Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Bài 1 Nguyên Hàm CTST (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tìm nguyên hàm của hàm số

    Tìm R =
\int_{}^{}{\frac{1}{x^{2}}\sqrt{\frac{2 - x}{2 + x}}\ dx}?

    Hướng dẫn:

    Đặt x = 2cos2t với t \in \left( 0;\frac{\pi}{2} \right)

    Ta có : \left\{ \begin{matrix}dx = - 4sin2t.dt \\\sqrt{\dfrac{2 - x}{2 + x}} = \sqrt{\dfrac{2 - 2sin2t}{2 + 2cos2t}} =\sqrt{\dfrac{4sin^{2}t}{4cos^{2}t}} = \dfrac{\sin t}{\cos t} \\\end{matrix} \right.

    \Rightarrow R = -
\int_{}^{}{\frac{1}{4cos^{2}2t}.\frac{\sin t}{\cos
t}.}4sin2t.dt = -
\int_{}^{}{\frac{2sin^{2}t}{cos^{2}2t}dt = - \int_{}^{}{\frac{1 -
cos2t}{cos^{2}2t}dt}}

    \Leftrightarrow R = -
\int_{}^{}{\frac{1}{cos^{2}2t}dt} +
\int_{}^{}{\frac{1}{cos2t}dt} = -
\frac{tan2t}{2} + \frac{1}{4}\ln\left| \frac{1 + sin2t}{1 - sin2t}
\right| + C

  • Câu 2: Thông hiểu
    Xác định các hệ số a, b, c, d

    Tìm a, b, c, d để F(x) = \left(
ax^{3} + bx^{2} + cx + d \right)e^{x} là một nguyên hàm của f(x) = \left( 2x^{3} + 9x^{2} - 2x + 5
\right)e^{x}.

    Hướng dẫn:

    Ta có F'(x) = \left( 3ax^{2} + 2bx +
c ight)e^{x} + \left( ax^{3} + bx^{2} + cx + d
ight)e^{x}

    = \left\lbrack ax^{3} + (3a + b)x^{2} +
(2b + c)x + (c + d) ightbrack e^{x}

    F'(x) = f(x),\forall x
\Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
3a + b = 9 \\
2b + c = - 2 \\
c + d = 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = 3 \\
c = - 8 \\
d = 13 \\
\end{matrix} ight.

  • Câu 3: Thông hiểu
    Tính giá trị biểu thức

    Biết rằng \int_{}^{}{\frac{4x + 11}{x^{2}
+ 5x + 6}dx} = a\ln|x + 2| + b\ln|x + 3| + C. Tính giá trị biểu thức T = a^{2} + ab + b^{2}?

    Hướng dẫn:

    Ta có: \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \frac{A}{x + 2} + \frac{B}{x + 3}

    = \frac{A(x + 2) + B(x + 3)}{(x + 2)(x +
3)} = \frac{(A + B)x + (3A + 2B)}{(x + 2)(x + 3)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 4 \\
3A + 2B = 11 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 3 \\
B = 1 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \int_{}^{}{\left( \frac{3}{x + 2} + \frac{1}{x + 3}
ight)dx}

    = 3ln|x + 2| + \ln|x + 3| +
C

    Suy ra a = 3;b = 1 \Rightarrow T =
13

  • Câu 4: Thông hiểu
    Tính giá trị biểu thức S

    Cho hàm số f(x) = 2x^{2}.e^{x^{3} + 2} +
2xe^{2x}, ta có: \int_{}^{}{f(x)dx}
= me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C. Tính giá trị biểu thức S = m + n + p?

    Hướng dẫn:

    Ta có:

    \int_{}^{}{f(x)dx} = me^{x^{3} + 2} +
nxe^{2x} - pe^{2x} + C nên \left(
me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C ight)' = f(x)

    \Rightarrow 3mx^{2}e^{x^{3} + 2} +
2nxe^{2x} + (n - 2p)e^{2x} = 2x^{2}.e^{x^{3} + 2} + 2xe^{2x} đồng nhất 2 biểu thức ta được hệ phương trình \left\{ \begin{matrix}3m = 2 \\2n = 2 \ - 2p = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{2}{3} \ = 1 \\p = \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow S = \dfrac{13}{6}

  • Câu 5: Nhận biết
    Xác định nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) =
\frac{1}{x\sqrt{x}} là:

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{1}{x\sqrt{x}}dx}

    = \int_{}^{}{x^{- \frac{3}{2}}dx=}\dfrac{x^{- \frac{1}{2}}}{- \dfrac{1}{2}} + C = - \frac{2}{\sqrt{x}} +C.

  • Câu 6: Thông hiểu
    Xác định nguyên hàm của hàm số f(x)

    Tìm nguyên hàm của hàm số f(x)thỏa mãn điều kiện: f(x) = 2x - 3cosx,\ F\left( \frac{\pi}{2} \right)
= 3

    Hướng dẫn:

    Ta có: F(x) = \int_{}^{}{(2x - 3cosx)dx =
x^{2} - 3sinx + C}

    F\left( \frac{\pi}{2} \right) = 3
\Leftrightarrow \left( \frac{\pi}{2} \right)^{2} - 3sin\frac{\pi}{2} + C
= 3

    \Leftrightarrow C = 6 -\dfrac{\pi^{2}}{4}

    Vậy F(x) = x^{2} - 3sinx + 6 -
\frac{\pi^{2}}{4}

  • Câu 7: Thông hiểu
    Tính giá trị biểu thức

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f(x) = \left\{ \begin{matrix}
3x^{2} + 2\ \ \ khi\ x \geq 2 \\
4x^{3} - 18\ \ \ khi\ x < 2 \\
\end{matrix} ight.. Giá trị biểu thức F( - 1) - F(3) bằng:

    Hướng dẫn:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x^{3} + 2x + C_{1}\ \ \ khi\ x \geq 2 \\
x^{4} - 18x + C_{2}\ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 2 tức là

    \lim_{x ightarrow 2^{+}}F(x) = \lim_{x
ightarrow 2^{-}}F(x) = F(2)

    \Leftrightarrow 12 + C_{1} = - 20 +
C_{2} \Leftrightarrow C_{1} - C_{2} = - 32

    Do đó

    F( - 1) - F(3) = \left( 1 + 18 + C_{2}
ight) - \left( 27 + 6 + C_{1} ight)

    = - 14 - \left( C_{1} - C_{2} ight) =
- 14 + 32 = 18

  • Câu 8: Vận dụng
    Giá trị của hàm số

    Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2}. Giá trị của f(2) là:

    Hướng dẫn:

     Chọn f(x) = ax3 + bx2 + cx + d

    Ta có:

    \begin{matrix}  f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow a{x^3} + 2{x^2} + cx + d = x\left( {3a{x^2} + 2bx + c} ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3a - 2} \\   {b = 2b - 3} \\   {d = 0} \\   {c = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1} \\   {b = 3} \\   {c = 0} \\   {d = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy f\left( x ight) = {x^3} + 3{x^2} => f(x) = 20

  • Câu 9: Nhận biết
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm F(x) = \int_{}^{}{\left( x
+ \sin x \right)dx} biết F(0) =
19 .

    Hướng dẫn:

    Ta có:

    F(x) = \int_{}^{}{\left( x + \sin x
ight)dx = \frac{x^{2}}{2} - \cos x + C}

    F(0) = 19 \Rightarrow C = 20\Rightarrow F(x) = \frac{x^{2}}{2} - \cos x + 20

  • Câu 10: Thông hiểu
    Chọn khẳng định đúng

    Hàm số F(x) là một nguyên hàm của hàm số y = \frac{1}{x} trên ( - \infty;0) thỏa mãn F( - 2) = 0. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có: F(x) = \int_{}^{}{\frac{1}{x}dx} =
\ln|x| + C = \ln( - x) + C;\forall x \in ( - \infty;0)

    Lại có F( - 2) = 0 \Leftrightarrow \ln(2)
+ C = 0 \Rightarrow C = - ln2

    Do đó F(x) = \ln( - x) - ln2 = \ln\left(
- \frac{x}{2} ight)

    Vậy F(x) = \ln\left( - \frac{x}{2}
ight);\forall x \in ( - \infty;0).

  • Câu 11: Thông hiểu
    Tìm nguyên hàm của hàm số f(x)

    Tìm nguyên hàm của hàm số f(x) = \frac{3x
- 7}{x + 2}

    Hướng dẫn:

    Ta có

    \int_{}^{}{f(x)dx = \int_{}^{}{\frac{3x -
7}{x + 2}dx = \int_{}^{}{\frac{3(x + 2) - 13}{x + 2}dx}}}

    = \int_{}^{}{\left( 3 - \frac{13}{x + 2}
ight)dx = \int_{}^{}{3dx - 13\int_{}^{}\frac{d(x + 2)}{x +
2}}}

    = 3x - 13ln|x + 2| + C

  • Câu 12: Thông hiểu
    Chọn phương án đúng

    Tìm \int_{}^{}{\sin^{5}x.\cos^{2}xdx}.

    Hướng dẫn:

    Vì lũy thừa của \sin x là số lẻ nên ta đổi biến u = \cos x \Rightarrow du =
\left( \cos x ight)'dx.

    \int_{}^{}{\sin^{5}x.\cos^{2}xdx = -
\int_{}^{}{\left( 1 - \cos^{2}x ight)^{2}.\cos^{2}x.\left( \cos
ight)'dx}}

    = - \int_{}^{}{\left( 1 - u^{2}
ight)^{2}.u^{2}du}

    = \int_{}^{}{\left( 2u^{4} - u^{2} -
u^{6} ight)du}

    = \frac{2u^{5}}{5} - \frac{u^{3}}{3} -
\frac{u^{7}}{7} + C

    = \frac{2\cos^{5}x}{5} -
\frac{\cos^{3}x}{3} - \frac{\cos^{7}x}{7} + C.

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Cho F(x) = (x - 1)e^{x} là một nguyên hàm của hàm số f(x)e^{2x}. Tìm nguyên hàm của hàm số f'(x)e^{2x}.

    Hướng dẫn:

    Cách 1: Sử dụng tính chất của nguyên hàm \int_{}^{}{f(x)dx = F(x) \Rightarrow F'(x) =
f(x)}.

    Từ giả thiết, ta có \int_{}^{}{f(x)e^{2x}dx = F(x) \Rightarrow
f(x)e^{2x} = F'(x) = \left\lbrack (x - 1)e^{x} ightbrack' =
xe^{x}}

    \Rightarrow f(x) = \frac{xe^{x}}{\left(
e^{x} ight)^{2}} = \frac{x}{e^{x}}.

    Suy ra f'(x) = \frac{(x)'.e^{x} -
x.\left( e^{x} ight)'}{\left( e^{x} ight)^{2}} = \frac{e^{x} -
x.e^{x}}{\left( e^{x} ight)^{2}} = \frac{e^{x}(1 - x)}{\left( e^{x}
ight)^{2}} = \frac{1 - x}{e^{x}}.

    Vậy \int_{}^{}{f'(x)e^{2x}dx =
\int_{}^{}{\frac{1 - x}{e^{x}}.e^{2x}dx = \int_{}^{}{(1 -
x)e^{x}dx}}}.

    Đặt \left\{ \begin{matrix}
u = 1 - x \\
dv = e^{x}dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = - dx \\
v = e^{x} \\
\end{matrix} ight..

    \Rightarrow \int_{}^{}{(1 - x)e^{x}dx =
(1 - x)e^{x} + \int_{}^{}{e^{x}dx}}= (1 - x)e^{x} + e^{x} + C = (2 -x)e^{x} + C.

    Cách 2: Sử dụng công thức nguyên hàm từng phần.

    Ta có \int_{}^{}{e^{2x}.f'(x)dx =
e^{2x}.f(x) - \int_{}^{}{f(x).2e^{2x}dx = f(x)e^{2x} -
2\int_{}^{}{f(x)e^{2x}dx}}}

    Từ giả thiết: \int_{}^{}{f(x)e^{2x}dx =
F(x) = (x - 1)e^{x}}

    \Rightarrow f(x)e^{2x} = F'(x) =
\left\lbrack (x - 1)e^{x} ightbrack' = xe^{x}.

    Vậy \int_{}^{}{f'(x)e^{2x}dx = xe^{x}
- 2(x - 1)e^{x} + C = (2 - x)e^{x} + C}.

  • Câu 14: Nhận biết
    Xác định công thức hàm số

    Hàm số f(x) có đạo hàm liên tục trên tập số thực và f'(x) = 2e^{2x} +
1;\forall x; f(0) = 2. Hàm số f(x) là:

    Hướng dẫn:

    Ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\left( 2e^{2x} + 1 ight)dx} = e^{2x} + x + C

    \Rightarrow f(x) = e^{2x} + x +
C

    Theo bài ra ta có: f(0) = 2 \Rightarrow 1
+ C = 2 \Rightarrow C = 1

    Vậy f(x) = e^{2x} + x + 1.

  • Câu 15: Thông hiểu
    Tính giá trị biểu thức

    Cho hai hàm số F(x) = \left( x^{2} + bx +
c ight)e^{x}f(x) = \left(
x^{2} + 3x + 4 ight)e^{x}. Biết a;b là các số thực để F(x) là một nguyên hàm của f(x). Tính S
= a + b?

    Hướng dẫn:

    Từ giả thiết ta có:

    F'(x) = f(x)

    \Leftrightarrow (2x + a)e^{x} + \left(
x^{2} + ax + b ight)e^{x} = \left( x^{2} + 3x + 4 ight)e^{x};\forall
x\mathbb{\in R}

    \Leftrightarrow x^{2} + (2 + a)x + a + b
= x^{2} + 3x + 4;\forall x\mathbb{\in R}

    Đồng nhất hai vế ta có: \left\{
\begin{matrix}
a + 2 = 3 \\
a + b = 4 \\
\end{matrix} ight.\  \Rightarrow S = a + b = 4.

  • Câu 16: Nhận biết
    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Hướng dẫn:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 17: Thông hiểu
    Chọn đáp án đúng

    Cho \int_{}^{}{f(x)dx = x^{2} - x +
C}. Khi đó \int_{}^{}{\mathbf{f}\left(
\mathbf{x}^{\mathbf{2}} \right)\mathbf{dx}} bằng:

    Hướng dẫn:

    Ta có:

    \int_{}^{}{f(x)dx = x^{2} - x + C}
\Rightarrow f(x) = 2x - 1

    \Rightarrow f\left( x^{2} \right) =
2\left( x^{2} \right) - 1 = 2x^{2} - 1

    \int {f\left( {{x^2}} \right)dx}  = \frac{2}{3}{x^3} - x + C

  • Câu 18: Nhận biết
    Tính giá trị biểu thức

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Hướng dẫn:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 19: Thông hiểu
    Chọn phương án thích hợp

    Nguyên hàm \int_{}^{}\left\lbrack
sin^{2}(3x + 1) + \cos x \right\rbrack dx là:

    Hướng dẫn:

    Ta có:

    \int_{}^{}\left\lbrack sin^{2}(3x + 1) +
\cos x \right\rbrack dx

    = \int_{}^{}\left\lbrack \frac{1 -
\cos(6x + 2)}{2} + \cos x \right\rbrack dx

    = \int_{}^{}\left\lbrack \frac{1}{2} -
\frac{1}{2}\cos(6x + 2) + \cos x \right\rbrack dx

    = \frac{1}{2}x - 3sin(6x + 2) + \sin x +
C

  • Câu 20: Vận dụng
    Viết phương trình tiếp tuyến

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\} thỏa mãn f(x) + xf'(x)
= 3x^{2}f(2) = 8. Phương trình tiếp tuyến của đồ thị hàm số y
= f(x) tại giao điểm với trục hoành là:

    Hướng dẫn:

    Ta có: f(x) + xf'(x) =
3x^{2}

    \Leftrightarrow (x)'f(x) +
xf'(x) = 3x^{2}

    \Leftrightarrow \left( xf'(x)
ight)' = 3x^{2}

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{\left( xf'(x)
ight)'dx} = \int_{}^{}{3x^{2}dx} \Leftrightarrow xf(x) = x^{3} +
C

    Lại có f(2) = 8 \Rightarrow 2f(2) = 8 + C
\Leftrightarrow 2.8 = C + 8 \Leftrightarrow C = 8

    Từ đó suy ra xf(x) = x^{3} + 8
\Leftrightarrow f(x) = \frac{x^{3} + 8}{x}

    Xét phương trình hoành độ giao điểm \frac{x^{3} + 8}{x} = 0 \Leftrightarrow x = -
2

    Ta có: f'(x) = \frac{2x^{3} -
8}{x^{2}} \Rightarrow f'( - 2) = - 6;f( - 2) = 0

    Phương trình tiếp tuyến tại giao điểm với trục hoành là

    y = f'( - 2)(x + 2) + f( -
2)

    \Leftrightarrow y = - 6(x + 2)
\Rightarrow y = - 6x - 12

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo