Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 3 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Số tiệm cận đứng của đồ thị hàm số

    Cho hàm số xác định trên và có bảng biến thiên như hình vẽ:

    Số tiệm cận đứng của đồ thị hàm số

    Số đường tiệm cận đứng của đồ thị hàm số y = \frac{{x - 2}}{{{f^2}\left( x ight) - 5f\left( x ight) + 4}} là:

    Gợi ý:

    Đường thẳng x = {x_0} là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f\left( x ight) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Hướng dẫn:

    Ta có: {f^2}\left( x ight) - 5f\left( x ight) + 4 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 4} \\   {f\left( x ight) = 1} \end{array}} ight.

    Phương trình f\left( x ight) = 4 có 3 nghiệm phân biệt khác 2.

    Phương trình f\left( x ight) = 1 có một nghiệm kép là x = 2 (do vậy mẫu số có dạng {\left( {x - 2} ight)^2} nên x = 2 vẫn là TCĐ của đồ thị hàm số

    => Đồ thị hàm số y = \frac{{x - 2}}{{{f^2}\left( x ight) - 5f\left( x ight) + 4}} có 4 đường tiệm cận đứng.

  • Câu 2: Nhận biết
    Xác định đường tiệm cận ngang

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có: \lim_{x
ightarrow \pm \infty}f(x) = 2 nên đồ thị hàm số có đường tiệm cận ngang là y = - 2.

  • Câu 3: Nhận biết
    Tìm tiệm cận ngang của đồ thị hàm số

    Cho hàm số y = f(x) có đồ thị như hình vẽ.

    Đồ thị hàm số đã cho có đường tiệm cận ngang bằng:

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta có: \lim_{x
ightarrow \pm \infty}f(x) = - 1.

    Do đó, đồ thị hàm số y = f(x) có đường tiệm cận ngang là y = -
1.

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = \frac{ax + b}{cx + d};(ad
- bc eq 0;ac eq 0) có đồ thị như hình vẽ:

    Tìm đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đó?

    Hướng dẫn:

    Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là x = 1 và đường tiệm cận ngang là y = 1

  • Câu 5: Thông hiểu
    Tìm tổng số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Hàm số y = f(x) có tập xác định: D\mathbb{= R}\backslash\left\{ 0
ight\}.

    Ta có:

    \lim_{x ightarrow + \infty}f(x) = +
\infty Không tồn tại tiệm cận ngang khi x \to  + \infty .

    \lim_{x ightarrow - \infty}f(x) =
2 vậy hàm số y = f(x) có tiệm cận ngang y = 2.

    \underset{\mathbf{x
ightarrow}\mathbf{0}^{\mathbf{+}}}{\mathbf{\lim}}\mathbf{f}\left(
\mathbf{x} ight)\mathbf{= + \infty}; \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) =  - 4.

    Đồ thị hàm số y = f(x) có tiệm cận đứng x = 0.

    Vậy tổng số tiệm cận đứng và ngang là 2.

  • Câu 6: Thông hiểu
    Tìm số đường tiệm cận đứng của đồ thị hàm số

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số g(x) =
\frac{2020}{2f(x) + 1} có bao nhiêu đường tiệm cận đứng?

    Hướng dẫn:

    Số đường tiệm cận đứng là số nghiệm của phương trình f(x) = - \frac{1}{2}

    Nhìn vào đồ thị ta thấy phương trình trên có 4 nghiệm tương ứng với 4 đường tiệm cận đứng.

  • Câu 7: Thông hiểu
    Chọn câu đúng

    Chọn khẳng định đúng trong các khẳng định sau:

    Hướng dẫn:

    “Đồ thị hàm số y = f(x) có tiệm cận ngang y = 1 khi và chỉ khi \lim_{x ightarrow + \infty}f(x) =
1\lim_{x ightarrow -
\infty}f(x) = 1“ sai vì chỉ cần một trong hai giới hạn \lim_{x ightarrow - \infty}f(x) = 1 hoặc \lim_{x ightarrow + \infty}f(x) =
1 tồn tại thì đã suy ra được tiệm cận ngang là y = 1.

    “Nếu hàm số y = f(x) không xác định tại x_{0} thì đồ thị hàm số y = f(x) có tiệm cận đứng x = x_{0}“ sai, ví dụ hàm số y = \sqrt{x^{3} - 1} không xác định tại x = - 2 nhưng \lim_{x ightarrow \ ( - 2)^{-}}f(x)\lim_{x ightarrow \ ( -
2)^{+}}f(x) không tiến đến vô cùng nên x = - 2 không phải là tiệm cận đứng của đồ thị hàm số.

    “Đồ thị hàm số y = f(x) có tiệm cận đứng x = 2 khi và chỉ khi \lim_{x ightarrow 2^{+}}f(x) = + \infty\lim_{x ightarrow 2^{-}}f(x) = +
\infty“ sai vì chỉ cần tồn tại một trong bốn giới hạn sau:

    \lim_{x ightarrow 2^{-}}f(x) = -
\infty,\lim_{x ightarrow 2^{-}}f(x) = + \infty,\lim_{x ightarrow \
2^{+}}f(x) = - \infty,\lim_{x ightarrow \ 2^{+}}f(x) = +
\infty.

    “Đồ thị hàm số y = f(x) bất kì có nhiều nhất hai đường tiệm cận ngang.“ đúng vì chỉ có hai giới hạn \lim_{x ightarrow - \infty}f(x),\ \
\lim_{x ightarrow + \infty}f(x).

  • Câu 8: Nhận biết
    Xác định tiệm cận ngang của đồ thị hàm số

    Tiệm cận ngang của đồ thị hàm số y =
\frac{x - 2}{x + 1}

    Hướng dẫn:

    Ta thấy \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } \frac{{x - 2}}{{x + 1}} = 1 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \frac{{x - 2}}{{x + 1}} = 1 \hfill \\ 
\end{gathered}  ight.

    Do đó đồ thị hàm số có tiệm cận ngang là y = 1.

  • Câu 9: Thông hiểu
    Tìm tổng số đường tiệm cận

    Cho hàm số có bảng biến thiên như hình sau

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số 0

    Hướng dẫn:

    \lim_{x ightarrow - \infty}y =4,\lim_{x ightarrow + \infty}y = - 1 \RightarrowĐồ thị hàm số có hai tiệm cận ngang là y = - 1y = 4.

    \lim_{x ightarrow - 1^{-}}y = +\infty;\lim_{x ightarrow - 1^{+}}y = - \infty \RightarrowĐồ thị hàm số có tiệm cận đứng x = -
1.

    \lim_{x ightarrow 1^{-}}y = -
\infty,\lim_{x ightarrow 1^{+}}y = + \infty \Rightarrow Đồ thị hàm số có tiệm cận đứng x =
1.

    Nên đồ thị hàm số có 4 đường tiệm cận.

  • Câu 10: Thông hiểu
    Tìm số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến như sau:

    Số đường tiệm cận của đồ thị hàm số là:

    Hướng dẫn:

    Từ bảng biến thiên của hàm số ta có:

    +\lim_{x ightarrow - \infty}y =
0;\lim_{x ightarrow + \infty}y = 0 \Rightarrowđồ thị hàm số nhận đường thẳng y = 0 là tiệm cận ngang.

    +\lim_{x ightarrow ( - 3)^{-}}y = +
\infty;\lim_{x ightarrow ( - 3)^{+}} = - \infty \Rightarrowđồ thị hàm số nhận đường thẳng x = - 3 là tiệm cận đứng.

    +\lim_{x ightarrow 3^{-}}y = +
\infty;\lim_{x ightarrow 3^{+}} = - \infty \Rightarrowđồ thị hàm số nhận đường thẳng x = 3là tiệm cận đứng.

    Vậy số đường tiệm cận của đồ thị hàm số là 3.

  • Câu 11: Thông hiểu
    Xác định tiệm cận đứng của đồ thị hàm số

    Tìm số tiệm cận đứng của đồ thị hàm số y
= \frac{x^{2} - 3x - 4}{x^{2} - 16}.

    Hướng dẫn:

    Xét phương trình x^{2} - 16 = 0\
\  \Leftrightarrow \ \ x = \pm 4.

    Ta có:

    \lim_{x ightarrow \  - 4}y = \lim_{x
ightarrow \  - 4}\frac{x^{2} - 3x - 4}{x^{2} - 16}

    = \lim_{x
ightarrow \  - 4}\frac{(x + 1)(x - 4)}{(x + 4)(x - 4)} = \lim_{x
ightarrow \  - 4}\frac{x + 1}{x + 4} = \infty ightarrow x = -
4 là TCĐ;

    \lim_{x ightarrow \ 4}y = \lim_{x
ightarrow \ 4}\frac{x^{2} - 3x - 4}{x^{2} - 16}

    = \lim_{x ightarrow
\ 4}\frac{(x + 1)(x - 4)}{(x + 4)(x - 4)} = \lim_{x ightarrow \
4}\frac{x + 1}{x + 4} = \frac{5}{8}ightarrow x = 4 không là TCĐ.

    Vậy đồ thị hàm số có duy nhất một tiệm cận đứng.

  • Câu 12: Nhận biết
    Tiệm cận đứng của đồ thị hàm số

    Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số y = \frac{{2x + 1}}{{x + 1}}?

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Hướng dẫn:

    Xét phương trình x + 1 = 0 => x = -1

    \mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x ight) =  + \infty => x = -1 là tiệm cận đứng của đồ thị hàm số.

  • Câu 13: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) = \frac{\sqrt{x^{2} -
x + 2}}{x - 1}. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là \mathbb{R}\backslash\left\{ 1 ight\}. Đúng||Sai

    b) Đồ thị hàm số có các đường tiệm cận ngang là y = 1,\ y = - 1. Đúng||Sai

    c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng

    d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{\sqrt{x^{2} -
x + 2}}{x - 1}. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là \mathbb{R}\backslash\left\{ 1 ight\}. Đúng||Sai

    b) Đồ thị hàm số có các đường tiệm cận ngang là y = 1,\ y = - 1. Đúng||Sai

    c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng

    d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng

    a) Điều kiện xác định của hàm số \left\{
\begin{matrix}
x^{2} - x + 2 > 0;\forall x \\
x - 1 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow x eq 1.

    Vậy tập xác định của hàm số là \mathbb{R}\backslash\left\{ 1
ight\}.

    b) Ta có: \lim_{x ightarrow -
\infty}f(x) = - 1 nên y = −1 là đường tiệm cận ngang.

    \lim_{x ightarrow + \infty}f(x) =
1 nên y = 1 là đường tiệm cận ngang.

    c) Do \lim_{x ightarrow 1^{+}}f(x) = +
\infty nên x = 1 là đường tiệm cận đứng.

    Vậy đồ thị hàm số có tất cả 3 đường tiệm cận (2 TCN và 1 TCĐ).

    d) Minh họa miền giới hạn của các đường tiệm cận và trục Oy như sau:


    Miền giới hạn là hình chữ nhật có diện tích là S = 2.1 = 2

  • Câu 14: Thông hiểu
    Xác định hàm số tương ứng

    Cho đồ thị hàm số như hình vẽ dưới đây:

    Xác định hàm số tương ứng

    Đồ thị hàm số tương ứng với hàm số nào sau đây?

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Từ đồ thị hàm số ta có tiệm cận đứng là x = 1, tiệm cận ngang là y = 1

    => Loại A và B

    Xét thấy giao điểm của đồ thị hàm số với trục tung là (0; -2) => Chọn đáp án C

  • Câu 15: Thông hiểu
    Tìm tất cả các đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x +
1}{\sqrt{4x^{2} + 2x + 1}} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Ta có 4x^{2} + 2x + 1 > 0,\ \ \forall
x\mathbb{\in R\ \ }\overset{}{ightarrow} TXĐ của hàm số D\mathbb{= R}.

    Do đó đồ thị hàm số không có tiệm cận đứng.

    Xét \lim_{x ightarrow + \infty}\frac{x
+ 1}{\sqrt{4x^{2} + 2x + 1}} = \frac{1}{2}\ \ \overset{}{ightarrow}\ \
y = \frac{1}{2} là TCN;

    \lim_{x ightarrow - \infty}\frac{x +
1}{\sqrt{4x^{2} + 2x + 1}} = - \frac{1}{2}\ \ \overset{}{ightarrow}\ \
y = - \frac{1}{2} là TCN.

    Vậy đồ thị hàm số có đúng hai đường tiệm cận.

  • Câu 16: Thông hiểu
    Chọn đáp án đúng:

    Tìm m để đồ thị hàm số y = \frac{x^{2}-(2m+3)x+2(m-1) }{x-2} không có tiệm cận đứng.

  • Câu 17: Thông hiểu
    Xác định các đường tiệm cận của đồ thị hàm số

    Số đường tiệm cận của đồ thị hàm số y = \frac{x}{{{x^2} - 3x - 4}} + x

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Quy đồng biến đổi hàm số đã cho trở thành y = \frac{{{x^3} - 3{x^2} - 3x}}{{{x^2} - 3x - 4}}

    Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang

    => Số tiệm cận là 2 đường

  • Câu 18: Thông hiểu
    Tìm tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x^{2} - 3x +
2}{\sqrt[3]{x^{4}} - 1} có bao nhiêu đường tiệm cận đứng?

    Hướng dẫn:

    TXĐ: D\mathbb{= R}\backslash\left\{ - 1\
;1 ight\}. Ta có:

    \lim_{x ightarrow 1^{-}}\frac{x^{2} -
3x + 2}{\sqrt[3]{x^{4}} - 1} = \lim_{x ightarrow 1^{+}}\frac{x^{2} -
3x + 2}{\sqrt[3]{x^{4}} - 1} = - \frac{3}{4} ightarrow x = 1 không là TCĐ.

    \left\{ \begin{matrix}
\lim_{x ightarrow \ ( - 1)^{+}}\frac{x^{2} - 3x + 2}{\sqrt[3]{x^{4}} -
1} = - \infty \\
\lim_{x ightarrow \ ( - 1)^{-}}\frac{x^{2} - 3x + 2}{\sqrt[3]{x^{4}} -
1} = + \infty \\
\end{matrix} ight.\  ightarrow x = - 1 là TCĐ.

    Vậy đồ thị hàm số có đúng một tiệm cận đứng.

  • Câu 19: Thông hiểu
    Tìm tiệm cận xiên của hàm số

    Đường tiệm cận xiên của đồ thị hàm số y =
\frac{x^{2} - 2x + 3}{x + 1} là đường thẳng có phương trình

    Hướng dẫn:

    Tập xác định: D = R\backslash\left\{ - 1
ight\}.

    Phương trình đường tiệm cận xiên có dạng: y = ax + b.

    Trong đó,

    a = \lim_{x ightarrow +
\infty}\frac{f(x)}{x} = \lim_{x ightarrow + \infty}\frac{x^{2} - 2x +
3}{x^{2} + x} = 1

    b = \lim_{x ightarrow +
\infty}\left\lbrack f(x) - ax ightbrack = \lim_{x ightarrow +
\infty}\left( \frac{x^{2} - 2x + 3}{x + 1} - x ight) = \lim_{x
ightarrow + \infty}\frac{- 3x + 3}{x + 1} = - 3.

    Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = x - 3.

  • Câu 20: Nhận biết
    Chọn câu đúng

    Cho hàm số y = f(x)\lim_{x ightarrow \pm \infty}f(x) = 1\lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{+}}f(x) = 10. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Theo định nghĩa về tiệm cận, ta có:

    \lim_{x ightarrow \pm \infty}f(x) = 1\
\ \overset{}{ightarrow}\ \ y = 1 là TCN.

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{-}}f(x) = 10\ \ \overset{}{ightarrow}\ \ x = 0 không phải là TCĐ.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo