Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Đây là đồ thị của hàm số bậc ba với hệ số nên chọn
.
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Đây là đồ thị của hàm số bậc ba với hệ số nên chọn
.
Đường cong ở hình bên là đồ thị của hàm số với
là các số thực. Mệnh đề nào dưới đây đúng?
Dựa vào đồ thị ta nhận thấy tiệm cận đứng bằng 2, hàm số nghịch biến vậy chọn B
Cho hàm số có đồ thị như Hình 2.

Xét tính đúng sai của các mệnh đề dưới đây:
a) Hàm số có hai điểm cực trị là
và
. Đúng||Sai
b) Giá trị bằng
. Đúng||Sai
c) Giá trị . Sai||Đúng
d) . Sai||Đúng
Cho hàm số có đồ thị như Hình 2.

Xét tính đúng sai của các mệnh đề dưới đây:
a) Hàm số có hai điểm cực trị là
và
. Đúng||Sai
b) Giá trị bằng
. Đúng||Sai
c) Giá trị . Sai||Đúng
d) . Sai||Đúng
Hàm số có điểm cực tiểu là
điểm cực đại là
Ta có: Vì
là hai nghiệm của phương trình
nên Vì đồ thị hàm số đi qua điểm có tọa độ
nên
Suy ra
Đáp án: a) Đúng, b) Đúng, c) Sai, d) Sai.
Có bao nhiêu giá trị nguyên của tham số để phương trình
có ba nghiệm thực phân biệt?
Đặt
Để có ba nghiệm thực phân biệt thì
có ba nghiệm thực phân biệt
thỏa mãn
Ta có:
Ta có: .
Khi đó
Vậy không có giá trị nguyên của tham số m thỏa mãn.
Cho hàm số có đồ thị
. Số giao điểm của đồ thị
và đường thẳng
là
Số giao điểm của đồ thị và đường thẳng
là số nghiệm của phương trình sau:
.
Phương trình hoành độ giao điểm có 2 nghiệm nên số giao điểm của đồ thị và đường thẳng là 2.
Cho hàm số có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Ta có tọa độ giao điểm của đồ thị hàm số và trục hoành là .
Quan sát đồ thị hàm số :
Số giá trị nguyên của tham số để phương trình
có hai nghiệm phân là:
Ta có:
Để phương trình có hai nghiệm
Mà nên có tất cả 2023 giá trị của tham số m thỏa mãn yêu cầu để bài.
Cho hàm số xác định trên
liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:
Khẳng định nào dưới đây đúng?
Hàm số không có giá trị lớn nhất vì nên khẳng định “Giá trị lớn nhất của hàm số là
” sai.
Phương trình có 3 nghiệm thực phân biệt khi và chỉ khi
nên khẳng định “Phương trình
có
nghiệm thực phân biệt khi và chỉ khi
” đúng.
Hàm số đồng biến trên các khoảng và
nên khẳng định “Hàm số đồng biến trên một khoảng duy nhất là
” sai.
Đồ thị hàm số có hai đường tiệm cận là vì
nên khẳng định “Đồ thị hàm số có ba đường tiệm cận” sai.
Vậy khẳng định đúng cần tìm là “Phương trình có
nghiệm thực phân biệt khi và chỉ khi
.”
Hàm số nào sau đây có đồ thị như hình vẽ:
Dựa vào hình dáng đồ thị ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên loại đáp án
Đồ thị hàm số đi qua điểm có tọa độ nên loại đáp án
Lại có đồ thị hàm số có các điểm cực trị nên loại đáp án
Vậy hàm số cần tìm là .
Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?
![]() |
Ta có:
Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0
Ta có: , nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có
Đồ thị hàm số được biểu diễn trong hình vẽ như sau:
Tìm tất cả các giá trị thực của tham số để phương trình
có đúng hai nghiệm phân biệt?
Số nghiệm của phương trình chính là giao điểm của hai đồ thị
Minh họa trực quan:
Vậy để hàm số có đúng hai nghiệm thì
.
Cho hàm số có đồ thị như hình vẽ:
Hãy phương trình có bao nhiêu nghiệm thuộc khoảng
?
Ta có:
Từ đồ thị hàm số ta thấy đường thẳng cắt đồ thị tại hai điểm phân biệt, đường thẳng
cắt đồ thị tại 4 điểm phân biệt do đó phương trình
có hai nghiệm phân biệt và phương trình
có 4 nghiệm phân biệt
Vậy phương trình có tất cả 6 nghiệm thực phân biệt.
Cho hàm số . Xét tính đúng sai của nhận định dưới đây:
a) Đạo hàm của hàm số đã cho là . Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng và nghịch biến trên các khoảng
. Sai||Đúng
c) Bảng biến thiên của hàm số đã cho là:

Sai||Đúng
d) Đồ thị hàm số đã cho như ở Hình 4.

Sai||Đúng
Cho hàm số . Xét tính đúng sai của nhận định dưới đây:
a) Đạo hàm của hàm số đã cho là . Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng và nghịch biến trên các khoảng
. Sai||Đúng
c) Bảng biến thiên của hàm số đã cho là:

Sai||Đúng
d) Đồ thị hàm số đã cho như ở Hình 4.

Sai||Đúng
|
Câu 2 |
a) |
b) |
c) |
d) |
|
ý |
Đúng |
Sai |
Sai |
Sai |
Ta có: ,
hoặc
.
Bảng biến thiên của hàm số đã cho là:

Hàm số đồng biến trên các khoảng và
, hàm số nghịch biến trên khoảng
.
Đồ thị hàm số đã cho là:

Số giao điểm của đồ thị hàm số và đồ thị hàm số
là
Phương trình hoành độ giao điểm của hai đồ thị là
Vậy có tất cả 3 giao điểm cần tìm.
Biết rằng đường thẳng cắt đồ thị hàm số
tại điểm duy nhất; kí hiệu
là tọa độ của điểm đó. Tìm
.
Phương trình hoành độ giao điểm là
Với .
Vậy
Cho hàm số xác định và liên tục trên mỗi khoảng
và
và có bảng biến thiên như sau:
Tập hợp tất cả các giá trị thực của tham số để phương trình
có hai nghiệm phân biệt?
Số nghiệm của phương trình là số giao điểm của đường thẳng
và đồ thị hàm số
Để phương trình có hai nghiệm phân biệt, dựa vào bảng biến thiên ta thấy
Vậy tập hợp các giá trị tham số m thỏa mãn yêu cầu bài toán là .
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức trong đó
là liều lượng thuốc được tiêm cho bệnh nhân (
được tính bằng miligam,
).
a) Độ giảm huyết áp của một bệnh nhân là . Đúng||Sai
b) Đạo hàm của là
. Sai||Đúng
c) Phương trình có nghiệm duy nhất. Sai||Đúng
d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là . Đúng||Sai
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức trong đó
là liều lượng thuốc được tiêm cho bệnh nhân (
được tính bằng miligam,
).
a) Độ giảm huyết áp của một bệnh nhân là . Đúng||Sai
b) Đạo hàm của là
. Sai||Đúng
c) Phương trình có nghiệm duy nhất. Sai||Đúng
d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là . Đúng||Sai
a) Đúng. Độ giảm huyết áp của một bệnh nhân được viết lại là.
b) Sai. Đạo hàm của là
.
c) Sai. Xét phương trình
d) Đúng. Ta có bảng biến thiên:
Vậy liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20 mg.
Tịnh tiến liên tiếp đồ thị hàm số theo trục
lên hai đơn vị và theo trục
sang trái
đơn vị ta được đồ thị hàm số
. Hỏi có bao nhiêu điểm trên đồ thị hàm số
có các tọa độ đều là số nguyên?
Tịnh tiến liên tiếp đồ thị hàm số theo trục
lên hai đơn vị và theo trục
sang trái
đơn vị ta được đồ thị hàm số
. Hỏi có bao nhiêu điểm trên đồ thị hàm số
có các tọa độ đều là số nguyên?
Cho hàm số bậc ba có đồ thị là đường cong trong hình bên.
Có bao nhiêu giá trị nguyên của tham số để phương trình
có ba nghiệm thực phân biệt?
Phương trình có ba nghiệm thực phân biệt .
Do nguyên nên
Vậy có 3 giá trị nguyên
Cho hàm số bậc ba có đồ thị như hình vẽ:

Số nghiệm thực của phương trình là:
Ta có:
Quan sát đồ thị ta thấy cắt đồ thị hàm số
tại ba điểm phân biệt
=> Phương trình có ba nghiệm thực phân biệt.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: