Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = x^{3} - 2x^{2} + x +
1. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Ta có y' = 3x^{2} - 4x + 1
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = \frac{1}{3} \\
\end{matrix} ight.

    Bảng biến thiên:

    Vậy hàm số nghịch biến trên khoảng \left(
\frac{1}{3};1 ight).

  • Câu 2: Vận dụng
    Chọn khoảng nghịch biến của hàm số

    Cho hàm số y =
f(x) có bảng biến thiên như hình vẽ:

    Hàm số g(x) = f\left( 2x^{2} -
\frac{5}{2}x - \frac{3}{2} ight) nghịch biến trong khoảng nào dưới đây?

    Hướng dẫn:

    Ta có:

    g'(x) = \left( 4x - \frac{5}{2}
ight).f'\left( 2x^{2} - \frac{5}{2}x - \frac{3}{2}
ight)

    Xét g'(x) = 0 \Leftrightarrow\left\lbrack \begin{matrix}4x - \dfrac{5}{2} = 0 \\f'\left( 2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5}{8} \\2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} = - 2 \\2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} = 3 \\\end{matrix} ight.\  \Leftrightarrow x \in \left\{ -1;\dfrac{1}{4};\dfrac{5}{8};1;\dfrac{9}{4} ight\}

    Ta có bảng xét dấu:

    g'(0) = - \frac{5}{2}.f'\left( -
\frac{3}{2} ight) > 0 \Rightarrow g'(x) > 0;\forall x \in
\left( - 1;\frac{1}{4} ight)

    Vậy đáp án cần tìm là \left(
1;\frac{5}{4} ight).

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số f(x) có đạo hàm . Gọi P là giá trị cực đại của hàm số đã cho. Chọn khẳng định đúng.

    Hướng dẫn:

     Ta có: f'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm 3} \\   {x = 0} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Chọn đáp án đúng

    Dựa vào bảng biến thiên ta có giá trị cực đại của hàm số là P = f(-3)

  • Câu 4: Vận dụng
    Tìm m để hàm số đồng biến trên R

    Tìm giá trị của tham số m để hàm số y = \sin 2x + mx + c đồng biến trên \mathbb{R}

    Hướng dẫn:

    Ta có: y' = 2\cos 2x + m

    Hàm số đồng biến trên \mathbb{R}

    \begin{matrix}   \Leftrightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \mathop {\min }\limits_\mathbb{R} y' =  - 2 + m \geqslant 0 \Leftrightarrow m \geqslant 2 \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu
    Xác đinh hàm số có cực trị

    Hàm số nào sau đây có cực trị?

    Hướng dẫn:

    Hàm số y = \sqrt{x - 1}y' = \frac{1}{2\sqrt{x - 1}} > 0;\forall x
\in (1; + \infty) suy ra hàm số không có cực trị.

    Hàm số y = x^{2} - 2x + 3y' = 2x - 2 = 0 \Leftrightarrow x =
1y' đổi dấu đi qua x = 1 suy ra hàm số có cực trị tại điểm x = 1.

    Hàm số y = x^{3} + 8x + 9y' = 3x^{2} + 8 > 0;\forall
x\mathbb{\in R} suy ra hàm số không có cực trị.

    Hàm số y = \frac{2x - 1}{3x + 1}y' = \frac{5}{(3x + 1)^{2}} >
0 với \forall x \in \left( -
\infty; - \frac{1}{3} ight) \cup \left( - \frac{1}{3}; + \infty
ight) suy ra hàm số không có cực trị.

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) = \frac{1}{3}x^{3} -
\frac{1}{2}(m + 3)x^{2} + m^{2}x + 1 với m là tham số. Hỏi có bao nhiêu giá trị của tham số m để hàm số đạt cực đại tại x = 1?

    Hướng dẫn:

    Ta có: y' = f'(x) = x^{2} - (m +
3)x + m^{2}

    Điều kiện cần: Hàm số y = f(x) đã cho có đạo hàm tại \forall x\mathbb{\in
R}

    Do đó hàm số y = f(x) đạt cực đại tại x = 1 \Leftrightarrow f'(1) =
0

    \Leftrightarrow m^{2} - m - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 2 \\
\end{matrix} ight.

    Điều kiện đủ:

    Với m = - 1 hàm số trở thành y = \frac{1}{3}x^{3} - x^{2} + x +
1

    Ta có: y' = x^{2} - 2x + 1 = (x -
1)^{2} \geq 0;\forall x\mathbb{\in R}

    Do đó hàm số không có cực trị.

    Với m = 2 hàm số trở thành y = \frac{1}{3}x^{3} - \frac{5}{2}x^{2} + 4x +
1

    Ta có: y' = x^{2} - 5x + 4 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 4 \\
\end{matrix} ight.

    Bảng biến thiên

    Suy ra hàm số đạt cực đại tại x =
1 suy ra m = 2 thỏa mãn.

    Vậy có duy nhất một giá trị của m thỏa mãn yêu cầu.

  • Câu 7: Vận dụng
    Tìm số phần tử của tập hợp S

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m + 1} ight){x^2} + 3\left( {7m - 3} ight)x không có cực trị. Số phần tử của S là:

    Hướng dẫn:

    Xét hàm số y = {x^3} - 3\left( {m + 1} ight){x^2} + 3\left( {7m - 3} ight)x ta có:

    \begin{matrix}  y' = 3{x^2} - 6\left( {m + 1} ight)x + 3\left( {7m - 3} ight) \hfill \\  y' = 0 \Leftrightarrow {x^2} - 2\left( {m + 1} ight)x + 7m - 3 = 0 \hfill \\ \end{matrix}

    Hàm số đã cho không có cực trị

    => Phương trình y’ = 0 vô nghiệm hoặc có nghiệm kép

    => \Delta ' \leqslant 0 \Rightarrow {\left( {m + 1} ight)^2} - 1\left( {7m - 3} ight) \leqslant 0 \Rightarrow 1 \leqslant m \leqslant 4

    Do m là số nguyên nên m \in \left\{ {1;2;3;4} ight\}

    Vậy tập S có 4 phần tử.

  • Câu 8: Thông hiểu
    Chọn đáp án thích hợp

    Cho hàm số y = x^{4} - 2x^{2}. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    TXĐ: D\mathbb{= R}.

    y' = 4x^{3} - 4x;\ \ y' = 0
\Leftrightarrow 4x^{3} - 4x = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Suy ra hàm số đồng biến trên các khoảng (
- 1;\ 0), (1;\  + \infty); hàm số nghịch biến trên các khoảng ( -
\infty;\  - 1), (0;\ 1). Vậy hàm số nghịch biến trên khoảng ( -
\infty;\  - 2).

    Cách 2: Dùng chức năng mode 7 trên máy tính kiểm tra từng đáp án.

  • Câu 9: Nhận biết
    Chọn đáp án đúng

    Cho hàm số f(x) có bảng biến thiên như sau:

    Điểm cực đại của hàm số đã cho là

    Hướng dẫn:

    Từ BBT của hàm số f(x) suy ra điểm cực đại của hàm số f(x)x = 1 .

  • Câu 10: Vận dụng
    Chọn đáp án đúng

    Tìm các giá trị của tham số m để đồ thị hàm số y = x^{4} +2mx^{2} -1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 4\sqrt{2}

  • Câu 11: Vận dụng
    Xác định số điểm cực trị của hàm số

    Cho hàm số f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}}. Số điểm cực trị của hàm số đã cho là:

    Hướng dẫn:

    Áp dụng công thức khai triển nhị thức Newton ta có:

    \begin{matrix}  f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}} = {\left( {1 + x} ight)^{10}} \hfill \\   \Rightarrow f'\left( x ight) = 10{\left( {1 + x} ight)^9} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Xác định số điểm cực trị của hàm số

    Vậy hàm số đã cho có duy nhất một điểm cực trị x = -1

  • Câu 12: Thông hiểu
    Tìm m để hàm số có cực trị theo yêu cầu

    Cho hàm số y = \frac{x^{3}}{3} - (m +
1)x^{2} + \left( m^{2} - 3 \right)x + 1 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số đạt cực trị tại x = - 1.

    Hướng dẫn:

    Ta có y' = x^{2} - 2(m + 1)x + m^{2}
- 3.

    Yêu cầu bài toán \Leftrightarrow y' = 0 có hai nghiệm phân biệt x_{1}
eq x_{2} = - 1

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' = (m + 1)^{2} - \left( m^{2} - 3 ight) > 0 \\
y'( - 1) = m^{2} + 2m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2m + 4 > 0 \\
m^{2} + 2m = 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 0

  • Câu 13: Thông hiểu
    Tìm m để hàm số thỏa mãn yêu cầu

    Cho hàm số y = - x^{3} - 3x^{2} + mx +
2 với m là tham số. Với điều kiện nào của tham số m thì hàm số đã cho có cực đại và cực tiểu?

    Hướng dẫn:

    Ta có: y' = - 3x^{2} - 6x +
m(*)

    Để hàm số có cực đại và cực tiểu thì phương trình (*) có hai nghiệm phân biệt

    \Rightarrow \Delta' > 0
\Leftrightarrow 9 + 3m > 0 \Leftrightarrow m > - 3.

    Vậy đáp án cần tìm là m > -
3.

  • Câu 14: Thông hiểu
    Chọn phương án đúng

    Cho hàm số y = \frac{1}{3}x^{3} - mx^{2}
+ (2m - 1)x - 3 với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số có điểm cực đại và cực tiểu nằm cùng một phía đối với trục tung.

    Hướng dẫn:

    Đạo hàm y' = x^{2} - 2mx + 2m -
1.

    Yêu cầu bài toán \Leftrightarrow phương trình y' = 0 có hai nghiệm x_{1},\ x_{2} phân biệt và cùng dấu \Leftrightarrow \left\{
\begin{matrix}
\Delta' = m^{2} - (2m - 1) > 0 \\
P = 2m - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
m > \dfrac{1}{2} \\
\end{matrix} ight.\ .

  • Câu 15: Vận dụng
    Tìm số điểm cực trị của hàm số

    Số điểm cực trị của hàm số y = \left| {\sin x - \frac{\pi }{4}} ight|,x \in \left( { - \pi ;\pi } ight) là?

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) = \sin x - \frac{x}{4};x \in \left( { - \pi ;\pi } ight)

    Ta có:

    \begin{matrix}  f'\left( x ight) = \cos x - \dfrac{1}{4} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow \cos x = \dfrac{1}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = {x_1} \in \left( { - \dfrac{\pi }{2};0} ight)} \\   {x = {x_1} \in \left( {0;\dfrac{\pi }{2}} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    \begin{matrix}  f\left( {{x_1}} ight) = \sin {x_1} - \dfrac{{{x_1}}}{4} =  - \dfrac{{\sqrt {15} }}{4} - \dfrac{{{x_1}}}{4} <  - \dfrac{{\sqrt {15} }}{4} + \dfrac{\pi }{8} < 0 \hfill \\  f\left( {{x_2}} ight) = \sin {x_2} - \dfrac{{{x_2}}}{4} = \dfrac{{\sqrt {15} }}{4} - \dfrac{{{x_1}}}{4} < \dfrac{{\sqrt {15} }}{4} - \dfrac{\pi }{8} < 0 \hfill \\ \end{matrix}

    Ta có bảng biến thiên:

    Tìm số điểm cực trị của hàm số

    Dựa vào bảng biến thiên, ta thấy hàm số có hai điểm cực trị và đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác x1; x2

    => Hàm số y = \left| {\sin x - \frac{x}{4}} ight|,x \in \left( { - \pi ,\pi } ight) có 5 điểm cực trị

  • Câu 16: Thông hiểu
    Chọn đáp án đúng

    Hỏi có bao nhiêu số nguyên m để hàm số y = \left( m^{2} - 1 \right)x^{3} +
(m - 1)x^{2} - x + 4 nghịch biến trên khoảng( - \infty\ ; + \infty).

    Hướng dẫn:

    Ta có y' = 3\left( m^{2} - 1
ight)x^{2} + 2(m - 1)x - 1

    Hàm số đã cho nghịch biến trên khoảng\ (
- \infty\ ; + \infty) \Leftrightarrow y' \leq 0\ ,\forall
x\mathbb{\in R}

    \Leftrightarrow 3\left( m^{2} - 1
ight)x^{2} + 2(m - 1)x - 1 \leq 0\ ,\forall x\mathbb{\in
R}.

    * Trường hợp 1: m^{2} - 1 = 0
\Leftrightarrow m = \pm 1.

    + Với m = 1, ta được - 1 \leq 0\ ,\forall x\mathbb{\in R} (luôn đúng), suy ra m = 1 (nhận).

    + Với m = - 1, ta được - 4x - 1 \leq 0 \Leftrightarrow x \geq
\frac{1}{4}, suy ra m = -
1 (loại).

    * Trường hợp 2: m^{2} - 1 eq 0
\Leftrightarrow m eq \pm 1.

    Ta có \Delta' = (m - 1)^{2} + 3\left(
m^{2} - 1 ight)

    = m^{2} - 2m + 1 + 3m^{2} - 3 = 4m^{2} -
2m - 2.

    Để y' \leq 0\ ,\forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
m^{2} - 1 < 0 \\
4m^{2} - 2m - 2 \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 1 < m < 1 \\
- \frac{1}{2} \leq m \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow - \frac{1}{2} \leq m <
1.

    Tổng hợp lại, ta có tất cả giá trị m cần tìm là - \frac{1}{2} \leq m \leq 1.

    m\mathbb{\in Z}, suy ra m \in \left\{ 0\ ;1 ight\}, nên có 2 giá trị nguyên của tham số m.

  • Câu 17: Thông hiểu
    Tìm giá trị của tham số để hàm số nghịch biến trên R

    Xác định giá trị của a để hàm số f\left( x ight) = \sin x - ax + b nghịch biến trên trục số.

    Hướng dẫn:

     Ta có: y' = \cos x - a

    Hàm số nghịch biến trên \mathbb{R}

    \begin{matrix}   \Rightarrow \cos x - a \leqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant \cos x,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant 1 \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Hỏi hàm số y = 2x^{4} + 1 đồng biến trên khoảng nào?

    Hướng dẫn:

    Ta có: y = 2x^{4} + 1

    Tập xác định:\ D\mathbb{= R}

    Ta có: y' = 8x^{3}; y' = 0 \Leftrightarrow 8x^{3} = 0
\Leftrightarrow x = 0suy ra y(0) =
1

    Giới hạn: \lim_{x ightarrow - \infty}y
= + \infty; \lim_{x ightarrow +
\infty}y = + \infty

    Bảng biến thiên:

    Vậy hàm số đồng biến trên khoảng (0; +
\infty).

  • Câu 19: Thông hiểu
    Xác định số phần tử của tập hợp T

    Cho hàm số y = \frac{mx + 2m + 3}{x +
m} với m là tham số. Gọi T là tập hợp tất cả các giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng (2; +
\infty). Hỏi tập hợp T có tất cả bao nhiêu phần tử?

    Hướng dẫn:

    Ta có: y' = \frac{m^{2} - (2m +
3)}{(x + m)^{2}} = \frac{m^{2} - 2m - 3}{(x + m)^{2}}

    Theo yêu cầu bài toán \Leftrightarrow
y' < 0;\forall x \in (2; + \infty)

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 2m - 3 < 0 \\
- m \leq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 < m < 3 \\
m \geq - 2 \\
\end{matrix} ight.\  \Leftrightarrow - 1 < m < 3

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;1;2 ight\}

    \Rightarrow T = \left\{ 0;1;2
ight\}

    Vậy tập hợp T có tất cả 3 phần tử.

  • Câu 20: Nhận biết
    Tìm khẳng định đúng

    Cho hàm số y =
\frac{2x - 1}{x + 3}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}

    Ta có: y' = \frac{7}{(x + 3)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên mỗi khoảng (
- \infty;3)(3; +
\infty).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo