Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
TXĐ: . Ta có:
là TCN;
là TCĐ;
là TCĐ;
là TCĐ;
là TCĐ.
Vậy hàm số đã cho có tất cả năm đường tiệm cận.
Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
TXĐ: . Ta có:
là TCN;
là TCĐ;
là TCĐ;
là TCĐ;
là TCĐ.
Vậy hàm số đã cho có tất cả năm đường tiệm cận.
Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số là:
Tập xác định
Ta có: nên
là tiện cận ngang của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là .
Hỏi đồ thị của hàm số có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?
Tập xác định
Ta có: nên đồ thị hàm số có tiệm cận ngang là
nên đồ thị hàm số có tiệm cận đứng là
Vậy đồ thị hàm số có 2 đường tiệm cận.
Cho hàm số y = f(x) có và
. Khẳng định nào sau đây là khẳng định đúng?
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Ta có: => Đồ thị hàm số đã cho có TCĐ là x = 0
=> Đồ thị hàm số đã cho có TCĐ là x = 2
Cho đồ thị hàm số như hình bên. Khẳng định nào sau đây là đúng?
Khẳng định đúng: “Đồ thị hàm số có tiệm cận đứng , tiệm cận ngang
”.
Cho hàm số có bảng biến thiên như sau
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
Ta có:
nên đường thẳng
là đường tiệm cận ngang của đồ thị hàm số
.
nên đồ thị hàm số
không có tiệm cận ngang khi
.
,
nên đường thẳng
là đường tiệm cận đứng của đồ thị hàm số
.
,
nên đường thẳng
là đường tiệm cận đứng của đồ thị hàm số
.
Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là 3 tiệm cận.
Cho hàm số có bảng biến thiên như sau:
Đồ thị hàm số có tiệm cận đứng là:
Từ bảng biến thiên ta có đồ thị hàm số có đường tiệm cận đứng là .
Cho hàm số . Nếu đồ thị hàm số có tiệm cận ngang y = 1 và tiệm cận đứng
thì giá trị của a và c là:
Cho hàm số . Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?
Tập xác định suy ra đồ thị hàm số không có đường tiệm cận ngang và đường tiệm cận xiên
suy ra đồ thị nhận đường thẳng
làm tiệm cận đứng.
Vậy đồ thị hàm số có một đường tiệm cận.

Cho hàm số . Số đường tiệm cận của đồ thị hàm số y = f(x) là:
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Ta có:
=> Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
=> y = 2 là tiệm cận ngang của đồ thị hàm số
=> đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
Có bao nhiêu giá trị nguyên của tham số thực thuộc đoạn
để hàm số
có hai tiệm cận đứng.
Để hàm số có hai tiệm cận đứng
có hai nghiệm phân biệt khác
Mà
.
Vậy có tất cả giá trị nguyên thỏa mãn.
Đồ thị hàm số có bao nhiêu đường tiệm cận đứng?
TXĐ: Ta có:
không là TCĐ.
là TCĐ.
Vậy đồ thị hàm số có đúng một tiệm cận đứng.
Cho hàm số xác định và liên tục trên
, có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định đúng?
Từ bảng biến thiên, ta có:
là TCĐ.
là TCN.
Vậy đồ thị hàm số có tiệm cận đứng và tiệm cận ngang
.
Đường tiệm cận ngang của đồ thị hàm số có phương trình là:
Ta có:
Vậy đường thẳng là tiệm cận ngang của đồ thị hàm số.
Cho hàm số . Gọi
lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số. Mệnh đề nào sau đây là đúng?
Để căn thức có nghĩa khi
Xét
Do đó tập xác định của hàm số:
Ta có
là TCĐ;
không là TCĐ;
là TCN;
là TCN.
Vậy
Cho hàm số xác định và liên tục trên
có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Từ bảng biến thiên ta có:
suy ra đồ thị hàm số có tiệm cận ngang
suy ra đồ thị hàm số có tiệm cận đứng
Vậy khẳng định đúng: " Đồ thị hàm số có tiệm cận đứng và tiệm cận ngang
”.
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là:
Khi
Suy ra đồ thị hàm số có 1 tiệm cận ngang và 1 tiệm cận đứng
Khi
Suy ra đồ thị hàm số có 1 tiệm cận ngang và 1 tiệm cận đứng
Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.
Cho hàm số liên tục trên
có bảng biến thiên như hình vẽ. Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số
Do TCĐ:
đồ thị có 2 tiệm cận ngang là
Vậy, đồ thị hàm số đã cho có tổng số TCĐ và TCN là 3.
Đồ thị hàm số có đường tiệm cận ngang qua điểm
khi:
Để đồ thị hàm số có đường tiệm cận ngang là
Đường tiệm cận ngang đi qua nên ta có:
Vậy đáp án đúng là .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: