Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 4 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm hàm số theo yêu cầu

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Đây là đồ thị của hàm số bậc ba với hệ số a > 0 nên chọn y = x^{3} - 3x.

  • Câu 2: Thông hiểu
    Chọn hàm số thích hợp

    Đường cong ở hình bên là đồ thị của hàm số y = \frac{ax + b}{cx + d} với a,b,c,d là các số thực. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Dựa vào đồ thị ta nhận thấy tiệm cận đứng bằng 2, hàm số nghịch biến vậy chọn B

  • Câu 3: Thông hiểu
    Xét tính đúng sai của các mệnh đề

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    Xét tính đúng sai của các mệnh đề dưới đây:

    a) Hàm số y = f(x) có hai điểm cực trị là 02. Đúng||Sai

    b) Giá trị b bằng 0. Đúng||Sai

    c) Giá trị c = - 2. Sai||Đúng

    d) f(x) = x^{3} - 6x^{2} + 2. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    Xét tính đúng sai của các mệnh đề dưới đây:

    a) Hàm số y = f(x) có hai điểm cực trị là 02. Đúng||Sai

    b) Giá trị b bằng 0. Đúng||Sai

    c) Giá trị c = - 2. Sai||Đúng

    d) f(x) = x^{3} - 6x^{2} + 2. Sai||Đúng

    Hàm số y = f(x) có điểm cực tiểu là x = 2, điểm cực đại là x = 0.

    Ta có: f'(x) = 3x^{2} + 2ax +
b. 0,2 là hai nghiệm của phương trình f'(x) = 0

    nên b = 0,\ \ a = - 3. Vì đồ thị hàm số đi qua điểm có tọa độ (0\ \ ;\ \
2)nên c = 2.

    Suy ra f(x) = x^{3} - 2x^{2} + 2.

    Đáp án: a) Đúng, b) Đúng, c) Sai, d) Sai.

  • Câu 4: Thông hiểu
    Chọn đáp án thích hợp

    Có bao nhiêu giá trị nguyên của tham số m để phương trình x^{3} - 3x^{2} - m^{2} + 5m = 0 có ba nghiệm thực phân biệt?

    Hướng dẫn:

    Đặt f(x) = x^{3} - 3x^{2} - m^{2} +
5m

    Để x^{3} - 3x^{2} - m^{2} + 5m =
0 có ba nghiệm thực phân biệt thì f'(x) = 0 có ba nghiệm thực phân biệt x_{1};x_{2} thỏa mãn f\left( x_{1} ight).f\left( x_{2} ight) <
0

    Ta có: f'(x) = 3x^{2} - 6x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
f(0) = - m^{2} + 5m \\
f(2) = - m^{2} + 5m - 4 \\
\end{matrix} ight..

    Khi đó f(0).f(2) = \left( - m^{2} + 5m
ight)\left( - m^{2} + 5m - 4 ight) < 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
0 < m < 1 \\
4 < m < 5 \\
\end{matrix} ight.

    Vậy không có giá trị nguyên của tham số m thỏa mãn.

  • Câu 5: Thông hiểu
    Xác định số giao điểm

    Cho hàm số y = x^{4} - 3x^{2} có đồ thị (C). Số giao điểm của đồ thị (C) và đường thẳng y = 2

    Hướng dẫn:

    Số giao điểm của đồ thị (C) và đường thẳng y = 2 là số nghiệm của phương trình sau:

    x^{4} - 3x^{2} = 2 \Leftrightarrow x^{4}
- 3x^{2} - 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} = \frac{3 + \sqrt{17}}{2} \\
x^{2} = \frac{3 - \sqrt{17}}{2} < 0 \\
\end{matrix} ight.\  \Leftrightarrow x = \pm \sqrt{\frac{3 +
\sqrt{17}}{2}}.

    Phương trình hoành độ giao điểm có 2 nghiệm nên số giao điểm của đồ thị (C) và đường thẳng là 2.

  • Câu 6: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số y = \frac{ax + b}{cx +
d} có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

    Hướng dẫn:

    Ta có tọa độ giao điểm của đồ thị hàm số và trục hoành là ( - 1\ ;\ 0).

  • Câu 7: Thông hiểu
    Tìm m để phương trình có hai nghiệm

    Quan sát đồ thị hàm số y =
f(x):

    Số giá trị nguyên của tham số m để phương trình f(x) + m - 2020 = 0 có hai nghiệm phân là:

    Hướng dẫn:

    Ta có:

    f(x) + m - 2020 = 0 \Leftrightarrow f(x)
= 2020 - m

    Để phương trình có hai nghiệm \Leftrightarrow \left\lbrack \begin{matrix}
2020 - m = - 4 \\
2020 - m > - 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 2020 \\
m < 2023 \\
\end{matrix} ight.

    m\mathbb{\in Z} nên có tất cả 2023 giá trị của tham số m thỏa mãn yêu cầu để bài.

  • Câu 8: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ - 1
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Hàm số không có giá trị lớn nhất vì \lim_{x ightarrow - 1^{-}}y = + \infty nên khẳng định “Giá trị lớn nhất của hàm số là 2” sai.

    Phương trình f(x) = m có 3 nghiệm thực phân biệt khi và chỉ khi 1 <
m < 2 nên khẳng định “Phương trình f(x) = m3 nghiệm thực phân biệt khi và chỉ khi m \in (1;2)” đúng.

    Hàm số đồng biến trên các khoảng ( -
\infty;1)( - 1;1) nên khẳng định “Hàm số đồng biến trên một khoảng duy nhất là ( - \infty;1)” sai.

    Đồ thị hàm số có hai đường tiệm cận là x
= - 1;y = 1\lim_{x ightarrow
\pm \infty}y = 1;\lim_{x ightarrow - 1^{- 1}}y = + \infty nên khẳng định “Đồ thị hàm số có ba đường tiệm cận” sai.

    Vậy khẳng định đúng cần tìm là “Phương trình f(x) = m3 nghiệm thực phân biệt khi và chỉ khi m \in (1;2).”

  • Câu 9: Thông hiểu
    Tìm hàm số tương ứng với đồ thị đã cho

    Hàm số nào sau đây có đồ thị như hình vẽ:

    Hướng dẫn:

    Dựa vào hình dáng đồ thị ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên loại đáp án y = x^{4} - 2x^{2} - 1

    Đồ thị hàm số đi qua điểm có tọa độ (0; -1) nên loại đáp án y = - x^{4} +2x^{2}

    Lại có đồ thị hàm số có các điểm cực trị (1;1),( - 1,1) nên loại đáp án y = - x^{4} + 2x^{2} - 1

    Vậy hàm số cần tìm là y = - 2x^{4} +4x^{2} - 1.

  • Câu 10: Thông hiểu
    Mệnh đề nào dưới đây đúng

    Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

    Mệnh đề nào dưới đây đúng
    Hướng dẫn:

     Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty } \end{array}} ight. \Rightarrow a > 0

    Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0

    Ta có: y' = 3a{x^2} + 2bx + c, nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có

    \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{ - b}}{a} > 0 \Rightarrow b < 0} \\   {{x_1}.{x_2} = \dfrac{c}{a} = 0 \Rightarrow c = 0} \end{array}} ight.

  • Câu 11: Thông hiểu
    Chọn đáp án chính xác

    Đồ thị hàm số y = f(x) được biểu diễn trong hình vẽ như sau:

    Tìm tất cả các giá trị thực của tham số m để phương trình \left| f(x) ight| = m có đúng hai nghiệm phân biệt?

    Hướng dẫn:

    Số nghiệm của phương trình \left| f(x)
ight| = m chính là giao điểm của hai đồ thị \left\{ \begin{matrix}
y = \left| f(x) ight| \\
y = m \\
\end{matrix} ight.

    Minh họa trực quan:

    Vậy để hàm số \left| f(x) ight| =
m có đúng hai nghiệm thì \left\lbrack \begin{matrix}
m > 5 \\
0 < m < 1 \\
\end{matrix} ight..

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Hãy phương trình 2\left| f(x) ight| - 1
= 0 có bao nhiêu nghiệm thuộc khoảng (0; + \infty)?

    Hướng dẫn:

    Ta có: 2\left| f(x) ight| - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}f(x) = \dfrac{1}{2} \\f(x) = - \dfrac{1}{2} \\\end{matrix} ight.

    Từ đồ thị hàm số ta thấy đường thẳng y =
\frac{1}{2} cắt đồ thị tại hai điểm phân biệt, đường thẳng y = - \frac{1}{2} cắt đồ thị tại 4 điểm phân biệt do đó phương trình f(x) =
\frac{1}{2} có hai nghiệm phân biệt và phương trình f(x) = - \frac{1}{2} có 4 nghiệm phân biệt

    Vậy phương trình 2\left| f(x) ight| - 1
= 0 có tất cả 6 nghiệm thực phân biệt.

  • Câu 13: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hàm số y = x^{3} - 3x^{2} +
2. Xét tính đúng sai của nhận định dưới đây:

    a) Đạo hàm của hàm số đã cho là y' =
3x^{2} - 6x. Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (0;2) và nghịch biến trên các khoảng ( - \infty;0) \cup (2; + \infty). Sai||Đúng

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở Hình 4.

    Sai||Đúng

    Đáp án là:

    Cho hàm số y = x^{3} - 3x^{2} +
2. Xét tính đúng sai của nhận định dưới đây:

    a) Đạo hàm của hàm số đã cho là y' =
3x^{2} - 6x. Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (0;2) và nghịch biến trên các khoảng ( - \infty;0) \cup (2; + \infty). Sai||Đúng

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở Hình 4.

    Sai||Đúng

    Câu 2

    a)

    b)

    c)

    d)

    ý

    Đúng

    Sai

    Sai

    Sai

    Ta có: y' = 3x^{2} - 6x, y' = 0 \Leftrightarrow x = 0 hoặc x = 2.

    Bảng biến thiên của hàm số đã cho là:

    Hàm số đồng biến trên các khoảng ( -
\infty;0)(2; +
\infty), hàm số nghịch biến trên khoảng (0;2).

    Đồ thị hàm số đã cho là:

    Ảnh có chứa biểu đồ, hàng, Sơ đồMô tả được tạo tự động

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Số giao điểm của đồ thị hàm số y = -
x^{2} + 3x và đồ thị hàm số y =
x^{3} - x^{2}

    Hướng dẫn:

    Phương trình hoành độ giao điểm của hai đồ thị là x^{3} - x^{2} = - x^{2} + 3x

    \Leftrightarrow x^{3} - 3x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm \sqrt{3} \\
\end{matrix} ight.

    Vậy có tất cả 3 giao điểm cần tìm.

  • Câu 15: Nhận biết
    Chọn phương án thích hợp

    Biết rằng đường thẳng y = 4x + 5 cắt đồ thị hàm số y = x^{3} + 2x +
1 tại điểm duy nhất; kí hiệu (x_0;y_0) là tọa độ của điểm đó. Tìm y_0.

    Hướng dẫn:

    Phương trình hoành độ giao điểm là x^{3}
+ 2x + 1 = 4x + 5

    \Leftrightarrow x^{3} - 2x - 4 = 0 \Leftrightarrow x = 2

    Với x = 2 \Rightarrow y =
13.

    Vậy y_{0} = 13

  • Câu 16: Thông hiểu
    Tìm tập hợp tham số m thỏa mãn yêu cầu

    Cho hàm số f(x) xác định và liên tục trên mỗi khoảng ( - \infty; -
2brack\lbrack 2; +
\infty) và có bảng biến thiên như sau:

    Tập hợp tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm phân biệt?

    Hướng dẫn:

    Số nghiệm của phương trình f(x) =
m là số giao điểm của đường thẳng y
= m và đồ thị hàm số y =
f(x)

    Để phương trình có hai nghiệm phân biệt, dựa vào bảng biến thiên ta thấy \left\lbrack \begin{matrix}
\frac{7}{4} < m \leq 2 \\
m \geq 22 \\
\end{matrix} ight.

    Vậy tập hợp các giá trị tham số m thỏa mãn yêu cầu bài toán là \left( \frac{7}{4};2 ightbrack \cup \lbrack
22; + \infty).

  • Câu 17: Vận dụng
    Xác định tính đúng sai của từng phương án

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức P(x) = \frac{1}{40}x^{2}(30 - x) trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam, 0 < x < 30).

    a) Độ giảm huyết áp của một bệnh nhân là P(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}. Đúng||Sai

    b) Đạo hàm của P(x)P'(x) = \frac{3}{2}x +
\frac{3}{40}x^{2}. Sai||Đúng

    c) Phương trình P'(x) = 0 có nghiệm duy nhất. Sai||Đúng

    d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20mg. Đúng||Sai

    Đáp án là:

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức P(x) = \frac{1}{40}x^{2}(30 - x) trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam, 0 < x < 30).

    a) Độ giảm huyết áp của một bệnh nhân là P(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}. Đúng||Sai

    b) Đạo hàm của P(x)P'(x) = \frac{3}{2}x +
\frac{3}{40}x^{2}. Sai||Đúng

    c) Phương trình P'(x) = 0 có nghiệm duy nhất. Sai||Đúng

    d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20mg. Đúng||Sai

    a) Đúng. Độ giảm huyết áp của một bệnh nhân được viết lại làP(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}.

    b) Sai. Đạo hàm của P(x)P'(x) = \frac{3}{2}x -
\frac{3}{40}x^{2}.

    c) Sai. Xét phương trình P'(x) = 0
\Leftrightarrow \frac{3}{2}x - \frac{3}{40}x^{2} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 20 \\
\end{matrix} ight.

    d) Đúng. Ta có bảng biến thiên:

    Vậy liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20 mg.

  • Câu 18: Vận dụng
    Ghi đáp án vào ô trống

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Thông hiểu
    Tìm m để phương trình có ba nghiệm thực

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.

    Có bao nhiêu giá trị nguyên của tham số m để phương trình f(x) = m có ba nghiệm thực phân biệt?

    Hướng dẫn:

    Phương trình có ba nghiệm thực phân biệt \Leftrightarrow - 3 < m < 1.

    Do m nguyên nên m \in \left\{ - 2; - 1;0 ight\}

    Vậy có 3 giá trị nguyên m

  • Câu 20: Nhận biết
    Số nghiệm thực của phương trình

    Cho hàm số bậc ba có đồ thị như hình vẽ:

    Số nghiệm thực của phương trình

    Số nghiệm thực của phương trình 2f\left( x ight) - 5 = 0 là:

    Hướng dẫn:

    Ta có: 2f\left( x ight) - 5 = 0 \Rightarrow f\left( x ight) = \frac{5}{2}

    Quan sát đồ thị ta thấy y = \frac{5}{2} cắt đồ thị hàm số y = f\left( x ight) tại ba điểm phân biệt

    => Phương trình 2f\left( x ight) - 5 = 0 có ba nghiệm thực phân biệt.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo