{ASB} = \widehat{BSC} = \widehat{CSA} =
\alpha. Gọi (\beta) là mặt phẳng đi qua A và các trung điểm của SB,SC. Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng (\beta).

    Hướng dẫn:

    Hinh vẽ minh họa

    Gọi B',C' lần lượt là trung điểm của SB,SC. Thiết diện là tam giác AB'C'.

    Theo bài tập 5 thì S_{AB'C'} =
\frac{1}{2}\sqrt{AB'^{2}AC'^{2} - \left(
\overrightarrow{AB'}.\overrightarrow{AC'}
\right)^{2}}

    Ta có \overrightarrow{AB'} =
\overrightarrow{SB'} - \overrightarrow{SA} =
\frac{1}{2}\overrightarrow{SB} - \overrightarrow{SA}

    \Rightarrow AB'^{2} =
\frac{1}{4}SB^{2} + SA^{2} -
\overrightarrow{SA}\overrightarrow{SB}

    = \frac{a^{2}}{4}(5 -
4cos\alpha).

    Tính tương tự, ta có

    \overrightarrow{AB'}\overrightarrow{AC'} =
\frac{a^{2}}{4}(4 - 3cos\alpha).

    Vậy S_{AB'C'} =
\frac{1}{2}\sqrt{\frac{a^{4}}{16}(5 - 4cos\alpha)^{2} -
\frac{a^{4}}{16}(4 - 3cos\alpha)^{2}}

    = \frac{a^{2}}{8}\sqrt{7cos^{2}\alpha -
16cos\alpha + 9}.

  • Câu 19: Vận dụng
    Chọn khẳng định sai

    Cho ba vectơ \overrightarrow{a},\overrightarrow{b}\overrightarrow{,c} không đồng phẳng. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Các vectơ \overrightarrow{x},\overrightarrow{y},\overrightarrow{z} đồng phẳng\Leftrightarrow \exists
m,n:\overrightarrow{x} = m\overrightarrow{y} +
n\overrightarrow{z}

    Mà : \overrightarrow{x} =
m\overrightarrow{y} + n\overrightarrow{z}

    \Leftrightarrow \overrightarrow{a} -2\overrightarrow{b} + 4\overrightarrow{c}= m\left( 3\overrightarrow{a}- 3\overrightarrow{b} + 2\overrightarrow{c} \right) + n\left(2\overrightarrow{a} - 3\overrightarrow{b} - 3\overrightarrow{c}\right)

    \Leftrightarrow \left\{
\begin{matrix}
3m + 2n = 1 \\
- 3m - 3n = - 2 \\
2m - 3n = 4 \\
\end{matrix} \right. (hệ vô nghiệm)

    Vậy không tồn tại hai số m,n:\overrightarrow{x} = m\overrightarrow{y} +
n\overrightarrow{z}

  • Câu 20: Vận dụng
    Tính giá trị biểu thức

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Tính giá trị của biểu thức T = \left|
\frac{\overrightarrow{AB}}{AB} + \frac{\overrightarrow{AC}}{AC} +
\frac{\overrightarrow{AD}}{AD} ight|?

    Hướng dẫn:

    Vì các vectơ \frac{\overrightarrow{AB}}{AB};\frac{\overrightarrow{AC}}{AC};\frac{\overrightarrow{AD}}{AD} có độ dài bằng 1 và đôi một vuông góc với nhau nên

    \left( \frac{\overrightarrow{AB}}{AB} +
\frac{\overrightarrow{AC}}{AC} + \frac{\overrightarrow{AD}}{AD}
ight)^{2} = 3 \Leftrightarrow T = \left|
\frac{\overrightarrow{AB}}{AB} + \frac{\overrightarrow{AC}}{AC} +
\frac{\overrightarrow{AD}}{AD} ight| = \sqrt{3}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo