Biết rằng hàm số có một điểm cực trị
. Tìm điểm cực trị còn lại
của hàm số.
Ta có .
Để hàm số có hai điểm cực trị có hai nghiệm phân biệt
Theo giả thiết: (thỏa mãn
).
Với thì
Biết rằng hàm số có một điểm cực trị
. Tìm điểm cực trị còn lại
của hàm số.
Ta có .
Để hàm số có hai điểm cực trị có hai nghiệm phân biệt
Theo giả thiết: (thỏa mãn
).
Với thì
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Hàm số đạt cực tiểu tại
khi:
Ta có: .
Hàm số đạt cực tiểu tại suy ra
Với
Với
Vậy với thì hàm số
đạt cực tiểu tại
.
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho đạt cực đại tại . Đúng||Sai
b) Hàm số đã cho đạt cực tiểu tại . Sai|| Đúng
c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là . Sai|| Đúng
d) Đồ thị hàm số có điểm cực đại là
. Sai|| Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho đạt cực đại tại . Đúng||Sai
b) Hàm số đã cho đạt cực tiểu tại . Sai|| Đúng
c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là . Sai|| Đúng
d) Đồ thị hàm số có điểm cực đại là
. Sai|| Đúng
Ta có:
Bảng biến thiên
a) Dựa vào bảng biến thiên ta thấy hàm số đạt cực đại tại
b) Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại
c) Dựa vào bảng biến thiên ta thấy hàm số giá trị cực đại và cực tiểu lần lượt là
d) Dựa vào bảng biến thiên ta thấy hàm số có được bằng cách tịnh tiến đồ thị
lên trên 3 đơn vị. Suy ra đồ thị hàm số
có điểm cực đại là
.
Cho hàm số và đồ thị của hàm số
như hình vẽ sau:
Hàm số có bao nhiêu điểm cực trị?
Cho hàm số và đồ thị của hàm số
như hình vẽ sau:
Hàm số có bao nhiêu điểm cực trị?
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau:
Do nên hàm số
nghịch biến trên khoảng
.
Cho hàm số . Số điểm cực trị của hàm số đã cho là:
Áp dụng công thức khai triển nhị thức Newton ta có:
Ta có bảng biến thiên như sau:

Vậy hàm số đã cho có duy nhất một điểm cực trị x = -1
Số các giá trị nguyên của tham số trong đoạn
để hàm số
nghịch biến trên
là:
Trường hợp 1: .
Ta có:
có
với mọi
nên hàm số luôn đồng biến trên trên
.
Do đó loại .
Trường hợp 2: .
Ta có: ,
Hàm số nghịch biến trên khi và chỉ khi
với mọi
.
Vì là số nguyên thuộc đoạn
nên
.
Vậy có giá trị
.
Số điểm cực trị của hàm số là:
Tập xác định
Ta có:
Ta có bảng xét dấu:
Vậy hàm số có hai điểm cực trị.
Tìm tập hợp tất cả các giá trị của để hàm số
nghịch biến trên
.
Ta có
Để hàm số nghịch biến trên thì
,
, vì
Đặt .
Khi đó
Ta xét hàm
Ta có
Bảng biến thiên
Từ bảng biến thiên suy ra .
Gọi là tập hợp tất cả các giá trị của tham số
để hàm số
đồng biến trên
. Tổng giá trị của tất cả các phần tử thuộc
bằng:
Ta có
Ta có có một nghiệm đơn là
, do đó nếu
không nhận
là nghiệm thì
đổi dấu qua
.
Do đó để đồng biến trên
thì
hay
nhận
làm nghiệm (bậc lẻ).
Suy ra
.
Tổng các giá trị của là
.
Cho hàm số , với m là tham số. Hỏi có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng
Ta có:
+) TXĐ:
+) .
Hàm số nghịch biến trên khi
có 7 giá trị nguyên của m thỏa mãn.
Gọi là hai điểm cực trị của hàm số
. Tìm các giá trị của tham số
để
Ta có .
Do nên hàm số luôn có hai điểm cực trị
.
Theo định lí Viet, ta có .
Yêu cầu bài toán
.
Hai điểm cực trị của đồ thị hàm số là
Ta có:
Vậy hai điểm cực trị cần tìm là:
Cho hàm số . Xét các mệnh đề sau, những những mệnh đề nào đúng?
Ta có:
Ta có bảng xét dấu như sau:

Quan sát bảng xét dấu ta thấy:
- Hàm số có 3 điểm cực trị
- Hàm số đồng biến trên khoảng (-1; 0), (1; +∞) và nghịch biến trên khoảng (-∞; -1), (0; 1)
Trong các hàm số sau hàm số nào đồng biến trên (1; +∞)?
Ta có hàm số y = ax, y = logax đồng biến trên tập xác định nếu a > 0
Do đó hàm số y = log3x đồng biến trên (1; +∞)
Cho hàm số có bảng xét dấu như sau:
Hỏi hàm số nghịch biến trên các khoảng nào dưới đây?
Ta có:
Xét
Bảng xét dấu là:
Căn cứ vào bảng xét dấu ta thấy
Hàm số nghịch biến trên khoảng
.
Có bao nhiêu số nguyên thỏa mãn điều kiện hàm số
đồng biến trên khoảng
?
Ta có:
. Hàm số đồng biến trên khoảng
Vậy có duy nhất một số nguyên m thỏa mãn điều kiện hàm số đồng biến trên khoảng
.
Hàm số có đạo hàm
, với
. Hỏi hàm số
có bao nhiêu điểm cực tiểu?
Ta có:
Suy ra có
nghiệm bội lẻ và hệ số
nên có
cực tiểu.
Cho hàm số với
là tham số thực, có đồ thị là
. Tìm tất cả các giá trị của
để
có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành.
Đạo hàm .
Ta có .
Hàm số có cực đại và cực tiểu khi
Ta có
Gọi là hoành độ của hai điểm cực trị khi đó
Theo định lí Viet, ta có
Hai điểm cực trị nằm về hai phía trục hoành khi
: thỏa mãn.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: