Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường thẳng trong không gian CTST (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Viết phương trình chính tắc

    Trong không gian Oxyz, đường thẳng (d) qua M\left( {\,{x_0},\,\,{y_0},\,\,{z_0}} ight) và có một vectơ chỉ phương \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight) với  {a_1},\,\,{a_2},\,\,{a_3} e 0  có phương trình chính tắc là:

    Hướng dẫn:

    Trong không gian Oxyz, đường thẳng (d) qua M\left( {\,{x_0},\,\,{y_0},\,\,{z_0}} ight) và có một vectơ chỉ phương \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight) với {a_1},\,\,{a_2},\,\,{a_3} e 0 có phương trình chính tắc là:

    \frac{{x\, - \,{x_0}}}{{{a_1}}} = \frac{{y\, - \,{y_0}}}{{{a_2}}} = \frac{{z\, - \,{z_0}}}{{{a_3}}}

  • Câu 2: Thông hiểu
    Chọn đáp án đúng

    Viết phương trình tổng quát của đường thẳng (D) qua A(4,2,1) và song song với đường thẳng (d):x + 2y - z = 0;x - 3y + z - 6 =
0.

    Hướng dẫn:

    \overrightarrow{n_{1}} = (1,2, - 1);\ \
\overrightarrow{n_{2}} = (1, - 3,1)

    Một vecto chỉ phương của (d):\overrightarrow{a} = \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right\rbrack = -
(1,2,5)

    Phương trình chính tắc của (D):x - 4 =
\frac{y - 2}{2} = \frac{z - 1}{5}

    \Rightarrow (D)\left\{ \begin{matrix}
2x - y - 6 = 0 \\
5x - z - 19 = 0 \\
\end{matrix} \right.\  \vee \left\{ \begin{matrix}
2x - y - 6 = 0 \\
5y - 2z - 8 = 0 \\
\end{matrix} \right.

  • Câu 3: Vận dụng
    Xác định phương trình d

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;4;2)B( - 1;2;4). Phương trình d đi qua trọng tâm của \Delta OAB và vuông góc với mặt phẳng (OAB)

    Hướng dẫn:

    Gọi G là trọng tâm \Delta OAB, ta có G(0;2;2)

    \begin{matrix}
\overrightarrow{OA} = (1;4;2) \\
\overrightarrow{OB} = ( - 1;2;4) \\
\end{matrix}

    Gọi \overrightarrow{a_{d}} là vectơ chỉ phương của d

    d\bot(OAB) \Rightarrow \left\{
\begin{matrix}
d\bot OA \\
d\bot OB \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\overrightarrow{a_{d}}\bot\overrightarrow{OA} \\
\overrightarrow{a_{d}}\bot\overrightarrow{OB} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{a_{d}} =
\left\lbrack \overrightarrow{OA},\overrightarrow{OB} ightbrack =
(12; - 6;6) = 6(2; - 1;1)

    Vậy phương trình của d\frac{x}{2} = \frac{y - 2}{- 1} = \frac{z -
2}{1}

  • Câu 4: Thông hiểu
    Tìm tọa độ điểm H

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(3;4;5) và mặt phẳng (P):x - y + 2z - 3 = 0. Gọi H là hình chiếu vuông góc của M lên (P). Tìm tọa độ điểm H?

    Hướng dẫn:

    Vì H là hình chiếu vuông góc của M lên (P) nên H(3 + t;4 - t;5 + 2t)

    Điểm H thuộc mặt phẳng (P) nên ta có phương trình:

    (3 + t) - (4 - t) + 2(5 + 2t) - 3 =
0

    \Leftrightarrow t = - 1 \Leftrightarrow
H = (2;5;3)

  • Câu 5: Nhận biết
    Xác định phương trình chính tắc

    Trong không gian với hệ tọa độ Oxyz,cho đường thẳng d:\left\{ \begin{matrix}
x = 3 - t \\
y = - 1 + 2t \\
z = - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Phương trình nào dưới đây là phương trình chính tắc của đường thẳng (d)?

    Hướng dẫn:

    Đường thẳng (d) đi qua điểm M(3; - 1;0) và nhận \overrightarrow{u} = ( - 1;2; - 3) làm vectơ chỉ phương.

    Phương trình chính tắc của (d):\frac{x -
3}{- 1} = \frac{y + 1}{2} = \frac{z}{- 3}

  • Câu 6: Thông hiểu
    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian Oxyz, cho điểm A(0;1;1) và hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 \\
y = - 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\frac{x - 1}{3} = \frac{y - 2}{1} =
\frac{z}{1}. Gọi d là đường thẳng đi qua điểm A, cắt đường thẳng d_{1} và vuông góc với đường thẳng d_{2}. Đường thẳng d đi qua điểm nào trong các điểm dưới đây?

    Hướng dẫn:

    Gọi \left\{ \begin{matrix}
B = d_{1} \cap d \\
B \in d_{1} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
B( - 1; - 1 + t;t) \\
\overrightarrow{AB} = ( - 1;t - 2;t - 1) \\
\end{matrix} ight.

    d_{2} có một vectơ chỉ phương \overrightarrow{u} = (3;1;1).

    Do d\bot d_{2} nên \overrightarrow{u}.\overrightarrow{AB} = 0
\Leftrightarrow - 3 + t - 2 + t - 1 = 0

    \Leftrightarrow t = 3 \Rightarrow
\overrightarrow{AB} = ( - 1;1;2)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AN} = (2;0;6);\overrightarrow{AQ} = (3;1;4) \\
\overrightarrow{AP} = ( - 2; - 4;10);\overrightarrow{AM} = (1; - 1; - 2)
\\
\end{matrix} ight.

    Suy ra đường thẳng d đi qua M.

  • Câu 7: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng \Delta:\frac{x - 2}{- 1} = \frac{y -
1}{- 2} = \frac{z + 3}{1} và mặt phẳng (P) có phương trình 3x + 6y - 3z + 2024 = 0.

    a) Một véc tơ chỉ phương của \Delta\overrightarrow{u} = ( - 1; - 2;1). Đúng||Sai

    b) Một véc tơ pháp tuyến của (P)\overrightarrow{n} = (1;2; - 1). Đúng||Sai

    c) Góc giữa \Delta(P) là: 90^{0}. Đúng||Sai

    d) Lấy tuỳ ý hai điểm phân biệt A;B \in
\Delta. Gọi A’; B’ lần lượt là hình chiếu của A; B lên (P). Khi đó A'B' = 2024. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng \Delta:\frac{x - 2}{- 1} = \frac{y -
1}{- 2} = \frac{z + 3}{1} và mặt phẳng (P) có phương trình 3x + 6y - 3z + 2024 = 0.

    a) Một véc tơ chỉ phương của \Delta\overrightarrow{u} = ( - 1; - 2;1). Đúng||Sai

    b) Một véc tơ pháp tuyến của (P)\overrightarrow{n} = (1;2; - 1). Đúng||Sai

    c) Góc giữa \Delta(P) là: 90^{0}. Đúng||Sai

    d) Lấy tuỳ ý hai điểm phân biệt A;B \in
\Delta. Gọi A’; B’ lần lượt là hình chiếu của A; B lên (P). Khi đó A'B' = 2024. Sai||Đúng

    a) Đúng

    b) Đúng

    c) Đúng

    d) Sai

    Phương án a) đúng:

    Một véc tơ chỉ phương của \Delta\overrightarrow{u} = ( -1; -2;1).

    Phương án b) đúng:

    Một véc tơ chỉ phương của (P)\overrightarrow{n} = (1;2; -
1).

    Phương án c) đúng:

    Một véc tơ chỉ phương của \Delta\overrightarrow{u} = ( - 1; -
2;1), một véc tơ pháp tuyến của (P)\overrightarrow{n} = (1;2; - 1).

    Khi đó \sin\left( \Delta;(P) \right) = \frac{\left|
( - 1).1 + ( - 2).2 + 1.( - 1) \right|}{\sqrt{( - 1)^{2} + ( - 2)^{2} +
1^{2}}.\sqrt{1^{2} + 2^{2} + ( - 1)^{2}}} = 1.

    Vậy \left( \Delta;(P) \right) =90^0.

    Phương án d) sai:

    \Delta\bot(P) nên A’ trùng B’. Do đó A'B' = 0.

  • Câu 8: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2;\ 1;\  -
1) trên trục Oz có tọa độ là

    Hướng dẫn:

    Hình chiếu vuông góc của điểm M(2;\
1;\  - 1) trên trục Oz có tọa độ là: (0;\ 0;\  - 1).

  • Câu 9: Thông hiểu
    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d):\frac{x - 3}{- 2} = \frac{y}{- 1} = \frac{z -
1}{1} và điểm A(2; - 1;0). Khoảng cách từ điểm A đến đường thẳng (d) bằng

    Hướng dẫn:

    Gọi M(3;0;1) \in d.

    \overrightarrow{AM}(1;1;1);\overrightarrow{u_{d}}(
- 2; - 1;1) \Rightarrow \left\lbrack
\overrightarrow{AM};\overrightarrow{u_{d}} \right\rbrack = (2; -
3;1)

    \Rightarrow \left| \left\lbrack
\overrightarrow{AM};\overrightarrow{u_{d}} \right\rbrack \right| =
\sqrt{14}

    Vậy khoảng cách từ điểm A đến đường thẳng (d) bằng d(A,d) = \frac{\left| \left\lbrack
\overrightarrow{AM};\overrightarrow{u_{d}} \right\rbrack \right|}{\left|
\overrightarrow{u_{d}} \right|} = \frac{\sqrt{14}}{\sqrt{6}} =
\frac{\sqrt{21}}{3}

  • Câu 10: Thông hiểu
    Phương trình tổng quát

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight). Phương trình tổng quát của đường cao AH.

    Hướng dẫn:

    Theo đề bài, ta tính được: \overrightarrow {AB}  = \left( {1, - 3,7} ight);\,\,\overrightarrow {AC}  = 2\left( {1, - 2,4} ight);\,\,\overrightarrow {BC}  = 2\left( {1, - 1,1} ight)

    Mp (ABC) có 2 VTCP là \overrightarrow {AB}  = \left( {1, - 3,7} ight);\,\,\overrightarrow {AC}  = 2\left( {1, - 2,4} ight) nên vecto pháp tuyến của (ABC) chính là tích có hướng của 2 VTCP trên. Ta có:

    \overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } ight] = \left( {2,3,1} ight)

    Vì AH là đường cao của tam giác ABC nên ta có \overrightarrow {AH}  \bot \overrightarrow {BC}.

    Mặt khác \overrightarrow {AH}  \bot \overrightarrow n nên ta viết được vecto chỉ phương của đường thẳng AH là tích có hướng của 2 vecto pháp tuyến

    \Rightarrow \overrightarrow {AH}  = \left[ {\overrightarrow n ,\overrightarrow {BC} } ight] = \left( {4, - 1, - 5} ight)

    Từ đây, ta có phương trình chính tắc của AH:\frac{{x - 1}}{4} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{{ - 5}}

    \Rightarrow AH\left\{ \begin{array}{l}x + 4y - 9 = 0\\5x + 4z + 7 = 0\end{array} ight. \vee AH\left\{ \begin{array}{l}x + 4y - 9 = 0\\5y - z - 13 = 0\end{array} ight.

  • Câu 11: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = - 1 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm nào sau đây không thuộc đường thẳng d?

    Hướng dẫn:

    Thay M(1;2; - 1) vào d ta được: \left\{ \begin{matrix}
1 = 1 - t \\
2 = 2 + 2t \\
- 1 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 0 \Rightarrow M \in
d

    Thay N(6; - 8;9) vào d ta được: \left\{ \begin{matrix}
6 = 1 - t \\
- 8 = 2 + 2t \\
9 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = - 5 \Rightarrow N \in
d

    Thay P( - 6;16; - 14) vào d ta được: \left\{ \begin{matrix}
- 6 = 1 - t \\
16 = 2 + 2t \\
- 14 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 7 \\
t = 7 \\
t = \frac{13}{2} \\
\end{matrix} ight. hệ vô nghiệm nên P otin d.

    Thay Q( - 19;42; - 41) vào d ta được: \left\{ \begin{matrix}
19 = 1 - t \\
42 = 2 + 2t \\
- 41 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 20 \Rightarrow Q \in
d

  • Câu 12: Thông hiểu
    Tìm hình chiếu của điểm lên đường thẳng

    Trong không gian Oxyz, tìm tọa độ hình chiếu H của A(1;1;1)lên đường thẳng d:\left\{ \begin{matrix}
x = 1 + t \\
y = 1 + t \\
z = t \\
\end{matrix} \right..

    Hướng dẫn:

    Đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = (1;1;1)

    Do H \in d \Rightarrow H(1 + t;1 +
t;t).

    Ta có: \overrightarrow{AH} = (t;t;t -
1)

    Do H là hình chiếu của điểm A lên đường thẳng d nên suy ra \overrightarrow{AH}\bot\overrightarrow{u}
\Leftrightarrow \overrightarrow{AH}.\overrightarrow{u} = 0

    \Leftrightarrow t + t + t - 1 = 0
\Leftrightarrow t = \frac{1}{3} \Rightarrow H\left(
\frac{4}{3};\frac{4}{3};\frac{1}{3} \right)

  • Câu 13: Vận dụng
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = - 2 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và điểm A(1;0;2).

    a) Điểm B(2;1; - 1) không thuộc đường thẳng d. Đúng||Sai

    b) Đường thẳng d có một vectơ chỉ phương \overrightarrow{u} =
(1;0;1). Sai||Đúng

    c) Đường thẳng \Delta đi qua điểm A(1;0;2), đồng thời vuông góc và cắt đường thẳng d\frac{x + 1}{2} = \frac{y}{1} = \frac{z + 2}{-
3}. Sai||Đúng

    d) M(a;b;c)là một điểm nằm trên đường thẳng d và cách điểm A một khoảng có độ dài bằng \sqrt{26}. Khi b > 0 thì a + b + c = 3. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = - 2 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và điểm A(1;0;2).

    a) Điểm B(2;1; - 1) không thuộc đường thẳng d. Đúng||Sai

    b) Đường thẳng d có một vectơ chỉ phương \overrightarrow{u} =
(1;0;1). Sai||Đúng

    c) Đường thẳng \Delta đi qua điểm A(1;0;2), đồng thời vuông góc và cắt đường thẳng d\frac{x + 1}{2} = \frac{y}{1} = \frac{z + 2}{-
3}. Sai||Đúng

    d) M(a;b;c)là một điểm nằm trên đường thẳng d và cách điểm A một khoảng có độ dài bằng \sqrt{26}. Khi b > 0 thì a + b + c = 3. Sai||Đúng

    a) Đúng

    b) Sai

    c) Sai

    d) Sai

    Phương án a) đúng: Thay tọa độ điểm B(1;2; - 1) vào phương trình đường thẳng d ta được: \left\{ \begin{matrix}
2 = 2 + t \\
1 = t \\
- 1 = - 2 + t
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
t = 0 \\
t = 0 \\
t = 0
\end{matrix} \right.\  \Rightarrow B(1;2; - 1) \notin d.

    Phương án b) sai: Đường thẳng d có một vectơ chỉ phương \overrightarrow{u} = (1;1;1).

    Phương án c) sai: Gọi H = d \cap \Delta
\Leftrightarrow H \in d nên H(2 +
t;t; - 2 + t).

    Ta có: \overrightarrow{AH} = (1 + t;t; -
4 + t) là một vectơ chỉ phương của đường thẳng \Delta.

    \Delta\bot d \Rightarrow
\overrightarrow{AH}.\overrightarrow{u} = 0 \Leftrightarrow 1(1 + t) + 1.t + 1( - 4 + t) = 0
\Leftrightarrow t = 1

    \Rightarrow \overrightarrow{AH} = (2;1;
- 3)

    Suy ra \Delta:\frac{x - 1}{2} =
\frac{y}{1} = \frac{z - 2}{- 3}

    Phương án d) sai: Ta có M \in d
\Rightarrow M(2 + t;t;2 + t) nên \overrightarrow{AM} = (1 + t;t; - 4 +
t).

    AM = \sqrt{26} \Leftrightarrow \sqrt{(1 +
t)^{2} + t^{2} + ( - 4 + t)^{2}} = \sqrt{26}

    \Leftrightarrow 3t^{2} - 6t - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = - 1 \\
t = 3
\end{matrix} \right.

    b > 0 \Rightarrow t >
0. Vậy M(5;3;1) \Rightarrow a + b +
c = 9.

  • Câu 14: Thông hiểu
    Xác định tọa độ điểm đối xứng

    Trong không gian tọa độ Oxyz, cho đường thẳng d:\frac{x + 1}{1} = \frac{y
+ 3}{2} = \frac{z + 2}{2} và điểm A(3;2;0). Điểm đối xứng với điểm A qua đường thẳng d có tọa độ là:

    Hướng dẫn:

    Gọi M( - 1 + t; - 3 + 2t; - 2 + 2t) \in
d

    \Rightarrow AH = (t - 4;2t - 5;2t -
2)

    Vectơ chỉ phương của d là \overrightarrow{u} = (1;2;2)

    \overrightarrow{u}\bot\overrightarrow{AH}
\Rightarrow \overrightarrow{u}.\overrightarrow{AH} = 0

    \Leftrightarrow 1(t - 4) + 2(2t - 5) +
2(2t - 2) = 0 \Leftrightarrow t = 2

    Suy ra M(1; 1; 2), gọi A’(x; y; z) là điểm đối xứng của A qua d thì: \left\{ \begin{matrix}
x = 2.1 - 3 = - 1 \\
y = 2.1 - 2 = 0 \\
z = 2.2 - 0 = 4 \\
\end{matrix} ight.

    Điểm đối xứng với điểm A qua đường thẳng d có tọa độ là: ( - 1;0;4).

  • Câu 15: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(3;5;3) và hai mặt phẳng (P):2x + y + 2z - 8 = 0,(Q):x - 4y + z - 4 =
0. Viết phương trình đường thẳng d đi qua A và song song với hai mặt phẳng (P),(Q)?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (2;1;2) \\
\overrightarrow{n_{(Q)}} = (1; - 4;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ightbrack = (9;0;
- 9)

    Do đường thẳng d song song với hai mặt phẳng (P) và (Q) nên d có vectơ chỉ phương là \overrightarrow{u} =
(1;0; - 1).

    Vậy phương trình đường thẳng d là \left\{
\begin{matrix}
x = 3 + t \\
y = 5 \\
z = 3 - t \\
\end{matrix} ight.

  • Câu 16: Thông hiểu
    Viết phương trình đường thẳng d

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; - 1;3) và hai đường thẳng:

    d_{1}:\frac{x - 4}{1} = \frac{y + 2}{4}
= \frac{z - 1}{- 2},d_{2}:\frac{x - 2}{1} = \frac{y + 1}{- 1} = \frac{z
- 1}{1}

    Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d_{1} và cắt đường thẳng d_{2}.

    Hướng dẫn:

    Gọi (P) là mặt phẳng đi qua A và vuông góc với \left( d_{1}
\right).

    Khi đó, có:

    (P):1(x - 1) + 4(y + 1) - 2(z - 3) =
0

    \Leftrightarrow x + 4y -2z + 9 =0

    Gọi giao điểm \left( d_{2}
\right)(P)B(a;b;c).

    \left\{ \begin{matrix}a + 4b - 2c + 9 = 0 \\\dfrac{a - 2}{1} = \dfrac{b + 1}{- 1} = \dfrac{c - 1}{1} \\\end{matrix} \right.\Rightarrow B(3; - 2;2) \Rightarrow\overrightarrow{AB}(2; - 1; - 1)

    \Rightarrow (AB) \equiv (d):\frac{x -
1}{2} = \frac{y + 1}{- 1} = \frac{z - 3}{- 1}

    Vậy đáp án đúng là d:\frac{x - 1}{2} =
\frac{y + 1}{- 1} = \frac{z - 3}{- 1}.

  • Câu 17: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;3; - 1),B(1;2;4). Phương trình đường thẳng nào được cho dưới đây không phải là phương trình đường thẳng AB?

    Hướng dẫn:

    Ta có \overrightarrow{BA} = (1;1; -
5)

    Vì điểm A(2;3; - 1) otin \frac{x +
2}{1} = \frac{y + 3}{1} = \frac{z - 1}{- 5} nên \frac{x + 2}{1} = \frac{y + 3}{1} = \frac{z - 1}{-
5} không phải là phương trình đường thẳng AB.

    Các đường thẳng còn lại đều có vectơ chỉ phương là (1; 1; −5) và đi qua điểm A(2; 3; −1) hoặc đi qua điểm B(1; 2; 4).

  • Câu 18: Vận dụng
    Chọn đáp án chính xác

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; - 2; - 1),B\left( - \frac{4}{3}; -
\frac{8}{3};\frac{8}{3} ight). Đường thẳng \Delta đi qua tâm đường tròn nội tiếp tam giác OAB và vuông góc với mặt phẳng (OAB). Hỏi \Delta đi qua điểm nào dưới đây?

    Hướng dẫn:

    Ta có: OA = 3,OB = 4,AB = 5

    Gọi I là tâm đường tròn nội tiếp tam giác OAB.

    \left\{ \begin{matrix}
x_{I} = \frac{AB.x_{O} + OB.x_{A} + OA.x_{B}}{AB + OB + OA} \\
y_{I} = \frac{AB.y_{O} + OB.y_{A} + OA.y_{B}}{AB + OB + OA} \\
z_{I} = \frac{AB.z_{O} + OB.z_{A} + OA.z_{B}}{AB + OB + OA} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{5.0 + 4.2 + 3.\left( - \frac{4}{3} ight)}{5 + 4 + 3} \\
y_{I} = \frac{5.0 + 4.( - 2) + 3.\left( - \frac{8}{3} ight)}{5 + 4 +
3} \\
z_{I} = \frac{5.0 + 4.( - 1) + 3.\frac{8}{3}}{5 + 4 + 3} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{1}{3} \\
y_{I} = - \frac{4}{3} \\
z_{I} = \frac{1}{3} \\
\end{matrix} ight.\  \Rightarrow I\left( \frac{1}{3}; -
\frac{4}{3};\frac{1}{3} ight)

    \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = ( - 8; - 4; - 8)
= - 4(2;1;2)

    Phương trình đường thẳng \Delta:\frac{x -
\frac{1}{3}}{2} = \frac{y + \frac{4}{3}}{1} = \frac{z -
\frac{1}{3}}{2}

    Đường thẳng ∆ đi qua điểm M(1; −1; 1).

  • Câu 19: Thông hiểu
    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian với hệ tọa độ Oxyz, khoảng cách từ điểm M(2; - 4; - 1) tới đường thẳng \Delta:\left\{ \begin{matrix}
x = t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight. bằng:

    Hướng dẫn:

    Đường thẳng \Delta đi qua N(0;2;3), có véc-tơ chỉ phương \overrightarrow{u} = (1; - 1;2).

    Ta có \overrightarrow{MN} = ( -
2;6;4)\left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack = (16;8; -
4).

    Vậy khoảng cách từ M đến đường thẳng \Delta là:

    d(M;\Delta) = \frac{\left| \left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack ight|}{\left|
\overrightarrow{u} ight|} = \frac{\sqrt{336}}{\sqrt{6}} =
2\sqrt{14}

  • Câu 20: Thông hiểu
    Xác định phương trình chính tắc

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = - 3 + 2t \\
y = 1 - t \\
z = - 1 + 4t \\
\end{matrix} \right. . Phương trình chính tắc của đường thẳng đi qua điểm A( - 4; - 2;4), cắt và vuông góc với d là:

    Hướng dẫn:

    Gọi \Delta là đường thẳng cần tìm

    Gọi B = \Delta \cap d

    \begin{matrix}
B \in d \Rightarrow B( - 3 + 2t;1 - t; - 1 + 4t) \\
\overrightarrow{AB} = (1 + 2t;3 - t; - 5 + 4t) \\
\end{matrix}

    d có vectơ chỉ phương \overrightarrow{a_{d}} = (2; - 1;4)

    \begin{matrix}
\Delta\bot d \Leftrightarrow
\overrightarrow{AB}\bot\overrightarrow{a_{d}} \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow
\overrightarrow{AB}.\overrightarrow{a_{d}} = 0 \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow t = 1 \\
\end{matrix}

    \Delta đi qua điểm A( - 4; - 2;4) và có vectơ chỉ phương \overrightarrow{AB} = (3;2; -
1)

    Vậy phương trình của \Delta\frac{x + 4}{3} = \frac{y + 2}{2} = \frac{z
- 4}{- 1}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo