Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 3 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Từ bảng biến thiên của hàm số y =
f(x) ta có: \lim_{x ightarrow -
\infty}f(x) = - \infty;\lim_{x ightarrow + \infty}f(x) = +
\infty nên đồ thị hàm số đã cho không có tiệm cận ngang.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 4;\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 4 \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) =  - 1;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số đã cho không có tiệm cận.

  • Câu 2: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) xác định và liên tục trên các khoảng ( -
\infty;0)(0; + \infty) có bảng biến thiên như hình vẽ:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    \lim_{x ightarrow - \infty}y =
2 nên y = 2 là tiệm cận ngang của đồ thị hàm số.

    {\left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) =  - \infty  \hfill \\ 
\end{gathered}  ight.} nên x = 0 là tiệm cận đứng của đồ thị hàm số.

  • Câu 3: Nhận biết
    Tìm tất cả các đường tiệm cận của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - {2^ + }} f\left( x ight) =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) =  + \infty  \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho có hai tiệm cận đứng là x = - 2x = 0.

    \lim_{x ightarrow + \infty}y =
0 nên đồ thị hàm số đã cho có một tiệm cận ngang là y = 0

    Vậy đồ thị hàm số đã cho có 3 đường tiệm cận.

  • Câu 4: Thông hiểu
    Tìm tổng số đường tiệm cận

    Cho hàm số y = \frac{x}{\sqrt{x^{2} -
4}}. Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Tập xác định D = ( - \infty; - 2) \cup
(2; + \infty)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = 1 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y =  - 1 \hfill \\ 
\end{gathered}  ight. suy ra đồ thị hàm số có hai tiệm cận ngang là y = \pm 1

    Lại có \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} y =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} y =  + \infty  \hfill \\ 
\end{gathered}  ight. suy ra đồ thị hàm số có hai tiệm cận đứng là x = \pm 2

    Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đường tiệm cận ngang bằng 4.

  • Câu 5: Thông hiểu
    Chọn phương án đúng

    Đồ thị hàm số y = \frac{\sqrt{2 - x^{2}}
- 1}{x^{2} - 3x + 2} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    TXĐ: D = \left\lbrack - \sqrt{2};\sqrt{2}
ightbrack\backslash\left\{ 1 ight\} suy ra không tồn tại \lim_{x ightarrow - \infty}y\lim_{x ightarrow + \infty}y. Suy ra đồ thị hàm số không có tiệm cận ngang.

    Ta có \left\{ \begin{matrix}
\lim_{x ightarrow \ 1^{+}}\frac{\sqrt{2 - x^{2}} - 1}{x^{2} - 3x + 2}
= 0 \\
\lim_{x ightarrow 1^{-}}\frac{\sqrt{2 - x^{2}} - 1}{x^{2} - 3x + 2} =
0 \\
\end{matrix} ight.. Do đó đồ thị hàm số không có tiệm cận đứng.

    Vậy đồ thị hàm số không có tiệm cận.

  • Câu 6: Thông hiểu
    Xác định các đường tiệm cận của đồ thị hàm số

    Số đường tiệm cận của đồ thị hàm số y = \frac{x}{{{x^2} - 3x - 4}} + x

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Quy đồng biến đổi hàm số đã cho trở thành y = \frac{{{x^3} - 3{x^2} - 3x}}{{{x^2} - 3x - 4}}

    Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang

    => Số tiệm cận là 2 đường

  • Câu 7: Thông hiểu
    Tìm tất cả các đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x +
1}{\sqrt{4x^{2} + 2x + 1}} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Ta có 4x^{2} + 2x + 1 > 0,\ \ \forall
x\mathbb{\in R\ \ }\overset{}{ightarrow} TXĐ của hàm số D\mathbb{= R}.

    Do đó đồ thị hàm số không có tiệm cận đứng.

    Xét \lim_{x ightarrow + \infty}\frac{x
+ 1}{\sqrt{4x^{2} + 2x + 1}} = \frac{1}{2}\ \ \overset{}{ightarrow}\ \
y = \frac{1}{2} là TCN;

    \lim_{x ightarrow - \infty}\frac{x +
1}{\sqrt{4x^{2} + 2x + 1}} = - \frac{1}{2}\ \ \overset{}{ightarrow}\ \
y = - \frac{1}{2} là TCN.

    Vậy đồ thị hàm số có đúng hai đường tiệm cận.

  • Câu 8: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số y = f(x)\lim_{x ightarrow + \infty}f(x) = 2,\lim_{x
ightarrow - \infty}f(x) = - 2\lim_{x ightarrow 2^{+}}f(x) = 3. Khi đó đồ thị có?

    Hướng dẫn:

    Do \lim_{x ightarrow + \infty}f(x) =
2,\lim_{x ightarrow - \infty}f(x) = - 2x ightarrow \pm \infty ra số nên là tiệm cận ngang.

    \lim_{x ightarrow 2^{+}}f(x) =
3x ightarrow 2^{+} ra số nên không là tiện cận đứng được.

  • Câu 9: Thông hiểu
    Chọn đáp án đúng

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = f(x) = \frac{x}{|x| - 1} là:

    Hướng dẫn:

    Khi x \geq 0;x eq 1 \Rightarrow f(x) =
\frac{x}{x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = 1 và 1 tiệm cận đứng x = 1

    Khi x < 0;x eq - 1 \Rightarrow f(x)
= \frac{x}{- x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = - 1 và 1 tiệm cận đứng x = - 1

    Vậy đồ thị hàm số y = f(x) = \frac{x}{|x|
- 1} có tất cả 4 đường tiệm cận.

  • Câu 10: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hàm số y = \frac{3x^{2} + 2x}{4x +
4}. Khoảng cách từ điểm M(3; -
2) đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu?

    Đáp án: 3,2

    Đáp án là:

    Cho hàm số y = \frac{3x^{2} + 2x}{4x +
4}. Khoảng cách từ điểm M(3; -
2) đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu?

    Đáp án: 3,2

    Ta có: y = \frac{3x^{2} + 2x}{4x + 4} =
\frac{3}{4}x - \frac{1}{4} + \frac{1}{4x + 4}.

    Xét \lim_{x ightarrow \pm \infty}\left(
y - \left( \frac{3}{4}x - \frac{1}{4} ight) ight) = \lim_{x
ightarrow \pm \infty}\frac{1}{4x + 4} = 0.

    Vậy đường tiệm cận xiên có phương trình y
= \frac{3}{4}x - \frac{1}{4} \Leftrightarrow 3x - 4y - 1 =
0.

    Khoảng cách từ điểm M đến đường tiệm cận xiên là:

    d = \frac{\left| 3.3 - 4.( - 2) - 1
ight|}{\sqrt{3^{2} + ( - 4)^{2}}} = \frac{16}{5} = 3,2

  • Câu 11: Thông hiểu
    Tìm các tiệm cận của đồ thị hàm số

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x} có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 0;3 ight\}

    f(x) = \frac{x^{2} - 3x + 1}{x^{2} -
3}

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = -
\infty

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = +
\infty

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x}có tiệm cận đứng là đường thẳng x = 0

    \lim_{x ightarrow 3^{+}}f(x) = \lim_{x
ightarrow 3^{+}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = +
\infty

    \lim_{x ightarrow 3^{-}}f(x) = \lim_{x
ightarrow 3^{-}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = -
\infty

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x}có tiệm cận đứng là đường thẳng x = 3

    \lim_{x ightarrow \pm \infty}f(x) =
\lim_{x ightarrow \pm \infty}\frac{x^{2} - 3x + 1}{x^{2} - 3x} =
1

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x}có tiệm cận ngang là đường thẳng y = 1.

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = \frac{\sqrt{4 -
x}}{\sqrt{x + 1}}. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Tập xác định D = ( - 1;4brack suy ra đồ thị hàm số không có đường tiệm cận ngang và đường tiệm cận xiên

    \lim_{x ightarrow ( - 1)^{+}}y = +
\infty suy ra đồ thị nhận đường thẳng x = - 1 làm tiệm cận đứng.

    Vậy đồ thị hàm số có một đường tiệm cận.

  • Câu 13: Vận dụng
    Tìm giá trị của m để hàm số có hai tiệm cận đứng

    Cho hàm số y = \frac{{{x^2} + x - 2}}{{{x^2} - 2x + m}}. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai tiệm cận đứng.

    Hướng dẫn:

    Ta có: y = \frac{{{x^2} + x - 2}}{{{x^2} - 2x + m}} = \frac{{\left( {x - 1} ight)\left( {x + 2} ight)}}{{{x^2} - 2x + m}}

    Đồ thị hàm số có hai tiệm cận đứng khi và chỉ khi phương trình f\left( x ight) = {x^3} - 2x + m = 0 có hai nghiệm phân biệt thỏa mãn

    \left\{ {\begin{array}{*{20}{c}}  {x e 1} \\   {x e  - 2} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  \Delta ' > 0 \hfill \\  f\left( 1 ight) e 0 \hfill \\ \end{gathered}  \\   {f\left( { - 2} ight) e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  1 - m > 0 \hfill \\  m - 1 e 0 \hfill \\ \end{gathered}  \\   {m + 8 e 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m < 1} \\   {m e  - 8} \end{array}} ight.

  • Câu 14: Thông hiểu
    Xác định số tiệm cận của đồ thị hàm số

    Số tiệm cận của đồ thị hàm số y =
\frac{(2x - 1)\sqrt{x^{2} + 1}}{x^{2} - 1} là:

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{xightarrow + \infty}\dfrac{\left( 2x^{2} - x ight)\sqrt{1 +\dfrac{1}{x^{2}}}}{x^{2} - 1}= \lim_{x ightarrow + \infty}\dfrac{\left(2 - \dfrac{1}{x} ight)\sqrt{1 + \dfrac{1}{x^{2}}}}{1 - \dfrac{1}{x^{2}}}= 2

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{\left( - 2x^{2} + x ight)\sqrt{1 +
\frac{1}{x^{2}}}}{x^{2} - 1} = \lim_{x ightarrow - \infty}\frac{\left(
- 2 + \frac{1}{x} ight)\sqrt{1 + \frac{1}{x^{2}}}}{1 -
\frac{1}{x^{2}}} = - 2

    Suy ra y = \pm 2 là tiệm cận ngang.

    \lim_{x ightarrow 1^{\pm}}y = \lim_{x
ightarrow 1^{\pm}}\frac{(2x - 1)\sqrt{x^{2} + 1}}{x^{2} - 1} = \pm
\infty suy ra x = 1 là tiệm cận đứng.

    \lim_{x ightarrow ( - 1)^{\pm}}y =
\lim_{x ightarrow ( - 1)^{\pm}}\frac{(2x - 1)\sqrt{x^{2} + 1}}{x^{2} -
1} = \pm \infty suy ra x = -
1 là tiệm cận đứng.

    Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.

  • Câu 15: Thông hiểu
    Tìm tọa độ điểm M thỏa mãn điều kiện

    Tìm điểm M thuộc đồ thị hàm số y = \frac{{2x + 1}}{{x - 1}} sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ điểm M đến trục hoành:

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Hướng dẫn:

    Do M thuộc đồ thị hàm số nên tọa độ điểm M\left( {{x_0};\frac{{2{x_0} + 1}}{{{x_0} - 1}}} ight);{x_0} e 1

    Phương trình tiệm cận đứng là x – 1 = 0 (d’)

    Giải phương trình d(M,d’) = d(M, Ox)

    => \left| {{x_0} - 1} ight| = \left| {\frac{{2{x_0} + 1}}{{{x_0} - 1}}} ight| \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x_0} = 0} \\   {{x_0} = 4} \end{array}} ight.

  • Câu 16: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R}\backslash\left\{ - 1
\right\}, có bảng biến thiên như sau:

    Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Từ bảng biến thiên, ta có:

    \left\{ \begin{matrix}
\lim_{x ightarrow \ ( - 1)^{+}}f(x) = + \infty \\
\lim_{x ightarrow \ ( - 1)^{-}}f(x) = - \infty \\
\end{matrix} ight.\  ightarrow x = - 1 là TCĐ.

    \lim_{x ightarrow - \infty}f(x) = 5
ightarrow y = 5 là TCN và \lim_{x
ightarrow + \infty}f(x) = 2 ightarrow y = 2 là TCN.

    Vậy câu đúng là: “Đồ thị hàm số có hai TCN y = 2, y =
5 và một TCĐ x = - 1.

  • Câu 17: Thông hiểu
    Chọn khẳng định đúng

    ho hàm số y = \frac{{x - 9{x^4}}}{{{{\left( {3{x^2} - 3} ight)}^2}}}. Khẳng định nào sau đây là khẳng định đúng?

    Gợi ý:

     Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Đồ thị hàm số y = \frac{{x - 9{x^4}}}{{{{\left( {3{x^2} - 3} ight)}^2}}} có hai đường tiệm cận đứng là x = 1 và x = -1 và một tiệm cận ngang là y = -1

  • Câu 18: Nhận biết
    Tìm số đường tiệm cận của hàm số

    Số đường tiệm cận của đồ thị hàm số y =
\frac{x}{x^{2} - 1} là:

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \pm 1 ight\}

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{x}{x^{2} - 1} = \lim_{x ightarrow \pm
\infty}\frac{\frac{1}{x}}{1 - \frac{1}{x^{2}}} = 0 suy ra tiệm cận ngang của đồ thị hàm số y =
\frac{x}{x^{2} - 1}y =
0.

    Lại có \lim_{x ightarrow
1^{+}}\frac{x}{x^{2} - 1} = + \infty;\lim_{x ightarrow
1^{-}}\frac{x}{x^{2} - 1} = - \infty suy ra x = 1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow ( -
1)^{+}}\frac{x}{x^{2} - 1} = - \infty;\lim_{x ightarrow ( -
1)^{-}}\frac{x}{x^{2} - 1} = + \infty suy ra x = - 1 là tiệm cận đứng của đồ thị hàm số.

    Vậy có tất cả 3 đường tiệm cận.

  • Câu 19: Nhận biết
    Tìm tiệm cận ngang của đồ thị hàm số

    Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số y = \frac{1 - 4x}{2x - 1}.

    Hướng dẫn:

    Ta có \lim_{x ightarrow \pm
\infty}\frac{- 4x + 1}{2x - 1} = - 2.

    Vậy đường tiệm cận ngang của đồ thị hàm số là y = - 2.

  • Câu 20: Nhận biết
    Tính diện tích theo yêu cầu

    Các đường tiệm cận của đồ thị hàm số y =
\frac{2x + 1}{x - 3} tạo với hai trục tọa độ diện tích bằng bao nhiêu?

    Hướng dẫn:

    Ta có: Đồ thị hàm số y = \frac{2x + 1}{x
- 3} có đường tiệm cận đứng là x =
3 và đường tiệm cận ngang là y =
2

    Hai đường tiệm cận tạo với hai trục tọa độ một hình chữ nhật có chiều dài và chiều rộng lần lượt là 3;2 nên diện tích của hình chữ nhật là S = 2.3 =
6.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo