Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 4 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định giao điểm

    Đồ thị hàm số y = x^{4} - x^{2} -
2 cắt trục tung tại điểm:

    Hướng dẫn:

    Ta có: x = 0 \Rightarrow y = 0^{4} -
0^{2} - 2 = - 2

    Vậy đồ thị hàm số y = x^{4} - x^{2} -
2 cắt trục tung tại điểm (0; -
2).

  • Câu 2: Nhận biết
    Tìm số giao điểm của (C) với trục hoành

    Cho hàm số y = - 2x^{3} + 5x có đồ thị (C) Tìm số giao điểm của (C) và trục hoành.

    Hướng dẫn:

    Pthd của (C) và trục hoành là:

    - 2x^{3} + 5x = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm \sqrt{\frac{5}{2}} \\
\end{matrix} ight.3 giao điểm.

    Chú ý: Ở bài toán này hoàn toàn có thể giải trực tiếp bằng Casio với phương trình - 2x^{3} + 5x = 0, nhưng chắc chắn thao tác bấm máy sẽ chậm hơn việc tính tay (thậm chí bài này không cần nháp khi mà kết quả đã hiện ra luôn khi ta đọc đề xong). Vì vậy, Casio là điều không cần thiết với câu hỏi này.

  • Câu 3: Thông hiểu
    Tìm m thỏa mãn yêu cầu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ - 1
ight\}, liên tục trên các khoảng xác định và có bảng biến thiên như sau:

    Tìm tập hợp các giá trị của tham số m để phương trình f(x) = m có ba nghiệm phân biệt?

    Hướng dẫn:

    Số nghiệm của phương trình f(x) =
m là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

    Dựa vào bảng biến thiên ta suy ra để phương trình đã cho có ba nghiệm phân biệt thì - 4 < m <
2.

  • Câu 4: Nhận biết
    Tìm giá trị của tham số m

    Với giá trị nào của tham số m để đồ thị hàm số y = \frac{2x^{2} + 6mx + 4}{mx
+ 2} đi qua điểm A( -
1;4)?

    Hướng dẫn:

    Thay tọa độ điểm A( - 1;4) vào y = \frac{2x^{2} + 6mx + 4}{mx + 2} ta được:

    4 = \frac{2.( - 1)^{2} + 6m.( - 1) +
4}{m.( - 1) + 2} \Leftrightarrow 2m = - 2 \Leftrightarrow m = -
1

    Vậy giá trị m cần tìm là m = -
1.

  • Câu 5: Thông hiểu
    Tìm m để bất phương trình nghiệm đúng với mọi m

    Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Biết f( - 1) = 1;f\left( - \frac{1}{e}
\right) = 2. Tìm tất cả các giá trị của m để bất phương trình f(x) < \ln( - x) + m nghiệm đúng với mọi x \in \left( - 1;\frac{- 1}{e}
\right).

    Hướng dẫn:

    Ta có f(x) < \ln( - x) + m
\Leftrightarrow m > f(x) - \ln( - x).

    Xét hàm số g(x) = f(x) - \ln( -
x) trên \left( - 1; - \frac{1}{e}
ight).

    g'(x) = f'(x) -
\frac{1}{x}.

    Trên \left( - 1; - \frac{1}{e}
ight)f'(x) >
0\frac{1}{x} < 0 nên g'(x) > 0,\forall x \in \left( -
1; - \frac{1}{e} ight)

    \Rightarrow Hàm số g(x) đồng biến trên \left( - 1; - \frac{1}{e} ight).

    Vậy nên f(x) < \ln( - x) + m nghiệm đúng với mọi x \in \left( - 1; -
\frac{1}{e} ight)

    \Leftrightarrow m \geq g(x),\forall x
\in \left( - 1; - \frac{1}{e} ight)

    \Leftrightarrow m \geq g\left( -
\frac{1}{e} ight)

    \Leftrightarrow m \geq 3.

  • Câu 6: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) = \frac{x - 1}{x -
m} với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}. Đúng||Sai

    b) y' = \frac{m - 1}{(x -
m)^{2}};\forall x eq m. Sai|| Đúng

    c) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi m < 1. Sai|| Đúng

    d) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi 0 ≤ m < 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x - 1}{x -
m} với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}. Đúng||Sai

    b) y' = \frac{m - 1}{(x -
m)^{2}};\forall x eq m. Sai|| Đúng

    c) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi m < 1. Sai|| Đúng

    d) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi 0 ≤ m < 1. Đúng||Sai

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}.

    b) y' = \frac{- m + 1}{(x -
m)^{2}};\forall x eq m

    c) Sai.

    Hàm số đã cho đồng biến trên (−∞; 0) khi và chỉ khi

    \left\{ \begin{matrix}
m otin ( - \infty;0) \\
- m + 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 0 \\
m < 1 \\
\end{matrix} ight.\  \Leftrightarrow 0 \leq m < 1.

    d) Đúng

  • Câu 7: Vận dụng
    Số nghiệm thực phân biệt của phương trình

    Cho hàm số f\left( x ight) = {x^3} - 3x + 1. Số nghiệm thực phân biệt của phương trình f\left( {f\left( x ight)} ight) = f\left( 2 ight) là:

    Hướng dẫn:

    Ta có: f\left( {f\left( x ight)} ight) = f\left( 2 ight) = 3

    Đồ thị của hàm số f\left( x ight) = {x^3} - 3x + 1 được minh họa bằng hình vẽ sau:

    Số nghiệm thực phân biệt của phương trình

    Từ đồ thị ta suy ra

    f\left( {f\left( x ight)} ight) = 3 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 2} \\   {f\left( x ight) =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 2} \\   {{x^3} - 3x + 1 =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 0\left( * ight)} \\   {{x^3} - 3x + 2 = 0\left( {**} ight)} \end{array}} ight.

    Phương trình (*) có 3 nghiệm thực

    Phương trình (**) có 2 nghiệm thực

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Hình vẽ bên dưới là đồ thị của hàm số nào?

    Hướng dẫn:

    Đồ thị hàm số cắt trục Oy tai điểm có tọa độ(0;\ 1) nên chọn phương án y = \frac{2x + 1}{x +
1}.

  • Câu 9: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như hình vẽ bên dưới:

    a) Hàm số đồng biến trên khoảng ( -
1;1). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
1. Đúng||Sai

    c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;0brack bằng 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như hình vẽ bên dưới:

    a) Hàm số đồng biến trên khoảng ( -
1;1). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
1. Đúng||Sai

    c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;0brack bằng 1. Sai||Đúng

    Theo hình vẽ, hàm số đồng biến trên khoảng ( - 1;\ 1) và đạt cực tiểu tại điểm x_{o} = - 1. giá trị không âm trên khoảng đó.

    Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1\ ;\ 0brack bằng - 1.

  • Câu 10: Thông hiểu
    Định điều kiện của m

    Tìm điều kiện cần và đủ của tham số thực ủa tham số m để đường thẳng y = 3x + m - 2 cắt đồ thị y = (x - 1)^{3} tại ba điểm phân biệt là:

    Hướng dẫn:

    Phương trình hoành độ giao điểm của hai đồ thị:

    (x - 1)^{3} = 3x + m - 2 \Leftrightarrow
m = x^{3} - 3x^{2} + 1(*)

    (*) là phương trình hoành độ giao điểm của hai đồ thị (d):y = m,(C):y = x^{3} - 3x^{2} + 1

    Xét hàm số f(x) = x^{3} - 3x^{2} +
1

    f'(x) = 3x^{2} - 6x \Rightarrow
f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Bảng biến thiên

    Vậy theo yêu cầu bài toán \Leftrightarrow
- 3 < m < 1

  • Câu 11: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) = \frac{1}{3}x^{3} -
mx^{2} + \left( m^{2} - 4 ight)x + 3 với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng

    b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng

    c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai

    d) y' = x^{2} - 2mx + m^{2} -
4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{1}{3}x^{3} -
mx^{2} + \left( m^{2} - 4 ight)x + 3 với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng

    b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng

    c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai

    d) y' = x^{2} - 2mx + m^{2} -
4. Đúng||Sai

    Ta có:

    y' = x^{2} - 2mx + m^{2} - 4;\forall
x\mathbb{\in R}

    Do hàm số đạt cực đại tại x = 3 nên y'(3) = 0 \Leftrightarrow m^{2} - 6m + 5 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 5 \\
\end{matrix} ight.

    Với m = 1;y' = x^{2} - 2x - 3;y'
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight..

    Bảng xét dấu y’ như sau:

    Với m = 5;y' = x^{2} - 10x +
21;y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \\
x = 7 \\
\end{matrix} ight.

    Bảng xét dấu y’ như sau:

    Từ bảng xét dấu, ta có hàm số đạt cực đại tại x = 3

    Vậy hàm số đã cho đạt cực đại tại x = 3 khi và chỉ khi m = 5.

  • Câu 12: Thông hiểu
    Chọn hàm số tương ứng đồ thị

    Đường cong ở hình bên là đồ thị của hàm số y = \frac{ax + b}{cx + d} với a,b,c,dlà các số thực. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Ta có :

    Dựa vào hình dáng của đồ thị ta được:

    + Điều kiện x eq 1

    + Đây là đồ thị của hàm nghịch biến

    Từ đó ta được y' < 0,\forall x
eq 1.

  • Câu 13: Thông hiểu
    Khẳng định nào dưới đây sai

    Cho đồ thị hàm số có đồ thị hàm số là đường cong trong hình vẽ:

    Khẳng định nào dưới đây sai

    Khẳng định nào dưới đây sai?

    Hướng dẫn:

    Quan sát đồ thị hàm số ta có:

    Đáp án A sai vì hàm số không nghịch biến trên \left( {4; + \infty } ight)

    Đáp án B sai vì hàm số chỉ đạt cực tiểu tại x = 2

    Đáp án C sai vì trên đoạn [0; 2] hàm số vừa có khoảng đồng biến, vừa có khoảng nghịch biến.

    Đáp án D đúng vì \mathop {\min y}\limits_{\left[ {0;2} ight]}  + \mathop {\max y}\limits_{\left[ {0;2} ight]}  =  - 2 + 2 = 0

  • Câu 14: Thông hiểu
    Tìm số nghiệm thực của phương trình

    Cho hàm số f(x) có bảng biến thiên như sau:

    Số nghiệm thực của phương trình 2f(x) + 3
= 0

    Hướng dẫn:

    Ta có: 2f(x) + 3 = 0 \Leftrightarrow f(x)
= - \frac{3}{2} có đồ thị hàm số là đường thẳng song song với trục hoành.

    Khi đó ta kí hiệu bảng biến thiên như sau

    Nhìn bảng biến thiên ta thấy phương trình này có 3 nghiệm.

  • Câu 15: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Ảnh có chứa biểu đồ, hàng, Sơ đồMô tả được tạo tự động

    a) Hàm số đồng biến trên khoảng ( -
\infty;0). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} =
2. Đúng||Sai

    c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng (1;2). Sai||Đúng

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack 0;2\rbrack bằng 2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Ảnh có chứa biểu đồ, hàng, Sơ đồMô tả được tạo tự động

    a) Hàm số đồng biến trên khoảng ( -
\infty;0). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} =
2. Đúng||Sai

    c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng (1;2). Sai||Đúng

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack 0;2\rbrack bằng 2. Đúng||Sai

    a) Theo Hình, hàm số đồng biến trên khoảng ( - \infty\ ;\ 0)

    b) Hàm số đạt cực tiểu tại điểm x_{o} =
2.

    c) Vì hàm số nghịch biến trên khoảng (0\
\ ;\ 2) nên đạo hàm của hàm số nhận giá trị âm trên khoảng đó.

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack 0\ ;\ 2\rbrack bằng 2.

    Đáp án: a) Đúng, b) Đúng, c) Sai d) Đúng.

  • Câu 16: Thông hiểu
    Xét đúng sai của các khẳng định

    Cho hàm số y = x + \frac{4}{x}. Các nhận định dưới đây đúng hay sai?

    a) Đạo hàm của hàm số đã cho là y' =
1 + \frac{4}{x^{2}}. Sai||Đúng

    b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0) \cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2)
\cup (2;\  + \infty). Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở hình 4:

    .

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = x + \frac{4}{x}. Các nhận định dưới đây đúng hay sai?

    a) Đạo hàm của hàm số đã cho là y' =
1 + \frac{4}{x^{2}}. Sai||Đúng

    b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0) \cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2)
\cup (2;\  + \infty). Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở hình 4:

    .

    Đúng||Sai

    a) Đạo hàm của hàm số đã cho là y' =
1 - \frac{4}{x^{2}} nên mệnh đề sai.

    b) y' = 1 - \frac{4}{x^{2}} > 0
\Leftrightarrow \left\lbrack \begin{matrix}
x > 2 \\
x < - 2
\end{matrix} \right.\ ,x \neq 0 nên đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0)
\cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2) \cup (2;\  +
\infty).

    c) Bảng biến thiên của hàm số đã cho là:

    Mệnh đề sai vì thấy y( - 2) = - 4 \neq
4

    d) Đồ thị hàm số đã cho như ở hình 4, mệnh đề đúng

    .

    Đáp án: a) Sai b) Đúng c) Sai d) Đúng.

  • Câu 17: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tìm số nghiệm của phương trình 2f\left(\frac{\sin x + \cos x}{\sqrt{2}} ight) + 3 = 0 trên đoạn \left\lbrack - \frac{3\pi}{4};\frac{7\pi}{4}ightbrack?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tìm số nghiệm của phương trình 2f\left(\frac{\sin x + \cos x}{\sqrt{2}} ight) + 3 = 0 trên đoạn \left\lbrack - \frac{3\pi}{4};\frac{7\pi}{4}ightbrack?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Nhận biết
    Chọn đáp án đúng

    Số giao điểm của đồ thị hàm số y = -
x^{3} + 6x với trục hoành là

    Hướng dẫn:

    Ta có hoành độ giao điểm của đồ thị hàm số y = - x^{3} + 6x với trục hoành là nghiệm của phương trình - x^{3} + 6x = 0 (*)

    \Leftrightarrow - x\left( x^{2} - 6
ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = \pm \sqrt{6} \\
\end{matrix} ight..

    Phương trình (*) có ba nghiệm phân biệt, do đó đồ thị hàm số y = - x^{3} + 6x cắt trục hoành tại ba điểm phân biệt.

  • Câu 19: Thông hiểu
    Định m để bất phương trình nghiệm đúng với mọi x

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và thỏa mãn f( - 1) = 1,\ \ f\left( - \frac{1}{e} \right) =
2. Hàm số f'(x) có đồ thị như hình vẽ. Bất phương trình f(x) <
\ln( - x) + x^{2} + m nghiệm đúng với mọi x \in \left( - 1; - \frac{1}{e} \right) khi và chỉ khi

    Hướng dẫn:

    Điều kiện: - x > 0 \Leftrightarrow x
< 0

    Bất phương trình đã cho tương đương với f(x) - \ln( - x) - x^{2} < m (*).

    Xét hàm số g(x) = f(x) - \ln( - x) -
x^{2} trên \left( - 1; -
\frac{1}{e} ight).

    Ta có g'(x) = f'(x) - \frac{1}{x}
- 2x. Với x \in \left( - 1; -
\frac{1}{e} ight) thì f'(x)
> 0; - \frac{1}{x} - 2x > 0 nên g'(x) > 0.

    Do đó hàm số g(x) đồng biến trên \left( - 1; - \frac{1}{e}
ight).

    Suy ra (*) nghiệm đúng với mọi x \in
\left( - 1; - \frac{1}{e} ight) khi và chỉ khi m \geq g\left( - \frac{1}{e} ight) = f\left( -
\frac{1}{e} ight) - \ln\frac{1}{e} - \frac{1}{e^{2}} = 3 -
\frac{1}{e^{2}}.

  • Câu 20: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hàm số y = x^{3} - 3x^{2} +
2. Xét tính đúng sai của nhận định dưới đây:

    a) Đạo hàm của hàm số đã cho là y' =
3x^{2} - 6x. Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (0;2) và nghịch biến trên các khoảng ( - \infty;0) \cup (2; + \infty). Sai||Đúng

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở Hình 4.

    Sai||Đúng

    Đáp án là:

    Cho hàm số y = x^{3} - 3x^{2} +
2. Xét tính đúng sai của nhận định dưới đây:

    a) Đạo hàm của hàm số đã cho là y' =
3x^{2} - 6x. Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (0;2) và nghịch biến trên các khoảng ( - \infty;0) \cup (2; + \infty). Sai||Đúng

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở Hình 4.

    Sai||Đúng

    Câu 2

    a)

    b)

    c)

    d)

    ý

    Đúng

    Sai

    Sai

    Sai

    Ta có: y' = 3x^{2} - 6x, y' = 0 \Leftrightarrow x = 0 hoặc x = 2.

    Bảng biến thiên của hàm số đã cho là:

    Hàm số đồng biến trên các khoảng ( -
\infty;0)(2; +
\infty), hàm số nghịch biến trên khoảng (0;2).

    Đồ thị hàm số đã cho là:

    Ảnh có chứa biểu đồ, hàng, Sơ đồMô tả được tạo tự động

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo