Cho ba vectơ không đồng phẳng. Trong các khẳng định sau, khẳng định nào sai?
Các vectơ đồng phẳng
Mà :
(hệ vô nghiệm)
Vậy không tồn tại hai số
Cho ba vectơ không đồng phẳng. Trong các khẳng định sau, khẳng định nào sai?
Các vectơ đồng phẳng
Mà :
(hệ vô nghiệm)
Vậy không tồn tại hai số
Cho hình hộp và các điểm
xác định bởi
. Hãy tính
theo
để ba điểm
thẳng hàng.
Hình vẽ minh họa

Đặt .
Từ giả thiết ta có :
Từ đó ta có
.
Ba điểm thẳng hàng khi và chỉ khi tồn tại
sao cho
.
Thay các vectơ vào
và lưu ý
không đồng phẳng ta tính được
.
Cho hình lập phương có cạnh bằng
Gọi
lần lượt là trung điểm của
và
Tích vô hướng
(
là số thập phân). Giá trị của
bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)
Đáp án: -0,5||- 0,5
Cho hình lập phương có cạnh bằng
Gọi
lần lượt là trung điểm của
và
Tích vô hướng
(
là số thập phân). Giá trị của
bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)
Đáp án: -0,5||- 0,5
Hình vẽ minh họa
Vì nên
Ta có:
Vậy
Cho hình hộp có tâm
. Gọi
là tâm hình bình hành
. Đặt
,
,
,
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa

Ta phân tích:
.
.
.
.
Cho lăng trụ tam giác . Đặt
. Gọi điểm
sao cho
,
là trọng tâm tứ diện
. Biểu diễn vectơ
qua các vectơ
. Đáp án nào dưới đây đúng?
Ta có G là trọng tâm của tứ diện nên
Cho tứ diện . Gọi
là các điểm thỏa nãm
còn
là các điểm xác định bởi
. Chứng minh ba điểm
thẳng hàng. Khẳng định nào sau đây là đúng?
Hình vẽ minh họa

Ta có
Từ ta có
Lấy theo vế ta có
Tương tự
Mặt khác nên
Vậy thẳng hàng.
Cho hình chóp có
,
. Gọi
là mặt phẳng đi qua
và các trung điểm của
. Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng
.
Hinh vẽ minh họa

Gọi lần lượt là trung điểm của
. Thiết diện là tam giác
.
Theo bài tập 5 thì
Ta có
.
Tính tương tự, ta có
.
Vậy
.
Cho tứ diện có
và
. Gọi
và
lần lượt là trung điểm của
và
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Xét tam giác có
là trung điểm đoạn
.
Ta có:
Vì tam giác có
và
Nên tam giác đều. Suy ra:
Tương tự ta có tam giác đều nên
.
Xét .
Suy ra . Hay góc giữa cặp vectơ
và
bằng
.
Cho hình chóp có đáy
là hình bình hành. Gọi
lần lượt là các điểm thuộc đoạn thẳng
sao cho
. Khẳng định nào sau đây là đúng?
Hình vẽ minh họa
Ta có:
.
Nên .
Cho hình chóp . Lấy các điểm
lần lượt thuộc các tia
sao cho
trong đó
là các hệ số biến thiên. Để mặt phẳng
đi qua trọng tâm của tam giác
thì tổng các hệ số bằng bao nhiêu?
Hình vẽ minh họa
Gọi G là trọng tâm tam giác ABC suy ra
Khi đó mà
Suy ra
Vì mặt phẳng đi qua trọng tâm của tam giác
suy ra
đồng phẳng.
Do đó tồn tại ba số sao cho
) và
s
Suy ra
Cho hình hộp . Xác định vị trí các điểm
lần lượt trên
và
sao cho
. Tính tỉ số
bằng?
Hình vẽ minh họa

.
Giả sử .
Dễ dàng có các biểu diễn và
.
Từ đó suy ra
Để thì
Từ và
ta có:
.
Vậy các điểm được xác định bởi
.
Ta cũng có .
Cho hình lập phương ; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Cho hình lập phương ; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Cho tứ diện có
đôi một vuông góc.
là một điểm bất kì thuộc miền trong tam giác
. Tìm giá trị nhỏ nhất của biểu thức
?
Đặt . Khi đó
với
là ba số có tổng bằng 1.
Ta có:
Tương tự ta được
Do đó
Ta biết rằng H là chân đường cao kẻ từ đỉnh O của tứ diện vuông OABC khi và chỉ khi H là trực tâm của tam giác ABC. Hơn nữa
Do đó
Dấu "=" xảy ra khi và chỉ khi OM = OH hay M trùng H.
Vậy min T = 2, đạt được khi M trùng H hay M là trực tâm của tam giác ABC.
Cho hình lập phương có cạnh
. Gọi
là trung điểm
. Giá trị
là:
Hình vẽ minh họa
Ta có:
Cho hình hộp có các cạnh đều bằng
và các góc
. Tính diện tích các tứ giác
và
.
Hình vẽ minh họa

Ta có:
nên
.
Dễ dàng tính được
,
.
Tính được
Vậy .
Gọi lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Gọi lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Cho hình chóp có đáy
là hình bình hành. Một mặt phẳng
cắt các cạnh
lần lượt tại
.Đẳng thức nào sau đây đúng?
Hình vẽ minh họa

Gọi là tâm của hình bình hành
thì
Do đồng phẳng nên đẳng thức trên
.
Cho hình lập phương có cạnh bằng
(tham khảo hình vẽ).
Các khẳng định sau đúng hay sai?
a) . Đúng||Sai
b) . Đúng||Sai
c) . Đúng||Sai
d) . Sai||Đúng
Cho hình lập phương có cạnh bằng
(tham khảo hình vẽ).
Các khẳng định sau đúng hay sai?
a) . Đúng||Sai
b) . Đúng||Sai
c) . Đúng||Sai
d) . Sai||Đúng
a) Vì là hình bình hành nên
.
b) Vì là hình hộp nên
.
c) Vì nên
.
d) Tam giác vuông tại
nên
.
Ta có
.
Cho tứ diện có
. Gọi
là diện tích toàn phần (tổng diện tích tất cả các mặt). Tính giá trị lớn nhất của
.
Do tứ diện có
nên
.
Gọi là diện tích và
là bán kính đường tròn ngoại tiếp mỗi mặt đó thì
, nên bất đẳng thức cần chứng minh:
.
Theo công thức Leibbnitz:
Với điểm bất kì và
là trọng tâm của tam giác
thì
Cho trùng với tâm đường tròn ngoại tiếp tam giác
ta được:
.
Cho tứ diện . Trên các cạnh
và
lần lượt lấy
sao cho
,
. Gọi
lần lượt là trung điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa

«Các vectơ đồng phẳng” . Sai vì
không đồng phẳng.
« Các vectơ đồng phẳng’. Đúng vì
: đồng phẳng.
“Các vectơ đồng phẳng”. Đúng. Bằng cách biểu diễn
tương tự như trên ta có
« Các vectơ đồng phẳng”. Đúng. Ta có
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: