Đường thẳng d: y = x + 4 cắt đồ thị hàm số tại ba điểm phân biệt A(0;4), B, C sao cho tam giác MBC có diện tích bằng 4, với M(1;3). Các giá trị của m nhận được là:
Đường thẳng d: y = x + 4 cắt đồ thị hàm số tại ba điểm phân biệt A(0;4), B, C sao cho tam giác MBC có diện tích bằng 4, với M(1;3). Các giá trị của m nhận được là:
Tìm điều kiện cần và đủ của tham số thực ủa tham số để đường thẳng
cắt đồ thị
tại ba điểm phân biệt là:
Phương trình hoành độ giao điểm của hai đồ thị:
(*) là phương trình hoành độ giao điểm của hai đồ thị
Xét hàm số có
Bảng biến thiên
Vậy theo yêu cầu bài toán
Cho hàm số xác định trên
, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số để phương trình
có ba nghiệm thực phân biệt?
Dựa vào bảng biến thiên ta thấy phương trình có ba nghiệm thực phân biệt khi và chỉ khi
Cho hàm số và đường thẳng
. Gọi
là tập các số thực
để đường thẳng
cắt đồ thị
tại hai điểm phân biệt
sao cho tam giác
(
là gốc tọa độ) có bán kính đường tròn ngoại tiếp bằng
. Tổng các phần tử của
bằng
Xét phương trình (điều kiện
).
Phương trình tương đương
.
Đồ thị và đường thẳng
cắt nhau tại hai điểm phân biệt
và
khi và chỉ khi phương trình
có hai nghiệm phân biệt
điều kiện cần và đủ là
.
Khi đó hai giao điểm là ;
.
Ta có ;.
.
Suy ra
.
Vậy tổng các phần từ của bằng
.
Cho hàm số có đồ thị như hình vẽ bên dưới. Trong các hệ số
,
,
có bao nhiêu số dương?
Tiệm cận đứng:
Tiệm cận ngang:
Đồ thị cắt trục hoành tại nên
hay
Vậy trong các hệ số ,
,
có có hai số dương là
Quan sát hình vẽ sau:
Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?
Đồ thị hàm số có tiệm cận ngang và tiệm cận đứng là
nên hàm số tương ứng là
.
Cho hàm số có đồ thị là
. Số điểm thuộc
có hoành độ và tung độ đều là các số nguyên là
Ta có:
Gọi
Vậy có 4 điểm thỏa mãn yêu cầu.
Cho hàm số có đồ thị như hình vẽ:
Tính giá trị biểu thức ?
Từ đồ thị hàm số đã cho ta thấy đường tiệm cận đứng , đường tiệm cận ngang
Xét hàm số đồ thị có tiệm cận đứng
và tiệm cận ngang
suy ra
Đồ thị hàm số đi qua điểm
Vậy .
Cho hàm số bậc ba có đồ thị như sau:
Số giá trị nguyên của tham số để phương trình
có ba nghiệm phân biệt là:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số
và đường thẳng
Suy ra để phương trình có ba nghiệm phân biệt thì
Vì
Vậy có duy nhất một số nguyên của thỏa mãn yêu cầu bài toán.
Cho hàm số có đạo hàm trên
và hàm số
là hàm số bậc ba có đồ thị là đường cong trong hình vẽ.

Xét tính đúng hoặc sai của các mệnh đề sau:
a) Hàm số đồng biến trên khoảng
. Sai||Đúng
b) Hàm số có hai điểm cực trị. Sai||Đúng
c) . Sai||Đúng
d) Hàm số đồng biến trên khoảng
. Đúng||Sai
Cho hàm số có đạo hàm trên
và hàm số
là hàm số bậc ba có đồ thị là đường cong trong hình vẽ.

Xét tính đúng hoặc sai của các mệnh đề sau:
a) Hàm số đồng biến trên khoảng
. Sai||Đúng
b) Hàm số có hai điểm cực trị. Sai||Đúng
c) . Sai||Đúng
d) Hàm số đồng biến trên khoảng
. Đúng||Sai
a) Sai. Vì từ đồ thị của hàm số ta thấy
với
nên hàm số đồng biến trên khoảng
.
b) Sai. Vì từ đồ thị của hàm số ta thấy
chỉ đổi dấu một lần qua
nên hàm số có một điểm cực trị.
c) Sai. Vì:
Từ đồ thị ta có hàm số có dạng:
.
Đồ thị hàm số đi qua
nên:
.
Vậy .
d) Đúng. Vì:
Ta có: .
Vẽ đường thẳng trên cùng hệ trục tọa độ với đồ thị hàm số
.

Khi đó: .
Bảng biến thiên của hàm số .

Ta có hàm số đồng biến trên khoảng
nên
đồng biến trên khoảng
.
Cho hàm số có đồ thị như sau:
Hỏi số nghiệm của phương trình bằng bao nhiêu?
Ta có:
Lại có đường thẳng nằm phía trên gốc tọa độ; song song với trục Ox và cắt đồ thị hàm số
tại 4 điểm nên phương trình
có hai nghiệm.
Đường thẳng cắt đồ thị hàm số
tại hai điểm phân biệt sao cho tam giác
vuông (với
là gốc tọa độ). Mệnh đề nào sau đây đúng?
Xét hàm số ta có
Ta có bảng biến thiên như sau:
Vì nên từ bảng biến thiên ta thấy đường thẳng
luôn cắt đồ thị hàm số
tại những cặp điểm đối xứng nhau qua trục tung.
Giả sử . Tam giác OAB vuông
Suy ra vì
thuộc đồ thị hàm số nên
Cho hàm số bậc ba có đồ thị là đường cong trong hình bên.
Có bao nhiêu giá trị nguyên của tham số để phương trình
có ba nghiệm thực phân biệt?
Phương trình có ba nghiệm thực phân biệt .
Do nguyên nên
Vậy có 3 giá trị nguyên
Có bao nhiêu giá trị nguyên của tham số để phương trình
có ba nghiệm thực phân biệt?
Đặt
Để có ba nghiệm thực phân biệt thì
có ba nghiệm thực phân biệt
thỏa mãn
Ta có:
Ta có: .
Khi đó
Vậy không có giá trị nguyên của tham số m thỏa mãn.
Cho hàm số . Các nhận định dưới đây đúng hay sai?
a) Đạo hàm của hàm số đã cho là . Sai||Đúng
b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng và nhận giá trị dương trên các khoảng
. Đúng||Sai
c) Bảng biến thiên của hàm số đã cho là:

Sai||Đúng
d) Đồ thị hàm số đã cho như ở hình 4:
.
Đúng||Sai
Cho hàm số . Các nhận định dưới đây đúng hay sai?
a) Đạo hàm của hàm số đã cho là . Sai||Đúng
b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng và nhận giá trị dương trên các khoảng
. Đúng||Sai
c) Bảng biến thiên của hàm số đã cho là:

Sai||Đúng
d) Đồ thị hàm số đã cho như ở hình 4:
.
Đúng||Sai
a) Đạo hàm của hàm số đã cho là nên mệnh đề sai.
b) nên đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng
và nhận giá trị dương trên các khoảng
.
c) Bảng biến thiên của hàm số đã cho là:

Mệnh đề sai vì thấy
d) Đồ thị hàm số đã cho như ở hình 4, mệnh đề đúng
.
Đáp án: a) Sai b) Đúng c) Sai d) Đúng.
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Hàm số có 2 cực trị. Đúng||Sai
b) Điểm cực đại của hàm số là x = 2. Đúng||Sai
c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng
d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Hàm số có 2 cực trị. Đúng||Sai
b) Điểm cực đại của hàm số là x = 2. Đúng||Sai
c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng
d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng
Hàm số có đồ thị như sau:
a) Đúng. Từ đồ thị, ta khẳng định hàm số có 2 cực trị.
b) Đúng. Từ đồ thị, ta khẳng định hàm số có điểm cực đại là x = 2.
c) Sai. Trên khoảng (−1; 3) hàm số có đồng biến và nghịch biến.
d) Sai. Trên R không tồn tại giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên
Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?
Đường cong trong hình vẽ là đồ thị hàm số với
nên đồ thị đã cho là đồ thị của hàm số
.
Số giao điểm của đồ thị hàm số với trục hoành là
Xét phương trình hoành dộ giao điểm
.
Vậy có 3 giao điểm.
Số giao điểm của đường cong và đường thẳng y = 1 - 2x là:
Hàm số tương ứng với đồ thị trong hình vẽ dưới đây là:
Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng với
nên hàm số tương ứng là
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: