Gọi lần lượt là trung điểm của các cạnh
và
của tứ diện
. Gọi
là trung điểm đoạn
và
là 1 điểm bất kỳ trong không gian. Tìm giá trị của
thích hợp điền vào đẳng thức vectơ:
.
Ta có ,
nên
Vậy
Gọi lần lượt là trung điểm của các cạnh
và
của tứ diện
. Gọi
là trung điểm đoạn
và
là 1 điểm bất kỳ trong không gian. Tìm giá trị của
thích hợp điền vào đẳng thức vectơ:
.
Ta có ,
nên
Vậy
Cho hình hộp . Điểm
được xác định bởi đẳng thức vectơ
. Mệnh đề nào sau đây đúng?
Gọi
Khi đó
Ta có:
Tương tự ta cũng có:
Từ đó suy ra
Vậy điểm M cần tìm là trung điểm của .
Cho tứ diện . Gọi
và
lần lượt là trung điểm của
và
. Đặt
,
,
. Khẳng định nào sau đây đúng.
Ta có
.
Cho các mệnh đề sau:
(I) Vectơ luôn đồng phẳng với hai vectơ
.
(II) Nếu có và ít nhất một trong ba số
khác không thì ba vectơ
đồng phẳng.
(III) Nếu ba vectơ không đồng phẳng và
thì
.
Hỏi có bao nhiêu mệnh đề đúng?
Do được biểu thị qua hai vectơ
nên (I) đúng.
Xét mệnh đề (II): Giả sử , khi đó:
Suy ra ba vectơ đồng phẳng. Vậy mệnh đề (II) đúng.
Do mệnh đề (III) tương đương với mệnh đề (II) nên mệnh đề (III) đúng.
Cho hình hộp có các cạnh đều bằng
và các góc
. Tính góc giữa các cặp đường thẳng
với
;
với
.
Hình vẽ minh họa

Đặt
Ta có nên
.
Để ý rằng ,
.
Từ đó
Ta có , từ đó tính được:
.
Cho hình hộp và các điểm
xác định bởi
. Hãy tính
theo
để ba điểm
thẳng hàng.
Hình vẽ minh họa

Đặt .
Từ giả thiết ta có :
Từ đó ta có
.
Ba điểm thẳng hàng khi và chỉ khi tồn tại
sao cho
.
Thay các vectơ vào
và lưu ý
không đồng phẳng ta tính được
.
Cho hình chóp có
. Một mặt phẳng
luôn đi qua trọng tâm của tam giác
, cắt các cạnh
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Gọi là trọng tâm của tam giác
. Ta có
.
Mà đồng phẳng nên
Theo BĐT Cauchy schwarz:
Ta có
.
Đẳng thức xảy ra khi
kết hợp với
ta được;
.
Vậy GTNN của là
.
Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc
và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 124 N
Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc
và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 124 N
Gọi hai lực tạo với nhau một góc là
và
, ta có
N.
Lực còn lại là , ta có
N.
Gọi là hợp lực của ba lực trên ta có
.
N
Cho hình lập phương có cạnh bằng
. Tích vô hướng của hai vectơ
và
có giá trị bằng:
Ta có:
Cho tứ diện có
. Gọi
là diện tích toàn phần (tổng diện tích tất cả các mặt). Tính giá trị lớn nhất của
.
Do tứ diện có
nên
.
Gọi là diện tích và
là bán kính đường tròn ngoại tiếp mỗi mặt đó thì
, nên bất đẳng thức cần chứng minh:
.
Theo công thức Leibbnitz:
Với điểm bất kì và
là trọng tâm của tam giác
thì
Cho trùng với tâm đường tròn ngoại tiếp tam giác
ta được:
.
Cho tứ diện . Trên các cạnh
và
lần lượt lấy
sao cho
,
. Gọi
lần lượt là trung điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa

«Các vectơ đồng phẳng” . Sai vì
không đồng phẳng.
« Các vectơ đồng phẳng’. Đúng vì
: đồng phẳng.
“Các vectơ đồng phẳng”. Đúng. Bằng cách biểu diễn
tương tự như trên ta có
« Các vectơ đồng phẳng”. Đúng. Ta có
.
Trong không gian , cho các điểm
,
, điểm
và tam giác
vuông tại
, hình chiếu vuông góc của
trên
là điểm
. Khi đó điểm
luôn thuộc đường tròn cố định có bán kính bằng
Hình vẽ minh họa
Dễ thấy . Ta có
và
, suy ra
.
Ta có
, mà
. Suy ra
.
Mặt khác ta có
, .
Từ và
suy ra
và
.
Với suy ra
thuộc mặt phẳng
với
là mặt phẳng đi qua O và vuông góc với đường thẳng
.
Phương trình của là:
.
Với
vuông tại
.
Do đó thuộc mặt cầu
có tâm
là trung điểm của
và bán kính
.
Do đó điểm luôn thuộc đường tròn
cố định là giao tuyến của mp
với mặt cầu
.
Giả sử có tâm
và bán kính
thì
và
.
Vậy điểm luôn thuộc đường tròn cố định có bán kính bằng
.
Cho hình lập phương ; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Cho hình lập phương ; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Cho ba vectơ không đồng phẳng. Trong các khẳng định sau, khẳng định nào sai?
Các vectơ đồng phẳng
Mà :
(hệ vô nghiệm)
Vậy không tồn tại hai số
Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực , được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp
sao cho
và
là tam giác đều, đồng thời các cạnh
tạo với mặt phẳng
một góc có
(như hình vẽ).
Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)
Đáp án: 1333(N)
Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực , được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp
sao cho
và
là tam giác đều, đồng thời các cạnh
tạo với mặt phẳng
một góc có
(như hình vẽ).
Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)
Đáp án: 1333(N)
Đặt thì
.
Chú ý thêm là:
Ta có:
với
là trọng tâm
.
Vì hình chóp đều nên
Do đó , suy ra
.
Khi gắn các lực vào ta có:
Từ đó: .
Vậy lực căng mỗi sợi dây là .
Cho hình chóp , mặt phẳng
cắt các tia
(
là trọng tâm tam giác
) lần lượt tại các điểm
.Ta có
. Hỏi k bằng bao nhiêu?
Hình vẽ minh họa

Do là trọng tâm của
nên
Mặt khác đồng phẳng nên
.
Cho tứ diện . Gọi
lần lượt là trung điểm của
và
,
là trung điểm của
). Xác định vị trí của
để
nhỏ nhất.
Hình vẽ minh họa

Ta có nên
nhỏ nhất khi
.
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Hình vẽ minh họa
a) Đúng: .
b) Đúng: Vi là trung điểm của
nên
Vì là trung điểm của
nên
Vì là trung điểm của
nên
Do đó:
c) Sai:
d) Đúng
Ta có: .
.
Do đó: nhỏ nhất khi
Cho tứ diện có
và
. Gọi
và
lần lượt là trung điểm của
và
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Xét tam giác có
là trung điểm đoạn
.
Ta có:
Vì tam giác có
và
Nên tam giác đều. Suy ra:
Tương tự ta có tam giác đều nên
.
Xét .
Suy ra . Hay góc giữa cặp vectơ
và
bằng
.
Cho tam giác vuông tại
và có hai đỉnh
nằm trên mặt phẳng
. Gọi
là hình chiếu vuông góc của đỉnh
lên
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì
suy ra góc
là góc tù.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: