Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định điều kiện của tham số m

    Cho hàm số y = \frac{1}{3}x^{3} - (m +
2)x^{2} + \left( m^{2} + 4m + 3 ight)x + 6m + 9 với m là tham số. Tìm giá trị của tham số m để đồ thị hàm số (C) có cực đại tại x_{1} và cực tiểu tại x_{2} sao cho {x_{1}}^{2} - 2x_{2} = 0?

    Hướng dẫn:

    Ta có: y' = x^{2} - 2(m + 2)x + m^{2}
+ 4m + 3

    Hàm số có cực đại tại x_{1} và cực tiểu tại x_{2} khi và chỉ khi

    \Delta' > 0 \Leftrightarrow (m +
2)^{2} - \left( m^{2} + 4m + 3 ight) > 0 \Leftrightarrow 1 >
0\forall m\mathbb{\in R}

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = m + 3 \\
x = m + 1 \\
\end{matrix} ight.

    Theo bài ra ta có:

    {x_{1}}^{2} - 2x_{2} = 0 \Leftrightarrow
(m + 1)^{2} - 2(m + 3) = 0

    \Leftrightarrow m^{2} - 5 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - \sqrt{5} \\
m = \sqrt{5} \\
\end{matrix} ight.

    Vậy đáp án cần tìm là \left\lbrack
\begin{matrix}
m = \sqrt{5} \\
m = - \sqrt{5} \\
\end{matrix} ight..

  • Câu 2: Thông hiểu
    Tìm m để hàm số đồng biến trên R

    Có bao nhiêu số nguyên m thỏa mãn điều kiện hàm số y = 2x^{3} + 9mx^{2} + 12m^{2}x + m - 2 đồng biến trên khoảng ( - \infty; +
\infty)?

    Hướng dẫn:

    Ta có:

    y' = 6x^{2} + 18mx +
12m^{2}. Hàm số đồng biến trên khoảng ( - \infty; + \infty) \Leftrightarrow y' \leq 0;\forall x\mathbb{\in
R}

    \Leftrightarrow x^{2} + 3mx + 2m^{2}
\leq 0

    \Leftrightarrow \Delta \leq 0
\Leftrightarrow m^{2} \leq 0 \Leftrightarrow m = 0

    Vậy có duy nhất một số nguyên m thỏa mãn điều kiện hàm số y = 2x^{3} + 9mx^{2} + 12m^{2}x + m - 2 đồng biến trên khoảng ( - \infty; +
\infty).

  • Câu 3: Thông hiểu
    Chọn phương án đúng

    Tìm m để hàm số y = x^{3} - 3mx^{2} + 3(2m - 1) + 1 đồng biến trên \mathbb{R}.

    Hướng dẫn:

    Ta có:

    y' = 3x^{2} - 6mx + 3(2m -
1)

    Ta có: \Delta' = ( - 3m)^{2} -
3.3.(2m - 1).

    Để hàm số luôn đồng biến trên \mathbb{R} thì \Delta' \leq 0

    \Leftrightarrow 9m^{2} - 18m + 9 < 0
\Leftrightarrow 9\left( m^{2} - 2m + 1 ight) \leq 0

    \Leftrightarrow 9(m - 1)^{2} \leq 0
\Leftrightarrow m = 1.

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x - 2)^{2}(x - 1).x^{3};\forall
x\mathbb{\in R}. Hỏi hàm số có bao nhiêu điểm cực tiểu?

    Hướng dẫn:

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \\
x = 1 \\
x = 0 \\
\end{matrix} ight.

    Bảng biến thiên

    Dựa vào bảng biến thiên suy ra hàm số có một điểm cực tiểu.

  • Câu 5: Vận dụng
    Xác định số cực trị của hàm số

    Hàm số f\left( x ight) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + C_{2019}^3{x^3} + ... + C_{2019}^{2019}{x^{2019}} có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f\left( x ight) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + C_{2019}^3{x^3} + ... + C_{2019}^{2019}{x^{2019}} = {\left( {1 + x} ight)^{2019}} \hfill \\   \Rightarrow f'\left( x ight) = 2019.{\left( {1 + x} ight)^{2018}} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow x =  - 1 \hfill \\ \end{matrix}

    Vì x = -1 là nghiệm bội chẵn nên x = -1 không phải là điểm cực trị của hàm số.

  • Câu 6: Thông hiểu
    Chọn kết luận đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Tìm giá trị cực đại y_{CĐ} và giá trị cực tiểu y_{CT} của hàm số đã cho.

    Hướng dẫn:

    Dựa vào bảng biến thiên của hàm số ta có y_{CĐ} = 3y_{CT} = 0.

  • Câu 7: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x - 2)^{2019}\left( x^{2} - x -2 ight)^{2020}(x + 3)^{3}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x - 2)^{2019}\left( x^{2} - x -2 ight)^{2020}(x + 3)^{3}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu
    Xác định số cực trị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số điểm cực trị của hàm số g(x) = \left|
f(x) - 2 ight| là:

    Hướng dẫn:

    Số điểm cực trị của hàm số g(x) = \left|
f(x) - 2 ight| = m + n

    Với m là số điểm cực trị của hàm số y =
f(x) - 2 \Rightarrow m = 2

    n là số nghiệm bội lẻ của phương trình f(x) = 2 \Rightarrow n = 3

    Suy ra số điểm cực trị của hàm số g(x) =
\left| f(x) - 2 ight| = 2 + 3 = 5

  • Câu 9: Vận dụng
    Ghi đáp án vào ô trống

    Để đồ thị hàm số y = x^{4} - 2mx^{2} + m- 1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 2. Tìm giá trị tham số m thỏa mãn yêu cầu bài toán?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Để đồ thị hàm số y = x^{4} - 2mx^{2} + m- 1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 2. Tìm giá trị tham số m thỏa mãn yêu cầu bài toán?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Vận dụng
    Xác định tham số m thỏa mãn điều kiện

    Cho hàm số y = \frac{1}{3}x^{3} - (m +
2)x^{2} + (2m + 3)x + 2017 với m là tham số thực. Tìm tất cả các giá trị của m để x = 1 là hoành độ trung điểm của đoạn thẳng nối hai điểm cực đại, cực tiểu của đồ thị hàm số.

    Hướng dẫn:

    Đạo hàm y' = x^{2} - 2(m + 2)x + (2m
+ 3)

    \ y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2m + 3 \\
\end{matrix} ight.

    Để hàm số có hai điểm cực trị x_{1},\
x_{2} khi và chỉ khi 2m + 3 eq 1
\Leftrightarrow m eq - 1. (*)

    Gọi A\left( x_{1};y_{1} ight)B\left( x_2;y_2 ight) là hai điểm cực trị của đồ thị hàm số.

    Khi đó theo định lí Viet, ta có x_{1} +
x_{2} = 2m + 4.

    Yêu cầu bài toán \Leftrightarrow \frac{2m
+ 4}{2} = 1 \Leftrightarrow m = - 1: không thỏa mãn (*).

    Nhận xét.

    Qua khảo sát 99% học sinh chọn đáp án A, lý do là quên điều kiện để có hai cực trị.

    Tôi cố tình ra giá trị m đúng ngay giá trị loại đi.

    Nếu gặp bài toán không ra nghiệm đẹp như trên thì ta giải như sau: ''x_{0} là hoành độ trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số bậc ba y = ax^{3} + bx^{2} + cx + d khi và chỉ khi y' = 0 có hai nghiệm phân biệt (\Delta > 0) và y''\left( x_{0} ight) =
0''.

  • Câu 11: Vận dụng
    Tìm m nguyên để hàm số đồng biến trên R

    Số giá trị nguyên của tham số m để hàm số y = 2{x^3} - 3m{x^2} + 6mx + 2 đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Ta có: y' = 6{x^2} - 6mx + 6m

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 6 > 0} \\   {\Delta ' = 9{m^2} - 36m \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.

  • Câu 12: Vận dụng
    Tìm m để hàm số nghịch biến trên khoảng

    Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (-1; +∞)

    Hướng dẫn:

    Ta có: y' = 2mx - \left( {m + 6} ight). Theo yêu cầu bài toán ta có:

    y' \leqslant 0;\forall x \in \left( { - 1; + \infty } ight)

    => 2mx - \left( {m + 6} ight) \leqslant 0 \Leftrightarrow m \leqslant \frac{6}{{2x - 1}}

    Xét hàm số g\left( x ight) = \frac{6}{{2x - 1}},x \in \left( { - 1; + \infty } ight)

    Ta có bảng biến thiên như sau:

    Tìm m để hàm số nghịch biến trên khoảng

    Vậy - 2 \leqslant m \leqslant 0

  • Câu 13: Thông hiểu
    Tìm các giá trị nguyên của tham số m

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y = \frac{mx - 16}{x - m} đồng biến trên khoảng ( - 5;2)?

    Hướng dẫn:

    Điều kiện xác định x eq m

    Ta có: y' = \frac{- m^{2} + 16}{(x -
m)^{2}}. Để hàm số đã cho đồng biến trên khoảng ( - 5;2) ta có;

    \left\{ \begin{matrix}
y' > 0 \\
m otin ( - 5;2) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 4 < m < 4 \\
m otin ( - 5;2) \\
\end{matrix} ight.

    Mặt khác m\mathbb{\in Z} nên m \in \left\{ 2;3 ight\}

    Vậy có hai giá trị của tham số m cần tìm.

  • Câu 14: Thông hiểu
    Tìm m để hàm số đồng biến trên khoảng

    Có tất cả bao nhiêu các giá trị nguyên của tham số m để hàm số y
= \frac{2x + 4}{x - m} đồng biến trên khoảng ( - \infty; - 4)?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Ta có: y' = \frac{- 2m - 4}{(x -
m)^{2}}

    Hàm số đã cho đồng biến trên khoảng ( -
\infty; - 4) khi và chỉ khi \left\{
\begin{matrix}
m \geq - 4 \\
- 2m - 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq - 4 \\
m < - 2 \\
\end{matrix} ight.

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 4; - 3 ight\}

    Vậy có hai giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 15: Vận dụng
    Chọn đáp án thích hợp

    Cho hàm số y = f'(x)có đồ thị như hình vẽ

    Hàm số y = f\left( 2 - x^{2}
\right) đồng biến trên khoảng nào dưới đây

    Hướng dẫn:

    Hàm số y = f\left( 2 - x^{2}
ight) có  y' = -
2x.f'\left( 2 - x^{2} ight)

     

    \begin{matrix} y' = - 2x.f'\left( 2 - x^{2} ight) > 0 \end{matrix}

    \Leftrightarrow
\left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x > 0 \\
1 < 2 - x^{2} < 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x < 0 \\
\left\lbrack \begin{matrix}
2 - x^{2} < 1 \\
2 - x^{2} > 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix} ight.\Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  x > 0 \hfill \\
   - 1 < x < 1 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  x < 0 \hfill \\
  \left[ \begin{gathered}
  x <  - 1 \hfill \\
  x > 1 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  0 < x < 1 \hfill \\
  x <  - 1 \hfill \\ 
\end{gathered}  ight.

    Do đó hàm số đồng biến trên (0;1).

  • Câu 16: Thông hiểu
    Tìm các giá trị thực của tham số m theo yêu cầu

    Tập hợp tất cả các giá trị thực của tham số m để hàm số y
= \frac{x + 5}{x + m} đồng biến trên khoảng ( - \infty; - 8)

    Hướng dẫn:

    Điều kiện x eq - m.

    Ta có 

    Để hàm số y = \frac{x + 5}{x +
m} đồng biến trên khoảng ( -
\infty; - 8) thì

    \left\{ \begin{matrix}
y' > 0 \\
- m \in ( - \infty; - 8) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
m - 5 > 0 \\
- m \geq - 8 \\
\end{matrix} ight.\  \Rightarrow 5 < m \leq 8.y' = \frac{{m - 5}}{{{{\left( {x + m} ight)}^2}}}

  • Câu 17: Nhận biết
    Xác định số cực trị của hàm số

    Hàm số y=\frac{2 x +3}{x+1} có bao nhiêu điểm cực trị?

    Hướng dẫn:

    y' = \frac{- 1}{(x + 1)^{2}} >
0,\forall x eq - 1 nên hàm số không có cực trị.

  • Câu 18: Nhận biết
    Chọn đáp án đúng trong các đáp án dưới đây

    Cho hàm số f\left( x ight) = \frac{{{x^3}}}{3} - \frac{{{x^2}}}{2} - 6x + \frac{3}{4}

    Hướng dẫn:

    Ta có: f'\left( x ight) = {x^2} - x - 6 có hai nghiệm phân biệt là -2 và 3

    => f’(x) < 0 => x \in \left( { - 2;3} ight)

    Vậy hàm số nghịch biến trên khoảng (-2; 3)

  • Câu 19: Thông hiểu
    Tính số phần tử của tập hợp S

    Cho hàm số y = \frac{m^{2}x + 5}{2mx +
1} với m là tham số. Gọi S là tập hợp các số nguyên m \in \lbrack - 2020;2020brack để hàm số đã cho nghịch biến trên khoảng (3; +
\infty). Xác định số phần tử của tập hợp S?

    Hướng dẫn:

    Xét m = 0 \Rightarrow y = 5 là hàm hằng nên hàm số không nghịch biến. Vậy m
= 0 không thỏa mãn.

    Xét m eq 0

    Tập xác định D = \left( - \infty; -
\frac{1}{2m} ight) \cup \left( - \frac{1}{2m}; + \infty
ight)

    Để hàm số nghịch biến trên khoảng (3; +
\infty) khi và chỉ khi

    \left\{ \begin{matrix}
y' = \frac{m^{2} - 10m}{(2mx + 1)^{2}} < 0 \\
- \frac{1}{2m} \leq 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 10m < 0 \\
\frac{6m + 1}{2m} \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
0 < m < 10 \\
\left\lbrack \begin{matrix}
m \leq - \frac{1}{6} \\
m > 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 0 < m < 10

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 2020;2020brack \\
\end{matrix} ight. nên m \in
\left\{ 1;2;3;...;9 ight\}

    Vậy tập hợp S có tất cả 9 giá trị.

  • Câu 20: Thông hiểu
    Chọn phương án đúng

    Cho hàm số f(x) có đạo hàm f'(x) = x(x - 1)(x + 4)^{3},\ \forall
x\mathbb{\in R}. Số điểm cực tiểu của hàm số đã cho là

    Hướng dẫn:

    Ta có:

    f'(x) = 0 \Leftrightarrow x(x
- 1)(x + 4)^{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 4 \\
\end{matrix} ight..

    Bảng biến thiên:

    Dựa vào bảng biến thiên ta thấy hàm số đã cho có 2 điểm cực tiểu.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo