Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Bài 1 Nguyên Hàm CTST (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm nguyên hàm của hàm số

    Xác định nguyên hàm F(x) của hàm số f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1}?

    Hướng dẫn:

    Ta có:

    f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1} = \frac{(x + 1)^{3} - 2}{(x + 1)^{2}} = x + 1 -
\frac{2}{(x + 1)^{2}}

    \Rightarrow F(x) = \frac{x^{2}}{2} + x +
\frac{2}{x + 1} + C

  • Câu 2: Thông hiểu
    Tính giá trị biểu thức

    Gọi F(x) là một nguyên hàm của hàm số f(x) = e^{x}, thỏa mãn F(0) = 2020. Tính giá trị biểu thức T = F(0) + F(1) + ... + F(2018) +
F(2019)?

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{e^{x}dx} = e^{x} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x}, ta có: F(x) = e^{x} + CF(0) = 2020

    \Rightarrow C = 2019 \Rightarrow F(x) =
e^{x} + 2019

    T = F(0) + F(1) + ... + F(2018) +
F(2019)

    T = 1 + e + e^{2} + .... + e^{2018} +
e^{2019} + 2019.2020

    T = \frac{e^{2020} - 1}{e - 1} +
2019.2020.

  • Câu 3: Nhận biết
    Tìm kết quả đúng

    Hàm số nào sau đây là một nguyên hàm của hàm số y = \frac{1}{x \ln3}?

    Hướng dẫn:

    Ta có: y = \log_{3}x \Rightarrow y' = \frac{1}{x \ln3}.

  • Câu 4: Thông hiểu
    Tìm nguyên hàm của hàm số

    Biết \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C. Khi đó \int_{}^{}{f\left( e^{x}
ight)}dx tương ứng bằng

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C \Rightarrow f(x) = 6x - 4

    \Rightarrow f\left( e^{x} ight) =
6e^{x} - 4

    \Rightarrow \int_{}^{}{f\left( e^{x}
ight)}dx = \int_{}^{}{\left( 6e^{x} - 4 ight)dx} = 6e^{x} - 4e^{x} +
C

  • Câu 5: Thông hiểu
    Tính giá trị biểu thức

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f(x) = \left\{ \begin{matrix}
\sin x + \cos x\ \ \ khi\ x \geq 0 \\
2(x + 1)\ \ \ khi\ x < 0 \\
\end{matrix} ight.F(\pi) +
F( - 1) = 1. Giá trị biểu thức T =
F(2\pi) + F( - 5) bằng:

    Hướng dẫn:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x\sin x + C_{1}\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + C_{2}\ \ khi\ x < 0 \\
\end{matrix} ight.

    F(\pi) + F( - 1) = 1 \Rightarrow \left(
\pi\sin\pi + C_{1} ight) + \left( 1 - 2 + C_{2} ight) = 1
\Rightarrow C_{1} + C_{2} = 2(*)

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 0 tức là

    \lim_{x ightarrow 0^{+}}F(x) = \lim_{x
ightarrow 0^{-}}F(x) = F(0)

    \Leftrightarrow C_{1} =
C_{2}(**). Từ (*) và (**) suy ra C_{1} = C_{2} = 1

    Do đó F(x) = \left\{ \begin{matrix}
x\sin x + 1\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + 1\ \ khi\ x < 0 \\
\end{matrix} ight.

    T = F(2\pi) + F( - 5) = 17

  • Câu 6: Thông hiểu
    Tìm nguyên hàm thỏa mãn điều kiện

    Tìm nguyên hàm F(x) của hàm số f(x) = \left( x^{2} - 1 ight)e^{x^{3} -
3x}, biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành?

    Hướng dẫn:

    Ta có:

    F(x) = \int_{}^{}{\left( x^{2} - 1
ight)e^{x^{3} - 3x}dx} = \frac{1}{3}\int_{}^{}{e^{x^{3} - 3x}d\left(
x^{3} - 3x ight)}

    = \frac{1}{3}e^{x^{3} - 3x} +
C

    F'(x) = f(x) = \left( x^{2} - 1
ight)e^{x^{3} - 3x} = 0 \Leftrightarrow x = \pm 1

    F''(x) = 2xe^{x^{3} - 3x} +
\left( x^{2} - 1 ight)e^{x^{3} - 3x};F''(1) >
0;F''(1) < 0

    Do đó hàm số đạt cực tiểu tại x = 1

    Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(1;0)

    Suy ra F(1) = 0 \Leftrightarrow
\frac{1}{3}e^{- 2} + C = 0 \Rightarrow C = -
\frac{1}{3e^{2}}

    Do đó F(x) = \frac{e^{x^{3} - 3x + 2} -
1}{3e^{2}}

  • Câu 7: Nhận biết
    Xác định nguyên hàm

    Hàm số nào sau đây là một nguyên hàm của hàm số f(x) = 25^{x}?

    Hướng dẫn:

    Vì: \left( \frac{25^{x}}{ln25}
ight)' = \frac{1}{ln25}.25^{x}.ln25 = 25^{x}

  • Câu 8: Thông hiểu
    Chọn phương án đúng

    Tìm \int_{}^{}{\sin^{5}x.\cos^{2}xdx}.

    Hướng dẫn:

    Vì lũy thừa của \sin x là số lẻ nên ta đổi biến u = \cos x \Rightarrow du =
\left( \cos x ight)'dx.

    \int_{}^{}{\sin^{5}x.\cos^{2}xdx = -
\int_{}^{}{\left( 1 - \cos^{2}x ight)^{2}.\cos^{2}x.\left( \cos
ight)'dx}}

    = - \int_{}^{}{\left( 1 - u^{2}
ight)^{2}.u^{2}du}

    = \int_{}^{}{\left( 2u^{4} - u^{2} -
u^{6} ight)du}

    = \frac{2u^{5}}{5} - \frac{u^{3}}{3} -
\frac{u^{7}}{7} + C

    = \frac{2\cos^{5}x}{5} -
\frac{\cos^{3}x}{3} - \frac{\cos^{7}x}{7} + C.

  • Câu 9: Nhận biết
    Chọn đáp án đúng

    Cho \int_{}^{}{f(x)dx} = \frac{x^{4}}{4}
- \frac{x^{3}}{3} + 2020 + C. Khi đó \int_{}^{}{f(3x)dx} là:

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} =
\frac{x^{4}}{4} - \frac{x^{3}}{3} + 2020 + C

    Khi đó \int_{}^{}{f(3x)dx} =
\frac{27x^{4}}{4} - 3x^{3} + \frac{2020}{3} + C

  • Câu 10: Nhận biết
    Xác định công thức hàm số

    Hàm số f(x) có đạo hàm liên tục trên tập số thực và f'(x) = 2e^{2x} +
1;\forall x; f(0) = 2. Hàm số f(x) là:

    Hướng dẫn:

    Ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\left( 2e^{2x} + 1 ight)dx} = e^{2x} + x + C

    \Rightarrow f(x) = e^{2x} + x +
C

    Theo bài ra ta có: f(0) = 2 \Rightarrow 1
+ C = 2 \Rightarrow C = 1

    Vậy f(x) = e^{2x} + x + 1.

  • Câu 11: Nhận biết
    Tìm họ nguyên hàm cuả hàm số

    Tìm họ nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{2x + 1}}

    Gợi ý:

     \int {\left[ {f\left( x ight) + g\left( x ight)} ight]dx}  = \int {f\left( x ight)dx}  + \int {g\left( x ight)dx}

    Hướng dẫn:

     \int {\frac{1}{{2x + 1}}dx}  = \frac{1}{2}\ln \left| {2x + 1} ight| + C

  • Câu 12: Thông hiểu
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =
x\sqrt{x}.

    Hướng dẫn:

    Ta có:

    \int_{}^{}{x\sqrt{x}dx =
\int_{}^{}{x^{\frac{3}{2}}dx = \frac{2}{5}x^{\frac{5}{2}} + C =
\frac{2}{5}x^{2}\sqrt{x} + C}}.

  • Câu 13: Vận dụng
    Tính giá trị biểu thức

    Cho hai hàm số y = f(x) có đạo hàm trên \lbrack 1;2brack thỏa mãn f(1) = 4f(x) = x.f'(x) - 2x^{3} - 3x^{2}. Giá trị f(2) bằng:

    Hướng dẫn:

    Chọn f(x) = ax^{3} + bx^{2} + cx +
d

    f(x) = xf'(x) - 2x^{3} -
3x^{2}

    \Leftrightarrow ax^{3} + bx^{2} + cx + d
= x\left( 3ax^{2} + 2bx + c ight) - 2x^{3} - 3x^{2}

    Từ đó suy ra \left\{ \begin{matrix}
a = 3a - 2 \\
b = 2b - 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.

    Vậy f(x) = x^{3} + 3x^{2} \Rightarrow
f(2) = 20

  • Câu 14: Thông hiểu
    Xác định nguyên hàm

    Tìm nguyên hàm I = \int_{}^{}{(2x -
1)e^{- x}dx}.

    Hướng dẫn:

    Đặt u = 2x - 1 \Rightarrow du =
2dx;

    e^{- x}dx = dv \Rightarrow v = - e^{-
x}

    Lúc này ta có

    \int_{}^{}{(2x - 1)e^{- x}dx = - (2x -
1).e^{- x} + \int_{}^{}{2e^{- x}dx}}

    = - (2x - 1).e^{- x} - 2e^{- x} + C = -
(2x + 1)e^{- x} + C

  • Câu 15: Thông hiểu
    Chọn khẳng định đúng

    Trong các khẳng định sau khẳng định nào đúng.

    Hướng dẫn:

    Ta có:

    \left( 2x - 1 + \frac{1}{x}
\right)^{2}

    = 4x^{2} - 4x + 1 + 2(2x -
1).\frac{1}{x} + \frac{1}{x^{2}}

    = 4x^{2} - 4x + 1 + 4 - \frac{2}{x} +
\frac{1}{x^{2}}

    Khi đó:

    \int_{}^{}{\left( 2x - 1 + \frac{1}{x}\right)^{2}dx}= 4\int_{}^{}{x^{2}dx + \int_{}^{}{dx} +\int_{}^{}\frac{1}{x^{2}}dx }{- 4\int_{}^{}xdx - \int_{}^{}\frac{2}{x}dx}+ 4\int_{}^{}{dx}

  • Câu 16: Thông hiểu
    Gọi F(x) là một nguyên hàm của hàm số f(x) = (2x - 3)^2

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = {\left( {2x - 3} ight)^2} thỏa mãn F\left( 0 ight) = \frac{1}{3}. Tính giá trị của biểu thức A = {\log _2}\left[ {3F\left( 1 ight) - 2F\left( 2 ight)} ight]

    Gợi ý:

     \int {{u^n}du = \frac{{{u^{n + 1}}}}{{n + 1}} + C}

    Hướng dẫn:

     F\left( x ight) = \int {{{\left( {2x - 3} ight)}^2}dx = \frac{1}{2}\int {{{\left( {2x - 3} ight)}^2}d\left( {2x - 3} ight) = } \frac{1}{2}.\frac{{{{\left( {2x - 3} ight)}^2}}}{3} + C}

    Ta có: F\left( 0 ight) = \frac{1}{3} \Rightarrow C = \frac{{29}}{6}

    F\left( 1 ight) = \frac{1}{2}.\left( {\frac{{ - 1}}{3}} ight) + \frac{{29}}{6} = \frac{{14}}{3};F\left( 2 ight) = \frac{1}{2}.\left( {\frac{1}{3}} ight) + \frac{{29}}{6} = 5

    => A = {\log _2}\left[ {3F\left( 1 ight) - 2F\left( 2 ight)} ight] = A = {\log _2}\left[ {3\frac{{14}}{3} - 2.5} ight] = {\log _2}4 = 2

  • Câu 17: Thông hiểu
    Chọn khẳng định đúng

    Cho F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x thỏa mãn F(0) = \frac{3}{2}. Chọn khẳng định đúng trong các khẳng định sau?

    Hướng dẫn:

    Ta có: \int_{}^{}{\left( e^{x} + 2x
ight)dx} = e^{x} + x^{2} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x suy ra F(x) có dạng e^{x} + x^{2} + C

    Theo bài ra ta có: F(0) = \frac{3}{2}
\Leftrightarrow e^{0} + 0^{2} + C = \frac{3}{2} \Rightarrow C =
\frac{1}{2}

    Vậy F(x) = e^{x} + x^{2} +
\frac{1}{2}.

  • Câu 18: Vận dụng
    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm I = \int_{}^{}{(x -1)\sin2x.dx}

    Hướng dẫn:

    I = \int_{}^{}{(x -1)\sin2xdx}

    Đặt x - 1 = u \Rightarrow dx =
du.

    \sin2xdx = dv \Rightarrow v = -\dfrac{1}{2}.\cos2x

    Khi đó I = \frac{- (x - 1)}{2}.\cos2x +\frac{1}{2}\int_{}^{}{\cos2xdx}

    = \frac{(1 - x)\cos2x}{2} +\frac{1}{4}.\sin2x + C

  • Câu 19: Vận dụng
    Xác định hàm số

    Cho F(x) = \ln\left( \ln\left( \ln x
\right) \right). Hỏi F(x) là nguyên hàm của hàm số nào dưới đây?

    Hướng dẫn:

    Để tìm F(x) là nguyên hàm của hàm số nào trong số 4 hàm số trên, ta sẽ đi đạo hàm F(x) từ đó suy ra f(x).

    Ta có

    F'(x) = \left\lbrack \ln\left(
\ln\left( \ln x ight) ight) ightbrack'

    = \frac{1}{\ln\left( \ln x ight)}.\left\lbrack
\ln\left( \ln x ight) ightbrack' = \frac{1}{\ln\left( \ln x ight)}.\frac{1}{\ln
x}\left( \ln x ight)'

    = \frac{1}{\ln\left( \ln x
ight)}.\frac{1}{\ln x}.\frac{1}{x} = \frac{1}{x.\ln x.\ln\left( \ln x
ight)} = f(x).

  • Câu 20: Thông hiểu
    Tính giá trị của biểu thức

    Gọi F(x) là một nguyên hàm của hàm số f(x), với f(x) = 3sinx + \frac{4}{cos^{2}x}, biết F(0) = 2. Tính F\left( \frac{\pi}{3} \right).

    Hướng dẫn:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
3sinx + \frac{4}{cos^{2}x} \right)dx}

    = 3\int_{}^{}{\sin xdx} +
4\int_{}^{}{\frac{1}{cos^{2}x}dx}

    = - 3cosx + 4tanx + C.

    Do đó F(x) = - 3cosx + 4tanx +
C.

    F(0) = 2 \Leftrightarrow - 3 + C = 2
\Leftrightarrow C = 5.

    Suy ra F(x) = - 3cosx + 4tanx +
5.

    Vậy F\left( \frac{\pi}{3} \right) = -
3cos\frac{\pi}{3} + 4tan\frac{\pi}{3} + 5 = \frac{7}{2} +
4\sqrt{3}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo