Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường thẳng trong không gian CTST (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, khoảng cách giữa đường thẳng \Delta:\left\{ \begin{matrix}
x = 2 + t \\
y = 5 + 4t \\
z = 2 + t \\
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và mặt phẳng (P):2x - y + 2z = 0 bằng :

    Hướng dẫn:

    Xét phương trình 2(2 + t) - (5 + 4t) +
2(2 + t) = 0 \Leftrightarrow 0t + 3 = 0.

    Phương trình này vô nghiệm nên \Delta//(P).

    Chọn M(2;5;2) \in \Delta.

    Khi đó: d\left( \Delta;(P) \right) =
d\left( M;(P) \right) = \frac{|2.2 - 5 + 2.2|}{\sqrt{2^{2} + ( - 1)^{2}
+ 2^{2}}} = 1

  • Câu 2: Thông hiểu
    Tìm tham số m để hai đường thẳng cắt nhau

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + mt \\
y = t \\
z = - 1 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\left\{ \begin{matrix}
x = 1 - t' \\
y = 2 + 2t' \\
z = 3 - t' \\
\end{matrix} ight.\ ;\left( t'\mathbb{\in R} ight). Giá trị của m để hai đường thẳng d_{1}d_{2} cắt nhau là

    Hướng dẫn:

    Đường thẳng d_{1} đi qua A(1; 0; −1), có vectơ chỉ phương \overrightarrow{u_{1}} = (m;1;2)

    Đường thẳng d_{2} đi qua B(1; 2; 3), có vectơ chỉ phương \overrightarrow{u_{2}} = ( - 1;2; -
1)

    Ta có \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = ( - 5;m -
2;2m + 1)\overrightarrow{AB} =
(0;2;4)

    Hai đường thẳng d và d 0 cắt nhau \Rightarrow \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{AB} = 0 \Leftrightarrow m = 0

  • Câu 3: Thông hiểu
    Tìm tọa độ giao điểm

    Tìm tọa độ giao điểm của đường thẳng d:\frac{x - 12}{4} = \frac{y - 9}{3} = \frac{z -
1}{1} và mặt phẳng (P):3x + 5y - z
- 2 = 0?

    Hướng dẫn:

    Gọi I là giao điểm của d và (P).

    Ta có I \in d \Leftrightarrow I(4t +
12;3t + 9;t + 1)

    I \in (P) \Leftrightarrow 3(4t + 12) +
5(3t + 9) - (t + 1) - 2 = 0

    \Leftrightarrow 26t = - 78
\Leftrightarrow t = - 3

    Suy ra I(0;0; - 2)

  • Câu 4: Nhận biết
    Tìm hình chiếu vuôn góc của M

    Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2\ ;\  - 2\ ;\
1) trên mặt phẳng (Oxy) có tọa độ là

    Hướng dẫn:

    Ta có hình chiếu của điểm M\left( x_{0}\
;\ y_{0}\ ;\ z_{0} \right) trên mặt phẳng (Oxy) là điểm M'\left( x_{0}\ ;\ y_{0}\ ;\ 0
\right).

    Do đó hình chiếu của điểm M(2\ ;\  - 2\
;\ 1) trên mặt phẳng (Oxy) là điểm M'(2\ ;\  - 2\ ;\
0).

  • Câu 5: Vận dụng
    Vị trí tương đối của 2 đường thẳng

    Hai đường thẳng \left( {d'} ight):x = 8t - 1;\,\,y =  - 1 - 14t;\,\,z =  - 12t và  \left( d ight):x - 2y + 3z - 1 = 0;\,\,\,2x + 2y - z + 4 = 0\,\,\,\left( {t \in R } ight)

    Hướng dẫn:

    Ta có đường thẳng (d’) qua E (-1, -1, 0) có vecto chỉ phương \overrightarrow a  = \left( {8, - 14, - 12} ight)

    Hai pháp vecto của hai đường thẳng \left( d ight):x - 2y + 3z - 1 = 0;\,\,\,2x + 2y - z + 4 = 0\,\,\,\left( {t \in R } ight) lần lượt là \overrightarrow {{n_1}}  = \left( {1, - 2,3} ight);\overrightarrow {{n_2}}  = \left( {2,2, - 1} ight)

    Vecto chỉ phương của \left( d ight):\overrightarrow b  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( { - 4,7,6} ight)

    Ta có: \frac{8}{{ - 4}} = \frac{{ - 14}}{7} = \frac{{ - 12}}{6} =  - 2 và tọa độ E\left( { - 1, - 1,0} ight) thỏa mãn phương trình của \left( d ight) \Rightarrow \left( D ight) \equiv \left( d ight)

  • Câu 6: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{gathered}
  x = 1 + 2t \hfill \\
  y =  - 1 + t \hfill \\
  z = 2 + t \hfill \\ 
\end{gathered}  \right.. Hình chiếu vuông góc của d lên mặt phẳng (Oxy) có phương trình là.

    Hướng dẫn:

    Cho z = 0, phương trình của d' là \left\{ \begin{matrix}
x = 1 + 2t \\
y = - 1 + t \\
z = 0 \\
\end{matrix} ight.\ .

  • Câu 7: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d':\frac{{x - 1}}{2} = \frac{{y + 3}}{1} = \frac{z}{2}. Phương trình đường thẳng  \Delta  đi qua điểm A(2;-1;-3) vuông góc với trục Oz và d là

    Hướng dẫn:

    Oz có vectơ chỉ phương \overrightarrow k  = \left( {0;0;1} ight)

    d có vectơ chỉ phương \overrightarrow {{a_d}}  = \left( {2;1; - 2} ight)

     \Delta  đi qua điểm A và có vectơ chỉ phương là \overrightarrow {{a_\Delta }}  = \left[ {\overrightarrow k ;\overrightarrow {{a_d}} } ight] = \left( { - 1;2;0} ight)

    Vậy phương của \Delta\left\{ \begin{matrix}
x = 2 - t \\
y = - 1 + 2t \\
y = - 3 \\
\end{matrix} ight.

  • Câu 8: Vận dụng
    Tính giá trị lớn nhất của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(0;1;3),N(10;6;0) và mặt phẳng (P):x - 2y + 2z - 10 = 0. Biết rằng tồn tại điểm I( - 10;a;b) thuộc (P) sao cho |IM - IN| đạt giá trị lớn nhất. Tính T = a + b.

    Hướng dẫn:

    Thay tọa độ điểm M và N vào vế trái phương trình mặt phẳng (P), ta có (0 - 2 + 3 - 10).(10 - 12 - 10) >
0 nên hai điểm M, N nằm cùng phía đối với mặt phẳng (P).

    Khi đó ta có |IM - IN| \leq MN và đẳng thức xảy ra khi I = MN \cap
(P)

    Phương trình tham số của đường thẳng MN là \left\{ \begin{matrix}
x = 10t \\
y = 1 + 5t \\
z = 3 - 3t \\
\end{matrix} ight.

    Tọa độ giao điểm của MN và (P) là nghiệm hệ phương trình

    \left\{ \begin{matrix}
x = 10t \\
y = 1 + 5t \\
z = 3 - 3t \\
x - 2y + 2z - 10 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 10 \\
y = - 4 \\
z = 6 \\
\end{matrix} ight.

    Vậy T = a + b = 2

  • Câu 9: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = t \\
y = - 1 - 4t \\
z = 6 + 6t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và đường thẳng d_{2}:\frac{x}{2} = \frac{y - 1}{1} =
\frac{z + 2}{- 5}. Viết phương trình đường thẳng \Delta đi qua A(1; - 1;2), đồng thời vuông góc với cả hai đường thẳng d_{1}d_{2}.

    Hướng dẫn:

    Đường thẳng d_{1}d_{2} có vectơ chỉ phương lần lượt là \left\{ \begin{matrix}
\overrightarrow{u_{1}} = (1; - 4;6)\  \\
\overrightarrow{u_{2}} = (2;1; - 5) \\
\end{matrix} ight.

    Gọi \overrightarrow{u} là vectơ chỉ phương của đường thẳng ∆.

    Do \left\{ \begin{matrix}
\Delta\bot\overrightarrow{u_{1}} \\
\Delta\bot\overrightarrow{u_{2}} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\overrightarrow{u}\bot\overrightarrow{u_{1}} \\
\overrightarrow{u}\bot\overrightarrow{u_{2}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{u} = \left\lbrack
\overrightarrow{u_{1}},\overrightarrow{u_{2}} ightbrack =
(14;17;9)

    Mà ∆ đi qua A(1; - 1;2) do đó ∆ có phương trình là \frac{x - 1}{14} =
\frac{y + 1}{17} = \frac{z - 2}{9}.

  • Câu 10: Vận dụng
    Tính tổng các phần tử của tập S

    Trong không gian Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{2} =
\frac{y}{1} = \frac{z}{3},d_{2}:\left\{ \begin{matrix}
x = 1 + t \\
y = 2 + t \\
z = m \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Gọi S là tập hợp tất cả các số m sao cho d_{1},d_{2} chéo nhau và khoảng cách giữa chúng bằng \frac{5}{\sqrt{19}}. Tính tổng tất cả các phần tử của S.

    Hướng dẫn:

    Vectơ chỉ phương của d_{1},d_{2}\overrightarrow{u_{1}} =
(2;1;3),\overrightarrow{u_{2}} = (1;1;0)

    Khi đó: \overrightarrow{n} = \left\lbrack
\overrightarrow{u_{1}},\overrightarrow{u_{2}} ightbrack = ( -
3;3;1).

    Gọi (P) là mặt phẳng chứa d_{1} song song với d_{2}.

    Tức là, (P) qua A(1;0;0) và nhận \overrightarrow{n} làm vectơ pháp tuyến.

    Ta có phương trình (P):3x - 3y - z - 3 =
0

    Xét điểm B(1;2;m) \in d_{2}. Do d_{1},d_{2} chéo nhau nên B otin (P) \Leftrightarrow m eq -
6.

    Lại có:

    d\left( d_{1};d_{2} ight) =
\frac{5}{\sqrt{19}} \Leftrightarrow d\left( B;(P) ight) =
\frac{5}{\sqrt{19}}

    \Leftrightarrow \frac{|3 - 6 - m -
3|}{\sqrt{19}} = \frac{5}{\sqrt{19}} \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 1 \\
m = - 11 \\
\end{matrix} ight.

    Vậy tổng các phần tử của S là - 1 - 11 =
- 12.

  • Câu 11: Nhận biết
    Chọn đường thẳng thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2) và mặt phẳng (P):2x - y + 3z + 1 = 0. Đường thẳng đi qua điểm M và vuông góc với mặt phẳng (P) có phương trình là:

    Hướng dẫn:

    Do đường thẳng \Delta cần tìm vuông góc với mặt phẳng (P) nên vectơ pháp tuyến của (P) là \overrightarrow{n_{P}} = (2; - 1;3) cũng là vectơ chỉ phương của \Delta.

    Mặt khác \Delta đi qua điểm M(1;1;2) nên phương trình chính tắc của \Delta là: \frac{x - 1}{2} = \frac{y - 1}{- 1} = \frac{z -
2}{3}

  • Câu 12: Nhận biết
    Viết PT tham số

    Viết phương trình tham số của đường thẳng d qua hai điểm: A\left( { - 1,3, - 2} ight);B\left( {2, - 3,4} ight)

    Gợi ý:

    Để viết PT Tham số của một đường thẳng, ta cần 1 vecto chỉ phương và 1 điểm bất kỳ nằm trên đường thẳng đó.

    Hướng dẫn:

     Đường thẳng d đi qua hai điểm A và B nên VTCP của đường thẳng d chính là \overrightarrow {AB} hay ta có: \overrightarrow {AB}  = \left( {3, - 6,6} ight) = 3\left( {1, - 2,2} ight) =  - 3\left( { - 1,2, - 2} ight)

    \begin{array}{l} \Rightarrow \left( d ight)\left\{ \begin{array}{l}x = 3t - 1\\y = 3 - 6t\\z = 6t - 2\end{array} ight.\,\,;t \in \mathbb{R},\,\\hay\,\,\left( d ight)\left\{ \begin{array}{l}x = 2 + m\\y =  - 3 - 2m\\z = 4 + 2m\end{array} ight.\,\,;m \in \mathbb{R}\\\hay\,\,\left( d ight)\,\left\{ \begin{array}{l}x =  - 1 - \tan t\\y = 3 + 2\tan t\\z =  - 2 - 2\tan t\end{array} ight.\,\,;t \in\mathbb{R}\end{array}

     

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz, cho tam giác ABC có phương trình đường phân giác trong góc A\frac{x}{1} = \frac{y - 6}{- 4} = \frac{z - 6}{-
3}. Biết rằng điểm M(0;5;3) thuộc đường thẳng AB và điểm N(1;1;0) thuộc đường thẳng AC. Vectơ nào sau đây là vectơ chỉ phương của đường thẳng AC.

    Hướng dẫn:

    Hình chiếu H của M trên đường phân giác trong góc A có tọa độ: H\left( \frac{1}{2};4;\frac{9}{2}
ight)

    M’ là điểm đối xứng của M qua H. Từ đây ta tìm được tọa độ M’(1; 3; 6).

    Vectơ chỉ phương của đường thẳng AC chính là vecto \overrightarrow{NM'} = (0;2;6).

    Suy ra, đường thẳng AC có một vectơ chỉ phương là (0; 1; 3)

  • Câu 14: Nhận biết
    Xác định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, trục Ox có phương trình tham số là

    Hướng dẫn:

    Trục Ox đi qua O(0; 0; 0) và có véctơ chỉ phương \overrightarrow{i} = (1;0;0) nên có phương trình tham số là \left\{
\begin{matrix}
x = 0 + 1t \\
y = 0 + 0t \\
z = 0 + 0t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) \Leftrightarrow
\left\{ \begin{matrix}
x = t \\
y = 0 \\
z = 0 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 15: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho hai điểm M(3;0;2),N(2;2025;2026) và đường thẳng (d) có phương trình chính tắc là: \frac{x - 1}{1} = \frac{y -
2024}{1} = \frac{z - 2024}{2}.

    a) Điểm M và N cùng thuộc đường thẳng (d). Sai||Đúng

    b) Đường thẳng (d) có một vectơ chỉ phương \overrightarrow{a} =
(1;2024;2024). Sai||Đúng

    c) Đường thẳng d' đi qua điểm M và N có phương trình là: \frac{x -
3}{1} = \frac{y}{1} = \frac{z + 2}{2}. Sai||Đúng

    d) Đường thẳng qua M, đồng thời vuông góc và cắt (d) có phương trình là: \left\{ \begin{matrix}
x = 2 - t \\
y = t \\
z = 2
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right). Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hai điểm M(3;0;2),N(2;2025;2026) và đường thẳng (d) có phương trình chính tắc là: \frac{x - 1}{1} = \frac{y -
2024}{1} = \frac{z - 2024}{2}.

    a) Điểm M và N cùng thuộc đường thẳng (d). Sai||Đúng

    b) Đường thẳng (d) có một vectơ chỉ phương \overrightarrow{a} =
(1;2024;2024). Sai||Đúng

    c) Đường thẳng d' đi qua điểm M và N có phương trình là: \frac{x -
3}{1} = \frac{y}{1} = \frac{z + 2}{2}. Sai||Đúng

    d) Đường thẳng qua M, đồng thời vuông góc và cắt (d) có phương trình là: \left\{ \begin{matrix}
x = 2 - t \\
y = t \\
z = 2
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right). Đúng||Sai

    a) Sai

    b) Sai

    c) Sai

    d) Đúng

    Phương án a) sai: Thay tọa độ điểm M(3;0;2) vào phương trình đường thẳng (d) ta được: \frac{3 - 1}{1} \neq \frac{0 - 2024}{1} \neq
\frac{2 - 2024}{2} \Rightarrow M \notin d.

    Thay tọa độ điểm N vào phương trình đường thẳng (d) ta được: \frac{2 - 1}{1} = \frac{2025 - 2024}{1} =
\frac{2026 - 2024}{2} \Rightarrow N \in d.

    Phương án b) sai: Đường thẳng (d) có một vectơ chỉ phương \overrightarrow{u_{d}} = (1;1;2). Dễ thấy \overrightarrow{u_{d}};\overrightarrow{a} không cùng phương.

    Phương án c) sai: Ta có: \overrightarrow{MN} = ( - 1;2025;2024). Đường thẳng d' qua M, N nên có một vectơ chỉ phương \overrightarrow{u_{d'}} = ( -
1;2025;2024).

    Suy ra phương trình đường thẳng d':\frac{x - 3}{- 1} = \frac{y}{2025} =
\frac{z - 2}{2024}.

    Phương án d) đúng: Phương trình tham số của đường thẳng (d) là: \left\{ \begin{matrix}
x = 1 + t \\
y = 2024 + t \\
z = 2024 + 2t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    Gọi \Delta là đường thẳng qua M, đồng thời vuông góc và cắt đường thẳng (d).

    Gọi H = d \cap \Delta \Rightarrow H \in
d nên H(1 + t;2024 + t;2024 +
2t).

    Ta có: \overrightarrow{MH} = ( - t -
2;2024 + t;2022 + 2t), MH\bot d
\Rightarrow \overrightarrow{MH}.\overrightarrow{u_{d}} = 0. \Leftrightarrow 1.(t - 2) + 1.(2024 + t) +
2(2022 + 2t) = 0

    \Leftrightarrow t = 1011 \Rightarrow
\overrightarrow{MH} = ( - 1013;1013;0)

    Chọn \overrightarrow{u_{\Delta}} = ( -
1;1;0) là một vectơ chỉ phương của đường thẳng \Delta nên phương trình tham số của đường thẳng \Delta là: \left\{ \begin{matrix}
x = 3 - t \\
y = t \\
z = 2
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

  • Câu 16: Thông hiểu
    Chọn đáp án thích hợp

    Cho hai đường thẳng trong không gian Oxyz:(D):\ \frac{x\  - \ x_{1}}{a_{1}} = \frac{y\  - \
y_{1}}{a_{2}} = \frac{z\  - \ z_{1}}{a_{3}},(d):\ \frac{x\  - \ x_{2}}{b_{1}} = \frac{y\  - \
y_{2}}{b_{2}} = \frac{z\  - \ z_{2}}{b_{3}}. Với a_{1},\ \ a_{2},\ \ a_{3},\ \ b_{1},\ \ b_{2},\ \
b_{3} \neq \ 0. Gọi \overrightarrow{a} = \left( \ a_{1},\ \ a_{2},\ \
a_{3} \right);\ \ \overrightarrow{b} = \left( \ b_{1},\ \ b_{2},\ \
b_{3} \right)\overrightarrow{AB} = \left( \ x_{2}\  - \ x_{1},\
\ y_{2}\  - \ y_{1},\ \ z_{2}\  - \ z_{1} \right). (D) và (d) chéo nhau khi và chỉ khi:

    Hướng dẫn:

    Ta có:

    \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack.\overrightarrow{AB}
\neq 0 \Rightarrow (D)(d) chéo nhau.

  • Câu 17: Thông hiểu
    Xác định phương trình đường thẳng d

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x + 2}{1} = \frac{y - 2}{1} =
\frac{z}{- 1} và mặt phẳng (P):x +
2y - 3z + 4 = 0. Đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với \Delta có phương trình là

    Hướng dẫn:

    Giao điểm A của \Delta(P) là nghiệm của hệ:

    \left\{ \begin{matrix}
\frac{x + 2}{1} = \frac{y - 2}{1} = \frac{z}{- 1} \\
x + 2y - 3z + 4 = 0 \\
\end{matrix} \right.\  \Rightarrow A( - 3;1;1)

    Giả sử d đi qua B(x;y;0). Khi đó, ta có:

    \left\{ \begin{matrix}
B \in (P) \\
\overrightarrow{AB}.\overrightarrow{u_{\Delta}} = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x + 2y + 44 = 0 \\
(x + 3).1 + (y - 1).1 + ( - 1).( - 1) = 0 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = - 1 \\
\end{matrix} \right.\  \Rightarrow B( - 2; - 1;0) \Rightarrow
\overrightarrow{AB} = (1; - 2; - 1)

    \Rightarrow (d):\frac{x + 3}{1} =
\frac{y - 1}{- 2} = \frac{z - 1}{- 1}

  • Câu 18: Thông hiểu
    Viết phương trình tham số của đường thẳng

    Trong không gian Oxyz, đường thẳng đi qua điểm A(1;1;1) và vuông góc với mặt phẳng tọa độ (Oxy)có phương trình tham số là:

    Hướng dẫn:

    Đường thẳng d vuông góc với mặt phẳng tọa độ (Oxy) nên nhận \overrightarrow{k} = (0;0;1) làm vectơ chỉ phương. Mặt khác d đi qua A(1;1;1) nên:

    \Rightarrow Đường thẳng d có phương trình là: \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 1 + t \\
\end{matrix} \right..

  • Câu 19: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho hai đường thẳng d:\frac{x - 1}{2} = \frac{y -
7}{1} = \frac{z - 3}{4}d':\frac{x - 6}{3} = \frac{y + 1}{- 2} =
\frac{z + 2}{1}.

    a) Đường thẳng d có vtcp \overrightarrow{u} = (2;1;4). Đúng||Sai

    b) Đường thẳng d’ có vtcp \overrightarrow{u'} = (3;2;1). Sai||Đúng

    c) Hai đường thẳng d và d’ vuông góc với nhau. Sai||Đúng

    d) Hai đường thẳng d và d’ cắt nhau. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hai đường thẳng d:\frac{x - 1}{2} = \frac{y -
7}{1} = \frac{z - 3}{4}d':\frac{x - 6}{3} = \frac{y + 1}{- 2} =
\frac{z + 2}{1}.

    a) Đường thẳng d có vtcp \overrightarrow{u} = (2;1;4). Đúng||Sai

    b) Đường thẳng d’ có vtcp \overrightarrow{u'} = (3;2;1). Sai||Đúng

    c) Hai đường thẳng d và d’ vuông góc với nhau. Sai||Đúng

    d) Hai đường thẳng d và d’ cắt nhau. Đúng||Sai

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

    Phương án a) đúng: Đường thẳng d có vtcp \overrightarrow{u} = (2;1;4).

    Phương án b) sai: Đường thẳng d’ có vtcp \overrightarrow{u'} = (3;2;1).

    Phương án c) sai: \overrightarrow{u}.\overrightarrow{u'} = 8
\neq 0nên hai đường thẳng d và d’ không vuông góc với nhau.

    Phương án d) đúng:

    dcó VTCP \overrightarrow{u} =
(2;1;4) và đi qua M(1;7;3).

    d’ có VTCP \overrightarrow{u'} =
(3;2;1) và đi qua M'(6; - 1; -
2).

    \overrightarrow{MM'} = (5; - 8; -
5)\left\lbrack
\overrightarrow{u};\overrightarrow{u'} \right\rbrack = (9;10; - 7)
\neq \overrightarrow{0}.

    Ta có: \left\lbrack
\overrightarrow{u};\overrightarrow{u'}
\right\rbrack.\overrightarrow{MM'} = 5.9 + ( - 8).10 + ( - 5).( - 7)
= 0.

    Suy ra d cắt d’.

  • Câu 20: Thông hiểu
    Tìm tọa độ điểm M

    Hai đường thẳng (D):\left\{
\begin{matrix}
x = 2 + 4t \\
y = - 3m - t \\
z = 2t - 1 \\
\end{matrix} \right.(d):\left\{ \begin{matrix}
x = 4 - 2m \\
y = m + 2 \\
z = - m \\
\end{matrix} \right. cắt nhau tại M có tọa độ \left( t,m\mathbb{\in R} \right).

    Hướng dẫn:

    Ta có:

    (D) cắt (d) tại M
\Leftrightarrow \left\{ \begin{matrix}
2 + 4t = 4 - 2m \\
- 3 - t = m + 2 \\
2t - 1 = - m \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
2t + m = 1 \\
t + m = - 5 \\
\end{matrix} \right.\  \Leftrightarrow t = 6;m = - 11

    Vậy M(26, - 9,11)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo