Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định số cực đại của hàm số

    Có bao nhiêu giá trị thực của tham số m để hàm số y
= x^{4} + (m - 1)x^{2} + \left( m^{2} - 1 ight)x đạt cực tiểu tại điểm x = 0?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
y' = 4x^{3} + 2(m - 1)x + \left( m^{2} - 1 ight) \\
y'' = 12x^{2} + 2(m - 1) \\
\end{matrix} ight.

    Hàm số đạt cực tiểu tại x = 0 \Rightarrow
y'(0) = 0 \Leftrightarrow m^{2} - 1 = 0 \Leftrightarrow m = \pm
1

    Với m = 1 ta được y = x^{4} \Rightarrow y' = 4x^{3}

    y' = 0 \Leftrightarrow x =
0. Hàm số đạt cực tiểu tại x =
0 (thỏa mãn yêu cầu)

    Với m = - 1 ta được y = x^{4} - 2x^{2} \Rightarrow y' = 4x^{3} -
4x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.. Hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = \pm 1 (không thỏa mãn)

    Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 2: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = x^{3} - 2x^{2} + x +
1. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Ta có y' = 3x^{2} - 4x + 1
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = \frac{1}{3} \\
\end{matrix} ight.

    Bảng biến thiên:

    Vậy hàm số nghịch biến trên khoảng \left(
\frac{1}{3};1 ight).

  • Câu 3: Thông hiểu
    Xác định số cực trị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số điểm cực trị của hàm số g(x) = \left|
f(x) - 2 ight| là:

    Hướng dẫn:

    Số điểm cực trị của hàm số g(x) = \left|
f(x) - 2 ight| = m + n

    Với m là số điểm cực trị của hàm số y =
f(x) - 2 \Rightarrow m = 2

    n là số nghiệm bội lẻ của phương trình f(x) = 2 \Rightarrow n = 3

    Suy ra số điểm cực trị của hàm số g(x) =
\left| f(x) - 2 ight| = 2 + 3 = 5

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Cho hàm số f(x) có bảng biến thiên như sau:

    Điểm cực đại của hàm số đã cho là

    Hướng dẫn:

    Từ BBT của hàm số f(x) suy ra điểm cực đại của hàm số f(x)x = 1 .

  • Câu 5: Vận dụng
    Chọn khoảng nghịch biến của hàm số

    Cho hàm số y =
f(x) có bảng biến thiên như hình vẽ:

    Hàm số g(x) = f\left( 2x^{2} -
\frac{5}{2}x - \frac{3}{2} ight) nghịch biến trong khoảng nào dưới đây?

    Hướng dẫn:

    Ta có:

    g'(x) = \left( 4x - \frac{5}{2}
ight).f'\left( 2x^{2} - \frac{5}{2}x - \frac{3}{2}
ight)

    Xét g'(x) = 0 \Leftrightarrow\left\lbrack \begin{matrix}4x - \dfrac{5}{2} = 0 \\f'\left( 2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5}{8} \\2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} = - 2 \\2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} = 3 \\\end{matrix} ight.\  \Leftrightarrow x \in \left\{ -1;\dfrac{1}{4};\dfrac{5}{8};1;\dfrac{9}{4} ight\}

    Ta có bảng xét dấu:

    g'(0) = - \frac{5}{2}.f'\left( -
\frac{3}{2} ight) > 0 \Rightarrow g'(x) > 0;\forall x \in
\left( - 1;\frac{1}{4} ight)

    Vậy đáp án cần tìm là \left(
1;\frac{5}{4} ight).

  • Câu 6: Thông hiểu
    Tìm m để hàm số có hai điểm cực trị

    Tìm tất cả các giá trị của tham số m để hàm số y
= x^{3} - 3mx^{2} + 6mx + m có hai điểm cực trị.

    Hướng dẫn:

    Ta có y' = 3x^{2} - 6mx + 6m =
3\left( x^{2} - 2mx + 2m ight).

    Để hàm số có hai điểm cực trị \Leftrightarrow x^{2} - 2mx + 2m = 0 có hai nghiệm phân biệt

    \Leftrightarrow \Delta' = m^{2} - 2m
> 0 \Leftrightarrow \left\lbrack \begin{matrix}
m < 0 \\
m > 2 \\
\end{matrix} ight.\ .m \in ( - \infty;0) \cup (2; +\infty)

  • Câu 7: Thông hiểu
    Chọn kết quả đúng nhất

    Cho hàm số y = - x^{3} + 3x^{2} -
1, kết luận nào sau đây về tính đơn điệu của hàm số là đúng nhất:

    Hướng dẫn:

    Ta có hàm số xác định trên \mathbb{R}.

    y = - x^{3} + 3x^{2} - 1 \Rightarrow y' = - 3x^{2} + 6x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight..

    Bảng biến thiên

    Vậy đáp án “Hàm số đồng biến trên khoảng (0;\ 2) và nghịch biến trên các khoảng ( - \infty;0);(2; + \infty)“ là đúng nhất.

  • Câu 8: Vận dụng
    Xác định tham số m thỏa mãn điều kiện

    Cho hàm số y = \frac{1}{3}x^{3} - (m +
2)x^{2} + (2m + 3)x + 2017 với m là tham số thực. Tìm tất cả các giá trị của m để x = 1 là hoành độ trung điểm của đoạn thẳng nối hai điểm cực đại, cực tiểu của đồ thị hàm số.

    Hướng dẫn:

    Đạo hàm y' = x^{2} - 2(m + 2)x + (2m
+ 3)

    \ y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2m + 3 \\
\end{matrix} ight.

    Để hàm số có hai điểm cực trị x_{1},\
x_{2} khi và chỉ khi 2m + 3 eq 1
\Leftrightarrow m eq - 1. (*)

    Gọi A\left( x_{1};y_{1} ight)B\left( x_2;y_2 ight) là hai điểm cực trị của đồ thị hàm số.

    Khi đó theo định lí Viet, ta có x_{1} +
x_{2} = 2m + 4.

    Yêu cầu bài toán \Leftrightarrow \frac{2m
+ 4}{2} = 1 \Leftrightarrow m = - 1: không thỏa mãn (*).

    Nhận xét.

    Qua khảo sát 99% học sinh chọn đáp án A, lý do là quên điều kiện để có hai cực trị.

    Tôi cố tình ra giá trị m đúng ngay giá trị loại đi.

    Nếu gặp bài toán không ra nghiệm đẹp như trên thì ta giải như sau: ''x_{0} là hoành độ trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số bậc ba y = ax^{3} + bx^{2} + cx + d khi và chỉ khi y' = 0 có hai nghiệm phân biệt (\Delta > 0) và y''\left( x_{0} ight) =
0''.

  • Câu 9: Thông hiểu
    Chọn đáp án đúng

    Hỏi hàm số y = 2x^{4} + 1 đồng biến trên khoảng nào?

    Hướng dẫn:

    Ta có: y = 2x^{4} + 1

    Tập xác định:\ D\mathbb{= R}

    Ta có: y' = 8x^{3}; y' = 0 \Leftrightarrow 8x^{3} = 0
\Leftrightarrow x = 0suy ra y(0) =
1

    Giới hạn: \lim_{x ightarrow - \infty}y
= + \infty; \lim_{x ightarrow +
\infty}y = + \infty

    Bảng biến thiên:

    Vậy hàm số đồng biến trên khoảng (0; +
\infty).

  • Câu 10: Vận dụng
    Tìm điều kiện của m thỏa mãn yêu cầu

    Có bao nhiêu giá trị thực của tham số m để hàm số y
= \frac{1}{3}x^{3} - \frac{1}{2}(3m + 2)x^{2} + \left( 2m^{2} + 3m + 1
ight)x - 2 có điểm cực đại x_{CÐ} và điểm cực tiểu x_{CT} thỏa mãn biểu thức 3{x_{CÐ}}^{2} - 4x_{CT} = 0?

    Hướng dẫn:

    Ta có: y' = x^{2} - (3m + 2)x +
\left( 2m^{2} + 3m + 1 ight)\Delta = m^{2} \geq 0;\forall m\mathbb{\in
R} nên y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2m + 1 \\
x = m + 1 \\
\end{matrix} ight..

    Hàm số có cực đại và cực tiểu khi và chỉ khi m eq 0.

    Trường hợp 1: \left\{ \begin{matrix}
x_{CÐ} = 2m + 1 \\
x_{CT} = m + 1 \\
\end{matrix} ight.

    Do a = \frac{1}{3} > 0 \Rightarrow
x_{CÐ} < x_{CT} \Leftrightarrow 2m + 1 < m + 1 \Leftrightarrow m
< 0

    Lại có 3{x_{CÐ}}^{2} - 4x_{CT} = 0
\Leftrightarrow 3(2m + 1)^{2} - 4(m + 1) = 0

    \Leftrightarrow 12m^{2} + 8m - 1 = 0
\Leftrightarrow m = \frac{- 2 \pm \sqrt{7}}{6}

    Với điều kiện m < 0 \Rightarrow m =
\frac{- 2 - \sqrt{7}}{6} thỏa mãn.

    Trường hợp 2: \left\{ \begin{matrix}
x_{CT} = 2m + 1 \\
x_{CÐ} = m + 1 \\
\end{matrix} ight.

    Do a = \frac{1}{3} > 0 \Rightarrow
x_{CÐ} < x_{CT} \Leftrightarrow m + 1 < 2m + 1 \Leftrightarrow m
> 0

    Lại có 3{x_{CÐ}}^{2} - 4x_{CT} = 0
\Leftrightarrow 3(m + 1)^{2} - 4(2m + 1) = 0

    \Leftrightarrow 3m^{2} - 2m - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 1 \\m = - \dfrac{1}{3} \\\end{matrix} ight.

    Với điều kiện m > 0 \Rightarrow m =
1 thỏa mãn.

    Vậy có 2 giá trị thực của tham số m thỏa mãn.

  • Câu 11: Thông hiểu
    Xác định khoảng đồng biến của hàm số

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2} - 2x,\forall x \in \mathbb{R}. Hàm số y = -2f(x) đồng biến trên khoảng

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' =  - 2f'\left( x ight) =  - 2{x^2} + 4x \hfill \\  y' > 0 \Rightarrow x \in \left( {0;2} ight) \hfill \\ \end{matrix}

    => Hàm số y = -2f(x) đồng biến trên khoảng (0; 2)

  • Câu 12: Thông hiểu
    Xác định số mệnh đề đúng

    Cho hàm số y = x^{4} - 2x^{2} +
1. Xét các mệnh đề sau đây

    1) Hàm số có 3 điểm cực trị.

    2) Hàm số đồng biến trên các khoảng ( -
1;0); (1; + \infty).

    3) Hàm số có 1 điểm cực trị.

    4) Hàm số nghịch biến trên các khoảng ( -
\infty; - 1); (0;1).

    Có bao nhiêu mệnh đề đúng trong bốn mệnh đề trên?

    Hướng dẫn:

    Ta có:

    y' = 4x^{3} - 4x \Rightarrow y'
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0\ \ \ \ \  \Rightarrow y = 1 \\
x = 1\ \ \ \ \ \  \Rightarrow y = 0 \\
x = - 1\ \ \  \Rightarrow y = 0 \\
\end{matrix} ight.

    Bảng xét dấu:

    Hàm số có 3 điểm cực trị, đồng biến trên khoảng ( - 1;0); (1; + \infty) và nghịch biến trên khoảng ( - \infty; - 1); (0;1). Vậy mệnh đề 1, 2, 4 đúng.

  • Câu 13: Vận dụng
    Tính tổng các phần tử của tập S

    Gọi S là tập hợp các giá trị thực của tham số m để hàm số y = \frac{1}{3}x^{3} - \frac{1}{2}mx^{2} + 2mx -
3m + 4 nghịch biến trên một đoạn có độ dài bằng 3. Khi đó tổng tất cả các giá trị của các phần tử trong tập hợp S bằng:

    Hướng dẫn:

    Ta có: y' = x^{2} - mx +
2m

    \Leftrightarrow y' = 0
\Leftrightarrow x^{2} - mx + 2m = 0(*)

    Gọi x_{1};x_{2} là nghiệm của phương trình (*) ta có bảng biến thiên:

    Hàm số y nghịch biến trên một khoảng có độ dài bằng 3 khi và chỉ khi phương trình (*) có hai nghiệm phân biệt x_{1};x_{2} thỏa mãn \left| x_{1} - x_{2} ight| = 3

    (*) có hai nghiệm phân biệt \Leftrightarrow \Delta = m^{2} - 8m > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m < 0 \\
m > 8 \\
\end{matrix} ight.\ (**)

    \left| x_{1} - x_{2} ight| = 3
\Leftrightarrow \left( x_{1} - x_{2} ight)^{2} = 9 \Leftrightarrow
\left( x_{1} + x_{2} ight)^{2} - 4x_{1}.x_{2} = 9

    \Leftrightarrow m^{2} - 8m - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 9 \\
m = - 1 \\
\end{matrix} ight.\ \left( tm(**) ight)

    Suy ra S = \left\{ 9; - 1
ight\}

    Vậy tổng tất cả các phần tử của tập S bằng 8.

  • Câu 14: Thông hiểu
    Tính giá trị hàm số

    Đồ thị hàm số y = ax^{3} + bx^{2} + cx +
d có hai điểm cực trị A(1; -
7),B(2; - 8). Khi đó y( -
1) có giá trị là:

    Hướng dẫn:

    Gọi đồ thị hàm số y = ax^{3} + bx^{2} +
cx + d(C)

    Ta có: y' = 3ax^{2} + 2bx +
c.

    A(1; - 7),B(2; - 8) là hai điểm cực trị của đồ thị hàm số y =
ax^{3} + bx^{2} + cx + d nên ta có:

    \left\{ \begin{matrix}
A \in (C) \\
y'\left( x_{A} ight) = 0 \\
B \in (C) \\
y'\left( x_{B} ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 7 = a.1^{3} + b.1^{2} + c.1 + d \\
0 = 3a.1^{3} + 2b.1^{2} + c \\
- 8 = a.2^{3} + b.2^{2} + c.2 + d \\
0 = 3a.2^{3} + 2.b.2^{2} + c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 9 \\
c = 12 \\
d = - 12 \\
\end{matrix} ight.

    Vậy y = 2x^{3} - 9x^{2} + 12x -
12 do đó y( - 1) = -
35.

  • Câu 15: Vận dụng
    Ghi đáp án vào ô trống

    Để đồ thị hàm số y = x^{4} - 2mx^{2} + m- 1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 2. Tìm giá trị tham số m thỏa mãn yêu cầu bài toán?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Để đồ thị hàm số y = x^{4} - 2mx^{2} + m- 1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 2. Tìm giá trị tham số m thỏa mãn yêu cầu bài toán?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng
    Tính giá trị biểu thức

    Tổng bình phương của tất cả các giá trị nguyên của tham số m để hàm số y
= \left( 3m^{2} - 12 \right)x^{3} + 3(m - 2)x^{2} - x + 2 nghịch biến trên \mathbb{R} là:

    Hướng dẫn:

    Tập xác định: D =
\mathbb{R}.

    Ta có: y' = 9\left( m^{2} - 4
ight)x^{2} + 6(m - 2)x - 1.

    Hàm số nghịch biến trên \mathbb{R
\Leftrightarrow}y' \leq 0\forall x\mathbb{\in R}( dấu "=" xảy ra tại hữu hạn x\mathbb{\in R})

    TH1: m^{2} - 4 = 0 \Leftrightarrow m =
\pm 2.

    + Với m = 2 ta có y' = - 1 \leq 0 \forall x\mathbb{\in R} nên m = 2 thỏa mãn.

    + Với m = - 2 ta có y^{'} = - 24x - 1 \leq 0 \Leftrightarrow x
\geq - \frac{1}{24}(không thỏa với mọi x\mathbb{\in R}) nên loại m = - 2.

    TH2: m^{2} - 4 eq 0 \Leftrightarrow m
eq \pm 2. Ta có

    y' \leq 0,\forall x\mathbb{\in
R} \Leftrightarrow \left\{
\begin{matrix}
a = 9\left( m^{2} - 4 ight) < 0 \\
\Delta^{'} = 9(m - 2)^{2} + 9\left( m^{2} - 4 ight) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 2 < m < 2 \\
0 \leq m \leq 2 \\
\end{matrix} ight.

    \Leftrightarrow 0 \leq m <
2\overset{m\mathbb{\in Z}}{ightarrow}m \in \left\{ 0;1
ight\}

    Vậy m \in \left\{ \ 0\ ;\ 1;2 ight\}
\Rightarrow 0^{2} + 1^{2} + 2^{2} = 5.

  • Câu 17: Thông hiểu
    Tìm m thỏa mãn yêu cầu bài toán

    Cho hàm số y =
f(x) = \frac{mx - 8}{2x - m} (với m là tham số). Tìm tất cả các giá trị của tham số m để hàm số đồng biến trên từng khoảng xác định?

    Hướng dẫn:

    Tập xác định x eq
\frac{m}{2}

    Ta có: y' = \frac{- m^{2} + 16}{(2x -
m)^{2}}.

    Để hàm số đồng biến trên khoảng xác định thì y' > 0 \Leftrightarrow \frac{- m^{2} +
16}{(2x - m)^{2}} > 0

    \Leftrightarrow - m^{2} + 16 > 0
\Leftrightarrow - 4 < m < 4

    Vậy đáp án cần tìm là: - 4 < m <
4.

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{mx + 4}{x + m} nghịch biến trên khoảng ( - \infty;1)?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Ta có: y' = \frac{m^{2} - 4}{(x +
m)^{2}}

    Theo yêu cầu bài toán: \Leftrightarrow
y' < 0;\forall x \in ( - \infty;1)

    \Leftrightarrow \left\{ \begin{matrix}
- m otin ( - \infty;1) \\
m^{2} - 4 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \leq - 1 \\
- 2 < m < 2 \\
\end{matrix} ight.\  \Leftrightarrow - 2 < m \leq - 1

    Vậy đáp án cần tìm là m \in ( - 2; -
1brack.

  • Câu 19: Thông hiểu
    Tìm tham số m thỏa mãn biểu thức

    Gọi x_{1},\ \ x_{2} là hai điểm cực trị của hàm số y = x^{3} - 3mx^{2} +
3\left( m^{2} - 1 \right)x - m^{3} + m. Tìm các giá trị của tham số m để x_{1}^{2} + x_{2}^{2} - x_{1}x_{2} =
7.

    Hướng dẫn:

    Ta có y' = 3x^{2} - 6mx + 3\left(
m^{2} - 1 ight) = 3\left\lbrack x^{2} - 2mx + \left( m^{2} - 1 ight)
ightbrack.

    Do \Delta' = m^{2} - m^{2} + 1 = 1
> 0,\ \forall m\mathbb{\in R} nên hàm số luôn có hai điểm cực trị x_{1},\ \ x_{2}.

    Theo định lí Viet, ta có \left\{
\begin{matrix}
x_{1} + x_{2} = 2m \\
x_{1}x_{2} = m^{2} - 1 \\
\end{matrix} ight..

    Yêu cầu bài toán \Leftrightarrow \left(
x_{1} + x_{2} ight)^{2} - 3x_{1}x_{2} = 7

    \Leftrightarrow 4m^{2} - 3\left( m^{2} -1 ight) = 7

    \Leftrightarrow m^{2} = 4 \Leftrightarrow
m = \pm 2.

  • Câu 20: Nhận biết
    Tìm khẳng định đúng

    Cho hàm số y =
\frac{2x - 1}{x + 3}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}

    Ta có: y' = \frac{7}{(x + 3)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên mỗi khoảng (
- \infty;3)(3; +
\infty).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo