Xác định khoảng biến thiên của mẫu số liệu ghép nhóm sau đây:
|
Thời gian (s) |
Số vận động viên (người) |
|
(50,5; 55,5] |
2 |
|
(55,5; 60,5] |
7 |
|
(60,5; 65,5] |
8 |
|
(65,5; 70,5] |
4 |
Khoảng biến thiên của mẫu số liệu ghép nhóm là
Xác định khoảng biến thiên của mẫu số liệu ghép nhóm sau đây:
|
Thời gian (s) |
Số vận động viên (người) |
|
(50,5; 55,5] |
2 |
|
(55,5; 60,5] |
7 |
|
(60,5; 65,5] |
8 |
|
(65,5; 70,5] |
4 |
Khoảng biến thiên của mẫu số liệu ghép nhóm là
Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:
|
Tuổi thọ |
|||||
|
Số con hổ |
1 | 3 | 8 | 6 | 2 |
Số đặc trưng nào không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng?
Đáp án đúng là Khoảng tứ phân vị.
Cho bảng thống kê thời gian (đơn vị: phút) và số ngày tập thể dục của hai người A và B trong 30 ngày như sau:
|
Thời gian |
[15; 20) |
[25; 30) |
[30; 35) |
|
Số ngày tập của A |
10 |
15 |
5 |
|
Số ngày tập của B |
9 |
21 |
0 |
Chọn kết luận đúng dưới đây?
Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của A là: 35 – 15 = 20 (phút).
Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của B là: 30 – 15 = 15 (phút).
Do đó căn cứ theo khoảng biến thiên thì thời gian tập của A có độ phân tán lớn hơn.
Bạn Linh thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ lớp và lớp
ở bảng sau:
|
Chiều cao (cm) |
||||||
|
Số học sinh nữ lớp 12 A |
2 |
7 |
12 |
3 |
0 |
1 |
|
Số học sinh nữ lớp 12 B |
0 |
9 |
8 |
2 |
1 |
5 |
Gọi ;
lần lượt là khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp
và
. Tìm
;
.
Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp là:
(cm).
Trong mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp , khoảng đầu tiên chứa dữ liệu là [155; 160) và khoảng cuối cùng chứa dữ liệu là [175; 180).
Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp là:
(cm).
Chiều cao của 50 học sinh (chính xác đến cm) và nhóm được các kết quả như sau:
|
Chiều cao (cm) |
Số học sinh |
|
(149,5; 154,5] |
5 |
|
(154,5; 159,5] |
2 |
|
(159,5; 164,5] |
6 |
|
(164,5; 169,5] |
8 |
|
(169,5; 174,5] |
9 |
|
(174,5; 179,5] |
11 |
|
(179,5; 184,5] |
6 |
|
(184,5; 189,5] |
3 |
Tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên?
Ta có khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là:
.
Cho mẫu số liệu ghép nhóm cho bởi bảng sau:
|
Nhóm |
[0; 10) |
[10; 20) |
[20; 30) |
[30; 40) |
|
Tần số |
3 |
7 |
2 |
9 |
Khoảng biến thiên của mẫu số liệu ghép nhóm này là
Khoảng biến thiên của mẫu số liệu ghép nhóm là:
R = 40 – 0 = 40.
Thời gian hoàn thành bài kiểm tra của học sinh lớp 12A được cho trong bảng sau:
|
Thời gian (phút) |
[25; 30) |
[30; 35) |
[35; 40) |
[40; 45) |
|
Số học sinh |
8 |
16 |
4 |
2 |
Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc bằng bao nhiêu?
Khoảng biến thiên của mẫu số liệu gốc là
Một phòng khám tư thống kê số bệnh nhân đến khám bệnh mỗi ngày trong một tháng được ghi trong bảng sau:
|
Số bệnh nhân |
Số ngày |
|
[0,5; 10,5) |
7 |
|
[10,5; 20,5) |
8 |
|
[20,5; 30,5) |
7 |
|
[30,5; 40,5) |
6 |
|
[40,5; 50,5) |
2 |
Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này? (Làm tròn các kết quả đến hàng phần chục).
Ta có:
|
Số bệnh nhân |
Số ngày |
Tần số tích lũy |
|
[0,5; 10,5) |
7 |
7 |
|
[10,5; 20,5) |
8 |
15 |
|
[20,5; 30,5) |
7 |
22 |
|
[30,5; 40,5) |
6 |
28 |
|
[40,5; 50,5) |
2 |
30 |
Cỡ mẫu
Ta có:
=> Nhóm chứa là [10,5; 20,5)
Khi đó ta tìm được các giá trị:
Ta có:
=> Nhóm chứa là [30,5; 40,5)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
|
Số tiền (nghìn đồng) |
Số người |
|
[0; 50) |
5 |
|
[50; 100) |
12 |
|
[100; 150) |
23 |
|
[150; 200) |
17 |
|
[200; 250) |
3 |
Chọn đáp án đúng?
Ta có:
|
Số tiền (nghìn đồng) |
Số người |
Tần số tích lũy |
|
[0; 50) |
5 |
5 |
|
[50; 100) |
12 |
17 |
|
[100; 150) |
23 |
40 |
|
[150; 200) |
17 |
57 |
|
[200; 250) |
3 |
60 |
|
|
N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ nhất là [50; 100) (vì 15 nằm giữa hai tần số tích lũy 5 va 17)
Khi đó
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
|
Cự li (m) |
[19; 19,5) |
[19,5; 20) |
[20; 20,5) |
[20,5; 21) |
[21; 21,5) |
|
Tần số |
13 |
45 |
24 |
12 |
6 |
Khoảng biến thiên của mẫu số liệu ghép nhóm này bằng
Khoảng biến thiên của mẫu số liệu này bằng 21,5 - 19 = 2,5.
Khi thống kê chiều cao (đơn vị: centimét) của học sinh lớp , người ta thu được mẫu số liệu ghép nhóm như Bảng sau.
|
Nhóm |
Tần số |
|
[155; 160) |
2 |
|
[160; 165) |
5 |
|
[165; 170) |
21 |
|
[170; 175) |
11 |
|
[175; 1800 |
11 |
|
N = 40 |
Khoảng biến thiên của mẫu số liệu ghép nhóm đó bằng:
Trong mẫu số liệu ghép nhóm ta có đầu mút trái của nhóm 1 là , đầu mút phải của nhóm 5 là
.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là
Cho mẫu số liệu ghép nhóm sau:
Đối tượng | [40; 45) | [45; 50) | [50; 55) | [55; 60) | [60; 65) |
Tần số | 5 | 20 | 18 | 7 | 3 |
Tính giá trị ?
Khoảng biến thiên của mẫu số liệu đã cho là .
Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:
|
Tuổi thọ |
[14; 15) |
[15; 16) |
[16; 17) |
[17; 18) |
[18; 19) |
|
Số con hổ |
1 |
3 |
8 |
6 |
2 |
Khoảng biến thiên của mẫu số liệu ghép nhóm này là
Khoảng biến thiên R = 19 – 14 = 5
Một mẫu số liệu ghép nhóm có khoảng tứ phân vị là và tứ phân vị thứ 3 là
thì giá trị ngoại lệ của mẫu số liệu ghép nhóm đó phải là bao nhiêu?
Do tứ phân vị thứ 3 là
Suy ra giá trị ngoại lệ .
Kết quả khảo sát năng suất (đơn vị: tấn/ha) của một số thửa ruộng được minh họa ở biểu đồ sau:

a) Có 6 thửa ruộng đã được khảo sát. Sai||Đúng
b) Khoảng biến thiên của mẫu số liệu trên là 1,2 (tấn/ha). Đúng||Sai
c) Khoảng tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là . Đúng||Sai
d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là . Đúng||Sai
Kết quả khảo sát năng suất (đơn vị: tấn/ha) của một số thửa ruộng được minh họa ở biểu đồ sau:

a) Có 6 thửa ruộng đã được khảo sát. Sai||Đúng
b) Khoảng biến thiên của mẫu số liệu trên là 1,2 (tấn/ha). Đúng||Sai
c) Khoảng tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là . Đúng||Sai
d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là . Đúng||Sai
|
A. |
B. |
C. |
D. |
|
SAI |
ĐÚNG |
ĐÚNG |
ĐÚNG |
a) Số thửa ruộng được khảo sát là: n = 3 + 4 + 6 + 5 + 5 + 2 = 25.
b) Từ biểu đồ, ta có bảng tần số ghép nhóm của mẫu số liệu như sau:

Khoảng biến thiên của mẫu số liệu đã cho là: R = 6,7 – 5,5 = 1,2 (tấn/ha).
c) Cỡ mẫu n = 25.
Gọi là mẫu số liệu gốc về năng suất của một số thửa ruộng được khảo sát được xếp theo thứ tự không giảm.
Ta có
[5,5; 5,7),
[5,7; 5,9),
[5,9; 6,1),
[6,1; 6,3),
[6,3; 6,5),
[6,5; 6,7).
Tứ phân vị thứ nhất của mẫu số liệu gốc là [5,7; 5,9).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
d) Tứ phân vị thứ ba của mẫu số liệu gốc là [6,3; 6,5).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
Quan sát bảng sau và tìm khoảng biến thiên của mẫu số liệu
|
Khoảng dữ liệu |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
|
Tần số |
8 |
12 |
22 |
17 |
Khoảng biến thiên của mẫu số liệu là: .
Cho bảng thống kê chiều cao của học sinh nữ lớp 12A như sau:
|
Chiều cao(cm) |
[155; 160) |
[160; 165) |
[165; 170) |
[170; 175) |
[175; 180) |
[180; 185) |
|
Số học sinh |
2 |
7 |
12 |
3 |
0 |
1 |
Một học sinh có nhận xét như sau: Chênh lệch chiều cao của các bạn trong lớp không vượt quá m (cm). Hãy xác định giá trị của m để nhận xét của học sinh đó là đúng?
Ta có: R = 185 – 55 = 30
Vậy giá trị của m = 30.
Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?
|
Đối tượng |
Tần số |
|
[150; 155) |
5 |
|
[155; 160) |
18 |
|
[160; 165) |
40 |
|
[165; 170) |
26 |
|
[170; 175) |
8 |
|
[175; 180) |
3 |
Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là .
Điều tra cân nặng của 50 bé trai 6 tháng tuổi, người ta được kết quả ở bảng sau. Khoảng biến thiên của mẫu số liệu ghép nhóm là bao nhiêu?
|
Nhóm |
[80;100) |
[100;120) |
[120;140) |
[140;160) |
[160;180) |
[180;200) |
|
|
Tần số |
3 |
5 |
6 |
8 |
6 |
2 |
n = 30 |
Khoảng biến thiên của mẫu số liệu ghép nhóm là:
200 – 80 = 120
Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

Ta có: và
nên tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: