Đồ thị hàm số cắt trục tung tại điểm:
Ta có:
Vậy đồ thị hàm số cắt trục tung tại điểm
.
Đồ thị hàm số cắt trục tung tại điểm:
Ta có:
Vậy đồ thị hàm số cắt trục tung tại điểm
.
Cho hàm số có đồ thị
Tìm số giao điểm của
và trục hoành.
Pthd của và trục hoành là:
có
giao điểm.
Chú ý: Ở bài toán này hoàn toàn có thể giải trực tiếp bằng Casio với phương trình , nhưng chắc chắn thao tác bấm máy sẽ chậm hơn việc tính tay (thậm chí bài này không cần nháp khi mà kết quả đã hiện ra luôn khi ta đọc đề xong). Vì vậy, Casio là điều không cần thiết với câu hỏi này.
Cho hàm số xác định trên
, liên tục trên các khoảng xác định và có bảng biến thiên như sau:
Tìm tập hợp các giá trị của tham số để phương trình
có ba nghiệm phân biệt?
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số
và đường thẳng
Dựa vào bảng biến thiên ta suy ra để phương trình đã cho có ba nghiệm phân biệt thì .
Với giá trị nào của tham số để đồ thị hàm số
đi qua điểm
?
Thay tọa độ điểm vào
ta được:
Vậy giá trị m cần tìm là .
Cho hàm số . Hàm số
có đồ thị như hình bên. Biết
. Tìm tất cả các giá trị của
để bất phương trình
nghiệm đúng với mọi
.
Ta có .
Xét hàm số trên
.
Có .
Trên có
và
nên
Hàm số
đồng biến trên
.
Vậy nên nghiệm đúng với mọi
.
Cho hàm số với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định . Đúng||Sai
b) . Sai|| Đúng
c) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi m < 1. Sai|| Đúng
d) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi 0 ≤ m < 1. Đúng||Sai
Cho hàm số với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định . Đúng||Sai
b) . Sai|| Đúng
c) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi m < 1. Sai|| Đúng
d) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi 0 ≤ m < 1. Đúng||Sai
a) Tập xác định .
b)
c) Sai.
Hàm số đã cho đồng biến trên (−∞; 0) khi và chỉ khi
.
d) Đúng
Cho hàm số . Số nghiệm thực phân biệt của phương trình
là:
Ta có:
Đồ thị của hàm số được minh họa bằng hình vẽ sau:

Từ đồ thị ta suy ra
Phương trình (*) có 3 nghiệm thực
Phương trình (**) có 2 nghiệm thực
Hình vẽ bên dưới là đồ thị của hàm số nào?
Đồ thị hàm số cắt trục Oy tai điểm có tọa độ nên chọn phương án
.
Cho hàm số có đạo hàm trên
và đồ thị như hình vẽ bên dưới:
a) Hàm số đồng biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Đúng||Sai
c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn bằng
. Sai||Đúng
Cho hàm số có đạo hàm trên
và đồ thị như hình vẽ bên dưới:
a) Hàm số đồng biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Đúng||Sai
c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn bằng
. Sai||Đúng
Theo hình vẽ, hàm số đồng biến trên khoảng và đạt cực tiểu tại điểm
. giá trị không âm trên khoảng đó.
Giá trị lớn nhất của hàm số trên đoạn bằng
.
Tìm điều kiện cần và đủ của tham số thực ủa tham số để đường thẳng
cắt đồ thị
tại ba điểm phân biệt là:
Phương trình hoành độ giao điểm của hai đồ thị:
(*) là phương trình hoành độ giao điểm của hai đồ thị
Xét hàm số có
Bảng biến thiên
Vậy theo yêu cầu bài toán
Cho hàm số với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng
b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng
c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai
d) . Đúng||Sai
Cho hàm số với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng
b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng
c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai
d) . Đúng||Sai
Ta có:
Do hàm số đạt cực đại tại x = 3 nên
Với .
Bảng xét dấu y’ như sau:
Với
Bảng xét dấu y’ như sau:
Từ bảng xét dấu, ta có hàm số đạt cực đại tại x = 3
Vậy hàm số đã cho đạt cực đại tại x = 3 khi và chỉ khi m = 5.
Đường cong ở hình bên là đồ thị của hàm số với
là các số thực. Mệnh đề nào dưới đây đúng?
Ta có :
Dựa vào hình dáng của đồ thị ta được:
+ Điều kiện
+ Đây là đồ thị của hàm nghịch biến
Từ đó ta được
Cho đồ thị hàm số có đồ thị hàm số là đường cong trong hình vẽ:

Khẳng định nào dưới đây sai?
Quan sát đồ thị hàm số ta có:
Đáp án A sai vì hàm số không nghịch biến trên
Đáp án B sai vì hàm số chỉ đạt cực tiểu tại x = 2
Đáp án C sai vì trên đoạn [0; 2] hàm số vừa có khoảng đồng biến, vừa có khoảng nghịch biến.
Đáp án D đúng vì
Cho hàm số có bảng biến thiên như sau:
Số nghiệm thực của phương trình là
Ta có: có đồ thị hàm số là đường thẳng song song với trục hoành.
Khi đó ta kí hiệu bảng biến thiên như sau
Nhìn bảng biến thiên ta thấy phương trình này có 3 nghiệm.
Cho hàm số có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

a) Hàm số đồng biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Đúng||Sai
c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng . Sai||Đúng
d) Giá trị lớn nhất của hàm số trên đoạn bằng
. Đúng||Sai
Cho hàm số có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

a) Hàm số đồng biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Đúng||Sai
c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng . Sai||Đúng
d) Giá trị lớn nhất của hàm số trên đoạn bằng
. Đúng||Sai
a) Theo Hình, hàm số đồng biến trên khoảng
b) Hàm số đạt cực tiểu tại điểm .
c) Vì hàm số nghịch biến trên khoảng nên đạo hàm của hàm số nhận giá trị âm trên khoảng đó.
d) Giá trị lớn nhất của hàm số trên đoạn bằng
.
Đáp án: a) Đúng, b) Đúng, c) Sai d) Đúng.
Cho hàm số . Các nhận định dưới đây đúng hay sai?
a) Đạo hàm của hàm số đã cho là . Sai||Đúng
b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng và nhận giá trị dương trên các khoảng
. Đúng||Sai
c) Bảng biến thiên của hàm số đã cho là:

Sai||Đúng
d) Đồ thị hàm số đã cho như ở hình 4:
.
Đúng||Sai
Cho hàm số . Các nhận định dưới đây đúng hay sai?
a) Đạo hàm của hàm số đã cho là . Sai||Đúng
b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng và nhận giá trị dương trên các khoảng
. Đúng||Sai
c) Bảng biến thiên của hàm số đã cho là:

Sai||Đúng
d) Đồ thị hàm số đã cho như ở hình 4:
.
Đúng||Sai
a) Đạo hàm của hàm số đã cho là nên mệnh đề sai.
b) nên đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng
và nhận giá trị dương trên các khoảng
.
c) Bảng biến thiên của hàm số đã cho là:

Mệnh đề sai vì thấy
d) Đồ thị hàm số đã cho như ở hình 4, mệnh đề đúng
.
Đáp án: a) Sai b) Đúng c) Sai d) Đúng.
Cho hàm số có bảng biến thiên như sau:
Tìm số nghiệm của phương trình trên đoạn
?
Cho hàm số có bảng biến thiên như sau:
Tìm số nghiệm của phương trình trên đoạn
?
Số giao điểm của đồ thị hàm số với trục hoành là
Ta có hoành độ giao điểm của đồ thị hàm số với trục hoành là nghiệm của phương trình
(*)
.
Phương trình (*) có ba nghiệm phân biệt, do đó đồ thị hàm số cắt trục hoành tại ba điểm phân biệt.
Cho hàm số liên tục trên
và thỏa mãn
. Hàm số
có đồ thị như hình vẽ. Bất phương trình
nghiệm đúng với mọi
khi và chỉ khi
Điều kiện:
Bất phương trình đã cho tương đương với (*).
Xét hàm số trên
.
Ta có . Với
thì
nên
.
Do đó hàm số đồng biến trên
.
Suy ra (*) nghiệm đúng với mọi khi và chỉ khi
.
Cho hàm số . Xét tính đúng sai của nhận định dưới đây:
a) Đạo hàm của hàm số đã cho là . Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng và nghịch biến trên các khoảng
. Sai||Đúng
c) Bảng biến thiên của hàm số đã cho là:

Sai||Đúng
d) Đồ thị hàm số đã cho như ở Hình 4.

Sai||Đúng
Cho hàm số . Xét tính đúng sai của nhận định dưới đây:
a) Đạo hàm của hàm số đã cho là . Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng và nghịch biến trên các khoảng
. Sai||Đúng
c) Bảng biến thiên của hàm số đã cho là:

Sai||Đúng
d) Đồ thị hàm số đã cho như ở Hình 4.

Sai||Đúng
|
Câu 2 |
a) |
b) |
c) |
d) |
|
ý |
Đúng |
Sai |
Sai |
Sai |
Ta có: ,
hoặc
.
Bảng biến thiên của hàm số đã cho là:

Hàm số đồng biến trên các khoảng và
, hàm số nghịch biến trên khoảng
.
Đồ thị hàm số đã cho là:

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: