Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Vectơ và các phép toán vectơ trong không gian (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Tính x; y theo k để ba điểm thẳng hàng

    Cho hình hộp ABCD.A'B'C'D' và các điểm M,N,P xác định bởi

    \overrightarrow{MA} =
k\overrightarrow{MB'}(k \neq 0),\overrightarrow{NB} =
x\overrightarrow{NC'},\overrightarrow{PC} =
y\overrightarrow{PD'}. Hãy tính x,y theo k để ba điểm M,N,P thẳng hàng.

    Hướng dẫn:

    Hình vẽ minh họa

    Đặt \overrightarrow{AD} =
\overrightarrow{a},\overrightarrow{AB} =
\overrightarrow{b},\overrightarrow{AA'} =
\overrightarrow{c}.

    Từ giả thiết ta có :

    \overrightarrow{AM} = \frac{k}{k -
1}\left( \overrightarrow{b} + \overrightarrow{c} \right)\ \ \
(1)

    \overrightarrow{AN} = \overrightarrow{b}+ \frac{x}{x - 1}\left( \overrightarrow{a} + \overrightarrow{c} \right) (2)

    \overrightarrow{AP} = \overrightarrow{a} + \overrightarrow{b} +\frac{y}{y - 1}\left( \overrightarrow{c} - \overrightarrow{b}\right)(3)

    Từ đó ta có

    \overrightarrow{MN} =\overrightarrow{AN} - \overrightarrow{AM}= \frac{x}{x -1}\overrightarrow{a} - \frac{1}{k - 1}\overrightarrow{b} + \left(\frac{x}{x - 1} - \frac{k}{k - 1} \right)\overrightarrow{c}

    + \left( \frac{x}{x - 1} - \frac{y}{y -
1} \right)\overrightarrow{c}.

    \overrightarrow{MP} =\overrightarrow{AP} - \overrightarrow{AM}= \overrightarrow{a} -(\frac{y}{y - 1} + \frac{1}{k - 1})\overrightarrow{b} + \left(\frac{y}{y - 1} - \frac{k}{k - 1} \right)\overrightarrow{c}

    Ba điểm M,N,P thẳng hàng khi và chỉ khi tồn tại \lambda sao cho \overrightarrow{MN} =
\lambda\overrightarrow{MP}\ \ (*).

    Thay các vectơ \overrightarrow{MN},\overrightarrow{MP} vào (*) và lưu ý \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} không đồng phẳng ta tính được x = \frac{1 +
k}{1 - k},y = - \frac{1}{k}.

  • Câu 2: Vận dụng
    Chọn khẳng định sai

    Cho hình chóp S.ABCD. Gọi O là giao điểm của ACBD. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Hình vẽ minh họa

    “Nếu \overrightarrow{SA} +
\overrightarrow{SB} + 2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO} thì ABCD là hình thang » Đúng

    \overrightarrow{SA} + \overrightarrow{SB} +
2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO}SC\bot(BIH).

    O,A,CBIH thẳng hàng nên đặt \overrightarrow{OA} = k\overrightarrow{OC};OB =
m\overrightarrow{OD}

    \Rightarrow (k + 1)\overrightarrow{OC} +
(m + 1)\overrightarrow{OD} = \overrightarrow{0}.

    \overrightarrow{OC},\overrightarrow{OD} không cùng phương nên k = - 2m = - 2

    \Rightarrow \frac{OA}{OC} = \frac{OB}{OD} = 2
\Rightarrow AB//CD.

    “Nếu ABCD là hình bình hành thì \overrightarrow{SA} + \overrightarrow{SB} +
\overrightarrow{SC} + \overrightarrow{SD} =
4\overrightarrow{SO}.“. Đúng.

    Hs tự biến đổi bằng cách chêm điểm O vào vế trái.

    “Nếu ABCD là hình thang thì \overrightarrow{SA} + \overrightarrow{SB} +
2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO}. ». Sai.

    Vì nếu ABCD là hình thang cân có 2 đáy là AD,BC thì sẽ sai.

    “Nếu \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{SD} =
4\overrightarrow{SO} thì ABCD là hình bình hành ». Đúng.

    Tương tự đáp án A với k = - 1,m = - 1 \Rightarrow
O là trung điểm 2 đường chéo.

  • Câu 3: Vận dụng
    Xác định số khẳng định đúng

    Một em nhỏ cân nặng m = 25(kg) trượt trên cầu trượt dài 3,5(m) (như trong hình dưới đây). Biết rằng, cầu trượt có góc nghiêng so với phương nằm ngang là 30{^\circ}. Trong các khẳng định sau, có bao nhiêu khẳng định đúng?

    + Với gia tốc rơi tự do \overrightarrow{g} có độ lớn là g = 9,8\left( m/s^{2} \right) thì độ lớn của trọng lực \overrightarrow{P} =
m\overrightarrow{g} tác dụng lên em nhỏ có độ lớn là 245(N).

    + Góc giữa độ dịch chuyển \overrightarrow{d} so với trọng lực \overrightarrow{P}30{^\circ}.

    + Công A(J) sinh bởi một lực \overrightarrow{F} có độ dịch chuyển \overrightarrow{d} được tính bởi công thức A = \left| \overrightarrow{F}
\right|.\left| \overrightarrow{d} \right|.cos\left(
\overrightarrow{F};\overrightarrow{d} \right) thì công sinh bởi trọng lực \overrightarrow{P} khi em nhỏ trượt hết chiều dài cầu trượt là 428,75(J).

    A drawing of a child on a slideDescription automatically generated

    Hướng dẫn:

    » Với gia tốc rơi tự do \overrightarrow{g} có độ lớn là g = 9,8\left( m/s^{2} \right) thì độ lớn của trọng lực \overrightarrow{P} =
m\overrightarrow{g} tác dụng lên em nhỏ có độ lớn là \left| \overrightarrow{P} \right| = m\left|
\overrightarrow{g} \right| = 25.9,8 = 245(N).

    » Em nhỏ trượt từ điểm A tới điểm B nên khi đó góc giữa độ dịch chuyển \overrightarrow{d} so với trọng lực \overrightarrow{P}\left( \overrightarrow{d,}\overrightarrow{P}
\right) = \left( \overrightarrow{AB,}\overrightarrow{P} \right) =
60{^\circ}.

    » Ta có độ lớn của trọng lực \overrightarrow{P} = m\overrightarrow{g} tác dụng lên em nhỏ có độ lớn là \left|
\overrightarrow{P} \right| = m\left| \overrightarrow{g} \right| = 25.9,8
= 245(N) nên công sinh bởi trọng lực \overrightarrow{P} khi em nhỏ trượt hết chiều dài cầu trượt là A = \left|
\overrightarrow{P} \right|.\left| \overrightarrow{d} \right|.cos\left(
\overrightarrow{P,}\overrightarrow{d} \right) = 245.3,5.cos60{^\circ} =
428,75(J).

  • Câu 4: Vận dụng
    Xác định góc giữa cặp vectơ

    Cho tứ diệnABCDAB = AC = AD\widehat{BAC} = \widehat{BAD} = 60^{0},\
\widehat{CAD} = 90^{0}. Gọi IJ lần lượt là trung điểm của ABCD. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{IJ}?

    Hướng dẫn:

    Hình vẽ minh họa

    Xét tam giácICDJ là trung điểm đoạn CD.

    Ta có: \overrightarrow{I J} =
\frac{1}{2}\left( \overrightarrow{IC} + \overrightarrow{ID}
ight)

    Vì tam giác ABCAB = AC\widehat{BAC} = 60{^\circ}

    Nên tam giác ABC đều. Suy ra: CI\bot AB

    Tương tự ta có tam giác ABD đều nên DI\bot AB.

    Xét \overrightarrow{IJ}.\overrightarrow{AB} =
\frac{1}{2}\left( \overrightarrow{IC} + \overrightarrow{ID}
ight).\overrightarrow{AB}=
\frac{1}{2}\overrightarrow{IC}.\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{ID}.\overrightarrow{AB} =
\overrightarrow{0}.

    Suy ra \overrightarrow{I
J}\bot\overrightarrow{AB}. Hay góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{IJ} bằng 90^{0}.

  • Câu 5: Vận dụng cao
    Tìm giá trị nhỏ nhất của biểu thức

    Cho hình chóp S.ABCSA = a,SB = b,SC = c. Một mặt phẳng (\alpha) luôn đi qua trọng tâm của tam giác ABC, cắt các cạnh SA,SB,SC lần lượt tại A',B',C'. Tìm giá trị nhỏ nhất của \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}}.

    Hướng dẫn:

    Gọi G là trọng tâm của tam giác ABC. Ta có 3\overrightarrow{SG} = \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC}

    =
\frac{SA}{SA'}\overrightarrow{SA'} +
\frac{SB}{SB'}\overrightarrow{SB'} +
\frac{SC}{SC'}\overrightarrow{SC'}.

    G,A',B',C' đồng phẳng nên \frac{SA}{SA'} +\frac{SB}{SB'} + \frac{SC}{SC'} = 3\Leftrightarrow\frac{a}{SA'} + \frac{b}{SB'} + \frac{c}{SC'} =3

    Theo BĐT Cauchy schwarz:

    Ta có \left( \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}} \right)\left( a^{2} +
b^{2} + c^{2} \right) \geq \left( \frac{a}{SA'} + \frac{b}{SB'}
+ \frac{c}{SC'} \right)^{2}

    \Leftrightarrow \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}} \geq \frac{9}{a^{2} +
b^{2} + c^{2}}.

    Đẳng thức xảy ra khi

    \frac{1}{aSA'} = \frac{1}{bSB'} =
\frac{1}{cSC'} kết hợp với \frac{a}{SA'} + \frac{b}{SB'} +
\frac{c}{SC'} = 3 ta được;

    SA' = \frac{a^{2} + b^{2} + c^{2}}{3a},SB'
= \frac{a^{2} + b^{2} + c^{2}}{3b},SC' = \frac{a^{2} + b^{2} +
c^{2}}{3c}.

    Vậy GTNN của \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}}\frac{9}{a^{2} + b^{2} + c^{2}}.

  • Câu 6: Vận dụng cao
    Tìm k để các điểm đồng phẳng

    Cho tứ diện ABCD. Lấy các điểm M,N,P,Q lần lượt thuộc AB,BC,CD,DA sao cho \overrightarrow{AM} =\frac{1}{3}\overrightarrow{AB},\overrightarrow{BN} =\frac{2}{3}\overrightarrow{BC},\overrightarrow{AQ} =\frac{1}{2}\overrightarrow{AD},\overrightarrow{DP} =k\overrightarrow{DC}. Hãy xác định k để M,N,P,Q đồng phẳng.

    Hướng dẫn:

    Hình vẽ minh họa

    Cách 1.

    Ta có \overrightarrow{AM} =
\frac{1}{3}\overrightarrow{AB} \Rightarrow \overrightarrow{BM} -
\overrightarrow{BA} = - \frac{1}{3}\overrightarrow{BA}

    \Rightarrow \overrightarrow{BM} =
\frac{2}{3}\overrightarrow{BA}.

    Lại có \overrightarrow{BN} =
\frac{2}{3}\overrightarrow{BC} do đó MN//AC.

    Vậy nếu M,N,P,Q đồng phẳng thì (MNPQ) \cap (ACD) = PQ \parallel
AC

    \Rightarrow \frac{PC}{PD} = \frac{QA}{QD}
= 1 hay \overrightarrow{DP} =
\frac{1}{2}\overrightarrow{DC} \Rightarrow k = \frac{1}{2}.

    Cách 2. Đặt \overrightarrow{DA} =
\overrightarrow{a},\overrightarrow{DB} =
\overrightarrow{b},\overrightarrow{DC} = \overrightarrow{c} thì không khó khăn ta có các biểu diễn

    \overrightarrow{MN} = -
\frac{2}{3}\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}, \overrightarrow{MP} = -
\frac{2}{3}\overrightarrow{a} - \frac{1}{3}\overrightarrow{b} +
k\overrightarrow{c}, \overrightarrow{MN} = -
\frac{1}{6}\overrightarrow{a} -
\frac{1}{3}\overrightarrow{b}

    Các điểm M,N,P,Q đồng phẳng khi và chỉ khi các vec tơ \overrightarrow{MN},\overrightarrow{MP},\overrightarrow{MQ} đồng phẳng \Leftrightarrow \exists
x,y:\overrightarrow{MP} = x\overrightarrow{MN} +
y\overrightarrow{MQ}

    \Leftrightarrow -
\frac{2}{3}\overrightarrow{a} - \frac{1}{3}\overrightarrow{b} +
k\overrightarrow{c} = x\left( - \frac{2}{3}\overrightarrow{a} +
\frac{2}{3}\overrightarrow{c} \right) + y\left( -
\frac{1}{6}\overrightarrow{a} - \frac{1}{3}\overrightarrow{b}
\right)

    Do các vec tơ \overrightarrow{a},\overrightarrow{b,}\overrightarrow{c} không đồng phẳng nên điều này tương đương với

    \left\{ \begin{matrix}
- \frac{2}{3}x - \frac{1}{6}y = - \frac{2}{3} \\
- \frac{1}{3}y = - \frac{1}{3} \\
\frac{2}{3}x = k \\
\end{matrix} \right.\  \Leftrightarrow x = \frac{3}{4},y = 1,k =
\frac{1}{2}.

  • Câu 7: Vận dụng cao
    Chọn khẳng định đúng

    Cho tứ diện ABCD. Gọi E,F là các điểm thỏa nãm \overrightarrow{EA} =
k\overrightarrow{EB},\overrightarrow{FD} = k\overrightarrow{FC} còn P,Q,R là các điểm xác định bởi \overrightarrow{PA} =
l\overrightarrow{PD},\overrightarrow{QE} =
l\overrightarrow{QF},\overrightarrow{RB} =
l\overrightarrow{RC}. Chứng minh ba điểm P,Q,R thẳng hàng. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có \overrightarrow{PQ} =
\overrightarrow{PA} + \overrightarrow{AE} + \overrightarrow{EQ}\ \
(1)

    \overrightarrow{PQ} =
\overrightarrow{PD} + \overrightarrow{DF} + \overrightarrow{FQ}\ \
(2)

    Từ (2) ta có l\overrightarrow{PQ} = l\overrightarrow{PD} +
l\overrightarrow{DF} + l\overrightarrow{FQ}\ \ \ \ (3)

    Lấy (1) - (3) theo vế ta có

    (1 - l)\overrightarrow{PQ} =
\overrightarrow{AE} - l\overrightarrow{DF}

    \Rightarrow \overrightarrow{PQ} =
\frac{1}{1 - l}\overrightarrow{AE} - \frac{l}{1 -
l}\overrightarrow{DF}

    Tương tự \overrightarrow{QR} = \frac{1}{1
- l}\overrightarrow{EB} - \frac{l}{1 -
l}\overrightarrow{FC}

    Mặt khác \overrightarrow{EA} =
k\overrightarrow{EB},\overrightarrow{FD} = k\overrightarrow{FC} nên

    \overrightarrow{PQ} = \frac{1}{1 -l}\overrightarrow{AE} - \frac{l}{1 - l}\overrightarrow{DF}= \frac{-k}{1 - l}\overrightarrow{EB} - \frac{kl}{1 - l}\overrightarrow{FC} = -k\overrightarrow{QR}

    Vậy P,Q,R thẳng hàng.

  • Câu 8: Vận dụng
    Chọn đáp án đúng

    Cho lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi điểm I \in CC' sao cho \overrightarrow{C'I} =
\frac{1}{3}\overrightarrow{C'C}, G là trọng tâm tứ diện BAB'C'. Biểu diễn vectơ \overrightarrow{IG} qua các vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Đáp án nào dưới đây đúng?

    Hướng dẫn:

    Ta có G là trọng tâm của tứ diện BA'B'C' nên

    4\overrightarrow{IG} =
\overrightarrow{IB} + \overrightarrow{IA'} +
\overrightarrow{IB'} + \overrightarrow{IC'}

    \Leftrightarrow 4\overrightarrow{IG} =
\left( \overrightarrow{IC} + \overrightarrow{CB} ight) + \left(
\overrightarrow{IC'} + \overrightarrow{C'A'} ight) +
\left( \overrightarrow{IC'} + \overrightarrow{C'B'} ight)
+ \overrightarrow{IC'}

    \Leftrightarrow 4\overrightarrow{IG} =
\overrightarrow{IC'} + \left( 2\overrightarrow{IC'} +
\overrightarrow{IC} ight) + \left( \overrightarrow{CB} +
\overrightarrow{C'B'} ight) +
\overrightarrow{C'A'}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{CC'} + \overrightarrow{0} +
2\overrightarrow{CB} - \overrightarrow{AC}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{AA'} + 2\overrightarrow{CB} -
\overrightarrow{AC}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{a} + 2\left( \overrightarrow{b} -
\overrightarrow{c} ight) - \overrightarrow{c}

    \Leftrightarrow \overrightarrow{IG} =
\frac{1}{4}\left( \frac{1}{3}\overrightarrow{a} + \overrightarrow{b} -
2\overrightarrow{c} ight)

  • Câu 9: Vận dụng
    Xác định vị trí điểm M

    Cho tứ diện ABCD. Gọi I,J lần lượt là trung điểm của ABCD, G là trung điểm của IJ). Xác định vị trí của M để \left|
\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} +
\overrightarrow{MD} \right| nhỏ nhất.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} \right|
= 4\left| \overrightarrow{MG} \right| nên \left| \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} + \overrightarrow{MD} \right| nhỏ nhất khi M \equiv G.

  • Câu 10: Thông hiểu
    Tìm câu sai

    Cho \overrightarrow{a} =
3,^{}\overrightarrow{b} = 5 góc giữa hai vecto bằng 120{^\circ}. Tìm câu sai dưới đây?

    Hướng dẫn:

    Ta có:

    \left| \overrightarrow{a} +
\overrightarrow{b} ight|^{2} = \left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2} = \left| \overrightarrow{a} ight|^{2} +
\left| \overrightarrow{b} ight|^{2} +
2\overrightarrow{a}.\overrightarrow{b}

    = \left| \overrightarrow{a} ight|^{2}
+ \left| \overrightarrow{b} ight|^{2} + 2\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|\cos\left(
\overrightarrow{a}.\overrightarrow{b} ight)

    = 9 + 25 + 2.3.5\left( - \frac{1}{2}
ight) = 19 \Rightarrow \left|
\overrightarrow{a} + \overrightarrow{b} ight| = \sqrt{19}

    \left| \overrightarrow{a} -
\overrightarrow{b} ight|^{2} = \left( \overrightarrow{a} -
\overrightarrow{b} ight)^{2} = \left| \overrightarrow{a} ight|^{2} +
\left| \overrightarrow{b} ight|^{2} -
2\overrightarrow{a}.\overrightarrow{b}

    = \left| \overrightarrow{a} ight|^{2}
+ \left| \overrightarrow{b} ight|^{2} - 2\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|\cos\left(
\overrightarrow{a}.\overrightarrow{b} ight)

    = 9 + 25 - 2.3.5\left( - \frac{1}{2}
ight) = 49 \Rightarrow \left| \overrightarrow{a} - \overrightarrow{b}
ight| = \sqrt{49} = 7

    \left| \overrightarrow{a} -
2\overrightarrow{b} ight|^{2} = \left( \overrightarrow{a} -
2\overrightarrow{b} ight)^{2} = \left| \overrightarrow{a} ight|^{2}
+ 4\left| \overrightarrow{b} ight|^{2} -
4\overrightarrow{a}.\overrightarrow{b}

    = \left| \overrightarrow{a} ight|^{2}
+ 4\left| \overrightarrow{b} ight|^{2} - 4\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|\cos\left(
\overrightarrow{a}.\overrightarrow{b} ight)

    = 9 + 4.25 - 4.3.5\left( - \frac{1}{2}
ight) = 139 \Rightarrow \left|
\overrightarrow{a} - 2\overrightarrow{b} ight| =
\sqrt{139}

    \left| \overrightarrow{a} +
2\overrightarrow{b} ight|^{2} = \left( \overrightarrow{a} +
2\overrightarrow{b} ight)^{2} = \left| \overrightarrow{a} ight|^{2}
+ 4\left| \overrightarrow{b} ight|^{2} +
4\overrightarrow{a}.\overrightarrow{b}

    = \left| \overrightarrow{a} ight|^{2}
+ 4\left| \overrightarrow{b} ight|^{2} + 4\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|\cos\left(
\overrightarrow{a}.\overrightarrow{b} ight)

    = 9 + 4.25 + 4.3.5\left( - \frac{1}{2}
ight) = 79 \Rightarrow \left| \overrightarrow{a} + 2\overrightarrow{b}
ight| = \sqrt{79}

  • Câu 11: Thông hiểu
    Chọn khẳng định đúng

    Cho tứ diện ABCD. Đặt \overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AD} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi G là trọng tâm tam giác BCD. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M là trung điểm của CD suy ra \overrightarrow{BG} =
\frac{2}{3}\overrightarrow{BM}

    Ta có: \overrightarrow{AG} =
\overrightarrow{AB} + \overrightarrow{BG} = \overrightarrow{AB} +
\frac{2}{3}\overrightarrow{BM}

    = \overrightarrow{AB} +
\frac{2}{3}.\frac{1}{2}\left( \overrightarrow{BC} + \overrightarrow{BD}
ight) = \overrightarrow{AB} + \frac{1}{3}\left( \overrightarrow{BC} +
\overrightarrow{BD} ight)

    = \overrightarrow{AB} +
\frac{1}{3}\left( \overrightarrow{AC} - \overrightarrow{AB} +
\overrightarrow{AD} - \overrightarrow{AB} ight)

    = \frac{1}{3}\left( \overrightarrow{AB}
+ \overrightarrow{AB} + \overrightarrow{AD} ight) = \frac{1}{3}\left(
\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}
ight)

  • Câu 12: Vận dụng
    Tính góc giữa hai đường thẳng

    Cho hình hộp ABCD.A'B'C'D' có các cạnh đều bằng a và các góc \widehat{B'A'D'} =
60^{0},\widehat{B'A'A} = \widehat{D'A'A} =
120^{0}. Tính góc giữa đường thẳng AC' với các đường thẳng AB,AD,AA'.

    Hướng dẫn:

    Hình vẽ minh họa

    \left( \widehat{AC',AB} \right) =
\left( \widehat{AC',AD} \right) = \left( \widehat{AC',AA'}
\right) = \arccos\frac{\sqrt{6}}{3}.

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Vận dụng
    Tính tỉ số hai cạnh

    Cho hình hộp ABCD.A'B'C'D'. Một đường thẳng \Delta cắt các đường thẳng AA',BC,C'D' lần lượt tại M,N,P sao cho \overrightarrow{NM} =
2\overrightarrow{NP}. Tính \frac{MA}{MA'}.

    Hướng dẫn:

    Hình vẽ minh họa

    Đặt \overrightarrow{AD} =
\overrightarrow{a},\overrightarrow{AB} =
\overrightarrow{b},\overrightarrow{AA'} =
\overrightarrow{c}.

    M \in AA' nên \overrightarrow{AM} = k\overrightarrow{AA'} =
k\overrightarrow{c}

    N \in BC \Rightarrow \overrightarrow{BN}
= l\overrightarrow{BC} = l\overrightarrow{a}, P \in C'D' \Rightarrow
\overrightarrow{C'P} = m\overrightarrow{b}

    Ta có \overrightarrow{NM} =
\overrightarrow{NB} + \overrightarrow{BA} + \overrightarrow{AM} = -
l\overrightarrow{a} - \overrightarrow{b} +
k\overrightarrow{c}

    \overrightarrow{NP} =
\overrightarrow{BN} + \overrightarrow{BB'} +
\overrightarrow{B'C'} + \overrightarrow{C'P} = (1 -
l)\overrightarrow{a} + m\overrightarrow{b} +
\overrightarrow{c}

    Do \overrightarrow{NM} =
2\overrightarrow{NP} \Rightarrow - l\overrightarrow{a} -
\overrightarrow{b} + k\overrightarrow{c} = 2\lbrack(1 -
l)\overrightarrow{a} + m\overrightarrow{b} +
\overrightarrow{c}\rbrack

    \Leftrightarrow \left\{ \begin{matrix}
- l = 2(1 - l) \\
- 1 = 2m \\
k = 2 \\
\end{matrix} \right.\  \Leftrightarrow k = 2,m = - \frac{1}{2},l =
2.

    Vậy \frac{MA}{MA'} =
2.

  • Câu 15: Vận dụng cao
    Tính giá trị nhỏ nhất của biểu thức T

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. Tìm giá trị nhỏ nhất của biểu thức T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}?

    Hướng dẫn:

    Đặt \overrightarrow{OA} =
\overrightarrow{a};\overrightarrow{OB} =
\overrightarrow{b};\overrightarrow{OC} = \overrightarrow{c}. Khi đó \overrightarrow{OM} =
x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} với x;y;z là ba số có tổng bằng 1.

    Ta có:

    \overrightarrow{AM} =
\overrightarrow{OM} - \overrightarrow{OA} = (x - 1)\overrightarrow{a} +
y\overrightarrow{b} + z\overrightarrow{c}

    \Rightarrow {\overrightarrow{AM}}^{2} =
(x - 1)^{2}{\overrightarrow{a}}^{2} + y^{2}{\overrightarrow{b}}^{2} +
z^{2}{\overrightarrow{c}}^{2}

    \Rightarrow \frac{MA^{2}}{OA^{2}} = (x -
1)^{2} + y^{2}.\frac{b^{2}}{a^{2}} +
z^{2}.\frac{c^{2}}{a^{2}}

    Tương tự ta được

    \Rightarrow \left\{ \begin{matrix}\dfrac{MB^{2}}{OB^{2}} = (y - 1)^{2} + z^{2}.\dfrac{c^{2}}{b^{2}} +x^{2}.\dfrac{a^{2}}{b^{2}} \\\dfrac{MC^{2}}{OC^{2}} = (z - 1)^{2} + x^{2}.\dfrac{a^{2}}{c^{2}} +y^{2}.\dfrac{b^{2}}{c^{2}} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    + (x - 1)^{2} + (y - 1)^{2} + (z -
1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight)

    - \left( x^{2} + y^{2} + z^{2} ight) +
(x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight) - 2(x + y + z) + 3

    Ta biết rằng H là chân đường cao kẻ từ đỉnh O của tứ diện vuông OABC khi và chỉ khi H là trực tâm của tam giác ABC. Hơn nữa \left\{ \begin{matrix}\dfrac{1}{a^{2}} + \dfrac{1}{b^{2}} + \dfrac{1}{c^{2}} = \dfrac{1}{OH^{2}}\\x^{2}a^{2} + y^{2}b^{2} + z^{2}c^{2} = OM^{2} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}} = \frac{OM^{2}}{OH^{2}} +
1 \geq 1 + 1 = 2

    Dấu "=" xảy ra khi và chỉ khi OM = OH hay M trùng H.

    Vậy min T = 2, đạt được khi M trùng H hay M là trực tâm của tam giác ABC.

  • Câu 16: Vận dụng
    Tìm khẳng định sai

    Cho hình hộp ABCD.A'B'C'D'. Gọi IK lần lượt là tâm của hình bình hành ABB’A’BCC'B'. Khẳng định nào sau đây sai ?

    Hướng dẫn:

    “Bốn điểm I, K, C, A đồng phẳng ». Đúng vì \overrightarrow{IK},\overrightarrow{AC} cùng thuộc (B'AC)

    \overrightarrow{IK} =
\frac{1}{2}\overrightarrow{AC} =
\frac{1}{2}\overrightarrow{A'C'}”. Đúng vì \overrightarrow{IK} = \overrightarrow{IB'} +\overrightarrow{B'K}= \frac{1}{2}\left( \overrightarrow{a} +\overrightarrow{b} \right) + \frac{1}{2}\left( - \overrightarrow{a} +\overrightarrow{c} \right)= \frac{1}{2}\left( \overrightarrow{b} +\overrightarrow{c} \right)= \frac{1}{2}\overrightarrow{AC} =\frac{1}{2}\overrightarrow{A'C'}.

    “Ba vectơ \overrightarrow{BD};\overrightarrow{IK};\overrightarrow{B'C'} không đồng phẳng ». Sai vì \overrightarrow{IK} = \overrightarrow{IB'} +\overrightarrow{B'K}= \frac{1}{2}\left( \overrightarrow{a} +\overrightarrow{b} \right) + \frac{1}{2}\left( - \overrightarrow{a} +\overrightarrow{c} \right)= \frac{1}{2}\left( \overrightarrow{b} +\overrightarrow{c} \right).

    \Rightarrow \overrightarrow{BD} +
2\overrightarrow{IK} = - \overrightarrow{b} + \overrightarrow{c} +
\overrightarrow{b} + \overrightarrow{c} = 2\overrightarrow{c} =
2\overrightarrow{B'C'} \Rightarrow Ba vectơ đồng phẳng.

    \overrightarrow{BD} +
2\overrightarrow{IK} = 2\overrightarrow{BC}”. Đúng vì theo câu trên\Rightarrow \overrightarrow{BD} +
2\overrightarrow{IK} = - \overrightarrow{b} + \overrightarrow{c} +
\overrightarrow{b} + \overrightarrow{c} = 2\overrightarrow{c} =
2\overrightarrow{B'C'} = 2\overrightarrow{BC}.

  • Câu 17: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng
    Chọn phương án đúng

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1} có cạnh a. Gọi M là trung điểm AD. Giá trị \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}} là:

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}} =
\left( \overrightarrow{B_{1}B} + \overrightarrow{BA} +
\overrightarrow{AM} ight)\left( \overrightarrow{BA} +
\overrightarrow{AD} + \overrightarrow{DD_{1}} ight)

    =
\overrightarrow{B_{1}B}.\overrightarrow{DD_{1}} +
{\overrightarrow{BA}}^{2} +
\overrightarrow{AM}.\overrightarrow{AD} = - a^{2} + a^{2} + \frac{a^{2}}{2} =
\frac{a^{2}}{2}

  • Câu 19: Vận dụng cao
    Tìm điều kiện của các hệ số a; b; c

    Cho hình chóp S.ABC. Lấy các điểm A';B';C' lần lượt thuộc các tia SA;SB;SC sao cho \frac{SA}{SA'} = a;\frac{SB}{SB'} =
b;\frac{SC}{SC'} = c trong đó a;b;c là các hệ số biến thiên. Để mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC thì tổng các hệ số bằng bao nhiêu?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi G là trọng tâm tam giác ABC suy ra \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}

    Khi đó 3\overrightarrow{GS} +
\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} =
\overrightarrow{0}\overrightarrow{SA} =
a\overrightarrow{SA'};\overrightarrow{SB} =
b\overrightarrow{SB'};\overrightarrow{SC} =
c\overrightarrow{SC'}

    Suy ra 3\overrightarrow{SG} =
a\overrightarrow{SA'} + b\overrightarrow{SB'} +
c\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'}

    Vì mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC suy ra \overrightarrow{GA'};\overrightarrow{GB'};\overrightarrow{GC'} đồng phẳng.

    Do đó tồn tại ba số l;m;n sao cho l^{2} + m^{2} + n^{2} eq 0) và l\overrightarrow{GA'} +
m\overrightarrow{GB'} + n\overrightarrow{GC'} =
\overrightarrow{0}

    \Leftrightarrow l\left(
\overrightarrow{GS} + \overrightarrow{SA'} ight) + m\left(
\overrightarrow{GS} + \overrightarrow{SB'} ight) + n\left(
\overrightarrow{GS} + \overrightarrow{SC'} ight) =
\overrightarrow{0}s

    \Leftrightarrow (l + m +
n)\overrightarrow{SG} = l\overrightarrow{SA'} +
m\overrightarrow{SB'} + n\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{l}{l + m + n}\overrightarrow{SA'} + \frac{m}{l + m +
n}\overrightarrow{SB'} + \frac{n}{l + m +
n}\overrightarrow{SC'}

    \Leftrightarrow
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'} = \frac{l}{l + m +
n}\overrightarrow{SA'} + \frac{m}{l + m + n}\overrightarrow{SB'}
+ \frac{n}{l + m + n}\overrightarrow{SC'}

    Suy ra \frac{a}{3} + \frac{b}{3} +
\frac{c}{3} = \frac{l}{l + m + n} + \frac{m}{l + m + n} + \frac{n}{l + m
+ n} = 1

    \Rightarrow a + b + c = 3

  • Câu 20: Thông hiểu
    Tìm khẳng định đúng

    Cho tứ diện ABCD. Gọi MP lần lượt là trung điểm của ABCD. Đặt \overrightarrow{AB} =
\overrightarrow{b},\overrightarrow{AC} =
\overrightarrow{c},\overrightarrow{AD} = \overrightarrow{d}. Khẳng định nào sau đây đúng.

    Hướng dẫn:

    Ta có

    \overrightarrow{c} + \overrightarrow{d}
- \overrightarrow{b} = \overrightarrow{AC} + \overrightarrow{AD} -
\overrightarrow{AB}

    = 2\overrightarrow{AP} -
2\overrightarrow{AM} = 2\left( \overrightarrow{MP} ight)

    \Leftrightarrow \overrightarrow{MP} =
\frac{1}{2}(\overrightarrow{c} + \overrightarrow{d} -
\overrightarrow{b}).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo