Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm số điểm cực trị của hàm số

    Cho hàm số y = x^{4} - x^{2} +
6. Xác định số điểm cực trị của hàm số?

    Hướng dẫn:

    Ta có: y = x^{4} - x^{2} + 6

    a.b = - 1 < 0 nên hàm số đã cho có 3 cực trị.

  • Câu 2: Thông hiểu
    Chọn giá trị cực tiểu của hàm số

    Tìm giá trị cực tiểu y_{CT} của hàm sốy = - x^{3} + 3x - 4.

    Hướng dẫn:

    Tập xác định: D\mathbb{= R}; y' = - 3x^{2} + 3; y' = 0 \Leftrightarrow x = \pm 1.

    Bảng biến thiên

    Vậy y_{CD} = y(1) = - 2; y_{CT} = y( - 1) = - 6.

  • Câu 3: Thông hiểu
    Chọn đáp án thích hợp

    Hàm số y = - x^{3} + 3x^{2} - 4 đồng biến trên tập hợp nào trong các tập hợp được cho dưới đây?

    Hướng dẫn:

    Ta có: y' = - 3x^{2} + 6x; y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight..

    Dựa vào bảng biến thiên thì hàm số đã cho đồng biến trên khoảng (0\ ;\ 2).

  • Câu 4: Thông hiểu
    Tìm khoảng nghịch biến của hàm số

    Hàm số y =
f(x) có đạo hàm và liên tục trên \mathbb{R}. Hàm số y = f'(1 - x) có đồ thị như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Hàm số y = f(x) nghịch biến

    \Leftrightarrow f'(x) < 0
\Leftrightarrow f'(1 - t) < 0 với x = 1 - t

    \Leftrightarrow \left\lbrack
\begin{matrix}
t < 0 \\
1 < t < 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
1 - x < 0 \\
1 < 1 - x < 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x > 1 \\
- 1 < x < 0 \\
\end{matrix} ight.

    Vậy hàm số y = f(x) nghịch biến trên khoảng ( - 1;0).

  • Câu 5: Vận dụng
    Hàm số có bao nhiêu điểm cực trị?

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = \left( {3 - x} ight)\left( {{x^2} - 1} ight) + 2x,\forall x \in \mathbb{R}. Hỏi hàm số có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f'\left( x ight) = \left( {3 - x} ight)\left( {{x^2} - 1} ight) + 2x \hfill \\   \Rightarrow y' = f''\left( x ight) - 2x =  - 3{x^2} + 4x + 3 \hfill \\  y' = 0 \Leftrightarrow x = \dfrac{{2 \pm \sqrt {13} }}{3} \hfill \\  y'' =  - 6x + 4 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y''\left( {\dfrac{{2 + \sqrt {13} }}{3}} ight) =  - 2\sqrt {13}  < 0} \\   {y''\left( {\dfrac{{2 - \sqrt {13} }}{3}} ight) = 2\sqrt {13}  > 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Hàm số có 1 cực trị

  • Câu 6: Thông hiểu
    Diện tích tam giác ABC

    Cho hàm số y = {x^4} - 2{x^2} + 1 có đồ thị (C). Biết rằng đồ thị (C) có ba điểm cực trị tạo thành ba đỉnh của tam giác ABC. Diện tích tam giác ABC bằng:

    Hướng dẫn:

    Ta có: y' = 4{x^3} - 4x

    Tọa độ các điểm cực trị của đồ thị hàm số là A\left( {0;1} ight),B\left( { - 1;0} ight),C\left( {1;0} ight)

    \begin{matrix}  \overrightarrow {AB}  = \left( { - 1; - 1} ight),\overrightarrow {AC}  = \left( {1; - 1} ight) \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\overrightarrow {AB} .\overrightarrow {AC}  = 0} \\   {AB = AC = \sqrt 2 } \end{array}} ight. \hfill \\ \end{matrix}

    => Tam giác ABC vuông cân tại A => S = \frac{1}{2}AB.AC = 1

  • Câu 7: Vận dụng
    Tinh số điểm cực đại của hàm số

    Cho hàm số y = f\left( x ight) có đạo hàm f'\left( x ight) = \left( {{x^2} - 1} ight)\left( {x - 4} ight),\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {3 - x} ight) có bao nhiêu điểm cực đại?

    Hướng dẫn:

    Từ giả thiết ta có bảng biến thiên của hàm số f(x)

    Tinh số điểm cực đại của hàm số

    Ta có:

    g(x) = f(3 – x)

    => g’(x) = -f’(3 – x)

    Từ bảng biến thiên của hàm số f(x) ta có:

    g'\left( x ight) \geqslant 0 \Leftrightarrow f'\left( {3 - x} ight) \leqslant 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3 - x \leqslant 1} \\   {1 \leqslant 3 - x \leqslant 4} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x \geqslant 4} \\   { - 1 \leqslant x \leqslant 2} \end{array}} ight.

    => Ta có bảng biến thiên của hàm số g(x) là:

    Tinh số điểm cực đại của hàm số

    Từ bảng biến thiên ta nhận thấy hàm số g(x) có một điểm cực đại.

  • Câu 8: Thông hiểu
    Xác định khoảng chứa tham số m

    Để hàm số y = x^{3} - 3x^{2} + m (với m là tham số) đạt cực tiểu tại x = 2 thì tham số m thuộc khoảng nào sau đây?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 6x +
m

    Hàm số đạt cực tiểu tại x = 2 \Rightarrow
y'(2) = 0 \Leftrightarrow m = 0

    Khi m = 0 \Rightarrow y' = 3x^{2} -
6x \Rightarrow y'' = 6x - 6

    Ta có: y''(2) = 6.2 - 6 = 6 >
0 suy ra hàm số đạt cực tiểu tại x
= 2

    Vậy m \in ( - 1;1) thì hàm số đạt cực tiểu tại x = 2.

  • Câu 9: Thông hiểu
    Xác định hàm số đồng biến trên R

    Trong các hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Ta có: y = {x^3} + {x^2} + 2x + 1 \Rightarrow y' = 3{x^2} - 6x + 3 \geqslant 0,\forall x \in \mathbb{R}

    Ta có: y’ = 0 chỉ tại x = 1

    Vậy y = {x^3} + {x^2} + 2x + 1 đồng biến trên

  • Câu 10: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu
    Tính tổng các điểm cực trị của hàm số

    Nếu hàm số f(x) có đạo hàm là f'(x) = x^{2}(x - 2)\left( x^{2} - x - 2
\right)(x + 1)^{4} thì tổng các điểm cực trị của hàm số f(x) bằng

    Hướng dẫn:

    Ta có: f'(x) = x^{2}(x - 2)^{2}(x +
1)^{5}.

    Ta thấy f'(x) chỉ đổi dấu qua nghiệm x = - 1 nên hàm số f(x) có đúng một điểm cực trị là x = - 1.

    Vậy tổng các điểm cực trị của hàm số f(x) bằng -
1.

  • Câu 12: Thông hiểu
    Tìm m để hàm số có 1 cực trị

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = x^{4} - \left( m^{2} - 9 ight)x^{2} +
2021 có một cực trị. Xác định số phần tử của tập S?

    Hướng dẫn:

    Để hàm số có một cực trị thì - \left(
m^{2} - 9 ight) \geq 0 \Leftrightarrow m^{2} - 9 \leq 0
\Leftrightarrow - 3 \leq m \leq 3

    Vậy có 7 giá trị nguyên thỏa mãn yêu cầu bài toán.

  • Câu 13: Thông hiểu
    Tìm phương án đúng

    Cho hàm số f(x) có đạo hàm f'(x) = x(x + 1)^{2},\ \forall x\mathbb{\in
R}. Số điểm cực trị của hàm số đã cho là

    Hướng dẫn:

    Ta có

    f'(x) = 0 \Leftrightarrow x(x +
1)^{2} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
(x + 1)^{2} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
\end{matrix} ight.

    Vì nghiệm x = 0 là nghiệm bội lẻ và x = - 1 là nghiệm bội chẵn nên số điểm cực trị của hàm số là 1.

  • Câu 14: Thông hiểu
    Xác định các giá trị nguyên tham số m

    Có tất cả bao nhiêu số nguyên m để hàm số y = \frac{(m + 1)x - 2}{x -
m} đồng biến trên từng khoảng xác định của nó?

    Hướng dẫn:

    TXĐ: D = \mathbb{R}\backslash\left\{ m
ight\}

    y' = \frac{- m^{2} - m + 2}{(x -
m)^{2}}.

    Để hàm số đồng biến trên từng khoảng xác định của ta cần tìm m để y'
\geq 0 trên ( - \infty;\
m)(m;\  + \infty) và dấu "= " chỉ xảy ra tại hữu hạn điểm trên các khoảng đó

    ĐK: - m^{2} - m + 2 > 0
\Leftrightarrow - 2 < m < 1.

    m\mathbb{\in Z} nên m = - 1,0.

  • Câu 15: Vận dụng
    Chọn đáp án đúng

    Có bao nhiêu giá trị nguyên của m để đồ thị hàm số y = -x^{3} +3mx^{2} -3m-1 có điểm cực đại và điểm cực tiểu đối xứng với nhau qua đường thẳng d: x + 8y - 74.

  • Câu 16: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Thông hiểu
    Tìm khoảng nghịch biến thích hợp

    Cho hàm số f(x) có đồ thị như hình vẽ:

    Hàm số y = - 3f(x - 2) nghịch biến trên khoảng nào?

    Hướng dẫn:

    Ta có: y' = - 3f'(x - 2) < 0
\Leftrightarrow f'(x - 2) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 2 > 2 \\
x - 2 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x > 4 \\
x < 2 \\
\end{matrix} ight.

    Vậy hàm số y = - 3f(x - 2) nghịch biến trên khoảng ( -
\infty;1).

  • Câu 18: Vận dụng
    Tính tổng các phần tử của tập S

    Cho hàm số y = \frac{1}{3}x^{3} - mx^{2}
+ (3 - 2m)x với m là tham số. Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số nghịch biến trên một khoảng có độ dài bằng 2\sqrt{5}. Tính tổng các phần tử của tập hợp S?

    Hướng dẫn:

    Ta có: y' = x^{2} - 2mx + 3 - 2m
\Rightarrow \Delta' = m^{2} + 2m - 3

    Dễ thấy nếu \Delta' \leq 0 suy ra hàm số đồng biến trên \mathbb{R} nên trường hợp này không thỏa mãn

    Theo yêu cầu bài toán

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
\left| x_{1} - x_{2} ight| = 2\sqrt{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} + 2m - 3 > 0 \\
\left( x_{1} + x_{2} ight)^{2} - 4x_{1}x_{2} = 20 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \in ( - \infty; - 3) \cup (1; + \infty) \\
4m^{2} - 4(3 - 2m) = 20 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \in ( - \infty; - 3) \cup (1; + \infty) \\
\left\lbrack \begin{matrix}
m = - 4 \\
m = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 4 \\
m = 2 \\
\end{matrix} ight.\  \Rightarrow S = \left\{ - 4;2
ight\}

    Vậy tổng tất cả các phần tử của tập S bằng -2.

  • Câu 19: Vận dụng
    Tính giá trị biểu thức

    Tổng bình phương của tất cả các giá trị nguyên của tham số m để hàm số y
= \left( 3m^{2} - 12 \right)x^{3} + 3(m - 2)x^{2} - x + 2 nghịch biến trên \mathbb{R} là:

    Hướng dẫn:

    Tập xác định: D =
\mathbb{R}.

    Ta có: y' = 9\left( m^{2} - 4
ight)x^{2} + 6(m - 2)x - 1.

    Hàm số nghịch biến trên \mathbb{R
\Leftrightarrow}y' \leq 0\forall x\mathbb{\in R}( dấu "=" xảy ra tại hữu hạn x\mathbb{\in R})

    TH1: m^{2} - 4 = 0 \Leftrightarrow m =
\pm 2.

    + Với m = 2 ta có y' = - 1 \leq 0 \forall x\mathbb{\in R} nên m = 2 thỏa mãn.

    + Với m = - 2 ta có y^{'} = - 24x - 1 \leq 0 \Leftrightarrow x
\geq - \frac{1}{24}(không thỏa với mọi x\mathbb{\in R}) nên loại m = - 2.

    TH2: m^{2} - 4 eq 0 \Leftrightarrow m
eq \pm 2. Ta có

    y' \leq 0,\forall x\mathbb{\in
R} \Leftrightarrow \left\{
\begin{matrix}
a = 9\left( m^{2} - 4 ight) < 0 \\
\Delta^{'} = 9(m - 2)^{2} + 9\left( m^{2} - 4 ight) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 2 < m < 2 \\
0 \leq m \leq 2 \\
\end{matrix} ight.

    \Leftrightarrow 0 \leq m <
2\overset{m\mathbb{\in Z}}{ightarrow}m \in \left\{ 0;1
ight\}

    Vậy m \in \left\{ \ 0\ ;\ 1;2 ight\}
\Rightarrow 0^{2} + 1^{2} + 2^{2} = 5.

  • Câu 20: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) có đồ thị như hình vẽ. Hàm số đã cho đồng biến trên khoảng nào?

    Hướng dẫn:

    Trên khoảng ( - \infty\ ;\ 0) đồ thị có hướng đi xuống là hàm số nghịch biến nên loại.

    Trên khoảng (1; 3) đồ thị có đoạn hướng đi lên là hàm số đồng biến và có đoạn hướng đi xuống là hàm số nghịch biến nên loại.

    Trên khoảng (0\ ;\ 2) đồ thị có hướng đi lên là hàm số đồng biến nên chọn.

    Trên khoảng (0\ ;\  + \infty) đồ thị có đoạn hướng đi lên là hàm số đồng biến và có đoạn hướng đi xuống là hàm số nghịch biến nên loại.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo