Cho hàm số là một nguyên hàm của
. Khi đó số điểm cực trị của hàm số
là:
Ta có: là một nguyên hàm của hàm số
. Do
là nghiệm bội 1 còn
là nghiệm bội 2 nên hàm số
có hai điểm cực trị.
Cho hàm số là một nguyên hàm của
. Khi đó số điểm cực trị của hàm số
là:
Ta có: là một nguyên hàm của hàm số
. Do
là nghiệm bội 1 còn
là nghiệm bội 2 nên hàm số
có hai điểm cực trị.
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số
, biết rằng đồ thị hàm số
có điểm cực tiểu nằm trên trục hoành?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là
Suy ra
Do đó
Biết , với
. Tính giá trị
Ta có:
Khi đó
Tìm nguyên hàm của hàm số
Ta có
Nguyên hàm của là:
Ta đặt:
.
.
Xét .
Đặt .
.
.
Hàm số có nguyên hàm trên
nếu:
Hàm số có nguyên hàm trên
nếu
liên tục trên
.
Họ nguyên hàm của hàm số là:
Ta có:
Khi đó:
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và . Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Nguyên hàm của hàm số là
Đặt thì
.
Khi đó
.
Thay ta được
Cho F(x) là một nguyên hàm của hàm số thỏa mãn
. Tìm F(x).
Theo bài ra ta có:
=>
Tìm nguyên hàm .
Đặt ;
Lúc này ta có
Cho . Tìm
biết
.
Ta có
.
Mà . Vậy
.
Nguyên hàm của hàm số là
Sử dụng các công thức nguyên hàm cơ bản: .
Ta có: .
Cho hai hàm số và
. Biết
là các số thực để
là một nguyên hàm của
. Tính
?
Từ giả thiết ta có:
Đồng nhất hai vế ta có: .
Tìm họ các nguyên hàm của hàm số ?
Ta có:
Tìm nguyên hàm của hàm số ?
Ta có:
Xét từng đáp án ta thấy:
.
Vậy nguyên hàm của hàm số là:
Cho là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
.
Cách 1: Sử dụng tính chất của nguyên hàm .
Từ giả thiết, ta có
.
Suy ra .
Vậy .
Đặt .
.
Cách 2: Sử dụng công thức nguyên hàm từng phần.
Ta có
Từ giả thiết:
.
Vậy .
Tìm một nguyên hàm của hàm số
, biết rằng
?
Ta có:
Theo bài ra ta có:
. Vậy
.
Tìm nguyên hàm của hàm số ??
Đặt
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: