Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường thẳng trong không gian CTST (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Viết phương trình đường thẳng d

    Trong không gian với hệ trục tọa độ Oxyz, cho hình vuông ABCD biết A(1; 0; 1), B(−3; 0; 1) và điểm D có cao độ âm. Mặt phẳng (ABCD) đi qua gốc tọa độ O. Khi đó đường thẳng d là trục của đường tròn ngoại tiếp hình vuông ABCD có phương trình là:

    Hướng dẫn:

    Ta có:

    \left\lbrack
\overrightarrow{AB};\overrightarrow{AO} ightbrack = (0; -
4;0) Mặt phẳng (ABCD) đi qua điểm A và nhận \overrightarrow{n} = (0;1;0) làm vectơ pháp tuyến nên có phương trình y = 0.

    Giả sử D\left( x_{D},\ y_{D},\ z_{D}
ight). Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AD}.\overrightarrow{AB} = 0 \\
\left| \overrightarrow{AD} ight| = \left| \overrightarrow{AB} ight|
\\
D \in (ABCD) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{D} = 0 \\
\left( x_{D} - 1 ight)^{2} + {y_{D}}^{2} + \left( z_{D} - 1
ight)^{2} = 16 \\
y_{D} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{D} = 0 \\
\left( z_{D} - 1 ight)^{2} = 16 \\
y_{D} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{D} = 0 \\
\left\lbrack \begin{matrix}
z_{D} = 5 \\
z_{D} = - 3 \\
\end{matrix} ight.\  \\
y_{D} = 0 \\
\end{matrix} ight.

    Vì D có cao độ âm nên D(1; 0; −3). Khi đó, tâm I của hình vuông ABCD có tọa độ I(−1; 0; −1).

    Trục của đường tròn ngoại tiếp hình vuông ABCD đi qua I(−1; 0; −1) và nhận \overrightarrow{n} = (0;1;0) làm vectơ chỉ phương nên có phương trình \left\{ \begin{matrix}
x = - 1 \\
y = t \\
z = - 1 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 2: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;0; - 1) và mặt phẳng (P):x + y - 1 = 0. Đường thẳng đi qua A đồng thời song song với (P) và mặt phẳng (Oxy) có phương trình là:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}\overrightarrow{n_{(P)}} = (1;1;0) \\\overrightarrow{n_{(Oxy)}} = (0;0;1) \\\end{matrix} ight.. Gọi d là đường thẳng đi qua A đồng thời song song với (P) và mặt phẳng (Oxy).

    Khi đó: \left\{ \begin{matrix}\overrightarrow{u_{d}}\bot\overrightarrow{u_{(P)}} \\\overrightarrow{u_{d}}\bot\overrightarrow{u_{(Oxy)}} \\\end{matrix} ight.\  \Rightarrow \overrightarrow{u_{d}} = \left\lbrack\overrightarrow{n_{(P)}};\overrightarrow{n_{(Oxy)}} ightbrack = (1;- 1;0)

    Vậy \left\{ \begin{matrix}x = 2 + t \\y = - t \\z = - 1 \\\end{matrix} ight..

  • Câu 3: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 2 + 4t \\
z = 3 + t \\
\end{matrix} \right.. Hình chiếu song song của d lên mặt phẳng (Oxz) theo phương \Delta:\frac{x + 1}{- 1} = \frac{y - 6}{- 1} =
\frac{z - 2}{1} có phương trình là:

    Hướng dẫn:

    Giao điểm của d và mặt phẳng (Oxz) là: M_{0}(5;0;5).

    Trên d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 2 + 4t \\
z = 3 + t \\
\end{matrix} ight. chọn M bất kỳ không trùng với M_{0}(5;0;5); ví dụ: M(1; - 2;3).

    Gọi A là hình chiếu song song của M lên mặt phẳng (Oxz) theo phương \Delta:\frac{x + 1}{- 1} = \frac{y - 6}{- 1} =
\frac{z - 2}{1} .

    +/ Lập phương trình d’ đi qua M và song song hoặc trùng với \Delta:\frac{x + 1}{- 1} = \frac{y
- 6}{- 1} = \frac{z - 2}{1} .

    +/ Điểm A chính là giao điểm của d’ và (Oxz)

    +/ Ta tìm được A(3;0;1)

    Hình chiếu song song của d:\left\{
\begin{matrix}
x = 1 + 2t \\
y = - 2 + 4t \\
z = 3 + t \\
\end{matrix} ight. lên mặt phẳng (Oxz) theo phương \Delta:\frac{x + 1}{- 1} = \frac{y - 6}{- 1} =
\frac{z - 2}{1} là đường thẳng đi qua M_{0}(5;0;5)A(3;0;1).

    Vậy phương trình là: \left\{
\begin{matrix}
x = 3 + t \\
y = 0 \\
z = 1 + 2t \\
\end{matrix} ight.

  • Câu 4: Nhận biết
    Chọn mệnh đề đúng

    Trong hệ tọa độ Oxyz, cho đường thẳng d có vectơ chỉ phương \overrightarrow{u} và mặt phẳng (P) có vectơ pháp tuyến \overrightarrow{n}. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    \overrightarrow{u} vuông góc \overrightarrow{n} thì d có thể nằm trong (P).

    d song song (P) thì \overrightarrow{u} vuông góc \overrightarrow{n}.

    d vuông góc (P) thì \overrightarrow{u} cùng phương \overrightarrow{n}.

  • Câu 5: Thông hiểu
    Viết phương trình đường thẳng

    Cho mặt phẳng (P):x + y + z + 3 =
0 và đường thẳng d:\frac{x - 1}{3}
= \frac{y + 1}{- 1} = \frac{z}{- 1}. Phương trình đường thẳng \Delta nằm trong mặt phẳng (P), cắt đường thẳng d và vuông góc với \overrightarrow{u}(1;2;3)

    Hướng dẫn:

    Gọi M là giao điểm của \Deltad.

    Khi đó M(3m + 1; - m - 1; - m). Do \Delta \subset (P) nên M \in (P)

    \Rightarrow M(3m + 1; - m - 1; -
m);(P):x + y + z + 3 = 0

    (3m + 1) + ( - m - 1) - m + 3 = 0
\Leftrightarrow m = - 3

    \Rightarrow M( - 8;2;3)

    Giả sử \Delta đi qua N(a;b;c) khác M. Ta có:

    \left\{ \begin{matrix}
N \in (P) \\
\overrightarrow{MN}.\overrightarrow{u} = 0 \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
a + b + c + 3 = 0 \\
(a + 8) + 2(b - 2) + 3(c - 3) = 0 \\
\end{matrix} \right.

    c = 1 \Rightarrow \left\{ \begin{matrix}
a = - 10 \\
b = 6 \\
\end{matrix} \right.\  \Rightarrow N( - 10;6;1)

    \Rightarrow \overrightarrow{MN} = ( -
2;4; - 2)

    \Rightarrow (\Delta):\frac{x+ 8}{- 2} =\frac{y - 2}{4} = \frac{z - 3}{- 2}

    \Rightarrow (\Delta):\frac{x + 8}{1} =
\frac{y - 2}{- 2} = \frac{z - 3}{1}

  • Câu 6: Vận dụng
    Chọn đáp án đúng

    Trong không gian Oxyz, cho tam giác ABCA(1; 1; 1), đường trung tuyến kẻ từ B và đường cao kẻ từ C lần lượt có phương trình \frac{x - 8}{10} =
\frac{y + 7}{- 9} = \frac{z - 5}{5};\frac{x - 7}{2} = \frac{y + 1}{5} =
\frac{z - 3}{- 1}. Biết B (a; b; c), khi đó a + b + c bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Giả sử đường cao là CH:\frac{x - 7}{2} =
\frac{y + 1}{5} = \frac{z - 3}{- 1} ta có vectơ chỉ phương của CH là \overrightarrow {u} = (2; 5; −1).

    B thuộc đường trung tuyến BM:\frac{x -
8}{10} = \frac{y + 7}{- 9} = \frac{z - 5}{5} nên B(8 + 10t; −7 − 9t; 5 + 5 t).

    Suy ra \overrightarrow{AB} = (7 + 10t; -
8 - 9t;4 + 5t)

    CH ⊥ AB nên \overrightarrow{AB}.\overrightarrow{u} =
0⇔ −30t−30 = 0 ⇔ t = −1 ⇒ B(−2; 2; 0).

    Vậy a + b + c = 0.

  • Câu 7: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{2} = \frac{y + 2}{- 1} =
\frac{z - 3}{1}d_{2}:\frac{x -
1}{- 1} = \frac{y - 1}{2} = \frac{z + 1}{1}. Phương trình đường thẳng \Delta đi qua điểm A(1;2;3) vuông góc với d_{1} và cắt d_{2} là:

    Hướng dẫn:

    Gọi B = \Delta \cap d_{2}

    \begin{matrix}
B \in d_{2} \Rightarrow B(1 - t;1 + 2t; - 1 + t) \\
\overrightarrow{AB} = ( - t;2t - 1;t - 4) \\
\end{matrix}

    d_{1} có vectơ chỉ phương \overrightarrow{a_{1}} = (2; - 1;1)

    \begin{matrix}
\Delta\bot d_{1} \Leftrightarrow
\overrightarrow{AB}\bot\overrightarrow{a_{1}} \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow
\overrightarrow{AB}.\overrightarrow{a_{1}} = 0 \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow t = - 1 \\
\end{matrix}

    \Delta đi qua điểm A(1;2;3) và có vectơ chỉ phương \overrightarrow{AB} = (1; - 3; - 5)

    Vậy phương trình của \Delta\frac{x - 1}{1} = \frac{y - 2}{- 3} =
\frac{z - 3}{- 5}.

  • Câu 8: Thông hiểu
    Viết phương trình tham số của đường thẳng

    Trong không gian Oxyz, cho điểm A(1;2;3) và mặt phẳng (P):2x + y - 4z + 1 = 0. Đường thẳng (d) qua điểm A, song song với mặt phẳng (P), đồng thời cắt trục Oz. Viết phương trình tham số của đường thẳng (d).

    Hướng dẫn:

    Gọi B = d \cap Oz \Rightarrow B(0;0;b)
\Rightarrow \overrightarrow{AB} = ( - 1; - 2;\ b - 3)

    Lại có d\ //(P)\  \Rightarrow
\overrightarrow{AB}\bot\overrightarrow{n_{(P)}} = (2;1; -
4)

    Do đó \overrightarrow{AB}.\overrightarrow{n_{(P)}} = 0
\Leftrightarrow - 2 - 2 - 4b + 12 = 0 \Leftrightarrow b = 2

    \Rightarrow \overrightarrow{AB} = ( - 1;
- 2 - 1)

    Do đó, (d) là đường thẳng qua B(0; 0; 2) và nhận \overrightarrow{u} = (1;2;1) làm vectơ chỉ phương. Nên (d) có phương trình: \left\{
\begin{matrix}
x = t \\
y = 2t \\
z = 2 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 9: Nhận biết
    Xác định điểm thuộc đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: \left\{
\begin{matrix}
x = - 3 + t \\
y = 1 - 2t \\
z = - 2 + t \\
\end{matrix} \right.. Điểm nào sau đây thuộc đường thẳng d?

    Hướng dẫn:

    Thay tọa độ điểm M( - 3;\ 1;\  -
2) vào phương trình tham số của đường thẳng d

    \left\{ \begin{matrix}
- 3 = - 3 + t \\
1 = 1 - 2t \\
- 2 = - 2 + t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 0 \\
t = 0 \\
t = 0 \\
\end{matrix} ight..

    Vậy điểm M( - 3;\ 1;\  - 2) thuộc đường thẳng d.

  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, đường thẳng d:\frac{x - 1}{3} = \frac{y + 2}{- 4} = \frac{z -
3}{- 5} đi qua điểm nào sau đây?

    Hướng dẫn:

    Thay tọa độ điểm (1; - 2;3) vào phương trình đường thẳng d ta được \frac{0}{3} = \frac{0}{- 4} = \frac{0}{-
5}, do đó điểm này thuộc đường thẳng d.

  • Câu 11: Thông hiểu
    Chọn đáp án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho điểm M( - 1;1;2) và hai đường thẳng d:\frac{x - 2}{3} = \frac{y + 3}{2} = \frac{z -
1}{1},d^{'}:\frac{x + 1}{1} = \frac{y}{3} = \frac{z}{- 2}. Phương trình nào dưới đây là phương trình đường thẳng đi qua điểm M, cắt d và vuông góc với d^{'}.

    Hướng dẫn:

    Gọi \Delta là đường thẳng đi qua điểm M, cắt d và vuông góc với d^{'}.
    Giả sử \Delta \cap d = A \Rightarrow A(2 +
3t; - 3 + 2t;1 + t).

    \overrightarrow{AM} = (3 + 3t; - 4 + 2t;
- 1 + t)

    \Delta\bot d^{'} \Rightarrow
\overrightarrow{AM} \cdot \overrightarrow{u_{d^{'}}} = 0
\Leftrightarrow 3 + 3t + 3( - 4 + 2t) - 2( - 1 + t) = 0

    \Leftrightarrow 7t = 7 \Leftrightarrow t
= 1

    \Rightarrow A(5; -
1;2),\overrightarrow{AM} = (6; - 2;0) = 2(3; - 1;0).

    \Delta:\left\{ \begin{matrix}x = - 1 + 3t \\y = 1 - t \\z = 2 \\\end{matrix} ight.

  • Câu 12: Thông hiểu
    Viết phương trình đường thẳng

    Phương trình đường thẳng đi qua điểm A(2;
- 1; - 1) và song song với hai mặt phẳng(\alpha):x - 2y - z + 2 = 0(\beta):2x - z = 0

    Hướng dẫn:

    Mặt phẳng có vec tơ pháp tuyến lần lượt {\overrightarrow{n}}_{(\alpha)} = (1; - 2; -
1);{\overrightarrow{n}}_{(\beta)} = (2;0; - 1)

    Đường thẳng có vectơ chỉ phương \overrightarrow{u} = \left\lbrack
{\overrightarrow{n}}_{(\alpha)}.{\overrightarrow{n}}_{(\beta)}
ightbrack = (2; - 1;4)

    Vậy đường thẳng có phương trình tham số: \left\{ \begin{matrix}
x = 2 + 2t \\
y = - 1 - t \\
z = - 1 + 4t \\
\end{matrix} ight..

  • Câu 13: Thông hiểu
    Chọn phương án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \left( \alpha  \right):2x - y + 2z - 3 = 0. Phương trình đường thẳng d đi qua điểm A(2;-3;-1), song song với hai mặt phẳng \left( \alpha  \right);\left( {Oyz} \right) là.

    Hướng dẫn:

    \left( \alpha  ight) có vectơ pháp tuyến \overrightarrow {{n_\alpha }}  = \left( {2; - 1;2} ight)

    (Oyz) có vectơ pháp tuyến \overrightarrow i  = \left( {1;0;0} ight)

    d đi qua điểm A và có vectơ chỉ phương là \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{n_{\alpha}},\overrightarrow{i} ightbrack =
(0;2;1)

    Vậy phương của d là \left\{ \begin{matrix}
x = 2 \\
y = - 3 + 2t \\
z = - 1 + t \\
\end{matrix} ight.

  • Câu 14: Nhận biết
    Xác định vectơ chỉ phương của đường thẳng

    Trong không gian Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 3 - t \\
z = 2 - 3t \\
\end{matrix} \right.\ ,\left( t\mathbb{\in R} \right) , một vectơ chỉ phương của đường thẳng d là:

    Hướng dẫn:

    Một vectơ chỉ phương của đường thẳng d có tọa độ (2; - 1; - 3) = - ( - 2;1;3)

  • Câu 15: Thông hiểu
    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian Oxyz, cho điểm A(0;1;1) và hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 \\
y = - 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\frac{x - 1}{3} = \frac{y - 2}{1} =
\frac{z}{1}. Gọi d là đường thẳng đi qua điểm A, cắt đường thẳng d_{1} và vuông góc với đường thẳng d_{2}. Đường thẳng d đi qua điểm nào trong các điểm dưới đây?

    Hướng dẫn:

    Gọi \left\{ \begin{matrix}
B = d_{1} \cap d \\
B \in d_{1} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
B( - 1; - 1 + t;t) \\
\overrightarrow{AB} = ( - 1;t - 2;t - 1) \\
\end{matrix} ight.

    d_{2} có một vectơ chỉ phương \overrightarrow{u} = (3;1;1).

    Do d\bot d_{2} nên \overrightarrow{u}.\overrightarrow{AB} = 0
\Leftrightarrow - 3 + t - 2 + t - 1 = 0

    \Leftrightarrow t = 3 \Rightarrow
\overrightarrow{AB} = ( - 1;1;2)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AN} = (2;0;6);\overrightarrow{AQ} = (3;1;4) \\
\overrightarrow{AP} = ( - 2; - 4;10);\overrightarrow{AM} = (1; - 1; - 2)
\\
\end{matrix} ight.

    Suy ra đường thẳng d đi qua M.

  • Câu 16: Nhận biết
    Viết phương trình mặt phẳng

    Trong không gian Oxyz, phương trình mặt phẳng đi qua 3 điểm A,B,C biết tọa độ A(0; - 1;0), B(2;0;0),\ C\left( 0;0;\frac{1}{2}
\right)

    Hướng dẫn:

    Ta có:

    \dfrac{x}{2} + \dfrac{y}{- 1} +
\dfrac{z}{\dfrac{1}{2}} = 1

    \Leftrightarrow \frac{x}{2} - y + 2z =
1

    \Leftrightarrow x - 2y + 4z - 2 =
0.

  • Câu 17: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(1; - 3;4), đường thẳng d:\frac{x + 2}{3} = \frac{y - 5}{- 5} = \frac{z -
2}{- 1} và mặt phẳng (P):2x + z - 2
= 0. Viết phương trình đường thẳng \Delta qua M vuông góc với d và song song với (P).

    Hướng dẫn:

    Đường thẳng d:\frac{x + 2}{3} = \frac{y -
5}{- 5} = \frac{z - 2}{- 1} có vec tơ chỉ phương \overrightarrow{u_{d}} = (3; - 5; -
1).

    Mặt phẳng (P):2x + z - 2 = 0 có vec tơ pháp tuyến \overrightarrow{n_{(P)}} =
(2;0;1).

    Đường thẳng ∆ vuông góc với d nên vectơ chỉ phương \overrightarrow{u_{d}}\bot\overrightarrow{u_{\Delta}}

    Đường thẳng ∆ song song với (P) nên \overrightarrow{u_{d}}\bot\overrightarrow{u_{\Delta}}

    Ta có \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ightbrack = ( - 5; -
5;10)

    Suy ra vec tơ chỉ phương của đường thẳng ∆ là \overrightarrow{u_{\Delta}} = \frac{-
1}{5}.\left\lbrack \overrightarrow{u_{d}};\overrightarrow{n_{(P)}}
ightbrack = (1;1; - 2)

    Vậy phương trình đường thẳng ∆ là \Delta:\frac{x - 1}{1} = \frac{y + 3}{1} = \frac{z
- 4}{- 2}.

  • Câu 18: Thông hiểu
    Định tham số để hai đường thẳng cắt nhau

    Trong không gian Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + t \\
y = 2 - t \\
z = 3 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\frac{x - 1}{2} = \frac{y - m}{1} = \frac{z
+ 2}{- 1}, (với m là tham số). Tìm m để hai đường thẳng d_{1}d_{2} cắt nhau

    Hướng dẫn:

    Ta có:

    d_{1} đi qua điểm M1(1; 2; 3) và có vectơ chỉ phương \overrightarrow{u_{1}} =
(1; - 1;2)

    d_{2} đi qua điểm M2(1; m; −2) và có vectơ chỉ phương \overrightarrow{u_{2}} = (2;1; - 1)

    Ta có: \left\{ \begin{matrix}
\left\lbrack \overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack
= ( - 1;5;3) \\
\overrightarrow{M_{1}M_{2}} = (0;m - 2; - 5) \\
\end{matrix} ight.

    d_{1}d_{2} cắt nhau \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{M_{1}M_{2}} = 0

    \Leftrightarrow - 1\ .0 + 5(m - 2) - 15
= 0 \Leftrightarrow m = 5

  • Câu 19: Thông hiểu
    Viết phương trình tổng quát của đường thẳng

    Viết phương trình tổng quát của đường thẳng (D) qua A(2,
- 2,1) và song song với đường thẳng (d):x = 2 - 4m;y = 3 + 2m;z = m - 5\left(
m\mathbb{\in R} \right).

    Hướng dẫn:

    Ta có:

    (D)//(d) \Rightarrow Một vecto chỉ phương của (D):\overrightarrow{a} = ( -
4,2,1)

    Phương trình chính tắc của (D):\frac{x -
2}{- 4} = \frac{y + 2}{2} = z - 1

    \Rightarrow \left\{ \begin{matrix}
x + 2y + 2 = 0 \\
x + 4z - 6 = 0 \\
\end{matrix} \right.\  \vee \left\{ \begin{matrix}
x + 2y + 2 = 0 \\
y - 2z + 4 = 0 \\
\end{matrix} \right.

  • Câu 20: Thông hiểu
    Chọn phương án thích hợp

    Cho d:\left\{ \begin{matrix}
x = 1 + t \\
y = - 3 - t \\
z = 2 + 2t \\
\end{matrix} \right.\ ,\ \ d':\frac{x}{3} = \frac{y - 3}{- 1} =
\frac{z - 1}{1}. Khi đó khoảng cách giữa dd'

    Hướng dẫn:

    Ta có A(1; - 3;2) \in d,\ \ B(0;3;1) \in
d'\overrightarrow{u}(1; -
1;2),\ \overrightarrow{u'}(3; - 1;1) lần lượt là vectơ chỉ phương của d,\ d'

    Ta có:

    d(d,d') = \frac{\left| \left\lbrack
\overrightarrow{u},\overrightarrow{u'}
\right\rbrack.\overrightarrow{AB} \right|}{\left| \left\lbrack
\overrightarrow{u},\overrightarrow{u'} \right\rbrack \right|} =
\frac{27}{\sqrt{30}} = \frac{9\sqrt{30}}{10}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo