Cho hai biến cố và
biết
. Tính
Ta có:
Cho hai biến cố và
biết
. Tính
Ta có:
Cho hai biến cố với
,
và
. Khi đó
bằng
Ta có: .
Theo công thức xác suất toàn phần:
.
Cho hai biến cố và
, với
,
,
. Giá trị
bằng
Ta có:
Công thức xác suất toàn phần
Cho hai biến cố và
với
,
,
. Tính
.
Ta có .
Công thức xác suất toàn phần:
.
Cho hai biến cố và
, với
,
,
. Tính
.
Theo công thức Bayes, ta có
.
Cho hai biến cố và
là hai biến cố độc lập, với
,
. Tính
.
Ta có:
A và là hai biến cố độc lập nên:
.
Một cuộc thi năng lực có bộ câu hỏi, trơng đó có
bộ câu hỏi về chủ đề tự nhiên và
bộ câu hỏi về chủ đề xã hội. Bạn An lấy ngẫu nhiên một bộ câu hỏi (lấy không hoàn lại), sau đó bạn Bình lấy ngẫu nhiên một bộ câu hỏi. Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội bằng:
Xét các biến cố:
A: "Bạn An lấy được bộ câu hỏi về chủ đề tự nhiên"
B: "Bạn Bình lấy được bộ câu hỏi về chủ đề xã hội".
Khi đó
Nếu bạn An chọn được một bộ câu hỏi về chủ đề tự nhiên thì sau đó còn 35 bộ câu hỏi, trong đó có 16 bộ câu hỏi về chủ đề xã hội
Nếu bạn An chọn được một bộ câu hỏi về chủ đề xã hội thì sau đó còn 35 bộ câu hỏi, trong đó có 15 bộ câu hỏi về chủ đề xã hội
Theo công thức xác suất toàn phần, xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội là:
Cho hai biến cố thỏa mãn
. Khi đó,
bằng
Ta có: .
Theo công thức xác suất toàn phần, ta có:
.
Một lớp học có 40 học sinh, trong đó có 15 học sinh nam và 25 học sinh nữ. Khi tổng kết cuối năm, lớp có 20 học sinh giỏi, trong đó có 8 học sinh nam và 12 học sinh nữ. Chọn ngẫu nhiên 1 học sinh trong lớp.
a) Xác suất học sinh được chọn là học sinh giỏi bằng .Đúng||Sai
b) Xác suất học sinh được chọn là học sinh nữ bằng .Sai||Đúng
c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng .Sai||Đúng
d) Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh giỏi bằng .Đúng||Sai
Một lớp học có 40 học sinh, trong đó có 15 học sinh nam và 25 học sinh nữ. Khi tổng kết cuối năm, lớp có 20 học sinh giỏi, trong đó có 8 học sinh nam và 12 học sinh nữ. Chọn ngẫu nhiên 1 học sinh trong lớp.
a) Xác suất học sinh được chọn là học sinh giỏi bằng .Đúng||Sai
b) Xác suất học sinh được chọn là học sinh nữ bằng .Sai||Đúng
c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng .Sai||Đúng
d) Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh giỏi bằng .Đúng||Sai
Xét hai biến số sau:
: “Học sinh được chọn là học sinh giỏi”.
: “ Học sinh được chọn là học sinh nữ”.
a) Đ Xác suất học sinh được chọn là học sinh giỏi: .
b) s Xác suất học sinh được chọn là học sinh nữ: .
c) s Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ:
.
d) Đ Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh nữ:
.
Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng và
. do có nhiễu trên đường truyền nên
tín hiệu A bị méo và thu được như tín hiệu B còn
tín hiệu B bị méo cà thu được như A. Xác suất thu được tín hiệu A là:
Gọi A là biến cố “Phát tín hiệu A ”
Gọi B là biến cố “Phát tín hiệu A ”
Gọi TA là biến cố “Phát được tín hiệu A ”
Gọi TB là biến cố “Phát được tín hiệu B”.
Ta cần tính ta có:
khi đó:
Cho hai biến cố và
. Biết
;
;
. Khi đó
bằng
Ta có: .
Theo công thức xác suất toàn phần, ta có:
.
Cho hai biến cố với
. Giá trị
bằng:
Ta có:
Theo công thức xác suất toàn phần, ta có:
Cho hai biến cố và
, công thức tính xác suất toàn phần là
Ta có:
Cho hai biến cố và
, với
,
,
. Tính
.
Ta có: .
Công thức Bayes:
.
Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng và
. do có nhiễu trên đường truyền nên
tín hiệu A bị méo và thu được như tín hiệu B còn
tín hiệu B bị méo và thu được như A. Tìm xác suất thu được tín hiệu A?
Gọi A, B lần lượt là "phát ra tín hiệu A, B".
Khi đó A, B tạo thành hệ đầy đủ.
Gọi C là "thu được tín hiệu A". Khi đó:
Áp dụng công thức xác suất toàn phần ta có:
.
Ta cần tính P(A|C). Áp dụng công thức Bayes ta có:
Cho hai biến cố và
với
. Tính
?
Ta có:
Áp dụng công thức Bayes:
.
Cho hai biến cố và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên từ mỗi hộp ra một phiếu thi, sau đó cho học sinh A rút ngẫu nhiên ra 1 phiếu từ 2 phiếu mà giáo viên đã rút. Tính xác suất để học sinh A trả lời được câu hỏi trong phiếu.
Gọi E1 là biến cố sinh viên rút ra từ hộp 1
E2 là biến cố sinh viên rút ra từ hộp 2
E1, E2 tạo thành một nhóm biến cố đầy đủ
Gọi B là biến cố rút ra 1 câu thuộc
Ta có:
Thay vào công thức ta tính được .
Xét một phép thử có biến cố và
. Biết xác suất xảy ra các biến cố
,
,
được thể hiện trong sơ đồ sau:

Tính .
Ta có
.
Cho hai biến cố và
với
;
;
. Tính
.
Ta có: .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: