Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường thẳng trong không gian CTST (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Viết PT tham số

    Viết phương trình tham số của đường thẳng d qua hai điểm: A\left( { - 1,3, - 2} ight);B\left( {2, - 3,4} ight)

    Gợi ý:

    Để viết PT Tham số của một đường thẳng, ta cần 1 vecto chỉ phương và 1 điểm bất kỳ nằm trên đường thẳng đó.

    Hướng dẫn:

     Đường thẳng d đi qua hai điểm A và B nên VTCP của đường thẳng d chính là \overrightarrow {AB} hay ta có: \overrightarrow {AB}  = \left( {3, - 6,6} ight) = 3\left( {1, - 2,2} ight) =  - 3\left( { - 1,2, - 2} ight)

    \begin{array}{l} \Rightarrow \left( d ight)\left\{ \begin{array}{l}x = 3t - 1\\y = 3 - 6t\\z = 6t - 2\end{array} ight.\,\,;t \in \mathbb{R},\,\\hay\,\,\left( d ight)\left\{ \begin{array}{l}x = 2 + m\\y =  - 3 - 2m\\z = 4 + 2m\end{array} ight.\,\,;m \in \mathbb{R}\\\hay\,\,\left( d ight)\,\left\{ \begin{array}{l}x =  - 1 - \tan t\\y = 3 + 2\tan t\\z =  - 2 - 2\tan t\end{array} ight.\,\,;t \in\mathbb{R}\end{array}

     

  • Câu 2: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{2} = \frac{y + 2}{- 1} =
\frac{z - 3}{1}d_{2}:\frac{x -
1}{- 1} = \frac{y - 1}{2} = \frac{z + 1}{1}. Phương trình đường thẳng \Delta đi qua điểm A(1;2;3) vuông góc với d_{1} và cắt d_{2} là:

    Hướng dẫn:

    Gọi B = \Delta \cap d_{2}

    \begin{matrix}
B \in d_{2} \Rightarrow B(1 - t;1 + 2t; - 1 + t) \\
\overrightarrow{AB} = ( - t;2t - 1;t - 4) \\
\end{matrix}

    d_{1} có vectơ chỉ phương \overrightarrow{a_{1}} = (2; - 1;1)

    \begin{matrix}
\Delta\bot d_{1} \Leftrightarrow
\overrightarrow{AB}\bot\overrightarrow{a_{1}} \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow
\overrightarrow{AB}.\overrightarrow{a_{1}} = 0 \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow t = - 1 \\
\end{matrix}

    \Delta đi qua điểm A(1;2;3) và có vectơ chỉ phương \overrightarrow{AB} = (1; - 3; - 5)

    Vậy phương trình của \Delta\frac{x - 1}{1} = \frac{y - 2}{- 3} =
\frac{z - 3}{- 5}.

  • Câu 3: Thông hiểu
    Chọn phương án chính xác

    Trong không gian với hệ tọa độ Oxyz cho điểm A(1;2;3) Khoảng cách từ A đến trục Oy bằng

    Hướng dẫn:

    Trục Oy có véc-tơ chỉ phương \overrightarrow{j} = (0;1;0) và đi qua O(0;0;0).

    Áp dụng công thức, ta có d(A;Oy) =
\frac{\left| \left\lbrack \overrightarrow{j};\overrightarrow{OA}
\right\rbrack \right|}{\left| \overrightarrow{j} \right|} =
\sqrt{10}.

  • Câu 4: Thông hiểu
    Tìm vị trí tương đối của hai đường thẳng

    Cho hai đường thẳng: \left( d_{1}
\right):\frac{x - 7}{1} = \frac{y - 3}{2} = \frac{z - 9}{- 1}\left( d_{2} \right):\frac{x -
3}{- 1} = \frac{y - 1}{2} = \frac{z - 1}{3} .

    Chọn câu trả lời đúng?

    Hướng dẫn:

    Phương trình \left( d_{1} \right) \in
\left( d_{1} \right) cho A(7,3,7) và vectơ chỉ phương của \left( d_{1} \right) :

    \overrightarrow{a} = (1,2, - 1) .

    Phương trình \left( d_{2}
\right) cho B(3,1,1) \in \left(
d_{2} \right) và vectơ chỉ phương của \left( d_{2} \right) :

    \overrightarrow{b} = ( - 7,2,3) .

    \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack = (8,4,16) ; \overrightarrow{AB} = ( - 4, - 2, -
8) .

    \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack.\overrightarrow{AB}
= - 32 - 8 - 128 \neq 0 \Leftrightarrow \left( d_{1} \right)\left( d_{2} \right) chéo nhau .

  • Câu 5: Thông hiểu
    Vị trí tương đối của hai đường thẳng

    Hai đường thẳng (D):\frac{x - 1}{2} = y +
3 = \frac{z - 2}{3};\ \ \ \ \ (d):\frac{x + 2}{3} = \frac{y - 1}{2} =
\frac{z + 4}{4}.

    Hướng dẫn:

    A(1, - 3,2) \in (D)(D) có vecto chỉ phương \overrightarrow{a} = (2,1,3)

    B(-2,1,-4) \in (d)(d) có vecto chỉ phương \overrightarrow{b} = (3,2,4)

    \overrightarrow{AB} = ( - 3,4, - 6)\Rightarrow \left\lbrack \overrightarrow{a},\overrightarrow{b}
\right\rbrack.\overrightarrow{AB} = ( - 2,1,1).( - 3,4, - 6) = 4 \neq
0

    \Rightarrow (D)(d) chéo nhau.

  • Câu 6: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d':\frac{{x - 1}}{2} = \frac{{y + 3}}{1} = \frac{z}{2}. Phương trình đường thẳng  \Delta  đi qua điểm A(2;-1;-3) vuông góc với trục Oz và d là

    Hướng dẫn:

    Oz có vectơ chỉ phương \overrightarrow k  = \left( {0;0;1} ight)

    d có vectơ chỉ phương \overrightarrow {{a_d}}  = \left( {2;1; - 2} ight)

     \Delta  đi qua điểm A và có vectơ chỉ phương là \overrightarrow {{a_\Delta }}  = \left[ {\overrightarrow k ;\overrightarrow {{a_d}} } ight] = \left( { - 1;2;0} ight)

    Vậy phương của \Delta\left\{ \begin{matrix}
x = 2 - t \\
y = - 1 + 2t \\
y = - 3 \\
\end{matrix} ight.

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, khoảng cách giữa đường thẳng \Delta:\left\{ \begin{matrix}
x = 2 + t \\
y = 5 + 4t \\
z = 2 + t \\
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và mặt phẳng (P):2x - y + 2z = 0 bằng :

    Hướng dẫn:

    Xét phương trình 2(2 + t) - (5 + 4t) +
2(2 + t) = 0 \Leftrightarrow 0t + 3 = 0.

    Phương trình này vô nghiệm nên \Delta//(P).

    Chọn M(2;5;2) \in \Delta.

    Khi đó: d\left( \Delta;(P) \right) =
d\left( M;(P) \right) = \frac{|2.2 - 5 + 2.2|}{\sqrt{2^{2} + ( - 1)^{2}
+ 2^{2}}} = 1

  • Câu 8: Thông hiểu
    Xét tính đúng sai của các nhận định sau

    Trong không gian Oxyz, cho điểm M(1;0;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z -
3}{3}. Gọi \Delta là đường thẳng đi qua M, vuông góc với d và cắt Oz.

    a) Một vectơ chỉ phương của \Delta\overrightarrow{u} = ( - 3;0;1).Đúng||Sai

    b) Đường thẳng \Delta có phương trình \left\{ \begin{matrix}
x = 1 - 3t \\
y = 0 \\
z = 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right). Đúng||Sai

    c) Đường thẳng \Delta có phương trình \frac{x - 1}{- 3} = y = \frac{z -
1}{1}.Sai||Đúng

    d) Đường thẳng \Delta đi qua điểm K(4; - 1;0).Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho điểm M(1;0;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z -
3}{3}. Gọi \Delta là đường thẳng đi qua M, vuông góc với d và cắt Oz.

    a) Một vectơ chỉ phương của \Delta\overrightarrow{u} = ( - 3;0;1).Đúng||Sai

    b) Đường thẳng \Delta có phương trình \left\{ \begin{matrix}
x = 1 - 3t \\
y = 0 \\
z = 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right). Đúng||Sai

    c) Đường thẳng \Delta có phương trình \frac{x - 1}{- 3} = y = \frac{z -
1}{1}.Sai||Đúng

    d) Đường thẳng \Delta đi qua điểm K(4; - 1;0).Sai||Đúng

    a) Đúng

    b) Đúng

    c) Sai

    d) Sai

    Gọi N = \Delta \cap Oz \Rightarrow N \in
Oz \Rightarrow N(0;0;c).

    \Delta đi qua M và N nên \Delta có 1 vectơ chỉ phương là: \overrightarrow{MN} = ( - 1;0;c - 1).

    d có 1 vectơ chỉ phương \overrightarrow{u} = (1;2;3).

    \Delta vuông góc với d \Leftrightarrow
\overrightarrow{MN}.\overrightarrow{u} = 0 \Leftrightarrow 1.( - 1) +
2.0 + 3(c - 1) = 0 \Leftrightarrow c = \frac{4}{3}.

    Suy ra \Delta có 1 vectơ chỉ phương \overrightarrow{u} =
3\overrightarrow{MN} = ( - 3;0;1).

    Vậy \Delta có phương trình \left\{ \begin{matrix}
x = 1 - 3t \\
y = 0 \\
z = 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Khi đó ta có

    Phương án a): Đúng vì một vectơ chỉ phương của \overrightarrow{u} = ( -
3;0;1).

    Phương án b): Đúng vì đường thẳng \Delta có phương trình \left\{ \begin{matrix}
x = 1 - 3t \\
y = 0 \\
z = 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Phương án c): Sai vì đường thẳng \Delta không tồn tại phương trình chính tắc do \overrightarrow{u} = ( -
3;0;1).

    Phương án d): Sai vì thay toạ độ điểm K(4; - 1;0) vào phương trình đường thẳng \Delta không thoả mãn.

  • Câu 9: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x + 1}{2} = \frac{y}{1} = \frac{z -
2}{1}, mặt phẳng (P):x + y - 2z + 5
= 0A(1; - 1;2). Đường thẳng \Delta cắt d(P) lần lượt tại MN sao cho A là trung điểm của đoạn thẳng MN. Phương trình đường thẳng \Delta là.

    Hướng dẫn:

    M \in d \Rightarrow M( - 1 + 2t;t;t +
2)

    A là trung điểm MN \Rightarrow N(3 - 2t; - 2 - t;2 -
t)

    N \in (P) \Rightarrow t = 2 \Rightarrow
M(3;2;4)

    \Delta đi qua điểm M(3;2;4) và có vectơ chỉ phương \overrightarrow{a_{\Delta}} = \overrightarrow{AM}
= (2;3;2)

    Vậy phương trình của \Delta\frac{x - 1}{2} = \frac{y + 1}{3} = \frac{z
- 2}{2}

  • Câu 10: Vận dụng
    Phương trình tổng quát

    Viết phương trình tổng quát của đường thẳng (d) qua A (2, 3, 1)  cắt đường thẳng \left( {{d_1}} ight):\frac{{x - 2}}{3} = y + 3 = \frac{{z + 1}}{2} và vuông góc đường thẳng \left( {{d_2}} ight):x = t - 2;\,\,y = 4 - 2t;\,\,z = 3 - t,\,\,\,t \in R\,\,

    Hướng dẫn:

     Lấy điểm B\left( {2, - 3, - 1} ight) nằm trên đường thẳng (d1).

    Theo đề bài, ta có (d1) qua B\left( {2, - 3, - 1} ight) có vecto chỉ phương là \overrightarrow a  = \left( {3,1,2} ight)

    Ta có: \overrightarrow b  = \overrightarrow {AB}  = \left( {0, - 6, - 2} ight) =  - 2\left( {0,3,1} ight)

    Vecto pháp tuyến của mặt phẳng (P) chứa A và \left( {{d_1}} ight):\overrightarrow n  = \left[ {\overrightarrow a ,\overrightarrow b } ight] =  - \left( {5,3, - 9} ight)

    \Rightarrow \left( P ight):5\left( {x - 2} ight) + 3\left( {y - 3} ight) - 9\left( {z - 1} ight) = 0 \Leftrightarrow 5x + 3y - 9z - 10 = 0 (1)

    Xét tiếp đường thẳng có vecto chỉ phương của là vecto pháp tuyến của mặt phẳng qua A và vuông góc với . Ta có phương trình mp (Q) là

    \left( Q ight):\left( {x - 2} ight) - 2\left( {y - 3} ight) - \left( {z - 1} ight) = 0 \Leftrightarrow x - 2y - z + 5 = 0 (2)

    Từ (1) và (2) ta suy ra:

    \Rightarrow \left( d ight):5x + 3y - 9z - 10 = 0;x - 2y - z + 5 = 0

  • Câu 11: Thông hiểu
    Tìm đáp án chưa đúng

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(0;1;2), B(-2;-1;-2),C(2;-3;-3). Đường thẳng d đi qua điểm B và vuông góc với mặt phẳng (ABC). Phương trình nào sau đây không phải là phương trình của đường thẳng d.

    Hướng dẫn:

    \overrightarrow{AB} = ( - 2; - 2; -
4)

    \overrightarrow{AC} = (2; - 4; -
5)

    Đường thẳng d đi qua điểm B( - 2; - 1; - 2) và có vectơ chỉ phương là \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 6; - 18;12)
= - 6(1;3; - 2)

  • Câu 12: Vận dụng
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0; −1; 2), B(1; 1; 2) và đường thẳng d:\frac{x + 1}{1} =
\frac{y}{1} = \frac{z - 1}{1}. Biết điểm M(a; b; c) thuộc đường thẳng d sao cho tam giác MAB có diện tích nhỏ nhất. Khi đó giá trị T = a + 2b + 3c bằng:

    Hướng dẫn:

    S_{MAB} =
\frac{1}{2}.AB.d(M,AB) nên SMAB nhỏ nhất khi d(M, AB) nhỏ nhất. Phương trình của AB:\left\{ \begin{matrix}
x = t \\
y = - 1 + 2t \\
z = 2 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Dễ dàng kiểm tra AB và d chéo nhau.

    Gọi H là hình chiếu của M lên đường thẳng AB.

    Khi đó d(M, AB) = MH nhỏ nhất khi MH là đoạn vuông góc chung của d và AB.

    Ta có: M \in d \Rightarrow M( - 1 + s;s;1
+ s),H \in AB

    \Rightarrow H(t; - 1 +
2t;2)

    \Rightarrow \overrightarrow{MH} = (t - s
+ 1;2t - s - 1;1 - s)

    Vectơ chỉ phương của d và AB theo thứ tự là \overrightarrow{u} = (1;1;1),\overrightarrow{v} =
(1;2;0)

    \left\{ \begin{matrix}\overrightarrow{MH}\bot\overrightarrow{u} \\\overrightarrow{MH}\bot\overrightarrow{v} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}1(t - s + 1) + 1(2t - s - 1) + 1(1 - s) = 0\  \\1(t - s + 1) + 2(2t - s - 1) + 0(1 - s) = 0 \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}t = 1 \\s = \dfrac{4}{3} \\\end{matrix} ight.

    Vậy M\left(
\frac{1}{3};\frac{4}{3};\frac{7}{3} ight) \Rightarrow T =
10

  • Câu 13: Nhận biết
    Xác định vectơ chỉ phương của đường thẳng

    Trong không gian Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 3 - t \\
z = 2 - 3t \\
\end{matrix} \right.\ ,\left( t\mathbb{\in R} \right) , một vectơ chỉ phương của đường thẳng d là:

    Hướng dẫn:

    Một vectơ chỉ phương của đường thẳng d có tọa độ (2; - 1; - 3) = - ( - 2;1;3)

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\frac{{x + 2}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 3}}{3}. Đường thẳng d đi qua điểm M và có vectơ chỉ phương \overrightarrow{a_{d}} có tọa độ là:

    Hướng dẫn:

    A(2;3;3) đi qua điểm \overrightarrow{AB} = (0; - 1; - 1) và có vectơ chỉ phương \Delta

  • Câu 15: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz phương trình đường thẳng \Delta đi qua điểm M(2;1; - 5), đồng thời vuông góc với hai vectơ \overrightarrow{a} =
(1;0;1)\overrightarrow{b} =
(4;1; - 1)

    Hướng dẫn:

    \Delta đi qua điểm M(2;1; - 5), và có vectơ chỉ phương \overrightarrow {{a_\Delta }}  = \left[ {\overrightarrow a ;\overrightarrow b } ight] = \left( { - 1;5;1} ight)

    Vậy phương trình chính tắc của   là d_{2}:\left\{
\begin{matrix}
x = t \\
y = 3 \\
z = - 2 + t \\
\end{matrix} ight.

  • Câu 16: Vận dụng
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \Delta_{1}:\frac{x + 1}{3} = \frac{y - 2}{1} =
\frac{z - 1}{2}\Delta_{2}:\frac{x - 1}{1} = \frac{y}{2} = \frac{z
+ 1}{3}. Phương trình đường thẳng song song với d:\left\{ \begin{matrix}
x = 3 \\
y = - 1 + t \\
z = 4 + t \\
\end{matrix} \right. và cắt hai đường thẳng \Delta_{1};\Delta_{2} là:

    Hướng dẫn:

    Gọi \Delta là đường thẳng cần tìm

    Gọi A = \Delta \cap \Delta_{1},B = \Delta
\cap \Delta_{2}

    A \in \Delta_{1} \Rightarrow A( - 1 +
3a;2 + a;1 + 2a)

    B \in \Delta_{2} \Rightarrow B(1 + b;2b;
- 1 + 3b)

    \overrightarrow{AB} = ( - 3a + b + 2; -
a + 2b - 2; - 2a + 3b - 2)

    d có vectơ chỉ phương \overrightarrow{a_{d}} = (0;1;1)

    \Delta//d \Leftrightarrow
\overrightarrow{AB},\overrightarrow{a_{d}} cùng phương

    \Leftrightarrow có một số k thỏa \overrightarrow{AB} =
k\overrightarrow{a_{d}}

    \Leftrightarrow \left\{ \begin{matrix}
- 3a + b + 2 = 0 \\
- a + 2b - 2 = k \\
- 2a + 3b - 2 = k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3a + b = - 2 \\
- a + 2b - k = 2 \\
- 2a + 3b - k = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
k = - 1 \\
\end{matrix} ight.

    Ta có A(2;3;3);B(2;2;2)

    \Delta đi qua điểm A(2;3;3) và có vectơ chỉ phương \overrightarrow{AB} = (0; - 1; - 1)

    Vậy phương trình của \Delta\left\{ \begin{matrix}
x = 2 \\
y = 3 - t \\
z = 3 - t \\
\end{matrix} ight.

  • Câu 17: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho điểm A(4; - 1;3) và đường thẳng d:\frac{x - 1}{2} = \frac{y + 1}{- 1} = \frac{z -
3}{1}.

    a) Hình chiếu vuông góc của A xuống đường thẳng d có toạ độ là: H(3; - 2;4). Đúng||Sai

    b) Gọi H là hình chiếu vuông góc của A xuống đường thẳng d khi đó: AH
= \sqrt{29}. Sai||Đúng

    c) Điểm đối xứng với điểm A qua đường thẳng d có toạ độ là: M(2; - 3;5). Đúng||Sai

    d) Gọi M là điểm đối xứng với điểm A qua đường thẳng d khi đó: OM =
\sqrt{30} với O là gốc toạ độ. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho điểm A(4; - 1;3) và đường thẳng d:\frac{x - 1}{2} = \frac{y + 1}{- 1} = \frac{z -
3}{1}.

    a) Hình chiếu vuông góc của A xuống đường thẳng d có toạ độ là: H(3; - 2;4). Đúng||Sai

    b) Gọi H là hình chiếu vuông góc của A xuống đường thẳng d khi đó: AH
= \sqrt{29}. Sai||Đúng

    c) Điểm đối xứng với điểm A qua đường thẳng d có toạ độ là: M(2; - 3;5). Đúng||Sai

    d) Gọi M là điểm đối xứng với điểm A qua đường thẳng d khi đó: OM =
\sqrt{30} với O là gốc toạ độ. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    Gọi H là hình chiếu của A lên đường thẳng d ta có H(1 + 2t; - 1 - t;3 + t).

    \Rightarrow \overrightarrow{AH} = ( - 3
+ 2t; - t;t)

    d có một vectơ chỉ phương \overrightarrow{u} = (2; - 1;1).

    Ta có: \overrightarrow{AH}\bot\overrightarrow{u}
\Leftrightarrow \overrightarrow{AH}.\overrightarrow{u} = 0

    \Leftrightarrow 2.( - 3 + 2t) + t + t = 0
\Leftrightarrow t = 1 \Rightarrow H(3; - 2;4).

    Gọi M là điểm đối xứng của A qua d thì M là điểm đối xứng của A qua H.

    \Leftrightarrow \left\{ \begin{matrix}
x_{M} = 2x_{B} - x_{A} = 2 \\
y_{M} = 2y_{B} - y_{A} = - 3 \\
z_{M} = 2z_{B} - z_{A} = 5
\end{matrix} \right.\  \Rightarrow M(2; - 3;5).

    Khi đó ta có

    Phương án a): Đúng vì hình chiếu vuông góc của A xuống đường thẳng d có toạ độ là: H(3; - 2;4).

    Phương án b): Sai vì hình chiếu vuông góc của A xuống đường thẳng d có toạ độ là: H(3; - 2;4) \Rightarrow
\overrightarrow{AH} = (1;1;1) \Rightarrow AH = \sqrt{3}.

    Phương án c): Đúng vì điểm đối xứng với điểm A qua đường thẳng d có toạ độ là: M(2; - 3;5).

    Phương án d): Sai vì điểm đối xứng với điểm A qua đường thẳng d có toạ độ là:

    M(2; - 3;5) \Rightarrow
\overrightarrow{OM} = (2; - 3;5) \Rightarrow OM =
\sqrt{38}.

  • Câu 18: Nhận biết
    Tìm tham số m để hai đường thẳng vuông góc

    Trong không gian với hệ tọa độ Oxyz, cho 2 đường thẳng d_{1}:\frac{x + 1}{2} = \frac{y - 1}{- m} =\frac{z - 2}{- 3};d_{2}:\frac{x - 3}{1} = \frac{y}{1} = \frac{z -1}{1}. Tìm tất cả giá trị thực của m để d_{1} vuông góc với d_{2}?

    Hướng dẫn:

    Vectơ chỉ phương của d_{1};d_{2} lần lượt là: \overrightarrow{u_{1}} = (2; -
m; - 3),\overrightarrow{u_{2}} = (1;1;1).

    Để d_{1}\bot d_{2} thì \overrightarrow{u_{1}}.\overrightarrow{u_{2}} = 0
\Leftrightarrow 2 - m - 3 = 0 \Leftrightarrow m = - 1

  • Câu 19: Nhận biết
    Tìm tọa độ hình chiếu của A

    Trong không gian Oxyz, tìm tọa độ hình chiếu vuông góc của điểm A(1; 2; 5) trên trục Ox?

    Hướng dẫn:

    Hình chiếu vuông góc của điểm A(1;2;5) trên trục Ox có tọa độ là (1;0;0).

  • Câu 20: Thông hiểu
    Xác định phương trình chính tắc

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = - 3 + 2t \\
y = 1 - t \\
z = - 1 + 4t \\
\end{matrix} \right. . Phương trình chính tắc của đường thẳng đi qua điểm A( - 4; - 2;4), cắt và vuông góc với d là:

    Hướng dẫn:

    Gọi \Delta là đường thẳng cần tìm

    Gọi B = \Delta \cap d

    \begin{matrix}
B \in d \Rightarrow B( - 3 + 2t;1 - t; - 1 + 4t) \\
\overrightarrow{AB} = (1 + 2t;3 - t; - 5 + 4t) \\
\end{matrix}

    d có vectơ chỉ phương \overrightarrow{a_{d}} = (2; - 1;4)

    \begin{matrix}
\Delta\bot d \Leftrightarrow
\overrightarrow{AB}\bot\overrightarrow{a_{d}} \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow
\overrightarrow{AB}.\overrightarrow{a_{d}} = 0 \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow t = 1 \\
\end{matrix}

    \Delta đi qua điểm A( - 4; - 2;4) và có vectơ chỉ phương \overrightarrow{AB} = (3;2; -
1)

    Vậy phương trình của \Delta\frac{x + 4}{3} = \frac{y + 2}{2} = \frac{z
- 4}{- 1}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo