Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 14 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Viết phương trình (P)

    Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;2;1),B(3; - 1;5). Phương trình mặt phẳng (P) vuông góc với AB và hợp với các trục tọa độ một tứ diện có thể tích bằng \frac{3}{2}

    Hướng dẫn:

    Ta có \overrightarrow{AB} = (2; - 3;4)
\Rightarrow (P):2x - 3y + 4z + m = 0

    Gọi M, N, P lần lượt là giao điểm của mặt phẳng (P) với trục Ox, Oy, Oz

    Suy ra M\left( - \frac{m}{2};0;0
ight),N\left( 0;\frac{m}{3};0 ight),P\left( 0;0;\frac{- m}{4}
ight)

    Ta có thể tích tứ diện V_{O.MNP} =
\frac{1}{6}.\left| \frac{m^{3}}{24} ight| = \frac{3}{2}
\Leftrightarrow m = \pm 6

    Vậy đáp án cần tìm là: 2x - 3y + 4z \pm 6
= 0

  • Câu 2: Thông hiểu
    Tìm các giá trị thực của tham số m thỏa mãn yêu cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P):x + my + (m - 1)z + 2 = 0, (Q):2x - y + 3z - 4 = 0. Giá trị số thực m để hai mặt phẳng (P),(Q) vuông góc

    Hướng dẫn:

    Để 2 mặt phẳng (P),(Q) vuông góc

    \Rightarrow
{\overrightarrow{n}}_{p}.\overrightarrow{n_{Q}} = 0 \Leftrightarrow 1.2
+ m.( - 1) + (m - 1).3 = 0 \Leftrightarrow m = \frac{1}{2}.

    Vậy m = \frac{1}{2}.

  • Câu 3: Thông hiểu
    Xác định phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz; cho điểm A(1;2; - 3). Gọi M,N,P là hình chiếu vuông góc của điểm A trên ba trục tọa độ Ox,Oy,Oz. Viết phương trình mặt phẳng (MNP)?

    Hướng dẫn:

    M(1;0;0),N(0;2;0),P(0;0; - 3) là hình chiếu của A lên các trục tọa độ nên mặt phẳng cần tìm là (MNP):\frac{x}{1} + \frac{y}{2} + \frac{z}{- 3} =
1

    \Rightarrow (MNP):6x + 3y - 2z - 6 =
0

  • Câu 4: Vận dụng
    Lập phương trình mặt phẳng theo yêu cầu

    Trong không gian với hệ trục toạ độ Oxyz,cho \mathbf{3}điểm A(1;1; - 1),B(1;1;2),C( -
1;2; - 2) và mặt phẳng (P):x - 2y +
2z + 1 = 0. Lập phương trình mặt phẳng (\alpha) đi qua A, vuông góc với mặt phẳng (P) cắt đường thẳng BC tại I sao cho IB
= 2IC biết tọa độ điểm I là số nguyên

    Hướng dẫn:

    Do I,B,C thẳng hàng và IB = 2IC

    \Rightarrow \left\lbrack \begin{matrix}
\overrightarrow{IB} = 2\overrightarrow{IC} \\
\overrightarrow{IB} = - 2\overrightarrow{IC} \\
\end{matrix} \right.\  \Rightarrow \left\lbrack \begin{matrix}
I( - 3;3; - 6) \\
I\left( - \frac{1}{3};\frac{5}{3}; - \frac{2}{3} \right) \\
\end{matrix} \right.

    Vì tọa độ điểm I là số nguyên nên I( - 3;3; - 6)

    Lúc đó mặt phẳng (\alpha) đi qua A,I( - 3;3; - 6) và vuông góc với mặt phẳng (P)

    \Rightarrow (\alpha):2x - y - 2z - 3 =
0.

  • Câu 5: Vận dụng
    Xác định tập hợp các điểm cách đều mặt phẳng

    Trong không gian Oxyz, tìm tập hợp các điểm cách đều cặp mặt phẳng sau đây: 4x - y - 2z - 3 = 0;4x - y - 2z - 5 =
0.

    Hướng dẫn:

    Gọi điểm

    A (0; −3; 0) ∈ 4x − y − 2z − 3 = 0 (α)

    B (0; −5; 0) ∈ 4x − y − 2z − 5 = 0 (β)

    Mặt phẳng cách đều hai mặt phẳng trên có dạng: 4x − y − 2z + m = 0 (γ).

    Để mp (γ) cách đều hai mp trên thì d (A; (β)) = 2d (A; (γ)) ⇔ |m + 3| = 1

    ⇔ m = −2 hoặc m = −4

    Mặt khác điểm hai điểm A; B phải nằm về hai phía của mp (γ).

    Với m = −2 ta có (4 .0 + 3 – 2.0 − 2) (4.0 + 5 – 2.0 − 2) > 0 nên A; B cùng phía.

    Với m = −4 ta có (4 .0 + 3 – 2.0 − 4) (4.0 + 5 – 2.0 − 4) < 0 nên A; B khác phía.

    Vậy phương trình mặt phẳng cần tìm là 4x − y − 2z − 4 = 0 (γ).

  • Câu 6: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng đi qua ba điểm A(1;1;4),B(2;7;9)C(0;9;13).

    Hướng dẫn:

    Ta có: \overrightarrow{AB} =
(1;6;5),\overrightarrow{AC} = ( - 1;8;9)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (14; - 14;14) =
14(1; - 1;1)

    Mặt phẳng (ABC) đi qua điểm A(1;1;4) và nhận \overrightarrow{n} = (1; - 1;1) làm vectơ pháp tuyến có phương trình là:

    x - 1 - (y - 1) + z - 4 = 0

    \Leftrightarrow x - y + z - 4 =
0

  • Câu 7: Nhận biết
    Tìm câu sai

    Chọn khẳng định sai

    Hướng dẫn:

    Câu sai: “Nếu hai đường thẳngAB,CD song song thì vectơ \left\lbrack
\overrightarrow{AB},\overrightarrow{CD} \right\rbrack là một vectơ pháp tuyến của mặt phẳng (ABCD)”.

  • Câu 8: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua M(
- 1;2;4) và chứa trục Oy có phương trình là:

    Hướng dẫn:

    Ta có: (P) có cặp véc-tơ chỉ phương \overrightarrow{v_{Oy}} =
(0;1;0),\overrightarrow{OM} = ( - 1;2;4)

    Khi đó véc-tơ pháp tuyến của (P) là \overrightarrow{n_{P}} = ( - 4;0; - 1), ta chọn \overrightarrow{n_{P}} =
(4;0;1).

    Mặt phẳng (P) đi qua M( - 1;2;4) và có véc-tơ pháp tuyến \overrightarrow{n_{P}} = (4;0;1) nên có phương trình 4(x + 1) + (z - 4) = 0 hay 4x + z = 0.

  • Câu 9: Thông hiểu
    Xác lập phương trình mặt phẳng

    Trong không gian với hệ trục toạ độ Oxyz, cho hai mặt phẳng (P)x + y + z - 3 = 0, (Q):2x + 3y + 4z - 1 = 0. Lập phương trình mặt phẳng (\alpha) đi qua A(1;0;1) và chứa giao tuyến của hai mặt phẳng (P),(Q)?

    Hướng dẫn:

    Gọi M,N là các điểm thuộc giao tuyến của hai mặt phẳng (P),(Q).

    M,N thỏa hệ phương trình :\left\{ \begin{matrix}
x + y + z - 3 = 0 \\
2x + 3y + 4z - 1 = 0 \\
\end{matrix} \right.

    Cho x = 7 \Rightarrow \left\{
\begin{matrix}
y + z = - 4 \\
3y + 4z = - 13 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
y = - 3 \\
z = - 1 \\
\end{matrix} \right.\  \Rightarrow M(7; - 3; - 1).

    Cho x = 6 \Rightarrow \left\{
\begin{matrix}
y + z = - 3 \\
3y + 4z = - 11 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
y = - 1 \\
z = - 2 \\
\end{matrix} \right.\  \Rightarrow N(6; - 1; - 2).

    Lúc đó mặt phẳng (\alpha) chứa 3 điểm A,N,M \Rightarrow (\alpha):7x + 8y + 9z
- 16 = 0.

  • Câu 10: Thông hiểu
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox,Oy,Oz lần lượt tại các điểm A,B,C không trùng với gốc tọa độ O sao cho M là trực tâm tam giác ABC. Viết phương trình mặt phẳng nào song song với mặt phẳng (P)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox,Oy,Oz lần lượt tại các điểm A,B,C không trùng với gốc tọa độ O sao cho M là trực tâm tam giác ABC. Viết phương trình mặt phẳng nào song song với mặt phẳng (P)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Vận dụng
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, cho mặt phẳng (\alpha):x - y + z - 3 = 0. Viết phương trình mặt phẳng (\beta) sao cho phép đối xứng qua mặt phẳng (Oxy) biến mặt phẳng (\alpha) thành mặt phẳng (\beta).

    Hướng dẫn:

    Tọa độ giao điểm của mặt phẳng (α) với các trục tọa độ là A(3;0;0),B(0; - 3;0),C(0;0;3).

    Ta có A; B ∈ (Oxy)C ∈ Oz.

    Kí hiệu Đ(Oxy) là phép đối xứng qua mặt phẳng Oxy.

    Ta có Đ(Oxy):(\alpha) ightarrow (\beta)
\Rightarrow Đ(Oxy):(A;B;C) ightarrow (A;B;C'), (ảnh của A, B trùng với chính nó vì A,B \in
(Oxy)).

    Do C’ đối xứng với C(0;0;3) qua mặt phẳng Oxy, suy ra C'(0;0; -
3)

    Từ đó suy ra mặt phẳng (β) có phương trình theo đoạn chắn là:

    \frac{x}{3} + \frac{y}{- 3} + \frac{z}{-
3} = 1 \Leftrightarrow (\beta):x - y - z - 3 = 0

  • Câu 12: Nhận biết
    Chọn khẳng định sai

    Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Ta có: \left| \left\lbrack
\overrightarrow{u};\overrightarrow{v} ightbrack ight| = \left|
\overrightarrow{u} ight|.\left| \overrightarrow{v} ight|.sin\left(
\overrightarrow{u};\overrightarrow{v} ight)

    Vậy khẳng định sai là: \left|\left\lbrack \overrightarrow{u};\overrightarrow{v} ightbrack ight|= \left| \overrightarrow{u} ight|.\left| \overrightarrow{v}ight|.\cos\left( \overrightarrow{u};\overrightarrow{v}ight).

  • Câu 13: Thông hiểu
    Tìm phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz; cho điểm A(1;1;3),B(1;3;2),C( - 1;2;3). Viết phương trình mặt phẳng (ABC)?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (0;2; - 1) \\
\overrightarrow{AC} = ( - 2;1;0) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
(1;2;4)

    Vậy (ABC):x - 1 + 2(y - 1) + 4(z - 3) =
0

    \Leftrightarrow x + 2y + 4z - 15 =
0

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, mặt phẳng chứa trục Ox và đi qua điểm A(1;1; - 1) có phương trình là:

    Hướng dẫn:

    Mặt phẳng chứa trục Ox có dạng By + Cz = 0;\left( B^{2} + C^{2} eq 0
ight)

    Mặt phẳng đi qua điểm A(1;1; -
1) nên B - C = 0 \Leftrightarrow B
= C

    Do đó chọn B = C = 1 suy ra phương trình mặt phẳng cần tìm là y + z =
0.

  • Câu 15: Thông hiểu
    Tìm các giá trị thực của tham số m và n

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):3x + (m - 1)y + 4z - 2 = 0, (\beta):nx + (m + 2)y + 2z + 4 = 0. Với giá trị thực của m,n bằng bao nhiêu để (\alpha) song song (\beta)

    Hướng dẫn:

    Để (\alpha) song song (\beta) \Rightarrow \frac{3}{n} = \frac{m - 1}{m +
2} = \frac{4}{2} \neq \frac{4}{- 2}

    \Leftrightarrow m = - 3;n =
6.

    Vậy m = - 3;n = 6.

  • Câu 16: Nhận biết
    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian Oxyz, tính khoảng cách từ điểm M(1;2; - 3) đến mặt phẳng (P):x + 2y - 2z - 2 =
0?

    Hướng dẫn:

    Khoảng cách từ điểm M đến mặt phẳng (P):x + 2y - 2z - 2 = 0 là:

    d\left( M;(P) ight) = \frac{\left| 1 +
2.2 - 2( - 3) - 2 ight|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}} =
3

  • Câu 17: Thông hiểu
    PT Mặt phẳng trung trực

    Viết phương trình tổng quát của mặt phẳng trung trực (P) của đoạn AB với A\left( {\,1,\,\,4,\,\,3\,} ight);\,\,B\left( {\,3,\,\, - 6,\,\,5\,} ight).

    Hướng dẫn:

    Vì I là trung điểm của đoạn AB nên ta có tọa độ điểm I là: I\left( {2, - 1,4} ight)

    Mặt khác, ta lại có (P) là mặt phẳng trung trực của đoạn AB nên (P) nhận \vec{AB} làm 1 VTPT. Ta có VTPT của \left( P ight):\,\,\overrightarrow {AB}  = 2\left( {1, - 5,1} ight)

    \Rightarrow \left( P ight):\left( {x - 2} ight)1 + \left( {y + 1} ight)\left( { - 5} ight) + \left( {z - 4} ight).1 = 0

    \Leftrightarrow x - 5y + z - 11 = 0

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(2; - 1;1),\ B(1;0;4)C(0; - 2; - 1). Phương trình mặt phẳng qua A và vuông góc với đường thẳng BC là:

    Hướng dẫn:

    Ta có: \overrightarrow{CB}(1;2;5).

    Mặt phẳng qua A và vuông góc với đường thẳng BCcó một VTPT\overrightarrow{CB}(1;2;5)nên có phương trình là: x + 2y + 5z - 5 =
0.

    Vậy x + 2y + 5z - 5 = 0.

  • Câu 19: Thông hiểu
    Chọn phương án thích hợp

    Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng (P) đi qua hai điểm A(1;1;1), B(0;2;2) đồng thời cắt các tia Ox,Oy lần lượt tại hai điểm M,N (không trùng với gốc tọa độO) sao cho OM
= 2ON

    Hướng dẫn:

    Gọi M(a;0;0),N(0;b;0) lần lượt là giao điểm của (P) với các tia Ox,Oy(a,b > 0)

    Do OM = 2ON \Leftrightarrow a = 2b
\Rightarrow \overrightarrow{MN}( - 2b;b;0) = - b(2; - 1;0) .

    Đặt \overrightarrow{u}(2; -
1;0)

    Gọi \overrightarrow{n} là môt vectơ pháp tuyến của mặt phẳng (P)
\Rightarrow \overrightarrow{n} = \left\lbrack
\overrightarrow{u},\overrightarrow{AB} \right\rbrack = ( -
1;2;1)

    Phương trình măt phẳng (P):x - 2y - z + 2
= 0.

  • Câu 20: Thông hiểu
    Xác định số mặt phẳng thỏa mãn yêu cầu

    Trong không gian với hệ trục tọa độ Oxyz, có bao nhiêu mặt phẳng song song với mặt phẳng (P):\ \ x + y + z - 6 =
0 và tiếp xúc với mặt cầu (S):x^{2}
+ y^{2} + z^{2} = 12?

    Hướng dẫn:

    +) Mặt phẳng (Q) song song với mặt phẳng (P) có dạng: x + y + z + D = 0\ \ (D \neq - 6).

    +) Do mặt phẳng (Q)tiếp xúc với mặt cầu (S):x^{2} + y^{2} + z^{2} =
12 nên d(I;(Q)) = R với Ilà tâm cầu, R là bán kính mặt cầu.

    Tìm được D = 6 hoặc D = - 6(loại) Vậy có 1 mặt phẳng thỏa mãn.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo