Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường thẳng trong không gian CTST (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm tọa độ hình chiếu của M

    Trong không gian với hệ tọa độ Oxyz, xác định tọa độ điểm M' là hình chiếu vuông góc của điểm M(2;3;1)lên mặt phẳng M(2;3;1).

    Hướng dẫn:

    Gọi \Delta là đường thẳng qua M và vuông góc với.

    => Phương trình tham số của \Delta là: \left\{ \begin{matrix}
x = 2 + t \\
y = 3 - 2t \\
z = 1 + t \\
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    Ta có: M' = \Delta \cap (\alpha).

    Xét phương trình: 2 + t - 2(3 - 2t) + 1 +
t = 0 \Leftrightarrow t = \frac{1}{2}.

    Vậy M'\left(
\frac{5}{2};2;\frac{3}{2} \right).

  • Câu 2: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng:\bigtriangleup_{1}:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z - 3}{- 2}\bigtriangleup_{2}:\frac{x - 4}{- 1} = \frac{y -
5}{- 2} = \frac{z - 6}{2}

    a) Vectơ có tọa độ (1;2;3) là một vectơ chỉ phương của \bigtriangleup_{1}. Sai||Đúng

    b) Đường thẳng \bigtriangleup_{2} đi qua điểm A(0; - 3;14). Đúng||Sai

    c) Đường thẳng \bigtriangleup_{3} đi qua B(1;1; - 2) và vuông góc với \bigtriangleup_{1} có phương trình tham số là \bigtriangleup_{3}:\left\{
\begin{matrix}
x = 1 - 2t \\
y = 1 - 2t \\
z = - 2 - 3t \\
\end{matrix} ight.. Đúng||Sai

    d) Góc giữa hai đường thẳng \bigtriangleup_{1}\bigtriangleup_{2} khoảng 132^{0}. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng:\bigtriangleup_{1}:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z - 3}{- 2}\bigtriangleup_{2}:\frac{x - 4}{- 1} = \frac{y -
5}{- 2} = \frac{z - 6}{2}

    a) Vectơ có tọa độ (1;2;3) là một vectơ chỉ phương của \bigtriangleup_{1}. Sai||Đúng

    b) Đường thẳng \bigtriangleup_{2} đi qua điểm A(0; - 3;14). Đúng||Sai

    c) Đường thẳng \bigtriangleup_{3} đi qua B(1;1; - 2) và vuông góc với \bigtriangleup_{1} có phương trình tham số là \bigtriangleup_{3}:\left\{
\begin{matrix}
x = 1 - 2t \\
y = 1 - 2t \\
z = - 2 - 3t \\
\end{matrix} ight.. Đúng||Sai

    d) Góc giữa hai đường thẳng \bigtriangleup_{1}\bigtriangleup_{2} khoảng 132^{0}. Sai||Đúng

    a) Vectơ có tọa độ (2;1; - 2) là một vectơ chỉ phương của \bigtriangleup_{1} nên mệnh đề sai

    b) Mệnh đề đúng

    c) Gọi B = \bigtriangleup_{1} \cap
\bigtriangleup_{3} \Rightarrow B(1 + 2t;2 + t;3 - 2t)

    \begin{matrix}
\overrightarrow{AB} = ( - 2t; - 1 - t; - 5 + 2t\ ) \\
\overrightarrow{AB}\bot u_{\bigtriangleup_{1}} \Rightarrow t = 1 \\
\Rightarrow \overrightarrow{AB} = ( - 2; - 2; - 3\ ) \\
\end{matrix} nên mệnh đề đúng

    d) Góc giữa hai đường thẳng luôn là góc nhọn nên mệnh đề sai

  • Câu 3: Nhận biết
    Hai đường thẳng cắt nhau

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} ,  \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) cắt nhau khi và chỉ khi:

    Hướng dẫn:

     Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB}  = 0 \Rightarrow \left( D ight)và (d)  cùng nằm trong một mặt phẳng

    Để (D) và d cắt nhau, ta sẽ xét tỉ số sau:

      {a_1}:{a_2}:{a_3} e {b_1}:{b_2}:{b_3} \Leftrightarrow \frac{{{a_1}}}{{{b_1}}} e \frac{{{a_2}}}{{{b_2}}} e \frac{{{a_3}}}{{{b_3}}} \Rightarrow \left( D ight)

    và (d) cắt nhau.

  • Câu 4: Nhận biết
    Tìm đáp án không thích hợp

    Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm A(1;1;2)B(2; - 1;0) là:

    Hướng dẫn:

    Ta có \overrightarrow{AB} = (1, - 2, -
2)

    Phương trình đường thẳng AB đi qua B(2; -
1;0) nhận vectơ \overrightarrow{AB} làm vectơ chỉ phương nên có phương trình là: \frac{x - 2}{- 1} =
\frac{y + 1}{2} = \frac{z}{2}.

  • Câu 5: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho hai đường thẳng d:\frac{x - 1}{2} = \frac{y -
7}{1} = \frac{z - 3}{4}d':\frac{x - 6}{3} = \frac{y + 1}{- 2} =
\frac{z + 2}{1}.

    a) Đường thẳng d có vtcp \overrightarrow{u} = (2;1;4). Đúng||Sai

    b) Đường thẳng d’ có vtcp \overrightarrow{u'} = (3;2;1). Sai||Đúng

    c) Hai đường thẳng d và d’ vuông góc với nhau. Sai||Đúng

    d) Hai đường thẳng d và d’ cắt nhau. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hai đường thẳng d:\frac{x - 1}{2} = \frac{y -
7}{1} = \frac{z - 3}{4}d':\frac{x - 6}{3} = \frac{y + 1}{- 2} =
\frac{z + 2}{1}.

    a) Đường thẳng d có vtcp \overrightarrow{u} = (2;1;4). Đúng||Sai

    b) Đường thẳng d’ có vtcp \overrightarrow{u'} = (3;2;1). Sai||Đúng

    c) Hai đường thẳng d và d’ vuông góc với nhau. Sai||Đúng

    d) Hai đường thẳng d và d’ cắt nhau. Đúng||Sai

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

    Phương án a) đúng: Đường thẳng d có vtcp \overrightarrow{u} = (2;1;4).

    Phương án b) sai: Đường thẳng d’ có vtcp \overrightarrow{u'} = (3;2;1).

    Phương án c) sai: \overrightarrow{u}.\overrightarrow{u'} = 8
\neq 0nên hai đường thẳng d và d’ không vuông góc với nhau.

    Phương án d) đúng:

    dcó VTCP \overrightarrow{u} =
(2;1;4) và đi qua M(1;7;3).

    d’ có VTCP \overrightarrow{u'} =
(3;2;1) và đi qua M'(6; - 1; -
2).

    \overrightarrow{MM'} = (5; - 8; -
5)\left\lbrack
\overrightarrow{u};\overrightarrow{u'} \right\rbrack = (9;10; - 7)
\neq \overrightarrow{0}.

    Ta có: \left\lbrack
\overrightarrow{u};\overrightarrow{u'}
\right\rbrack.\overrightarrow{MM'} = 5.9 + ( - 8).10 + ( - 5).( - 7)
= 0.

    Suy ra d cắt d’.

  • Câu 6: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho 2 đường thẳng \Delta_{1} :\left\{ \begin{matrix}x = 3 + t \\y = 1 + t \\z = 1 + 2t \\\end{matrix}(t \in \mathbb{R}); ight. \Delta_{2}:\frac{x + 2}{2} =\frac{y - 2}{5} = \frac{z}{-1} và điểm M(0;3;0). Đường thẳng d đi qua M, cắt \Delta_{1} và vuông góc với \Delta_{2} có một vectơ chỉ phương là \overrightarrow{u} = (4;a;b). Tính T = a + b

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi (P) là mặt phẳng chứa M\Delta_{1}.

    Lấy A(3;1;1) \in \Delta_{1}.

    Mặt phẳng (P) có véc-tơ pháp tuyến vuông góc với các véc-tơ \overrightarrow{MA} = (3; - 2;1){\overrightarrow{u}}_{\Delta_{1}} =
(1;1;2).

    Ta có \left\lbrack
\overrightarrow{MA},{\overrightarrow{u}}_{\Delta_{1}} ightbrack = (
- 5; - 5;5).

    Một trong các véc-tơ pháp tuyến của mặt phẳng (P){\overrightarrow{n}}_{(P)} = (1;1; -
1).

    Đường thẳng d nằm trong mặt phẳng (P) và vuông góc với \Delta_{2}\overrightarrow{u_{d}} = \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{u_{\Delta_{2}}} ightbrack =
(4; - 1;3)

    Vậy a = - 1;b = 3 \Rightarrow T = a + b =
2.

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Viết phương trình tổng quát của đường thẳng (D) qua A(4,2,1) và song song với đường thẳng (d):x + 2y - z = 0;x - 3y + z - 6 =
0.

    Hướng dẫn:

    \overrightarrow{n_{1}} = (1,2, - 1);\ \
\overrightarrow{n_{2}} = (1, - 3,1)

    Một vecto chỉ phương của (d):\overrightarrow{a} = \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right\rbrack = -
(1,2,5)

    Phương trình chính tắc của (D):x - 4 =
\frac{y - 2}{2} = \frac{z - 1}{5}

    \Rightarrow (D)\left\{ \begin{matrix}
2x - y - 6 = 0 \\
5x - z - 19 = 0 \\
\end{matrix} \right.\  \vee \left\{ \begin{matrix}
2x - y - 6 = 0 \\
5y - 2z - 8 = 0 \\
\end{matrix} \right.

  • Câu 8: Thông hiểu
    Tính khoảng cách giữa d và trục Ox

    Trong không gian với hệ tọa độ Oxyz, tính khoảng cách giữa đường thẳng d:\frac{x - 1}{2} = \frac{y + 2}{- 4} =
\frac{z - 4}{3} và trục Ox.

    Hướng dẫn:

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u_{d}} = (2; - 4;3) và đi qua điểm M(1; - 2;4)

    Trục Ox có vectơ chỉ phương \overrightarrow{u_{Ox}} = (1;0;0) và đi qua điểm N(1;0;0)

    Khoảng cách giữa đường thẳng d và trục Ox là:

    d(d;Ox) = \frac{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{Ox}}
ightbrack.\overrightarrow{MN} ight|}{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{Ox}} ightbrack ight|} =
\frac{\left| (0;3;4).(0;2; - 4) ight|}{\left| (0;3;4) ight|} =
2

  • Câu 9: Nhận biết
    Chọn phát biểu đúng

    Trong không gian Oxyz, cho hai đường thẳng d : \left\{ \begin{matrix}
x = 2 - 2t \\
y = 3 - 2t \\
z = 1 - 3t \\
\end{matrix} \right.d’: \left\{ \begin{matrix}
x = 6 + 2t' \\
y = 3 + 2t' \\
z = 7 + 9t' \\
\end{matrix} \right.. Xét các mệnh đề sau:

    (I) d đi qua A(2 ;3 ;1) và có véctơ chỉ phương \overrightarrow{a\ }(2;2;3)

    (II) d’ đi qua A’ (0;-3;-11) và có véctơ chỉ phương \overrightarrow{a'}(2;2;9)

    (III) \overrightarrow{a}\overrightarrow{a'} không cùng phương nên d không song song với d’

    (IV) Vì \left\lbrack \overrightarrow{a\
};\overrightarrow{a'\ }\  \right\rbrack.\overrightarrow{AA'} =
\overrightarrow{0\ } nên d và d’ đồng phẳng và chúng cắt nhau

    Dựa vào các phát biểu trên, ta kết luận:

    Hướng dẫn:

    Các phát biểu (I), (III) đúng, các phát biểu (II), (IV) sai

  • Câu 10: Vận dụng
    Tính giá trị lớn nhất của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(0;1;3),N(10;6;0) và mặt phẳng (P):x - 2y + 2z - 10 = 0. Biết rằng tồn tại điểm I( - 10;a;b) thuộc (P) sao cho |IM - IN| đạt giá trị lớn nhất. Tính T = a + b.

    Hướng dẫn:

    Thay tọa độ điểm M và N vào vế trái phương trình mặt phẳng (P), ta có (0 - 2 + 3 - 10).(10 - 12 - 10) >
0 nên hai điểm M, N nằm cùng phía đối với mặt phẳng (P).

    Khi đó ta có |IM - IN| \leq MN và đẳng thức xảy ra khi I = MN \cap
(P)

    Phương trình tham số của đường thẳng MN là \left\{ \begin{matrix}
x = 10t \\
y = 1 + 5t \\
z = 3 - 3t \\
\end{matrix} ight.

    Tọa độ giao điểm của MN và (P) là nghiệm hệ phương trình

    \left\{ \begin{matrix}
x = 10t \\
y = 1 + 5t \\
z = 3 - 3t \\
x - 2y + 2z - 10 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 10 \\
y = - 4 \\
z = 6 \\
\end{matrix} ight.

    Vậy T = a + b = 2

  • Câu 11: Thông hiểu
    Tìm vị trí tương đối của hai đường thẳng

    Hai đường thẳng (D):x = 8t - 1;\ \ y = -
1 - 14t;\ \ z = - 12t(d):x - 2y
+ 3z - 1 = 0;\ \ \ 2x + 2y - z + 4 = 0\ \ \ \left( t\mathbb{\in R}
\right)

    Hướng dẫn:

    (D) qua E( - 1, - 1,0) có vecto chỉ phương \overrightarrow{a} = (8, - 14, - 12)

    Hai pháp vecto của hai mặt phẳng x - 2y +
3z - 1 = 02x + 2y - z + 1 =
0\overrightarrow{n_{1}} = (1, -
2,3);\overrightarrow{n_{2}} = (2,2, - 1)

    Vecto chỉ phương của (d):\overrightarrow{b} = \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right\rbrack = ( -
4,7,6)

    Ta có: \frac{8}{- 4} = \frac{- 14}{7} =
\frac{- 12}{6} = - 2 và tọa độ E( -1, - 1,0) thỏa man phương trình của (d) \Rightarrow (D) \equiv (d)

  • Câu 12: Thông hiểu
    Tính khoảng cách từ điểm đến trục Ox

    Trong không gian với hệ tọa độ Oxyz cho điểm A(1;2;3) Khoảng cách từ A đến trục Ox bằng

    Hướng dẫn:

    Trục Ox có véc-tơ chỉ phương \overrightarrow{i} = (1;0;0) và đi qua O(0;0;0).

    Áp dụng công thức, ta có d(A;Ox) =
\frac{\left| \left\lbrack \overrightarrow{i};\overrightarrow{OA}
\right\rbrack \right|}{\left| \overrightarrow{i} \right|} =
\sqrt{13}.

  • Câu 13: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình chính tắc của đường thẳng?

    Hướng dẫn:

    Phương trình chính tắc của đường thẳng có dạng:

    \frac{x - x_{0}}{a} = \frac{y - y_{0}}{b}
= \frac{z - z_{0}}{c} với a.b.c
eq 0.

    Vậy đáp án đúng là : \frac{x - 6}{3} =
\frac{y - 3}{4} = \frac{z - 5}{3}

  • Câu 14: Thông hiểu
    Chọn đáp án thích hợp

    Cho hai đường thẳng trong không gian Oxyz:(D):\ \frac{x\  - \ x_{1}}{a_{1}} = \frac{y\  - \
y_{1}}{a_{2}} = \frac{z\  - \ z_{1}}{a_{3}},(d):\ \frac{x\  - \ x_{2}}{b_{1}} = \frac{y\  - \
y_{2}}{b_{2}} = \frac{z\  - \ z_{2}}{b_{3}}. Với a_{1},\ \ a_{2},\ \ a_{3},\ \ b_{1},\ \ b_{2},\ \
b_{3} \neq \ 0. Gọi \overrightarrow{a} = \left( \ a_{1},\ \ a_{2},\ \
a_{3} \right);\ \ \overrightarrow{b} = \left( \ b_{1},\ \ b_{2},\ \
b_{3} \right)\overrightarrow{AB} = \left( \ x_{2}\  - \ x_{1},\
\ y_{2}\  - \ y_{1},\ \ z_{2}\  - \ z_{1} \right). (D) và (d) chéo nhau khi và chỉ khi:

    Hướng dẫn:

    Ta có:

    \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack.\overrightarrow{AB}
\neq 0 \Rightarrow (D)(d) chéo nhau.

  • Câu 15: Nhận biết
    Tìm vecto chỉ phương của đường thẳng

    Trong không gian Oxyz, cho đường thẳng (d)\ :\ \left\{ \begin{matrix}
x = 1 - 2t \\
y = - 3 \\
z = 4 + 5t \\
\end{matrix} \right.\ \ ;\ \ \ \ \ \left( t\mathbb{\in R}
\right). Vectơ nào dưới đây là một vectơ chỉ phương của (d) ?

    Hướng dẫn:

    Ta có: \overrightarrow{u} = ( -
2;0;5).

  • Câu 16: Vận dụng
    Chọn kết quả chính xác

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 5 = 0 và hai điểm A(−3; 0; 1), B(1; −1; 3). Trong các đường thẳng đi qua A và song song với (P), đường thẳng nào cách B một khoảng cách nhỏ nhất?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi d là đường thẳng cần tìm.

    Gọi (Q) là mặt phẳng qua A(−3; 0; 1) và song song với (P): x − 2y + 2z − 5 = 0.

    ⇒ (Q): x − 2y + 2z + 1 = 0d ⊂ (Q).

    Gọi H, K lần lượt là hình chiếu của B lên d và (Q) thì BH > BK.

    Do đó d(B; d) nhỏ nhất khi và chỉ khi H ≡ K.

    Đường thẳng BK đi qua B(1; −1; 3) và vuông góc với (Q) \Rightarrow BK:\left\{ \begin{matrix}
x = 1 + t \\
y = - 1 - 2t \\
z = 3 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Lại có: K = BK \cap (Q) \Rightarrow K =
\left( \frac{- 1}{9};\frac{11}{9};\frac{7}{9} ight)

    Đường thẳng d qua A và nhận \overrightarrow{AK} = \left(
\frac{26}{9};\frac{11}{9};\frac{- 2}{9} ight) làm vectơ chỉ phương nên đường thẳng cần tìm là: \frac{x +
3}{26} = \frac{y}{11} = \frac{z - 1}{- 2}.

  • Câu 17: Thông hiểu
    Tính góc giữa đường thẳng và mặt phẳng

    Trong không gian Oxyz, cho đường thẳng \Delta:\frac{x}{1} = \frac{y}{2} =
\frac{z}{- 1} và mặt phẳng (\alpha):x - y + 2z = 0. Góc giữa đường thẳng \Delta và mặt phẳng (\alpha) bằng

    Hướng dẫn:

    Ta có:

    ∆ có vectơ chỉ phương là \overrightarrow{u} = (1;2; - 1)

    (α) có vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;2)

    \sin\widehat{\left( \Delta;(\alpha)
ight)} = \frac{\left| \overrightarrow{u}.\overrightarrow{n}
ight|}{\left| \overrightarrow{u} ight|.\left| \overrightarrow{n}
ight|} = \frac{\left| 1.1 + 2.( - 1) + ( - 1).2 ight|}{\sqrt{1^{2} +
2^{2} + ( - 1)^{2}}.\sqrt{1^{2} + ( - 1)^{2} + 2^{2}}} =
\frac{1}{2}

    \Rightarrow \widehat{\left(
\Delta;(\alpha) ight)} = 30^{0}.

  • Câu 18: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(3;5;3) và hai mặt phẳng (P):2x + y + 2z - 8 = 0,(Q):x - 4y + z - 4 =
0. Viết phương trình đường thẳng d đi qua A và song song với hai mặt phẳng (P),(Q)?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (2;1;2) \\
\overrightarrow{n_{(Q)}} = (1; - 4;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ightbrack = (9;0;
- 9)

    Do đường thẳng d song song với hai mặt phẳng (P) và (Q) nên d có vectơ chỉ phương là \overrightarrow{u} =
(1;0; - 1).

    Vậy phương trình đường thẳng d là \left\{
\begin{matrix}
x = 3 + t \\
y = 5 \\
z = 3 - t \\
\end{matrix} ight.

  • Câu 19: Vận dụng
    Tính giá trị của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2; - 2),B(2;2; - 4). Giả sử I(a;b;c) là tâm đường tròn ngoại tiếp tam giác OAB. Tính T = a^{2} + b^{2} + c^{2}.

    Hướng dẫn:

    Ta có OA = AB = 2\sqrt{2} nên tam giác OAB cân tại OAB, vì vậy I thuộc đường trung tuyến qua A(d):\left\{ \begin{matrix}
x = 1 + t \\
y = 1 - t \\
z = - 2 \\
\end{matrix} \right.\  \Rightarrow I(1 + t;1 - t; - 2)

    IA = IO \Leftrightarrow t = 0
\Rightarrow I(2;0; - 2)

    Do đó T = 8

  • Câu 20: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz. Viết phương trình đường thẳng \Delta đi qua điểm A( - 2;2;1) cắt trục tung tại B sao cho OB
= 2OA.

    Hướng dẫn:

    B \in Oy \Rightarrow
B(0;b;0)

    OB = 2OA \Leftrightarrow \left\lbrack
\begin{matrix}
b = 6 \\
b = - 6 \\
\end{matrix} ight. \Rightarrow
\left\lbrack \begin{matrix}
B(0;6;0),\ \overrightarrow{AB} = (2;4; - 1) \\
B(0; - 6;0),\ \overrightarrow{AB} = (2; - 8; - 1) \\
\end{matrix} ight.

    \Delta đi qua điểm B và có vectơ chỉ phương \overrightarrow{AB}

    Vậy phương trình của \Delta\frac{x}{2} = \frac{y - 6}{4} = \frac{z}{-
1}\frac{x}{2} = \frac{y + 6}{-
8} = \frac{z}{- 1}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo