Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường thẳng trong không gian CTST (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian Oxyz, cho điểm A(0;1;1) và hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 \\
y = - 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\frac{x - 1}{3} = \frac{y - 2}{1} =
\frac{z}{1}. Gọi d là đường thẳng đi qua điểm A, cắt đường thẳng d_{1} và vuông góc với đường thẳng d_{2}. Đường thẳng d đi qua điểm nào trong các điểm dưới đây?

    Hướng dẫn:

    Gọi \left\{ \begin{matrix}
B = d_{1} \cap d \\
B \in d_{1} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
B( - 1; - 1 + t;t) \\
\overrightarrow{AB} = ( - 1;t - 2;t - 1) \\
\end{matrix} ight.

    d_{2} có một vectơ chỉ phương \overrightarrow{u} = (3;1;1).

    Do d\bot d_{2} nên \overrightarrow{u}.\overrightarrow{AB} = 0
\Leftrightarrow - 3 + t - 2 + t - 1 = 0

    \Leftrightarrow t = 3 \Rightarrow
\overrightarrow{AB} = ( - 1;1;2)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AN} = (2;0;6);\overrightarrow{AQ} = (3;1;4) \\
\overrightarrow{AP} = ( - 2; - 4;10);\overrightarrow{AM} = (1; - 1; - 2)
\\
\end{matrix} ight.

    Suy ra đường thẳng d đi qua M.

  • Câu 2: Thông hiểu
    Viết PT tổng quát

    Cho hai đường thẳng \left( {d'} ight)\left\{ \begin{array}{l}x = 3 - 2t\\y = 1 + t\\z =  - 2 - t\end{array} ight.\,\,;\,\,\,\,\,\left( {d''} ight)\left\{ \begin{array}{l}x = m - 3\\y = 2 + 2m\\z = 1 - 4m\end{array} ight.\,\,;t,\,\,m \in \mathbb{R}

    Viết phương trình tổng quát của mặt phẳng (P) qua (d’)và song song với (d’’).

    Hướng dẫn:

     Vì (P) đi qua (d’) nên (P) nhận VTCP của (d’) làm 1 VTCP

    VTCP\left( P ight):\overrightarrow a  = \left( { - 2,1, - 1} ight)

    Vì (P) song song với (d’’) nên (P) có VTCP thứ hai là :

    VTCP\left( P ight):\overrightarrow b  = \left( {1,2, - 4} ight)

    Từ đây, ta suy ra VTPT của (P) chính là tích có hướng của 2 VTCP và :

    VTPT\left( P ight):\left[ {\overrightarrow a ,\overrightarrow b } ight] = \left( {2,9,5} ight)

    Lấy điểm A(3,1,-2) trên đường thẳng (d’) mà (d’) nằm trong (P) nên ta có được A cũng phải thuộc (P):

    \begin{array}{l}A\left( {3,1, - 2} ight) \in \left( P ight) \Rightarrow \left( {x - 3} ight)2 + \left( {y - 1} ight)9 + \left( {z + 2} ight)5 = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \left( P ight):2x + 9y + 5z - 5 = 0\end{array}

  • Câu 3: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{- 1} = \frac{y + 3}{2} = \frac{z -
3}{1} và mặt phẳng (P):2x + y - 2z
+ 9 = 0. Gọi A là giao điểm của d(P). Phương trình tham số của đường thẳng \Delta nằm trong (P), đi qua điểm A và vuông góc với d là:

    Hướng dẫn:

    Gọi A = d \cap (P)

    \begin{matrix}
A \in d \Rightarrow A(1 - t; - 3 + 2t;3 + t) \\
A \in (P) \Rightarrow t = 1 \Rightarrow A(0; - 1;4) \\
\end{matrix}

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (2;1; - 2)

    d có vectơ chỉ phương \overrightarrow{a_{d}} = ( - 1;2;1)

    Gọi vecto chỉ phương của \Delta\overrightarrow{a_{\Delta}}

    Ta có :

    \left. \ \begin{matrix}
\Delta \subset (P) \Rightarrow
\overrightarrow{a_{\Delta}}\bot\overrightarrow{n_{P}} \\
d\bot\Delta \Rightarrow
\overrightarrow{a_{d}}\bot\overrightarrow{a_{\Delta}} \\
\end{matrix} ight\} \Rightarrow \overrightarrow{a_{\Delta}} =
\left\lbrack \overrightarrow{n_{P}},\overrightarrow{a_{d}} ightbrack
= (5;0;5)

    \Delta đi qua điểm A(0; - 1;4) và có vectơ chỉ phương là \overrightarrow{a_{\Delta}} =
(5;0;5)

    Vậy phương trình tham số của \Delta\left\{ \begin{matrix}
x = t \\
y = - 1 \\
z = 4 + t \\
\end{matrix} ight.

  • Câu 4: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian Oxyz, cho hai đường thẳng song song d:\left\{
\begin{matrix}
x = 2 - t \\
y = 1 + 2t \\
z = 4 - 2t \\
\end{matrix} ight.d':\frac{x - 4}{1} = \frac{y + 1}{- 2} =
\frac{z}{2}. Viết phương trình đường thẳng nằm trong mặt phẳng (d, d’), đồng thời cách đều hai đường thẳng d và d’.

    Hướng dẫn:

    Lấy M(2;1;4) \in d,N(4; - 1;0) \in
d'.

    Đường thẳng cần tìm đi qua trung điểm của MN, là điểm I(3; 0; 2), và song song với d và d’.

    Phương trình đường thẳng cần tìm là: \frac{x - 3}{1} = \frac{y}{- 2} = \frac{z -
2}{2}

  • Câu 5: Thông hiểu
    Xét tính đúng sai của các nhận định sau

    Trong không gian Oxyz, cho điểm M(1;0;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z -
3}{3}. Gọi \Delta là đường thẳng đi qua M, vuông góc với d và cắt Oz.

    a) Một vectơ chỉ phương của \Delta\overrightarrow{u} = ( - 3;0;1).Đúng||Sai

    b) Đường thẳng \Delta có phương trình \left\{ \begin{matrix}
x = 1 - 3t \\
y = 0 \\
z = 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right). Đúng||Sai

    c) Đường thẳng \Delta có phương trình \frac{x - 1}{- 3} = y = \frac{z -
1}{1}.Sai||Đúng

    d) Đường thẳng \Delta đi qua điểm K(4; - 1;0).Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho điểm M(1;0;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z -
3}{3}. Gọi \Delta là đường thẳng đi qua M, vuông góc với d và cắt Oz.

    a) Một vectơ chỉ phương của \Delta\overrightarrow{u} = ( - 3;0;1).Đúng||Sai

    b) Đường thẳng \Delta có phương trình \left\{ \begin{matrix}
x = 1 - 3t \\
y = 0 \\
z = 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right). Đúng||Sai

    c) Đường thẳng \Delta có phương trình \frac{x - 1}{- 3} = y = \frac{z -
1}{1}.Sai||Đúng

    d) Đường thẳng \Delta đi qua điểm K(4; - 1;0).Sai||Đúng

    a) Đúng

    b) Đúng

    c) Sai

    d) Sai

    Gọi N = \Delta \cap Oz \Rightarrow N \in
Oz \Rightarrow N(0;0;c).

    \Delta đi qua M và N nên \Delta có 1 vectơ chỉ phương là: \overrightarrow{MN} = ( - 1;0;c - 1).

    d có 1 vectơ chỉ phương \overrightarrow{u} = (1;2;3).

    \Delta vuông góc với d \Leftrightarrow
\overrightarrow{MN}.\overrightarrow{u} = 0 \Leftrightarrow 1.( - 1) +
2.0 + 3(c - 1) = 0 \Leftrightarrow c = \frac{4}{3}.

    Suy ra \Delta có 1 vectơ chỉ phương \overrightarrow{u} =
3\overrightarrow{MN} = ( - 3;0;1).

    Vậy \Delta có phương trình \left\{ \begin{matrix}
x = 1 - 3t \\
y = 0 \\
z = 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Khi đó ta có

    Phương án a): Đúng vì một vectơ chỉ phương của \overrightarrow{u} = ( -
3;0;1).

    Phương án b): Đúng vì đường thẳng \Delta có phương trình \left\{ \begin{matrix}
x = 1 - 3t \\
y = 0 \\
z = 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Phương án c): Sai vì đường thẳng \Delta không tồn tại phương trình chính tắc do \overrightarrow{u} = ( -
3;0;1).

    Phương án d): Sai vì thay toạ độ điểm K(4; - 1;0) vào phương trình đường thẳng \Delta không thoả mãn.

  • Câu 6: Nhận biết
    Vị trí tương đối của hai đường thẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d:\left\{ \begin{matrix}
x = - 1 + 3t \\
y = - t \\
z = 1 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d':\frac{x - 1}{- 3} = \frac{y - 2}{1} =
\frac{z - 3}{2}. Vị trí tương đối của dd'

    Hướng dẫn:

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u_{d}} = (3; - 1; - 2) và đi qua điểm M(−1; 0; 1).

    Đường thẳng d’ có vectơ chỉ phương \overrightarrow{u_{d'}} = ( -
3;1;2).

    Hai vectơ \overrightarrow{u_{d}}\overrightarrow{u_{d'}} cùng phương và điểm M không thuộc đường thẳng d’.

    Do đó hai đường thẳng d và d’ song song với nhau.

  • Câu 7: Nhận biết
    Tìm phương trình chính tắc

    Trong không gian tọa độ Oxyz, phương trình nào dưới đây là phương trình chính tắc của đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3t \\
z = - 2 + t \\
\end{matrix} \right.\ ?

    Hướng dẫn:

    Do đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3t \\
z = - 2 + t \\
\end{matrix} \right. đi qua điểm M(1;0; - 2) và có véc tơ chỉ phương \overrightarrow{u}(2;3;1) nên có phương trình chính tắc là \frac{x - 1}{2} =\frac{y}{3} = \frac{ z + 2}{1}.

  • Câu 8: Nhận biết
    Chọn mặt phẳng thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M(3;3; - 2) và có vectơ chỉ phương \overrightarrow{u} = (1;3;1). Viết phương trình đường thẳng d?

    Hướng dẫn:

    Đường thẳng d đi qua điểm M(3;3; - 2) và có vectơ chỉ phương \overrightarrow{u} = (1;3;1) là:

    d:\frac{x - 3}{1} = \frac{y - 3}{3} =
\frac{z + 2}{1}

  • Câu 9: Thông hiểu
    Viết phương trình tham số của đường thẳng

    Trong không gian Oxyz, đường thẳng đi qua điểm A(1;1;1) và vuông góc với mặt phẳng tọa độ (Oxy)có phương trình tham số là:

    Hướng dẫn:

    Đường thẳng d vuông góc với mặt phẳng tọa độ (Oxy) nên nhận \overrightarrow{k} = (0;0;1) làm vectơ chỉ phương. Mặt khác d đi qua A(1;1;1) nên:

    \Rightarrow Đường thẳng d có phương trình là: \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 1 + t \\
\end{matrix} \right..

  • Câu 10: Vận dụng
    Tính tổng các phần tử của tập S

    Trong không gian Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{2} =
\frac{y}{1} = \frac{z}{3},d_{2}:\left\{ \begin{matrix}
x = 1 + t \\
y = 2 + t \\
z = m \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Gọi S là tập hợp tất cả các số m sao cho d_{1},d_{2} chéo nhau và khoảng cách giữa chúng bằng \frac{5}{\sqrt{19}}. Tính tổng tất cả các phần tử của S.

    Hướng dẫn:

    Vectơ chỉ phương của d_{1},d_{2}\overrightarrow{u_{1}} =
(2;1;3),\overrightarrow{u_{2}} = (1;1;0)

    Khi đó: \overrightarrow{n} = \left\lbrack
\overrightarrow{u_{1}},\overrightarrow{u_{2}} ightbrack = ( -
3;3;1).

    Gọi (P) là mặt phẳng chứa d_{1} song song với d_{2}.

    Tức là, (P) qua A(1;0;0) và nhận \overrightarrow{n} làm vectơ pháp tuyến.

    Ta có phương trình (P):3x - 3y - z - 3 =
0

    Xét điểm B(1;2;m) \in d_{2}. Do d_{1},d_{2} chéo nhau nên B otin (P) \Leftrightarrow m eq -
6.

    Lại có:

    d\left( d_{1};d_{2} ight) =
\frac{5}{\sqrt{19}} \Leftrightarrow d\left( B;(P) ight) =
\frac{5}{\sqrt{19}}

    \Leftrightarrow \frac{|3 - 6 - m -
3|}{\sqrt{19}} = \frac{5}{\sqrt{19}} \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 1 \\
m = - 11 \\
\end{matrix} ight.

    Vậy tổng các phần tử của S là - 1 - 11 =
- 12.

  • Câu 11: Thông hiểu
    Hai đường thẳng cắt nhau

    Hai đường thẳng \left( {d'} ight):\left\{ \begin{array}{l}x = 2 + 4t\\y =  - 3m - t\\z = 2t - 1\end{array} ight.\left( d ight):\left\{ \begin{array}{l}x = 4 - 2m\\y = m + 2\\z =  - m\end{array} ight.với cắt nhau tại M có tọa độ là :

    Hướng dẫn:

     

    Để (d’) cắt (d) tại M \Leftrightarrow \left\{ \begin{array}{l}2 + 4t = 4 - 2m\\ - 3 - t = m + 2\\2t - 1 =  - m\end{array} ight. \\\Leftrightarrow \left\{ \begin{array}{l}2t + m = 1\\t + m =  - 5\end{array} ight. \\\Leftrightarrow t = 6;m =  - 11

    \Rightarrow M\left( {26, - 9,11} ight)

     

  • Câu 12: Thông hiểu
    Phương trình đường trung tuyến

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tham số của trung tuyến AM ?

    Hướng dẫn:

     Vì AM là trung tuyến nên M là trung điểm của BC. Gọi M\left( {{x_M},{y_M},{z_M}} ight)

    Từ tọa độ của B và C, ta tính được tọa độ của M là nghiệm của hệ:

    \begin{array}{l}\left\{ \begin{array}{l}{x_M} = \frac{{2 + 3}}{2}\\{y_M} = \frac{{ - 1 - 2}}{2}\\{z_M} = \frac{{4 + 5}}{2}\end{array} ight.\\ \Rightarrow M\left( {\frac{5}{2}, - \frac{3}{2},\frac{9}{2}} ight)\end{array}

    Ta có 1 vecto chỉ phương của (AM) là \overrightarrow {AM}  = \left( {\frac{3}{2}, - \frac{7}{2},\frac{{15}}{2}} ight) = \frac{1}{2}\left( {3, - 7,15} ight)

    (AM) là đường thẳng đi qua A (1,2,-3) và nhận vecto (3,-7,15) làm 1 VTCP có phương trình là:

    \begin{array}{l}\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 - 7t\\z = 15t - 3\end{array} ight.\\(t \in R)\end{array}  

  • Câu 13: Thông hiểu
    Tính khoảng cách từ d đến (P)

    Trong không gian tọa độ Oxyz, cho mặt phẳng (P):x + 2y - 8 = 0 và đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight.. Khoảng cách giữa đưởng thẳng d và mặt phẳng (P) bằng:

    Hướng dẫn:

    Đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight. đi qua A(1;2;3) và có vectơ chỉ phương \overrightarrow{u} = (2; - 1;1)

    Mặt phẳng (P):x + 2y - 8 = 0 có vectơ pháp tuyến \overrightarrow{n} =
(1;2;0).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{u}.\overrightarrow{n} = 2 - 2 + 0 = 0 \\
A otin (P) \\
\end{matrix} ight., nên đường thằng d song song với mặt phẳng (P).

    Vậy khoảng cách giữa đường thẳng d và mặt phẳng (P) bằng khoảng cách từ A đến mặt phẳng (P):

    d\left( d;(P) ight) = d\left( A;(P)
ight) = \frac{|1 + 4 - 8|}{\sqrt{1^{2} + 2^{2}}} =
\frac{3}{\sqrt{5}}

  • Câu 14: Thông hiểu
    Xác định vectơ chỉ phương

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x - 1}{1} = \frac{y - 2}{3} = \frac{z
- 3}{- 1}. Gọi ∆’ là đường thẳng đối xứng với đường thẳng ∆ qua (Oxy). Tìm một vectơ chỉ phương của đường thẳng ∆’.

    Hướng dẫn:

    Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm A(4; 11; 0).

    Ta thấy B(1; 2; 3) ∈ ∆ và B’(1; 2; −3) là điểm đối xứng của điểm B qua mặt phẳng (Oxy).

    Đường thẳng ∆’ đi qua các điểm A, B’.

    Ta có \overrightarrow{AB} = ( - 3; - 9; -
3), từ đó suy ra \overrightarrow{u}
= (1;3;1) là một vectơ chỉ phương của đường thẳng ∆’.

  • Câu 15: Nhận biết
    Vecto chỉ phương của đường thẳng

    Trong không gian Oxyz, một đường thẳng (d) có:

    Hướng dẫn:

     Trong không gian Oxyz, một đường thẳng (d) có vô số vecto chỉ phương.

  • Câu 16: Thông hiểu
    Chọn khẳng định đúng

    Cho hai đường thẳng (d_{1}) :\left\{ \begin{matrix}
x - y + z - 5 = 0 \\
x - 3y + 6 = 0 \\
\end{matrix} \right.(d_{2}):\left\{ \begin{matrix}
2y + z - 5 = 0 \\
4x - 2y + 5z - 4 = 0 \\
\end{matrix} \right.

    Tìm câu đúng?

    Hướng dẫn:

    Chuyển đường thẳng (d_{1})(d_{2}) về dạng tham số:

    (d_{1}):\left\{ \begin{matrix}
x = - 6 + 3t \\
y = t \\
z = 11 - 2t \\
\end{matrix} \right.\  \Rightarrow (d_{1}) có vectơ chỉ phương \overrightarrow{a} = (3,1, - 2) và qua A( - 6,0,11) .

    (d_{2}):\left\{ \begin{matrix}
x = \frac{15}{4} - 3t' \\
y = 3 - t' \\
z = - 1 + 2t' \\
\end{matrix} \right.\  \Rightarrow \left( d_{2} \right)có vectơ chỉ phương \overrightarrow{b} =
(\frac{15}{4},3, - 1)

    \overrightarrow{a} \nearrow \swarrow
\overrightarrow{b} và hệ phương trình \left\{ \begin{matrix}
- 6 + 3t = \frac{15}{4} - 3t' \\
t = 3 - t' \\
11 - 2t = - 1 + 2t' \\
\end{matrix} \right. vô nghiệm.

    \Rightarrow (d_{1}) //(d_{2})

  • Câu 17: Thông hiểu
    Xác định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{2} = \frac{y}{3} = \frac{z +
1}{- 1}d_{2}:\left\{
\begin{matrix}
x = 1 + t \\
y = 3 - 2t \\
z = 5 - 2t \\
\end{matrix} \right.. Phương trình đường thẳng \Delta đi qua điểm A(2;3; - 1) và vuông góc với hai đường thẳng d_{1},\ d_{2}

    Hướng dẫn:

    d_{1} có vectơ chỉ phương \overrightarrow{a_{1}} = (2;3; - 1)

    d_{2} có vectơ chỉ phương \overrightarrow{a_{2}} = (1; - 2; -
2)

    Gọi \overrightarrow{a_{\Delta}} là vectơ chỉ phương của \Delta

    \left\{ \begin{matrix}
\Delta\bot d_{1} \\
\Delta\bot d_{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\overrightarrow{a_{\Delta}}\bot\overrightarrow{a_{1}} \\
\overrightarrow{a_{\Delta}}\bot\overrightarrow{a_{2}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{a_{\Delta}} =
\left\lbrack \overrightarrow{a_{1}};\overrightarrow{a_{2}} ightbrack
= ( - 8;3; - 7)

    Vậy phương trình tham số của \Delta\left\{ \begin{matrix}
x = 2 - 8t \\
y = 3 + 3t \\
z = - 1 - 7t \\
\end{matrix} ight.

  • Câu 18: Vận dụng
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng d:\frac{x}{1} = \frac{y}{1} = \frac{z + 1}{-2},\Delta_{1}:\frac{x - 3}{2} = \frac{y}{1} = \frac{z -1}{1},\Delta_{2}:\frac{x - 1}{1} = \frac{y - 2}{2} =\frac{z}{1}. Đường thẳng \Delta vuông góc với d đồng thời cắt \Delta_{1};\Delta_{2} tương ứng tại H;K sao cho độ dài HK nhỏ nhất. Biết rằng \Delta có một vectơ chỉ phương \overrightarrow{u} = (h;\ k;\ 1). Giá trị h - k bằng?

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
H \in \Delta_{1} \Leftrightarrow H(3 + 2t;t;1 + t) \\
K \in \Delta_{2} \Leftrightarrow K(1 + m;2 + 2m;m) \\
\end{matrix} ight.

    Suy ra \overrightarrow{HK} = (m - 2t -
2;2m - t + 2;m - t - 1)

    Đường thẳng d có một VTCP là \overrightarrow{u_{d}} = (1;1; - 2)

    \Delta\bot d \Rightarrow
\overrightarrow{u_{d}}.\overrightarrow{HK} = 0

    \Leftrightarrow \ m - t + 2 = 0
\Leftrightarrow m = t - 2

    \Rightarrow \overrightarrow{HK} = ( - t
- 4;t - 2; - 3)

    Ta có: HK^{2} = ( - t - 4)^{2} + (t -
2)^{2} + ( - 3)^{2} = 2(t + 1)^{2} + 27 \geq 27;\forall t\mathbb{\in
R}

    \Rightarrow \min HK = \sqrt{27} khi và chỉ khi t = - 1

    \Rightarrow \overrightarrow{HK} = ( - 3;
- 3; - 3) \Rightarrow \overrightarrow{u} = (1;1;1)

    \Rightarrow h = k = 1 \Rightarrow h - k
= 0

  • Câu 19: Nhận biết
    Viết phương trình chính tắc của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, phương trình chính tắc của đường thẳng d đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) là:

    Hướng dẫn:

    Phương trình đường thẳng đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) nên có phương trình: \frac{x - 2}{2} = \frac{y}{-
3} = \frac{z + 1}{1}.

  • Câu 20: Thông hiểu
    Viết phương trình tham số của đườngthẳng

    Viết phương trình tham số của đường thẳng (D) qua F(2,3,1) và song song với đường thẳng: (d)\left\{ \begin{matrix}
2x - y + 2z - 7 = 0 \\
x + 3y - 2z + 3 = 0 \\
\end{matrix} \right.

    Hướng dẫn:

    Hai pháp vectơ của hai mặt phẳng (P):2x -
y + 2z - 7 = 0(Q):x + 3y - 2z +
3 = 0\overrightarrow{n_{1}} =
(2, - 1,2);\overrightarrow{n_{2}} = (1,3, - 2)

    (D)//(d) nên vectơ chỉ phương của (D):\overrightarrow{a} = \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right\rbrack = ( - 4,6,7)
= - (4, - 6, - 7)

    \Rightarrow (D)\left\{ \begin{matrix}
x = 2 - 4t \\
y = 3 + 6t \\
z = 1 + 7t \\
\end{matrix} \right.\ ;t\mathbb{\in R} hay  \left\{ \begin{matrix}
x = 2 + 4m \\
y = 3 - 6m \\
z = 1 - 7m \\
\end{matrix} \right.\ \ \ ;m\mathbb{\in R} 

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo