Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 3 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định các đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ - 1
ight\} liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

    Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

    Hướng dẫn:

    Từ bảng biến thiên ta thấy:

    \lim_{x ightarrow - 1^{+}}y = -
\infty suy ra x = - 1 là tiệm cận đứng.

    \lim_{x ightarrow - \infty}y =
2 suy ra y = 2 là tiệm cận ngang

    \lim_{x ightarrow - \infty}y = -
1 suy ra y = - 1 là tiệm cận ngang

    Vậy đồ thị hàm số đã cho có tất cả ba đường tiệm cận.

  • Câu 2: Thông hiểu
    Tìm hàm số có đúng hai tiệm cận ngang

    Đồ thị hàm số nào sau đây có đúng hai tiệm cận ngang?

    Hướng dẫn:

    Xét \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow + \infty}\frac{\sqrt{x^{2} - x}}{|x| + 2}= \lim_{x
ightarrow + \infty}\frac{x\sqrt{1 - \frac{1}{x}}}{x + 2} = \lim_{x
ightarrow + \infty}\frac{\sqrt{1 - \frac{1}{x}}}{1 + \frac{2}{x}} =
1

    Xét \lim_{x ightarrow - \infty}y =
\lim_{x ightarrow - \infty}\frac{\sqrt{x^{2} - x}}{|x| + 2}= \lim_{x
ightarrow - \infty}\frac{- x\sqrt{1 - \frac{1}{x}}}{- x + 2} = \lim_{x
ightarrow - \infty}\frac{- \sqrt{1 - \frac{1}{x}}}{- 1 + \frac{2}{x}}
= 1

    Xét \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow + \infty}\frac{|x| - 2}{x + 1}= \lim_{x ightarrow
+ \infty}\frac{x - 2}{x + 1} = \lim_{x ightarrow + \infty}\frac{1 -
\frac{2}{x}}{1 + \frac{1}{x}} = 1;

    Xét \lim_{x ightarrow - \infty}y =
\lim_{x ightarrow - \infty}\frac{|x| - 2}{x + 1}= \lim_{x ightarrow
- \infty}\frac{- x - 2}{x + 1} = \lim_{x ightarrow + \infty}\frac{- 1
- \frac{2}{x}}{1 + \frac{1}{x}} = - 1.

    Ta có: y = \frac{\sqrt{4 - x^{2}}}{x +
1}y = \frac{\sqrt{x + 2}}{|x| -
2} có thể loại trừ vì TXĐ không chứa - \infty+
\infty.

  • Câu 3: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = \frac{ax^{2} + bx + c}{ex
+ f} có đồ thị (C) như hình vẽ:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên (−∞; −1). Sai||Đúng

    b) Hàm số đạt cực đại tại x = −2. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (−∞; −1)\frac{3}{2}. Đúng||Sai

    d) Điểm cực tiểu của hàm số là x = −2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{ax^{2} + bx + c}{ex
+ f} có đồ thị (C) như hình vẽ:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên (−∞; −1). Sai||Đúng

    b) Hàm số đạt cực đại tại x = −2. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (−∞; −1)\frac{3}{2}. Đúng||Sai

    d) Điểm cực tiểu của hàm số là x = −2. Đúng||Sai

    a) Sai. Hàm số đồng biến trên (−2; −1), (−1; 0) và nghịch biến trên (−∞; −2), (0; +∞).

    b) Sai. Hàm số đạt cực tiểu tại x = −2.

    c) Đúng.

    d) Đúng.

  • Câu 4: Nhận biết
    Chọn khẳng định đúng

    Cho đồ thị hàm số y = f(x) như hình bên. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Khẳng định đúng: “Đồ thị hàm số có tiệm cận đứng x = 0, tiệm cận ngang y = 1”.

  • Câu 5: Thông hiểu
    Tìm tổng số tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là

    Hướng dẫn:

    Ta có \lim_{x ightarrow + \ \infty}f(x)= 3\lim_{x ightarrow - \infty}f(x) = 0 nên đồ thị hàm số có 2 tiệm cận ngang là các đường thẳng có phương trình y = 3y = 0.

    \lim_{x ightarrow 0^{+}}f(x) = + \infty nên hàm số có 1 tiệm cận đứng là đường thẳng có phương trình x = 0.

  • Câu 6: Thông hiểu
    Chọn phương án thíchhợp

    Cho hàm số y\  = f(x) có bảng biến thiên như hình sau

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y\  = \ f(x)

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow - \infty}y =
4,\lim_{x ightarrow + \infty}y = - 1 \RightarrowĐồ thị hàm số có hai tiệm cận ngang là y = - 1y = 4.

    \lim_{x ightarrow - 1^{-}}y = +
\infty,\lim_{x ightarrow - 1^{+}}y = - \infty \RightarrowĐồ thị hàm số có tiệm cận đứng x = -
1.

    \lim_{x ightarrow 1^{-}}y = -
\infty,\lim_{x ightarrow 1^{+}}y = + \infty \RightarrowĐồ thị hàm số có tiệm cận đứng x = 1.

    Nên đồ thị hàm số có 4 đường tiệm cận.

  • Câu 7: Nhận biết
    Số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = \frac{{\sqrt {{x^2} - 4} }}{{x - 1}}. Đồ thị hàm số có mấy đường tiệm cận?

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Tập xác định: D = \left( { - \infty ;2} ight] \cup \left[ {2; + \infty } ight)

    Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.

    \begin{matrix}  \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt {{x^2} - 4} }}{{x - 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|\sqrt {1 - \dfrac{4}{{{x^2}}}} }}{{x\left( {1 - \dfrac{1}{x}} ight)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|}}{x} \hfill \\   = \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y = 1} \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.

  • Câu 8: Nhận biết
    Tìm số đường tiệm cận đứng

    Đồ thị hàm số y = \frac{x - \sqrt{x +
2}}{(x - 2)^{2}(x - 1)} có tất cả bao nhiêu tiệm cận đứng?

    Hướng dẫn:

    Tập xác định D = \lbrack - 2; +
\infty)\backslash\left\{ 1;2 ight\}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \left[ {\frac{{x - \sqrt {x + 2} }}{{{{\left( {x - 2} ight)}^2}\left( {x - 1} ight)}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \left[ {\frac{{x - \sqrt {x + 2} }}{{{{\left( {x - 2} ight)}^2}\left( {x - 1} ight)}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight.

    Suy ra đường thẳng x = 1;x = 2 là hai đường tiệm cận đứng của đồ thị hàm số.

  • Câu 9: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

    Hướng dẫn:

    Từ bảng biến thiên ta có:

    + Tiệm cận ngang y = - 5

    + Tiệm cận đứng x = 2.

  • Câu 10: Thông hiểu
    Tìm số tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Hỏi đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Từ bảng biến thiên, ta có:

    \lim_{x ightarrow + \infty}y = + \infty
ightarrow đồ thị hàm số không có tiệm cận ngang;

    \lim_{x ightarrow \ ( - 2)^{+}}y = +
\infty ightarrow x = - 2 là TCĐ;

    \lim_{x ightarrow \ 1^{+}}y = - \infty
ightarrow x = 1 là TCĐ.

    Vậy đồ thị hàm số đã cho có đúng hai đường tiệm cận.

  • Câu 11: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = \frac{x + 1}{\sqrt{x^{2} +
1}}. Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    TXĐ: D\mathbb{= R} suy ra đồ thị hàm số không có tiệm cận đứng.

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{x + 1}{\sqrt{x^{2} + 1}}= \lim_{x
ightarrow + \infty}\frac{x\left( 1 + \frac{1}{x} ight)}{|x|\sqrt{1 +
\frac{1}{x^{2}}}} = \lim_{x ightarrow + \infty}\frac{x\left( 1 +
\frac{1}{x} ight)}{x\sqrt{1 + \frac{1}{x^{2}}}} = 1ightarrow y =1 là TCN;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{x + 1}{\sqrt{x^{2} + 1}}= \lim_{x
ightarrow - \infty}\frac{x\left( 1 + \frac{1}{x} ight)}{|x|\sqrt{1 +
\frac{1}{x^{2}}}} = \lim_{x ightarrow - \infty}\frac{x\left( 1 +
\frac{1}{x} ight)}{- x\sqrt{1 + \frac{1}{x^{2}}}} = - 1ightarrow y= - 1 là TCN.

    Vậy đồ thị hàm số không có tiệm cận đứng và có đúng hai tiệm cận ngang.

  • Câu 12: Thông hiểu
    Hàm số có 3 đường tiệm cận

    Đồ thị hàm số nào sau đây có ba đường tiệm cận?

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Ta có: Đồ thị hàm số y = \frac{1}{{4 - {x^2}}} có 3 đường tiệm cận trong đó

    Tiệm cận đứng là x = 2 và x = -2

    Tiệm cận ngang là y = 0

  • Câu 13: Thông hiểu
    Tìm số tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x + 3}{\sqrt{9 -
x^{2}}} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    TXĐ: D = ( -
3;3)\overset{}{ightarrow}không tồn tại \ \lim_{x\  ightarrow \  - \ \infty}y\lim_{x\  ightarrow \  + \ \infty}y\
.

    Do đó đồ thị hàm số không có tiệm cận ngang.

    Ta có:

    \lim_{x ightarrow - 3^{+}}\frac{x +
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow - 3^{+}}\frac{x + 3}{\sqrt{3
- x}.\sqrt{3 + x}}= \lim_{x ightarrow - 3^{+}}\frac{\sqrt{x +3}}{\sqrt{3 - x}} = 0 ightarrow x = - 3 không là TCĐ;

    \lim_{x ightarrow 3^{-}}\frac{x +
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow 3^{-}}\frac{x + 3}{\sqrt{3 -
x}.\sqrt{3 + x}}= \lim_{x ightarrow 3^{-}}\frac{\sqrt{x + 3}}{\sqrt{3
- x}} = + \infty ightarrow x = 3 là TCĐ.

    Vậy đồ thị hàm số đã cho có đúng một tiệm cận.

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Tìm tất cả các đường tiệm cận của đồ thị hàm số y = f(x) = \frac{3x + 2}{|x| + 1}.

    Hướng dẫn:

    TXĐ: D\mathbb{= R} suy ra đồ thị không có tiệm cận đứng.

    Ta có:

    \lim_{x ightarrow - \infty}\frac{3x +
2}{|x| + 1} = - 3\overset{}{ightarrow}\ \ y = - 3 là TCN

    \lim_{x ightarrow + \infty}\frac{3x +
2}{|x| + 1} = 3\overset{}{ightarrow}\ \ y = 3 là TCN.

  • Câu 15: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Từ bảng biến thiên của hàm số y =
f(x) ta có: \lim_{x ightarrow -
\infty}f(x) = - \infty;\lim_{x ightarrow + \infty}f(x) = +
\infty nên đồ thị hàm số đã cho không có tiệm cận ngang.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 4;\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 4 \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) =  - 1;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số đã cho không có tiệm cận.

  • Câu 16: Nhận biết
    Tính diện tích theo yêu cầu

    Các đường tiệm cận của đồ thị hàm số y =
\frac{2x + 1}{x - 3} tạo với hai trục tọa độ diện tích bằng bao nhiêu?

    Hướng dẫn:

    Ta có: Đồ thị hàm số y = \frac{2x + 1}{x
- 3} có đường tiệm cận đứng là x =
3 và đường tiệm cận ngang là y =
2

    Hai đường tiệm cận tạo với hai trục tọa độ một hình chữ nhật có chiều dài và chiều rộng lần lượt là 3;2 nên diện tích của hình chữ nhật là S = 2.3 =
6.

  • Câu 17: Thông hiểu
    Tìm m thỏa mãn yêu cầu bài toán

    Cho hàm số y = \frac{(2m + 1)x^{2} +
3}{\sqrt{x^{4} + 1}} với m là tham số. Tìm giá trị của m để đường tiệm cận ngang của đồ thị hàm số đi qua điểm A(1; - 3)?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow - \infty}y = 2m + 1 suy ra d:y = 2m + 1 là tiệm cận ngang của đồ thị hàm số đã cho.

    Do A(1; - 3) \in d \Leftrightarrow 2m + 1
= - 3 \Leftrightarrow m = - 2

  • Câu 18: Vận dụng
    Tính tổng các tham số

    Biết đồ thị hàm số y = \frac{{\left( {2m - n} ight){x^2} + mx + 1}}{{{x^2} + mx + n - 6}} nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:

    Gợi ý:

     Điều kiện để đồ thị hàm số y = \frac{{f\left( x ight)}}{{g\left( x ight)}} có tiệm cận ngang là bậc f(x) không lớn hơn bậc của g(x).

    Điều kiện để đường thẳng x = x0 là tiệm cận đứng của đồ thị hàm số y = \frac{{f\left( x ight)}}{{g\left( x ight)}} là x0 là nghiệm của g(x) nhưng không là nghiệm của f(x) hoặc x0 là nghiệm bội n của g(x) đồng thời là nghiệm bội m của f(x) và m < n

    Hướng dẫn:

    Điều kiện {x^2} + mx + n - 6 e 0

    Phương trình đường tiệm cận ngang của đồ thị hàm số là y = 2m - n

    => 2m - n = 0\left( * ight)

    Đặt \left\{ {\begin{array}{*{20}{c}}  {f\left( x ight) = \left( {2m - n} ight){x^2} + mx + 1} \\   {g\left( x ight) = {x^2} + mx + n - 6} \end{array}} ight.

    Nhận thấy f\left( x ight) e 0 với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0

    => n – 6 = 0 => n = 6

    Kết hợp với (*) => m = 3

    Vậy m + n = 9

  • Câu 19: Thông hiểu
    Xác định các đường tiệm cận của đồ thị hàm số

    Số đường tiệm cận của đồ thị hàm số y = \frac{x}{{{x^2} - 3x - 4}} + x

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Quy đồng biến đổi hàm số đã cho trở thành y = \frac{{{x^3} - 3{x^2} - 3x}}{{{x^2} - 3x - 4}}

    Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang

    => Số tiệm cận là 2 đường

  • Câu 20: Nhận biết
    Tìm tổng số đường tiệm cận

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x + 4} bằng:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x
+ 4} không có tiệm cận đứng.

    Ta có: \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x + 1}{x^{2} - 3x + 4}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{\dfrac{1}{x} +\dfrac{1}{x^{2}}}{1 - \dfrac{3}{x} + \dfrac{4}{x^{2}}} ight) = 0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số.

    Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho bằng 1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo