Cho mẫu số liệu ghép nhóm về khối lượng (đơn vị: gram) của củ khoai tây như sau:

Giá trị đại diện của nhóm
Giá trị đại diện của nhóm là:
.
Cho mẫu số liệu ghép nhóm về khối lượng (đơn vị: gram) của củ khoai tây như sau:

Giá trị đại diện của nhóm
Giá trị đại diện của nhóm là:
.
Một người thống kê lại thời gian (đơn vị: giây) thực hiện các cuộc gọi điện thoại của người đó trong một tuần ở bảng sau.
|
Thời gian |
[0; 60) |
[60; 120) |
[120; 180) |
[180; 240) |
[240; 300) |
[300; 360) |
|
Số cuộc gọi |
8 |
10 |
7 |
5 |
2 |
1 |
Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này?
Cỡ mẫu
Suy ra tứ phân vị thứ nhất của mẫu số liệu gốc là:
Mà
Suy ra tứ phân vị thứ ba của mẫu số liệu gốc là:
Mà
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
Một mẫu số liệu ghép nhóm có tứ phân vị là . Khoảng tứ phân vị của mẫu số ghép nhóm đó là bao nhiêu?
Khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:
Điểm kiểm tra của nhóm học sinh lớp 10 được cho như sau:
|
Lớp điểm |
[3;4] |
[5;6] |
[7;8] |
[9;10] |
|
Số học sinh |
3 |
3 |
2 |
2 |
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là
Ta có khoảng biến thiên của mẫu số liệu trên là
Cho bảng thống kê chiều cao của học sinh nữ lớp 12A như sau:
|
Chiều cao(cm) |
[155; 160) |
[160; 165) |
[165; 170) |
[170; 175) |
[175; 180) |
[180; 185) |
|
Số học sinh |
2 |
7 |
12 |
3 |
0 |
1 |
Một học sinh có nhận xét như sau: Chênh lệch chiều cao của các bạn trong lớp không vượt quá m (cm). Hãy xác định giá trị của m để nhận xét của học sinh đó là đúng?
Ta có: R = 185 – 55 = 30
Vậy giá trị của m = 30.
Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:
|
160 |
161 |
161 |
162 |
162 |
162 |
|
163 |
163 |
163 |
164 |
164 |
164 |
|
164 |
165 |
165 |
165 |
165 |
165 |
|
166 |
166 |
166 |
166 |
167 |
167 |
|
168 |
168 |
168 |
168 |
169 |
169 |
|
170 |
171 |
171 |
172 |
172 |
174 |
Chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 4 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau. Khi đó khoảng biến thiên của mẫu số liệu sau khi ghép nhóm là:
Khoảng biến thiên là
Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4.
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.
Khi đó ta có các nhóm là:
Vậy bảng dữ liệu ghép nhóm đúng là:
Vậy khoảng biến thiên của mẫu số liệu sau khi ghép nhóm là .
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
|
Cự li (m) |
[19; 19,5) |
[19,5; 20) |
[20; 20,5) |
[20,5; 21) |
[21; 21,5) |
|
Tần số |
13 |
45 |
24 |
12 |
6 |
Khoảng biến thiên của mẫu số liệu ghép nhóm này bằng
Khoảng biến thiên của mẫu số liệu này bằng 21,5 - 19 = 2,5.
Công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm là
Công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:
|
Tuổi thọ |
[14; 15) |
[15; 16) |
[16; 17) |
[17; 18) |
[18; 19) |
|
Số con hổ |
1 |
3 |
8 |
6 |
2 |
Khoảng biến thiên của mẫu số liệu ghép nhóm này là
Khoảng biến thiên R = 19 – 14 = 5
Khảo sát thời gian tập thể dục của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:
Mốt của mẫu số liệu trên là
Mốt chứa trong nhóm
.
Do đó:
;
.
Nếu thay tất cả các tần số trong mẫu số liệu ghép nhóm trên bằng 4 thì số đặc trưng nào sau đây không thay đổi?
Nếu thay tất cả các tần số trong mẫu số liệu ghép nhóm trên bằng 4 thì số đặc trưng không đổi là khoảng biến thiên.
Khảo sát thời gian tập thể dục của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:
Nhóm chứa trung vị của mẫu số liệu trên là
Ta có:
Nên trung vị của mẫu số liệu trên là
Mà
Vậy nhóm chứa trung vị của mẫu số liệu trên là nhóm
Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:
|
Tuổi thọ |
[14;15) |
[15;16) |
[16;17) |
[17;18) |
[18;19) |
|
Số con |
1 |
3 |
8 |
6 |
2 |
Nhóm chứa tứ phân vị thứ ba của mẫu số liệu ghép nhóm đã cho là:
Ta có: và
nên tứ phân vị thứ ba của mẫu số liệu thuộc nhóm [17;18).
Xác định khoảng biến thiên của mẫu số liệu ghép nhóm sau đây:
|
Thời gian (s) |
Số vận động viên (người) |
|
(50,5; 55,5] |
2 |
|
(55,5; 60,5] |
7 |
|
(60,5; 65,5] |
8 |
|
(65,5; 70,5] |
4 |
Khoảng biến thiên của mẫu số liệu ghép nhóm là
Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:
|
341,4 |
187,1 |
242,2 |
522,9 |
251,4 |
|
432,2 |
200,7 |
388,6 |
258,4 |
288,5 |
|
298,1 |
413,5 |
413,5 |
332 |
421 |
|
475 |
400 |
305 |
520 |
147 |
Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng biến thiên của mẫu số liệu ghép nhóm?
Ta có:
|
Tổng lượng mưa (mm) |
[140; 240) |
[240; 340) |
[340; 440) |
[440; 540) |
|
Số năm |
3 |
7 |
7 |
3 |
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là .
Cho bảng tần số ghép nhóm dưới đây:
|
Độ tuổi |
[50; 55) |
[55; 60) |
[60; 65) |
[65; 70) |
[70; 75) |
[75; 80) |
[80; 85) |
[85; 90) |
|
Tần số |
4 |
7 |
4 |
6 |
16 |
12 |
2 |
0 |
Hãy xác định khoảng biến thiên của mẫu số liệu ghép nhóm trên?
Do nhóm số liệu [85; 90) có tần số là 0 nên ta sẽ chỉ xét đến nhóm số liệu [80; 85).
Do đó: R = 85 – 50 = 35.
Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: ) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:
|
Quãng đường (km) |
|||||
|
Số ngày |
3 |
6 |
5 |
4 |
2 |
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là
Cỡ mẫu:
Gọi là mẫu số liệu gốc về quãng đường đi bộ mỗi ngày của bác Hương trong 20 ngày được xếp theo thứ tự không giảm.
Ta có:
Tứ phân vị thứ nhất của mẫu số liệu gốc là .
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
Tứ phân vị thứ ba của mẫu số liệu gốc là .
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12A được cho trong bảng sau:
|
Thời gian (phút) |
[25; 30) |
[30; 35) |
[35; 40) |
[40; 45) |
|
Số học sinh |
9 |
17 |
8 |
6 |
Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 7,2
Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12A được cho trong bảng sau:
|
Thời gian (phút) |
[25; 30) |
[30; 35) |
[35; 40) |
[40; 45) |
|
Số học sinh |
9 |
17 |
8 |
6 |
Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 7,2
Cỡ mẫu là . Gọi
là thời gian hoàn thành bài kiểm tra môn Toán của 40 học sinh và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.
Tứ phân vị thứ nhất của mẫu số liệu gốc là nên nhóm chứa tứ phân vị thứ nhất là nhóm
và ta có:
Tứ phân vị thứ ba của mẫu số liệu gốc là nên nhóm chứa tứ phân vị thứ ba là nhóm
và ta có:
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là .
Cho bảng số liệu ghép nhóm về chiều cao (đơn vị centimét) của 36 học sinh trong lớp 12A1 như sau:

Xác định khoảng biến thiên của mẫu số liệu ghép nhóm?
Ta có khoảng biến thiên của mẫu số liệu ghép nhóm trên là:
.
Một công ty cung cấp nước sạch thống kê lượng nước các hộ gia đình trong một khu vực tiêu thụ trong một tháng ở bảng sau:
|
Lượng nước (m3) |
[3; 6) |
[6; 9) |
[9; 12) |
[12; 15) |
[15; 18) |
|
Số hộ gia đình |
20 |
60 |
40 |
32 |
7 |
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là:
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: