Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 9 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính thể tích theo yêu cầu

    Khi thống kê chiều cao (đơn vị: centimét) của học sinh lớp 12A, người ta thu được mẫu số liệu ghép nhóm như Bảng sau.

    Nhóm

    Tần số

    [155; 160)

    2

    [160; 165)

    5

    [165; 170)

    21

    [170; 175)

    11

    [175; 1800

    11

    N = 40

    Khoảng biến thiên của mẫu số liệu ghép nhóm đó bằng:

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm ta có đầu mút trái của nhóm 1 là a_{1} = 155, đầu mút phải của nhóm 5 là a_{5} = 180.

    Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là R = a_{5} - a_{1} = 180 - 155 = 25

  • Câu 2: Thông hiểu
    Tìm tứ phân vị thứ nhất của mẫu số liệu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Tính giá trị Q_{1}?

    Hướng dẫn:

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{N}{4} =
10,5

    => Nhóm chứa Q_{1} là [20; 40)

    (Vì 10,5 nằm giữa hai tần số tích lũy 5 và 14)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 9;c = 40 -
20 = 20

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \dfrac{10,5 - 5}{9}.20 =\dfrac{290}{9}

  • Câu 3: Thông hiểu
    Xác định tính đúng sai của các nhận định

    Bạn An và bạn Bình làm thí nghiệm trồng cây. Mỗi bạn trồng 40 cây cần tây trong cốc, phần gốc của các cây khi bắt đầu trồng đều dài 4cm. Bảng 13Bảng 14 lần lượt biểu diễn mẫu số liệu ghép nhóm về số liệu thống kê chiều cao của các cây (đơn vị: centimét) mà bạn An và bạn Bình trồng sau 5 tuần.

    a) Chiều cao trung bình của mỗi cây do hai bạn An và Bình trồng không bằng nhau. Sai||Đúng

    b) Khoảng biến thiên của cả hai mẫu số liệu trên là 20. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ở Bảng 13 là 5,5. Đúng||Sai

    d) Chiều cao của các cây mà bạn Bình trồng đồng đều hơn các cây mà bạn An trồng. Sai||Đúng

    Đáp án là:

    Bạn An và bạn Bình làm thí nghiệm trồng cây. Mỗi bạn trồng 40 cây cần tây trong cốc, phần gốc của các cây khi bắt đầu trồng đều dài 4cm. Bảng 13Bảng 14 lần lượt biểu diễn mẫu số liệu ghép nhóm về số liệu thống kê chiều cao của các cây (đơn vị: centimét) mà bạn An và bạn Bình trồng sau 5 tuần.

    a) Chiều cao trung bình của mỗi cây do hai bạn An và Bình trồng không bằng nhau. Sai||Đúng

    b) Khoảng biến thiên của cả hai mẫu số liệu trên là 20. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ở Bảng 13 là 5,5. Đúng||Sai

    d) Chiều cao của các cây mà bạn Bình trồng đồng đều hơn các cây mà bạn An trồng. Sai||Đúng

    Chiều cao trung bình của cây do bạn An trồng là: {\overline{x}}_{\ _{A}} = 30,25(\
cm).

    Chiều cao trung bình của cây do bạn Bình trồng là: {\overline{x}}_{\ _{B}} = 30,25(\
cm).

    Suy ra chiều cao trung bình của mỗi cây do hai bạn An và Bình trồng là bằng nhau.

    Khoảng biến thiên của cả hai mẫu số liệu là 40 - 20 = 20.

    Xét mẫu số liệu ở Bảng 13.

    • Tứ phân vị thứ nhất Q_{1} của mẫu số liệu đó là:

    Q_{1} = 25 + \left( \frac{10 - 2}{16}
\right) \cdot 5 = 27,5(\ cm)

    • Tứ phân vị thứ ba Q_{3} của mẫu số liệu đó là:

    Q_{3} = 30 + \left( \frac{30 - 18}{20}
\right).5 = 33(\ cm)

    Suy ra khoảng tứ phân vị của mẫu số liệu ở Bảng 13 là 33 - 27,5 = 5,5.

    Phương sai của mẫu số liệu ở Bảng 13 là: s_{A}^{2} = 11,1875.

    Phương sai của mẫu số liệu ở Bảng 14 là: s_{B}^{2} = 13,6875.

    Suy ra s_{A}^{2} < s_{B}^2. Vậy chiều cao của các cây mà bạn An trồng đồng đều hơn các cây mà bạn Bình trồng.

    Đáp án: a) Sai, b) Đúng, c) Đúng, d) Sai.

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Xét mẫu số liệu ghép nhóm cho bởi Bảng 1.

    Nhóm

    Tần số

    \left\lbrack a_{1}\ ;\ a_{2} \right)

    \left\lbrack a_{2}\ ;\ a_{3}
\right)

    \left\lbrack a_{m}\ ;\ a_{m + 1}
\right)

    n_{1}

    n_{2}

    n_{m}

    n

    Khoảng biến thiên của mẫu số liệu ghép nhóm đó bằng?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm đó bằng a_{m + 1} - a_{1}.

  • Câu 5: Nhận biết
    Tìm giá trị chưa biết

    Cho bảng thống kê chiều cao của học sinh nữ lớp 12A như sau:

    Chiều cao(cm)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    Số học sinh

    2

    7

    12

    3

    0

    1

    Một học sinh có nhận xét như sau: Chênh lệch chiều cao của các bạn trong lớp không vượt quá m (cm). Hãy xác định giá trị của m để nhận xét của học sinh đó là đúng?

    Hướng dẫn:

    Ta có: R = 185 – 55 = 30

    Vậy giá trị của m = 30.

  • Câu 6: Thông hiểu
    Tìm khoảng biến thiên của mẫu số liệu

    Cho biểu đồ thống kê thời gian tập thể dục buổi sáng của hai người A và B

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục hằng ngày của A và B lần lượt là:

    Hướng dẫn:

    Ta có bảng sau:

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    A

    5

    12

    8

    3

    2

    B

    0

    25

    5

    0

    0

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục của A là: 40 – 15 = 25 (phút)

    Tuy nhiên trong mẫu số liệu ghép nhóm về thời gian tập thể dục của B nhóm đầu tiên chứa dữ liệu là [20; 25) và nhóm cuối cùng chứa dữ liệu [25; 30). Do đó khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của B là 30 – 20 = 10.

  • Câu 7: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Đo chiều cao (tính bằngcm) của 500 học sinh trong một trường THPT ta thu được kết quả như sau:

    Chiều cao

    \lbrack 150;\ 154) \lbrack 154;\ 158) \lbrack 158;\ 162) \lbrack 162;\ 166) \lbrack 166;\ 170)

    Số học sinh

    25

    50

    200

    175

    50

    Khoảng biến thiên của mẫu số liệu trên là

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu trên là R = 170 - 150 = 20

  • Câu 8: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Tìm hiểu thời gian hoàn thành một bài tập (đơn vị: phút) của một số học sinh thu được kết quả sau:

    Thời gian

    \lbrack 0;\ 4) \lbrack 4;\ 8) \lbrack 8;12) \lbrack 12;16) \lbrack 16;20)

    Số học sinh

    2

    4

    7

    4

    3

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm này là

    Hướng dẫn:

    Cỡ mẫu: n = 2 + 4 + 7 + 4 + 3 =
20.

    Gọi x_{1};\ x_{2};\ \ldots;\ x_{20}thời gian hoàn thành bài tập của 20 học sinh và được sắp xếp theo thứ tự không giảm.

    Tứ phân vị thứ ba Q_{1}\frac{x_{5} + x_{6}}{2}. Do x_{5},\ \ x_{6} đều thuộc nhóm \lbrack 4;8) nên nhóm này chứa Q_{1}.

    Khi đó Q_{1} = 4 + \frac{\frac{20}{4} -
2}{4}.4 = 7

    Tứ phân vị thứ ba Q_{3}\frac{x_{15} + x_{16}}{2}. Do x_{15},\ \ x_{16} đều thuộc nhóm \lbrack 12;16) nên nhóm này chứa Q_{3}.

    Khi đó: Q_{3} = 12 + \frac{\frac{3.20}{4}
- 13}{4}.4 = 14.

    Vậy khoảng tứ phân vị của mẫu số liệu trên là \Delta_{Q} = Q_{3} - Q_{1} = 14 - 7 =
7.

  • Câu 9: Nhận biết
    Xác định tính đúng sai của các nhận định

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    a. Hiệu giữa tứ phân vị thứ ba và tứ phân vị thứ nhất của mẫu số liệu ghép nhóm đó. Đúng||Sai

    b. Tổng giữa tứ phân vị thứ ba và tứ phân vị thứ nhất của mẫu số liệu ghép nhóm đó. Sai||Đúng

    c. Hiệu giữa hai tứ phân vị bất kì của mẫu số liệu ghép nhóm đó. Sai||Đúng

    d. Tổng giữa hai tứ phân vị bất kì của mẫu số liệu ghép nhóm đó. Sai||Đúng

    Đáp án là:

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    a. Hiệu giữa tứ phân vị thứ ba và tứ phân vị thứ nhất của mẫu số liệu ghép nhóm đó. Đúng||Sai

    b. Tổng giữa tứ phân vị thứ ba và tứ phân vị thứ nhất của mẫu số liệu ghép nhóm đó. Sai||Đúng

    c. Hiệu giữa hai tứ phân vị bất kì của mẫu số liệu ghép nhóm đó. Sai||Đúng

    d. Tổng giữa hai tứ phân vị bất kì của mẫu số liệu ghép nhóm đó. Sai||Đúng

    a) Mệnh đề đúng.

    b) Mệnh đề sai.

    c) Mệnh đề sai.

    d) Mệnh đề sai.

  • Câu 10: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Quan sát bảng sau và tìm khoảng biến thiên của mẫu số liệu

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tần số

    8

    12

    22

    17

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu là: R =
50 - 10 = 40.

  • Câu 11: Thông hiểu
    Tìm tứ phân vị thứ ba

    Tìm tứ phân vị thứ ba trong bảng dữ liệu dưới đây:

    Nhóm

    Tần số

    [0; 20)

    16

    [20; 40)

    12

    [40; 60)

    25

    [60; 80)

    15

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Kết quả làm tròn đến chữ số thập phân thứ nhất.

    Hướng dẫn:

    Ta có:

    Nhóm

    Tần số

    Tần số tích lũy

    [0; 20)

    16

    16

    [20; 40)

    12

    28

    [40; 60)

    25

    53

    [60; 80)

    15

    68

    [80; 100)

    12

    80

    [100; 120)

    10

    90

    Tổng

    N = 90

     

    Ta có: \frac{3N}{4} = 67,5

    => Nhóm chứa tứ phân vị thứ ba là: [60; 80)

    Khi đó ta có: \left\{ \begin{matrix}l = 60;\dfrac{3N}{4} = 67,5 \\m = 53,f = 15,80 - 60 = 20 \\\end{matrix} ight.

    Tứ phân vị thứ ba được tính như sau:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{67,5 -
53}{15}.20 = \frac{238}{3}

  • Câu 12: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Xác định khoảng biến thiên của mẫu số liệu ghép nhóm sau đây:

    Thời gian (s)

    Số vận động viên (người)

    (50,5; 55,5]

    2

    (55,5; 60,5]

    7

    (60,5; 65,5]

    8

    (65,5; 70,5]

    4

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 70,5 - 50,5 = 20

  • Câu 13: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Khi thống kê chiều cao (đơn vị: centimét) của học sinh lớp 12A, người ta thu được mẫu số liệu ghép nhóm như bảng số liệu. Khoảng biến thiên của mẫu số liệu ghép nhóm đó bằng:

    Ảnh có chứa văn bản, Phông chữ, số, ảnh chụp màn hìnhMô tả được tạo tự động

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm ta có đầu mút trái của nhóm 1 là a_{1} = 155, đầu mút phải của nhóm 5 là a_{5} = 180.

    Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là R = a_{5} -
a_{1} = 180 - 155 = 25

  • Câu 14: Nhận biết
    Định khoảng biến thiên của mẫu số liệu ghép nhóm

    Điểm kiểm tra của nhóm học sinh lớp 10 được cho như sau:

    Lớp điểm

    [3;4]

    [5;6]

    [7;8]

    [9;10]

    Số học sinh

    3

    3

    2

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là

    Hướng dẫn:

    Ta có khoảng biến thiên của mẫu số liệu trên là

    10 - 3 = \ 7.

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Nếu thay tất cả các tần số trong mẫu số liệu ghép nhóm trên bằng 4 thì số đặc trưng nào sau đây không thay đổi?

    Hướng dẫn:

    Nếu thay tất cả các tần số trong mẫu số liệu ghép nhóm trên bằng 4 thì số đặc trưng không đổi là khoảng biến thiên.

  • Câu 16: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Số điểm thi đấu của các đội được biểu diễn trong bảng dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 2]

    5

    (2; 4]

    16

    (4; 6]

    13

    (6; 8]

    7

    (8; 10]

    5

    (10; 12]

    4

    Khoảng biến thiên của mẫu số liệu đó là:

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 12 - 0 = 12.

  • Câu 17: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu gốc

    Thời gian hoàn thành bài kiểm tra của học sinh lớp 12A được cho trong bảng sau:

    Thời gian (phút)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số học sinh

    8

    16

    4

    2

    Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc bằng bao nhiêu?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu gốc là R = 43 - 27 = 16

  • Câu 18: Nhận biết
    Chọn đáp án đúng

    Dũng là một học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần liên tiếp ở bảng sau:

    Thời gian giải rubik (giây)

    \lbrack 8;10) \lbrack 10 ; 12) \lbrack 12;14) \lbrack 14;16) \lbrack 16;18)

    Số lần

    4 6 8 4 3

    Khoảng biến thiên của mẫu số liệu ghép nhóm nhận giá trị nào trong các giá trị sau đây?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là R=18-8=10.

  • Câu 19: Nhận biết
    Tính khoảng biến thiên của mẫu số liệu

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Tần số

    13

    45

    24

    12

    6

    Khoảng biến thiên của mẫu số liệu ghép nhóm này bằng

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu này bằng 21,5 - 19 = 2,5.

  • Câu 20: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14; 15)

    [15; 16)

    [16; 17)

    [17; 18)

    [18; 19)

    Số con hổ

    1

    3

    8

    6

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm này là

    Hướng dẫn:

    Khoảng biến thiên R = 19 – 14 = 5

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo