Cho hình lập phương có cạnh
. Gọi
là trung điểm
. Giá trị
là:
Hình vẽ minh họa
Ta có:
Cho hình lập phương có cạnh
. Gọi
là trung điểm
. Giá trị
là:
Hình vẽ minh họa
Ta có:
Cho hình chóp . Gọi
là giao điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa

“Nếu thì
là hình thang » Đúng
Vì và
.
Vì và
thẳng hàng nên đặt
.
Mà không cùng phương nên
và
“Nếu là hình bình hành thì
.“. Đúng.
Hs tự biến đổi bằng cách chêm điểm vào vế trái.
“Nếu là hình thang thì
. ». Sai.
Vì nếu là hình thang cân có 2 đáy là
thì sẽ sai.
“Nếu thì
là hình bình hành ». Đúng.
Tương tự đáp án A với là trung điểm 2 đường chéo.
Cho tứ diện ,
là một điểm nằm trong tứ diện. Các đường thẳng
cắt các mặt
lần lượt tại
. Mặt phẳng
đi qua
và song song với
lần lượt cắt
tại các điểm
.Khẳng định nào sau đây là đúng nhất. Chứng minh
là trọng tâm của tam giác
.
Hình vẽ minh họa

Vì nằm trong tứ diện
nên
tồn tại sao cho
Gọi là mặt phẳng đi qua
và song song với mặt phẳng
.
Ta có .
Do đó
Trong , chiếu các vec tơ lên đường thẳng
theo phương
ta được:
Từ suy ra
Tương tự ta có
Mặt khác chiếu các vec tơ trong lên mặt phẳng
theo phương
tì thu được
.
Vậy từ ta có
, hay
là trọng tâm của tam giác
.
Cho hình chóp có
,
. Gọi
là mặt phẳng đi qua
và các trung điểm của
. Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng
.
Hinh vẽ minh họa

Gọi lần lượt là trung điểm của
. Thiết diện là tam giác
.
Theo bài tập 5 thì
Ta có
.
Tính tương tự, ta có
.
Vậy
.
Cho hình hộp . Chọn khẳng định đúng?
Hình vẽ minh họa

lần lượt là trung điểm của
.
Ta có
đồng phẳng.
Một chiếc ô tô được đặt trên mặt đáy dưới cùa một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật , mặt phẳng
song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc
của chiếc cần cẩu sao cho các đoạn dây cáp
có độ dài bằng nhau và cùng tạo với mặt phẳng
một góc bằng
. Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng.

Tính trọng lượng của chiếc xe ô tô (làm tròn đến hàng đơn vị), biết rằng các lực căng đều có cường độ là
và trọng lượng của khung sắt là
.
Hình vẽ minh họa

Gọi lần lượt là các điểm sao cho
.
Vì có độ dài bằng nhau và cùng tạo với mặt phẳng
một góc bằng
nên
có độ dài bằng nhau và cùng tạo với mặt phẳng
một góc bằng
.
Vì là hình chữ nhật nên
cũng là hình chữa nhật.
Gọi là tâm của hình chữ nhật
. Ta suy ra
.
Do đó góc giữa đường thẳng và mặt phẳng
bằng góc
suy ra
.
Ta có nên
.
Tam giác vuông tại
nên
.
Ta có:
.
Vì chiếc khung sắt chứa xe ô tô ở vị trí cân bằng nên , với
là trọng lực tác dụng lên khung sắt chứa xe ô tô.
Suy ra trọng lượng của khung sắt chứa chiếc xe ô tô là:
Vì trọng lượng của khung sắt là nên trọng lượng của chiếc xe ô tô là:
.
Cho hình lập phương có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn:
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Cho hình lập phương có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn:
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Trong không gian , cho các điểm
,
, điểm
và tam giác
vuông tại
, hình chiếu vuông góc của
trên
là điểm
. Khi đó điểm
luôn thuộc đường tròn cố định có bán kính bằng
Hình vẽ minh họa
Dễ thấy . Ta có
và
, suy ra
.
Ta có
, mà
. Suy ra
.
Mặt khác ta có
, .
Từ và
suy ra
và
.
Với suy ra
thuộc mặt phẳng
với
là mặt phẳng đi qua O và vuông góc với đường thẳng
.
Phương trình của là:
.
Với
vuông tại
.
Do đó thuộc mặt cầu
có tâm
là trung điểm của
và bán kính
.
Do đó điểm luôn thuộc đường tròn
cố định là giao tuyến của mp
với mặt cầu
.
Giả sử có tâm
và bán kính
thì
và
.
Vậy điểm luôn thuộc đường tròn cố định có bán kính bằng
.
Cho tứ diện . Gọi
là các điểm thỏa nãm
còn
là các điểm xác định bởi
. Chứng minh ba điểm
thẳng hàng. Khẳng định nào sau đây là đúng?
Hình vẽ minh họa

Ta có
Từ ta có
Lấy theo vế ta có
Tương tự
Mặt khác nên
Vậy thẳng hàng.
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Hình vẽ minh họa
a) Đúng: .
b) Đúng: Vi là trung điểm của
nên
Vì là trung điểm của
nên
Vì là trung điểm của
nên
Do đó:
c) Sai:
d) Đúng
Ta có: .
.
Do đó: nhỏ nhất khi
Cho tứ diện có
. Gọi
là diện tích toàn phần (tổng diện tích tất cả các mặt). Tính giá trị lớn nhất của
.
Do tứ diện có
nên
.
Gọi là diện tích và
là bán kính đường tròn ngoại tiếp mỗi mặt đó thì
, nên bất đẳng thức cần chứng minh:
.
Theo công thức Leibbnitz:
Với điểm bất kì và
là trọng tâm của tam giác
thì
Cho trùng với tâm đường tròn ngoại tiếp tam giác
ta được:
.
Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực , được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp
sao cho
và
là tam giác đều, đồng thời các cạnh
tạo với mặt phẳng
một góc có
(như hình vẽ).
Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)
Đáp án: 1333(N)
Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực , được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp
sao cho
và
là tam giác đều, đồng thời các cạnh
tạo với mặt phẳng
một góc có
(như hình vẽ).
Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)
Đáp án: 1333(N)
Đặt thì
.
Chú ý thêm là:
Ta có:
với
là trọng tâm
.
Vì hình chóp đều nên
Do đó , suy ra
.
Khi gắn các lực vào ta có:
Từ đó: .
Vậy lực căng mỗi sợi dây là .
Cho lăng trụ tam giác . Đặt
. Gọi điểm
sao cho
,
là trọng tâm tứ diện
. Biểu diễn vectơ
qua các vectơ
. Đáp án nào dưới đây đúng?
Ta có G là trọng tâm của tứ diện nên
Cho hình lập phương ; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Cho hình lập phương ; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Cho hình lập phương có cạnh bằng
. Tích vô hướng của hai vectơ
và
có giá trị bằng:
Ta có:
Cho hình chóp có
. Một mặt phẳng
luôn đi qua trọng tâm của tam giác
, cắt các cạnh
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Gọi là trọng tâm của tam giác
. Ta có
.
Mà đồng phẳng nên
Theo BĐT Cauchy schwarz:
Ta có
.
Đẳng thức xảy ra khi
kết hợp với
ta được;
.
Vậy GTNN của là
.
Cho hình hộp . Một đường thẳng
cắt các đường thẳng
lần lượt tại
sao cho
. Tính
.
Hình vẽ minh họa

Đặt .
Vì nên
,
Ta có
Do
.
Vậy .
Cho hình chóp có đáy là hình vuông
cạnh bằng
và các cạnh bên đều bằng
. Gọi
và
lần lượt là trung điểm của
và
. Số đo của góc
bằng:
Hình vẽ minh họa
Ta có:
vuông tại
.
Khi đó:
Cho tứ diện . Gọi
lần lượt là tung điểm của
. Chọn mệnh đề đúng?
Hình vẽ minh họa
Ta có:
Cộng hai vế của hai đẳng thức trên ta có:
Cho tứ diện có
và
. Gọi
và
lần lượt là trung điểm của
và
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Xét tam giác có
là trung điểm đoạn
.
Ta có:
Vì tam giác có
và
Nên tam giác đều. Suy ra:
Tương tự ta có tam giác đều nên
.
Xét .
Suy ra . Hay góc giữa cặp vectơ
và
bằng
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: