Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn mệnh đề đúng

    Tìm tất cả các giá trị của m để hàm số y = (m - 1)x^{3} - 3(m - 1)x^{2} + 3x
+ 2 đồng biến biến trên \mathbb{R}?

    Hướng dẫn:

    Ta có y' = 3(m - 1)x^{2} - 6(m - 1)x
+ 3.

    Hàm số đã cho đồng biến trên \mathbb{R} khi và chỉ khi y^{'} \geq 0,\forall x\mathbb{\in
R}

    \Leftrightarrow \left\lbrack
\begin{matrix}
m - 1 = 0 \\
\left\{ \begin{matrix}
m - 1 > 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
\left\{ \begin{matrix}
m > 1 \\
9(m - 1)^{2} - 9(m - 1) \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = 1 \\
\left\{ \begin{matrix}
m > 1 \\
1 \leq m \leq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 1 \leq m \leq 2

  • Câu 2: Thông hiểu
    Tìm khoảng đồng biến của hàm số

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số y = f(1 - 2x) + 1 đồng biến trên khoảng:

    Hướng dẫn:

    Ta có: y' = - 2f'(1 -
2x)

    y' = 0 \Leftrightarrow - 2f'(1 -
2x) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}1 - 2x = - 1 \\1 - 2x = 0 \\1 - 2x = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = \dfrac{1}{2} \\x = 0 \\\end{matrix} ight.

    Lại có: y'(3) < 0 nên ta có bảng xét dấu như sau:

    Từ bảng biến thiên ta thấy hàm số đồng biến trên khoảng \left( \frac{1}{2};1 ight)( - \infty;0).

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = - \frac{1}{3}x^{3} +
mx^{2} + (3m + 2)x + 1. Tìm tất cả giá trị của m để hàm số nghịch biến trên \mathbb{R}.

    Hướng dẫn:

    TXĐ: D = \mathbb{R}, y' = - x^{2} + 2mx + 3m + 2.

    Hàm số nghịch biến trên \mathbb{R} khi và chỉ khi y' \leq 0, \forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a = - 1 < 0 \\
\Delta' = m^{2} + 3m + 2 \leq 0 \\
\end{matrix} ight. \Leftrightarrow - 2 \leq m \leq - 1.

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x - 2)^{2}(x - 1).x^{3};\forall
x\mathbb{\in R}. Hỏi hàm số có bao nhiêu điểm cực tiểu?

    Hướng dẫn:

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \\
x = 1 \\
x = 0 \\
\end{matrix} ight.

    Bảng biến thiên

    Dựa vào bảng biến thiên suy ra hàm số có một điểm cực tiểu.

  • Câu 5: Thông hiểu
    Tìm m thỏa mãn yêu cầu

    Có bao nhiêu giá trị của tham số m để hàm số y
= f(x) = x^{3} + \frac{1}{2}\left( x^{2} - 1 ight)x^{2} + 1 -
m có điểm cực đại là x = -
1?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
f'(x) = 3x^{2} + \left( m^{2} - 1 ight)x \\
f''(x) = 6x + m^{2} - 1 \\
\end{matrix} ight.

    Hàm số có điểm cực đại là x = -
1 khi \left\{ \begin{matrix}
f'( - 1) = 0 \\
f''( - 1) < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
4 - m^{2} = 0 \\
m^{2} - 7 < 0 \\
\end{matrix} ight.\  \Leftrightarrow m = \pm 2

  • Câu 6: Vận dụng
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên \mathbb{R}. Hàm số y = f'(x) có đồ thị như hình vẽ. Hàm số g(x) = f(x - 1) + \frac{2019 -
2018x}{2018} đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có g'(x) = f'(x - 1) -
1.

    g'(x) \geq 0 \Leftrightarrow f'(x- 1) - 1 \geq 0 \Leftrightarrow f'(x - 1) \geq 1

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 \leq - 1 \\
x - 1 \geq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x \leq 0 \\
x \geq 3 \\
\end{matrix} ight.\ .

    Từ đó suy ra hàm số g(x) = f(x - 1) +
\frac{2019 - 2018x}{2018} đồng biến trên khoảng ( - 1\ ;\ 0).

  • Câu 7: Vận dụng
    Tìm m thỏa mãn điều kiện

    Tìm tất cả các giá trị thực của tham số a để hàm số y= ax^3 - ax^2 + 1 có điểm cực tiểu x = \frac{2}{3}.

    Hướng dẫn:

    Nếu a = 0 thì y = 1: Hàm hằng nên không có cực trị.

    Với a eq 0, ta có y' = 3ax^{2} - 2ax = ax(3x - 2);y' = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \frac{2}{3} \\
\end{matrix} ight.\ .

    a >
0\overset{}{ightarrow}y' đổi dấu từ '' - '' sang '' + '' khi qua x = \frac{2}{3}\overset{}{ightarrow}Hàm số đạt cực tiểu tại điểm x =
\frac{2}{3}. Do đó a >
0 thỏa mãn.

    a <
0\overset{}{ightarrow}y' đổi dấu từ '' + '' sang '' - '' khi qua x = \frac{2}{3}\overset{}{ightarrow}Hàm số đạt cực đại tại điểm x =
\frac{2}{3}.

    Do đó a <
0 không thỏa mãn.

    Nhận xét. Nếu dùng \left\{ \begin{matrix}
y'\left( \frac{2}{3} ight) = 0 \\
y''\left( \frac{2}{3} ight) > 0 \\
\end{matrix} ight. mà bổ sung thêm điều kiện a\boxed{=}0 nữa thì được, tức là giải hệ \left\{ \begin{matrix}
a=0 \\
y'\left( \frac{2}{3} ight) = 0 \\
y''\left( \frac{2}{3} ight) > 0 \\
\end{matrix} ight..

    Như vậy, khi gặp hàm y = ax^{3} + bx^{2} + cd + d mà chưa chắc chắn hệ số a\boxed{=}0 thì cần xét hai trường hợp a = 0a=0 (giải hệ tương tự như trên).

  • Câu 8: Vận dụng
    Tìm khoảng biến của hàm số

    Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau

    Hàm số y = 3f(x + 2) - x^{3} +
3x đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có: y' = 3\left\lbrack f'(x +
2) - \left( x^{2} - 3 ight) ightbrack

    Với x \in ( - 1;0) \Rightarrow x + 2 \in
(1;2) \Rightarrow f'(x + 2) > 0, lại có x^{2} - 3 < 0 \Rightarrow y' > 0;\forall
x \in ( - 1;0)

    Vậy hàm số y = 3f(x + 2) - x^{3} +
3x đồng biến trên khoảng ( -
1;0) (1; + \infty)

    Chú ý:

    +) Ta xét x \in (1;2) \subset (1; +
\infty) \Rightarrow x + 2 \in (3;4) \Rightarrow f'(x + 2) <
0;x^{2} - 3 > 0

    Suy ra hàm số nghịch biến trên khoảng (1;2) nên loại hai phương án ( - \infty; - 1).

    +) Tương tự ta xét

    x \in ( - \infty; - 2)\Rightarrow x + 2 \in ( - \infty;0)

    \Rightarrow f'(x + 2) <0;x^{2} - 3 > 0 \Rightarrow y' < 0;\forall x \in ( - \infty; -
2)

    Suy ra hàm số nghịch biến trên khoảng ( -
\infty; - 2)

  • Câu 9: Vận dụng
    Tìm tham số m để hàm số nghịch biến trên khoảng

    Giá trị của tham số m sao cho hàm số y = {x^3} - 2m{x^2} - \left( {m + 1} ight)x + 1 nghịch biến trên khoảng (0; 2)?

    Hướng dẫn:

    Ta có: y' = 3{x^2} - 4mx - m - 1

    Hàm số nghịch biến trên khoảng (0; 2)

    => 3{x^2} - 4mx - m - 1 \leqslant 0,x \in \left[ {0;2} ight]

    => 3{x^2} - 1 \leqslant 3\left( {4x + 1} ight) \Leftrightarrow \frac{{3{x^2} - 1}}{{4x + 1}} \leqslant m,\left( {\forall x \in \left[ {0;2} ight]} ight)

    Xét hàm số g\left( x ight) = \frac{{3{x^2} - 1}}{{4x + 1}};\forall x \in \left[ {0;2} ight]

    Ta có: g'\left( x ight) = \frac{{6x\left( {4x + 1} ight) - 4\left( {3{x^2} - 1} ight)}}{{{{\left( {4x + 1} ight)}^2}}} = \frac{{12{x^2} + 6x + 4}}{{{{\left( {4x + 1} ight)}^2}}};\forall x \in \left[ {0;2} ight]

    => g(x) đồng biến trên đoạn [0; 2]

    Ta có:

    \begin{matrix}  g\left( x ight) = \dfrac{{3{x^2} - 1}}{{4x + 1}} \leqslant m;\forall x \in \left[ {0;2} ight] \hfill \\   \Rightarrow m \geqslant g\left( 2 ight) = \dfrac{{11}}{9} \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu
    Tìm phương án đúng

    Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số hàm số y = \frac{1}{3}\left( m^{2} - m \right)x^{3} +
2mx^{2} + 3x - 2 đồng biến trên khoảng ( - \infty;\  + \infty)?

    Hướng dẫn:

    Ta có:

    y' = \left( m^{2} - m ight)x^{2} +
4mx + 3

    Hàm số đã cho đồng biến trên khoảng ( -
\infty;\  + \infty) \Leftrightarrow y' \geq 0 với \forall x\mathbb{\in R}.

    + Với m = 0 ta có y' = 3 > 0 với \forall x\mathbb{\in R \Rightarrow} Hàm số đồng biến trên khoảng ( - \infty;\  +
\infty).

    + Với m = 1 ta có y' = 4x + 3 > 0 \Leftrightarrow x > -
\frac{3}{4} \Rightarrow m =
1 không thảo mãn.

    + Với \left\{ \begin{matrix}
m eq 1 \\
m eq 0 \\
\end{matrix} ight. ta có y'
\geq 0 với \forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
m^{2} - m > 0 \\
\Delta' = m^{2} + 3m \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m > 1 \\
m < 0 \\
\end{matrix} ight.\  \\
- 3 \leq m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow - 3 \leq m < 0.

    Tổng hợp các trường hợp ta được - 3 \leq
m \leq 0.

    m\mathbb{\in Z \Rightarrow}m \in \left\{
- 3;\  - 2;\ \  - 1;\ 0 ight\}.

    Vậy có 4 giá trị nguyên của m thỏa mãn bài ra.

  • Câu 11: Nhận biết
    Tìm khoảng nghịch biến của hàm số

    Hàm số y = \frac{5 - 2x}{x + 3} nghịch biến trên

    Hướng dẫn:

    Hàm số y = \frac{5 - 2x}{x + 3} có tập xác định là D\mathbb{=
R}\backslash\left\{ - 3 ight\}.

    y' = \frac{- 11}{(x + 3)^{2}} <
0,với x \in D.

    Vậy hàm số đã cho nghịch biến trên các khoảng ( - \infty; - 3)( - 3; + \infty).

  • Câu 12: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại x = 2.

  • Câu 13: Vận dụng
    Tính giá trị của biểu thức

    Cho hàm số y = 2x^{3} - 3(2a + 1)x^{2} +
6a(a + 1)x + 2 với a là tham số thực. Gọi x_{1},\ x_{2} lần lượt là hoành độ các điểm cực trị của đồ thị hàm số. Tính P = \left| x_{2} - x_{1} \right|.

    Hướng dẫn:

    Ta có y' = 6x^{2} - 6(2a + 1)x + 6a(a
+ 1)

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = a = x_{1} \\
x = a + 1 = x_{2} \\
\end{matrix} ight.

    Vậy P = \left| x_{2} - x_{1} ight| =
\left| (a + 1) - a ight| = 1.

    Nhận xét. Nếu phương trình y' =
0 không ra nghiệm đẹp như trên thì ta dùng công thức tổng quát P = \left| x_{2} - x_{1} ight| = \left|
\frac{\sqrt{\Delta}}{a} ight|.

  • Câu 14: Thông hiểu
    Tìm tham số m thỏa mãn điều kiện

    Cho hàm số y = f(x) = x^{3} - 2mx^{2} +
m^{2}x + 1 với m là tham số. Tìm tập hợp tất cả các giá trị của tham số m để hàm số đã cho đạt cực tiểu tại x = 1?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}.

    Ta có: \left\{ \begin{matrix}
y' = 3x^{2} - 4mx + m^{2} \\
y'' = 6x - 4m \\
\end{matrix} ight.. Để hàm số đạt cực tiểu tại x = 1 thì

    \left\{ \begin{gathered}
  y'\left( 1 ight) = 0 \hfill \\
  y''\left( 1 ight) > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  {m^2} - 4m + 3 = 0 \hfill \\
  6 - 4m > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  \left[ \begin{gathered}
  m = 1 \hfill \\
  m = 3 \hfill \\ 
\end{gathered}  ight. \hfill \\
  m < \frac{3}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow m = 1

    vậy tập hợp tất cả các giá trị của tham số m thỏa mãn yêu cầu bài toán là \left\{ 1 ight\}.

  • Câu 15: Thông hiểu
    Xác định các giá trị nguyên dương của m

    Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y
= x^{3} - 3mx^{2} + 3\left( m^{2} - 2 ight)x đồng biến trên khoảng (12; + \infty)?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 6mx + 3\left(
m^{2} - 2 ight)

    Hàm số y = x^{3} - 3mx^{2} + 3\left(
m^{2} - 2 ight)x đồng biến trên khoảng (12; + \infty)

    \Leftrightarrow y' \geq 0
\Leftrightarrow 3x^{2} - 6mx + 3\left( m^{2} - 2 ight) \geq
0

    \Leftrightarrow x^{2} - 2mx + m^{2} - 2
\geq 0

    \Leftrightarrow (x - m)^{2} \geq 2
\Leftrightarrow \left\lbrack \begin{matrix}
x - m \geq \sqrt{2} \\
x - m \leq - \sqrt{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x \geq m + \sqrt{2} \\
x \leq m - \sqrt{2} \\
\end{matrix} ight.

    Theo yêu cầu bài toán ta có: \sqrt{2} + m
\leq 12 \Leftrightarrow m \leq 12 - \sqrt{2}

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2;3;...;9;10 ight\}

    Suy ra có tất cả 10 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 16: Thông hiểu
    Chọn đáp án thích hợp

    Để hàm số y = x^{3} - 3x^{2} +
mx đạt cực tiểu tại x = 2 thì tham số m thuộc khoảng nào sau đây?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
y' = 3x^{2} - 6x + m \\
y'' = 6x - 6 \\
\end{matrix} ight.. Để hàm số y
= x^{3} - 3x^{2} + mx đạt cực tiểu tại x = 2 thì

    \left\{ \begin{matrix}
y' = 0 \\
y'' > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y'(2) = 0 \\
y''(2) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 0 \\
6.2 - 6 > 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 0

    Vậy đáp án cần tìm là m \in ( -
1;1).

  • Câu 17: Thông hiểu
    Chọn đáp án chính xác

    Cho hàm số y = \frac{1}{3}x^{2} + x^{2} +
(m - 2)x + 2 với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho có hai điểm cực trị nằm bên trái trục Oy?

    Hướng dẫn:

    Ta có: y' = x^{2} + 2x + m -
1

    Đồ thị của hàm số đã cho có hai điểm cực trị nằm bên trái trục tung khi và chỉ khi phương trình y' =
0 có hai nghiệm âm phân biệt

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
S < 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - m + 1 > 0 \\
- 2 < 0 \\
m - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 1 < m < 2

    Vậy đáp án cần tìm là m \in
(1;2).

  • Câu 18: Thông hiểu
    Tính tổng các nghiệm phương trình

    Tính tổng tất cả các nghiệm của phương trình x^{6} + 2020x^{2} = (5x - 6)^{3} - 2020(6 -
5x) là:

    Hướng dẫn:

    Xét hàm số f(t) = t^{3} + 2020t
\Rightarrow f'(t) = 3t^{2} + 2020 > 0;\forall t\mathbb{\in
R}

    Nên hàm số y = f(t) đồng biến trên \mathbb{R}

    Phương trình x^{6} + 2020x^{2} = (5x -
6)^{3} - 2020(6 - 5x) có dạng

    f\left( x^{2} ight) = f(5x - 6)
\Leftrightarrow x^{2} = 5x - 6 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Vậy tổng tất cả các nghiệm bằng 5.

  • Câu 19: Thông hiểu
    Xác định cực trị của hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R} và có đồ thị của hàm số y = f'(x) như hình vẽ:

    Hàm số y = f(1 - 2x) đạt cực tiểu tại:

    Hướng dẫn:

    Đặt g(x) = f(1 - 2x) \Rightarrow
g'(x) = - 2f'(1 - 2x) = 0

    \Rightarrow g'(x) = 0
\Leftrightarrow - 2f'(1 - 2x) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}1 - 2x = - 1 \\1 - 2x = 0 \\1 - 2x = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = \dfrac{1}{2} \\x = - \dfrac{1}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên

    Ta xét bằng cách thay số

    Với x = 2 \Rightarrow g'(2) = -
2f'( - 3) < 0

    Với x = \frac{3}{4} \Rightarrow
g'\left( \frac{3}{4} ight) = - 2f'\left( - \frac{1}{2} ight)
> 0

    Với x = \frac{1}{4} \Rightarrow
g'\left( \frac{1}{4} ight) = - 2f'\left( \frac{1}{2} ight)
< 0

    Với x = - 1 \Rightarrow g'( - 1) = -
2f'(3) > 0

    Vậy hàm số đạt cực tiểu tại x =
\frac{1}{2}

  • Câu 20: Vận dụng
    Tính số điểm cực tiểu của hàm số

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và có bảng xét dấu f'(x) như sau:

    Hỏi hàm số y = f\left( x^{2} - 2x
ight) có bao nhiêu điểm cực tiểu?

    Hướng dẫn:

    Đặt g(x) = f\left( x^{2} - 2x ight)
\Rightarrow g'(x) = (2x - 2)f'\left( x^{2} - 2x
ight)

    Từ bảng xét dấu của hàm số f'(x)

    g'(x) = 0 \Leftrightarrow g(x) =
f\left( x^{2} - 2x ight) \Rightarrow \left\lbrack \begin{matrix}
2x - 2 = 0 \\
f'\left( x^{2} - 2x ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 2x = - 2\  \\
x^{2} - 2x = 1\  \\
x^{2} - 2x = 3\ \  \\
2x - 2 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 1 \pm \sqrt{2} \\
x = 3 \\
x = 1 \\
\end{matrix} ight.

    g'(x) \geq 0 \Leftrightarrow (2x -
2)f'\left( x^{2} - 2x ight) \geq 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
2x - 2 \geq 0 \\
f'\left( x^{2} - 2x ight) \geq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
2x - 2 \leq 0 \\
f'\left( x^{2} - 2x ight) \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
- 2 \leq x^{2} - 2x \leq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \leq 1 \\
\left\lbrack \begin{matrix}
x^{2} - 2x \geq 3 \\
x^{2} - 2x \leq - 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
x^{2} - 2x + 2 \geq 0 \\
x^{2} - 2x - 3 \leq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \leq 1 \\
\left\lbrack \begin{matrix}
x^{2} - 2x - 3 \geq 0 \\
x^{2} - 2x + 2 \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
- 1 \leq x \leq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \leq 1 \\
\left\lbrack \begin{matrix}
x \geq 3 \\
x \leq - 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
1 \leq x \leq 3 \\
x \leq - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Từ bảng xét dấu ta suy ra hàm số y =
f\left( x^{2} - 2x ight) có 1 điểm cực tiểu.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo