Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính tổng các phần tử của tập S

    Cho hàm số y = \frac{1}{3}x^{3} - mx^{2}
+ (3 - 2m)x với m là tham số. Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số nghịch biến trên một khoảng có độ dài bằng 2\sqrt{5}. Tính tổng các phần tử của tập hợp S?

    Hướng dẫn:

    Ta có: y' = x^{2} - 2mx + 3 - 2m
\Rightarrow \Delta' = m^{2} + 2m - 3

    Dễ thấy nếu \Delta' \leq 0 suy ra hàm số đồng biến trên \mathbb{R} nên trường hợp này không thỏa mãn

    Theo yêu cầu bài toán

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
\left| x_{1} - x_{2} ight| = 2\sqrt{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} + 2m - 3 > 0 \\
\left( x_{1} + x_{2} ight)^{2} - 4x_{1}x_{2} = 20 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \in ( - \infty; - 3) \cup (1; + \infty) \\
4m^{2} - 4(3 - 2m) = 20 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \in ( - \infty; - 3) \cup (1; + \infty) \\
\left\lbrack \begin{matrix}
m = - 4 \\
m = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 4 \\
m = 2 \\
\end{matrix} ight.\  \Rightarrow S = \left\{ - 4;2
ight\}

    Vậy tổng tất cả các phần tử của tập S bằng -2.

  • Câu 2: Thông hiểu
    Tính số phần tử của tập hợp

    Cho hàm số y = \frac{mx - 2m - 3}{x -
m} với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số đồng biến trên các khoảng xác định. Tìm số phần tử của S.

    Hướng dẫn:

    Ta có:

    y' = \frac{- m^{2} + 2m + 3}{(x -
m)^{2}} hàm số đồng biến trên khoảng xác định khi - 1 < m < 3 nên có 3 giá trị của m nguyên.

  • Câu 3: Vận dụng
    Chọn kết luận đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Tìm số điểm cực trị của hàm số g(x) =
f\left( x^{2} - 2x ight) trên khoảng (0; + \infty)?

    Hướng dẫn:

    Đặt g(x) = f\left( x^{2} - 2x ight)
\Rightarrow g'(x) = (2x - 2)f'\left( x^{2} - 2x
ight)

    Từ bảng xét dấu của hàm số f'(x)

    g'(x) = 0 \Leftrightarrow g(x) =
f\left( x^{2} - 2x ight) \Rightarrow \left\lbrack \begin{matrix}
2x - 2 = 0 \\
f'\left( x^{2} - 2x ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 2x = - 1\  \\
x^{2} - 2x = 2\ \  \\
2x - 2 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 1 \pm \sqrt{3} \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Từ bảng biến thiên suy ra hàm số g(x) =
f\left( x^{2} - 2x ight) có hai cực trị trên khoảng (0; + \infty).

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Số điểm cực trị của hàm số y = (x + 1)(x
- 2)(3 - x) là:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có:

    y' = (x - 2)(3 - x) + (x + 1)(3 - x)
- (x + 1)(x - 2)

    = - 3x^{2} + 8x - 1

    \Rightarrow y' = 0 \Leftrightarrow x
= \frac{4 \pm \sqrt{13}}{3}

    Ta có bảng xét dấu:

    Vậy hàm số có hai điểm cực trị.

  • Câu 5: Thông hiểu
    Chọn đáp an đúng

    Tìm số các giá trị nguyên của tham số m để hàm số y
= x^{4} + 2\left( m^{2} - m - 6 ight)x^{2} + m - 1 có ba điểm cực trị?

    Hướng dẫn:

    Ta có: y' = 4x^{3} + 4\left( m^{2} -
m - 6 ight)x

    y' = 0 \Leftrightarrow 4x^{3} +
4\left( m^{2} - m - 6 ight)x = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
4x = 0 \\
x^{2} = - m^{2} + m + 6 \\
\end{matrix} ight.

    Hàm số có ba cực trị khi và chỉ khi -
m^{2} + m + 6 > 0 \Leftrightarrow - 2 < m < 3

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2 ight\}. Vậy có 4 giá trị của tham số m thỏa mãn.

  • Câu 6: Thông hiểu
    Xác định điều kiện của m thỏa mãn điều kiện

    Cho hàm số y = x^{3} + mx^{2} +
m. Điều kiện cần và đủ của tham số m để hàm số nghịch biến trên (0;2) là:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 2mx

    Để hàm số đã cho nghịch biến trên (0;2) thì y' \leq 0;\forall x \in (0;2)

    \Leftrightarrow 3x^{2} + 2mx \leq
0;\forall x \in (0;2)

    \Leftrightarrow 2mx \leq - 3x^{2}
\Leftrightarrow m \leq - \frac{3}{2}x^{2};\forall x \in
(0;2)

    \Leftrightarrow m \leq
\min_{(0;2)}\left\{ - \frac{3}{2}x ight\} = - 3

    Vậy giá trị cần tìm là m \leq -
3.

  • Câu 7: Thông hiểu
    Tìm m để hàm số có duy nhất một cực tiểu

    Cho hàm số y = x^{4} + 2(m - 2)x +
1 với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m \in \lbrack -
20;20brack để hàm số đã cho có duy nhất một cực tiểu. Hỏi tập S có bao nhiêu phần tử?

    Hướng dẫn:

    Điều kiện để hàm số y = x^{4} + 2(m - 2)x
+ 1 có duy nhất một cực tiểu là a =
1 > 0 và phương trình y' =
0 có duy nhất một nghiệm.

    y' = 4x^{3} + 4(m - 2)x

    y' = 0 \Leftrightarrow 4x^{3} + 4(m
- 2)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = 2 - m(*) \\
\end{matrix} ight.

    Để phương trình y' = 0 có duy nhất một nghiệm thì phương trình (*) vô nghiệm hoặc có nghiệm duy nhất x = 0.

    \Leftrightarrow 2 - m \leq 0
\Leftrightarrow m \geq 2

    Mặt khác \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 20;20brack \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 2;3;....20
ight\}

    Vậy có tất cả 19 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 8: Thông hiểu
    Xác định điểm cực đại của hàm số

    Cho hàm số y = f(x) liên tục và có đạo hàm trên \mathbb{R}, biết y = f'(x) có đồ thị như hình vẽ:

    Điểm cực đại của hàm số y = f(x) đã cho là:

    Hướng dẫn:

    Dựa vào đồ thị hàm số y =
f'(x) ta có: f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 3 \\
x = - 2 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Khi đó ta có bảng xét dấu f'(x) như sau:

    Dựa vào bảng xét dấu suy ra điểm cực đại của hàm số y = f(x)x
= - 2.

  • Câu 9: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) và đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Hàm số g(x) = f\left( |x| ight) +2021 có bao nhiêu điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) và đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Hàm số g(x) = f\left( |x| ight) +2021 có bao nhiêu điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x) có bảng xét dấu của f'(x) như sau:

    Hỏi hàm số có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Dựa vào bảng xét dấu đã cho ta thấy f'(x) đổi dấu 4 lần nên hàm số f(x) có bốn điểm cực trị.

  • Câu 11: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) thỏa mãn f'(x) = x^{2}(x - 1);\forall
x\mathbb{\in R}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Từ biểu thức của f'(x) ta có bảng xét dấu như sau:

    Dễ thấy hàm số đạt cực tiểu tại x =
1 nên mệnh đề “y = f(x) đạt cực tiểu tại x = 1” đúng và mệnh đề “y = f(x) đạt cực tiểu tại x = 0” sai.

    Hàm số có đúng một điểm cực trị nên mệnh đề “y = f(x) không có cực trị” sai và “y = f(x) có hai điểm cực trị” sai.

  • Câu 12: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Hàm số đã cho đồng biến trên khoảng (0;1).

  • Câu 13: Vận dụng
    Tìm m để hàm số đồng biến trên R

    Tìm giá trị của tham số m để hàm số y = \sin 2x + mx + c đồng biến trên \mathbb{R}

    Hướng dẫn:

    Ta có: y' = 2\cos 2x + m

    Hàm số đồng biến trên \mathbb{R}

    \begin{matrix}   \Leftrightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \mathop {\min }\limits_\mathbb{R} y' =  - 2 + m \geqslant 0 \Leftrightarrow m \geqslant 2 \hfill \\ \end{matrix}

  • Câu 14: Vận dụng
    Tìm điều kiện của m thỏa mãn yêu cầu

    Có bao nhiêu giá trị thực của tham số m để hàm số y
= \frac{1}{3}x^{3} - \frac{1}{2}(3m + 2)x^{2} + \left( 2m^{2} + 3m + 1
ight)x - 2 có điểm cực đại x_{CÐ} và điểm cực tiểu x_{CT} thỏa mãn biểu thức 3{x_{CÐ}}^{2} - 4x_{CT} = 0?

    Hướng dẫn:

    Ta có: y' = x^{2} - (3m + 2)x +
\left( 2m^{2} + 3m + 1 ight)\Delta = m^{2} \geq 0;\forall m\mathbb{\in
R} nên y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2m + 1 \\
x = m + 1 \\
\end{matrix} ight..

    Hàm số có cực đại và cực tiểu khi và chỉ khi m eq 0.

    Trường hợp 1: \left\{ \begin{matrix}
x_{CÐ} = 2m + 1 \\
x_{CT} = m + 1 \\
\end{matrix} ight.

    Do a = \frac{1}{3} > 0 \Rightarrow
x_{CÐ} < x_{CT} \Leftrightarrow 2m + 1 < m + 1 \Leftrightarrow m
< 0

    Lại có 3{x_{CÐ}}^{2} - 4x_{CT} = 0
\Leftrightarrow 3(2m + 1)^{2} - 4(m + 1) = 0

    \Leftrightarrow 12m^{2} + 8m - 1 = 0
\Leftrightarrow m = \frac{- 2 \pm \sqrt{7}}{6}

    Với điều kiện m < 0 \Rightarrow m =
\frac{- 2 - \sqrt{7}}{6} thỏa mãn.

    Trường hợp 2: \left\{ \begin{matrix}
x_{CT} = 2m + 1 \\
x_{CÐ} = m + 1 \\
\end{matrix} ight.

    Do a = \frac{1}{3} > 0 \Rightarrow
x_{CÐ} < x_{CT} \Leftrightarrow m + 1 < 2m + 1 \Leftrightarrow m
> 0

    Lại có 3{x_{CÐ}}^{2} - 4x_{CT} = 0
\Leftrightarrow 3(m + 1)^{2} - 4(2m + 1) = 0

    \Leftrightarrow 3m^{2} - 2m - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 1 \\m = - \dfrac{1}{3} \\\end{matrix} ight.

    Với điều kiện m > 0 \Rightarrow m =
1 thỏa mãn.

    Vậy có 2 giá trị thực của tham số m thỏa mãn.

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = x^{4} - 2(m + 2)x^{2} + 3m
- 1. Tìm m để hàm số đã cho có cực tiểu nhưng không có cực đại?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4(m +
2)x

    y' = 0 \Leftrightarrow 4x^{3} - 4(m
+ 2)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = m + 2 \\
\end{matrix} ight.

    Để hàm số đã cho chỉ có điểm cực tiểu và không có điểm cực đại thì m + 2 \leq 0 \Leftrightarrow m \leq -
2.

    Vậy đáp án cần tìm là ( - \infty; -
2brack.

  • Câu 16: Thông hiểu
    Tìm hàm số đồng biến trên tập số thực

    Hàm số nào sau đây là hàm số đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Xét hàm số y = x^{3} - x^{2} + 3x +
11 ta có:

    y' = - 3x^{2} + 2x + 3 = \left(
\sqrt{3}x - \frac{1}{\sqrt{3}} ight)^{2} + \frac{8}{3} > 0;\forall
x\mathbb{\in R} suy ra hàm số liên tục trên \mathbb{R}.

  • Câu 17: Vận dụng
    Xác định tham số m để hàm số nghịch m trên khoảng

    Cho hàm số y =  - {x^3} + 3{x^2} + 3mx - 1. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)

    Hướng dẫn:

    Ta có: y' =  - 3{x^2} + 6x + 3m

    Hàm số đã cho nghịch biến trên khoảng (0; +∞)

    =>  y' \leqslant 0,\forall x \in \left( {0; + \infty } ight)

    => m \leqslant {x^2} - 2x = g\left( x ight),\forall x \in \left( {0; + \infty } ight)

    => m \leqslant \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight)

    Xét  g\left( x ight) = {x^2} - 2x;\forall x \in \left( {0; + \infty } ight) ta có:

    \begin{matrix}  g'\left( x ight) = 2x - 2 \hfill \\  g'\left( x ight) = 0 \Rightarrow x = 1 \hfill \\ \end{matrix}

    Ta lại có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to 0} g\left( x ight) = 0} \\   {\mathop {\lim }\limits_{x \to \infty } g\left( x ight) =  + \infty } \\   {g\left( 1 ight) =  - 1} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight) =  - 1 \Rightarrow m \leqslant  - 1

  • Câu 18: Thông hiểu
    Ghi đáp án vào ô trống

    Tìm giá trị của tham số m để hàm số y = \frac{1}{3}x^{3} - (m + 1)x^{2} +
\left( m^{2} + 2m ight)x - 3 nghịch biến trên khoảng ( - 1;1)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tìm giá trị của tham số m để hàm số y = \frac{1}{3}x^{3} - (m + 1)x^{2} +
\left( m^{2} + 2m ight)x - 3 nghịch biến trên khoảng ( - 1;1)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Thông hiểu
    Tìm khoảng nghịch biến của hàm số

    Cho hàm số f(x) có bảng xét dấu đạo hàm như hình vẽ:

    Hàm số y = f\left( 1 - x^{2}
ight) nghịch biến trên khoảng:

    Hướng dẫn:

    Ta có: y' = - 2xf'\left( 1 -
x^{2} ight)

    y' = 0 \Leftrightarrow -
2xf'\left( 1 - x^{2} ight) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
- 2x = 0 \\
f'\left( 1 - x^{2} ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
1 - x^{2} = - 3 \\
1 - x^{2} = - 2 \\
1 - x^{2} = 0 \\
1 - x^{2} = 1 \\
1 - x^{2} = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 2 \\
x = \pm \sqrt{3} \\
x = \pm 1 \\
\end{matrix} ight.. Khi đó ta có bảng biến thiên:

    Hàm số y = f\left( 1 - x^{2}
ight) nghịch biến trên khoảng \left( \sqrt{3};2 ight).

  • Câu 20: Thông hiểu
    Chọn đáp án thích hợp

    Tìm m để hàm số y = \frac{2x - 1}{x + m} đồng biến trên khoảng ( - \infty; - 5)?

    Hướng dẫn:

    Điều kiện xác định: x eq -
m

    Ta có: y' = \frac{2m + 1}{(x +
m)^{2}}

    Hàm số y = \frac{2x - 1}{x + m} đồng biến trên ( - \infty; - 5) khi và chỉ khi \left\{ \begin{matrix}
y' > 0;\forall x \in ( - \infty; - 5) \\
x eq - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}2m + 1 > 0 \\m otin ( - \infty; - 5) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{1}{2} \\- m \geq - 5 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{1}{2} \\m \leq 5 \\\end{matrix} ight.

    \Leftrightarrow m \in \left( -
\frac{1}{2};5 ightbrack

    Vậy đáp án cần tìm là m \in \left( -
\frac{1}{2};5 ightbrack

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo