Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 14 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(2; - 4;1) và chắn trên các trục tọa độ Ox,Oy,Oz theo ba đoạn có độ dài đại số lần lượt là a;b;c. Phương trình tổng quát của mặt phẳng (P) khi a;b;c theo thứ tự tạo thành một cấp số nhân có công bội bằng 2 là:

    Hướng dẫn:

    Do giả thiết suy ra \left\{
\begin{matrix}
a,b,c eq 0\  \\
b = 2a,c = 2b \\
\end{matrix} ight..

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c) khi đó phương trình mặt phẳng\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1.

    Do M thuộc (P) nên \frac{2}{a} -
\frac{4}{b} + \frac{1}{c} = 1 \Leftrightarrow \frac{2}{a} - \frac{4}{2a}
+ \frac{1}{4a} = 1 \Leftrightarrow a = \frac{1}{4}

    Suy ra b = \frac{1}{2};c = 1 do đó phương trình mặt phẳng (P):4x + 2y + z -
1 = 0.

  • Câu 2: Thông hiểu
    Tính diện tích tam giác

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;1;1),B(4;3;2),C(5;2;1). Diện tích của tam giác ABC là:

    Hướng dẫn:

    Ta có: \overrightarrow{AB} =
(3;2;1),\overrightarrow{AC} = (4;1;0)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 1;4; -
5)

    Diện tích tam giác ABC

    S = \frac{1}{2}\left| \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack ight| =
\frac{1}{2}\sqrt{( - 1)^{2} + 4^{2} + ( - 5)^{2}} =
\frac{\sqrt{42}}{2}

  • Câu 3: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;1;1)B(1;2;3). Viết phương trình của mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.

    Hướng dẫn:

    Mặt phẳng (P)đi qua A(0;1;1)và nhận vecto \overrightarrow{AB} = (1;1;2)là vectơ pháp tuyến

    (P):1(x - 0) + 1(y - 1) + 2(z - 1) =
0

    \Leftrightarrow x + y + 2z - 3 =
0.

  • Câu 4: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;0;1),B(3; - 2;0),C(1;2; - 2). Gọi (P) là mặt phẳng đi qua A sao cho tổng khoảng cách từ BC đến (P) lớn nhất, biết rằng (P) không cắt đoạn BC. Khi đó vectơ pháp tuyến của mặt phẳng (P) là:

    Hướng dẫn:

    Kiểm tra \overrightarrow{n} = (2; - 2; -
1): Mặt phẳng (P) có phương trình 2x − 2y − z − 1 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại \overrightarrow{n} = (2; - 2; -
1).

    Kiểm tra \overrightarrow{n} =
(1;0;2): Mặt phẳng (P) có phương trình x+ 2z −3 = 0.

    Thay tọa độ B, C vào (P) ta thấy B ∈ (P) nên loại \overrightarrow{n} = (1;0;2).

    Kiểm tra \overrightarrow{n} = ( - 1;2; -
1): Mặt phẳng (P) có phương trình −x + 2y − z + 2 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại \overrightarrow{n} = ( - 1;2; -
1).

    Kiểm tra v: Mặt phẳng (P) có phương trình x − 2z + 1 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về cùng phía (P) nên chọn \overrightarrow{n} = (1;0; -
2).

  • Câu 5: Nhận biết
    Tính diện tích hình bình hành

    Trong không gian với hệ trục tọa độ Oxyz, cho hình bình hành ABCD. Biết A(2;1; - 3),B(0; - 2;5)C(1;1;3). Diện tích hình bình hành ABCD là:

    Hướng dẫn:

    Ta có: \overrightarrow{AB} = ( - 2; -
3;8),\overrightarrow{AC} = ( - 1;0;6)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 18;4; -
3)

    Suy ra diện tích ABCD là:

    S_{ABCD} = \left| \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack ight| =
\sqrt{349}

  • Câu 6: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, (\alpha)là mặt phẳng đi qua điểm A(2; - 1;5) và vuông góc với hai mặt phẳng (P):3x - 2y + z + 7 = 0(Q):5x - 4y + 3z + 1 = 0. Phương trình mặt phẳng (\alpha) là:

    Hướng dẫn:

    Mặt phẳng (P) có một VTPT\overrightarrow{n_{P}} = (3; - 2;1)

    Mặt phẳng (Q) có một VTPT\overrightarrow{n_{Q}} = (5; - 4;3)

    Mặt phẳng (\alpha)vuông góc với 2 mặt phẳng (P):3x - 2y + z + 7 = 0,(Q):5x - 4y + 3z + 1 = 0 nên có một VTPT\overrightarrow{n_{P}} =
\left\lbrack \overrightarrow{n_{P}},\overrightarrow{n_{Q}} \right\rbrack
= ( - 2; - 4; - 2).

    Phương trình mặt phẳng (\alpha) là: x + 2y + z - 5 = 0

  • Câu 7: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian Oxyz, cho bốn điểm A( - 1;3;1),B(1; - 1;2),C(2;1;3),D(0;1;
- 1). Mặt phẳng (P) chứa AB và song song với CD có phương trình là:

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 4;1) \\
\overrightarrow{CD} = ( - 2;0; - 4) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{CD} ightbrack = (8;3; -
4).

    Mặt phẳng (P) đi qua A( -
1;3;1), nhận \overrightarrow{n} =
\left\lbrack \overrightarrow{AB};\overrightarrow{CD} ightbrack =
(8;3; - 4) là vectơ pháp tuyến, có phương trình là

    \ 8(x + 1) + 3(y - 3) - 4(z - 1) =
0

    \Leftrightarrow 8x + 3y - 4z + 3 =
0

    (Thỏa mãn song song CD nên thỏa mãn đề bài).

  • Câu 8: Thông hiểu
    Viết phương trình mặt phẳng (R)

    Trong không gian với hệ tọa độ Oxyz cho điểm A(1;1;1) và hai mặt phẳng (Q):y = 0,(P):2x - y + 3z - 1 = 0. Viết phương trình mặt phẳng (R) chứa A, vuông góc với cả hai mặt phẳng (Q),(P)?

    Hướng dẫn:

    Gọi \left\{ \begin{matrix}
\overrightarrow{p} = (2; - 1;3) \\
\overrightarrow{q} = (0;1;0) \\
\end{matrix} ight. lần lượt là vectơ pháp tuyến của mặt phẳng (P)(Q).

    Khi đó mặt phẳng (R) nhận vectơ \overrightarrow{\omega} = - \left\lbrack
\overrightarrow{p};\overrightarrow{q} ightbrack = (3;0; -
2) làm một vectơ pháp tuyến.

    Do đó (R) có phương trình 3x - 2z - 1 = 0.

  • Câu 9: Vận dụng
    Xác định số mặt phẳng thỏa mãn yêu cầu

    Trong không gian với hệ tọa độ Oxyz có bao nhiêu mặt phẳng song song với mặt phẳng (Q):x + y + z + 3 = 0, cách điểm M(3;2;1) một khoảng bằng 3\sqrt{3} biết rằng tồn tại một điểm X(a;b;c) trên mặt phẳng đó thỏa mãn a + b + c < - 2?

    Hướng dẫn:

    Mặt phẳng song song với (Q) có dạng (P):x
+ y + z + m = 0,(m eq 3)

    d\left( M,(P) ight) = \frac{|3 + 2 + 1
+ m|}{\sqrt{3}} = 3\sqrt{3} \Leftrightarrow \left\lbrack \begin{matrix}
m = 3(ktm) \\
m = - 15 \\
\end{matrix} ight.

    Với m = −15 thì với mọi X(a;b;c) \in
(P) ta có a + b + c - 15 = 0
\Leftrightarrow a + b + c = 15 > - 2

    Do đó không có mặt phẳng nào thỏa mãn đề bài

  • Câu 10: Thông hiểu
    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, gọi (\alpha)là mặt phẳng song song với mặt phẳng (\beta):2x - 4y + 4z + 3 = 0 và cách điểm A(2; - 3;4) một khoảng k = 3. Phương trình của mặt phẳng (\alpha) là:

    Hướng dẫn:

    (\alpha)//(\beta) \Rightarrow
(\alpha):2x - 4y + 4z + m = 0(m \neq 3)

    Giả thiết có d\left( A,(\alpha) \right) =
3 \Leftrightarrow \frac{|32 + m|}{6} = 3

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 14 \\
m = - 50 \\
\end{matrix} \right.

    Vậy (\alpha):x - 2y + 2z - 7 =
0, (\alpha):x - 2y + 2z - 25 =
0

  • Câu 11: Thông hiểu
    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1; - 2;1), B( - 1;3;3), C(2; - 4;2). Một vectơ pháp tuyến \overrightarrow{n} của mặt phẳng (ABC) là:

    Hướng dẫn:

    Phưowng pháp tự luận

    Ta có \overrightarrow{AB} = ( -
2;5;2), \overrightarrow{AC} = (1; -
2;1)

    \Rightarrow \overrightarrow{n} =
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} \right\rbrack =
(9;4; - 1).

    Phương pháp trắc nghiệm

    Sử dụng MTBT tính tích có hướng.

    \overrightarrow{AB} = ( -
2;5;2), \overrightarrow{AC} = (1; -
2;1).

    Chuyển sang chế độ Vector: Mode 8.

    Ấn tiếp 1 – 1: Nhập tọa độ \overrightarrow{AB} vào vector A.

    Sau đó ấn AC. Shift – 5 – 1 – 2 – 1 Nhập tọa độ \overrightarrow{AC} vào vector B.

    Sau đó ấn AC.

    Để nhân \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} \right\rbrack ấn Shift – 5 –3 – X Shift - 5 – 4 - =

  • Câu 12: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có điểm A trùng với gốc tọa độ O, B(a;0;0),D(0;a;0), A'(0;0;b),(a > 0,b > 0). Gọi M là trung điểm của cạnh CC'. Giá trị của tỉ số \frac{a}{b} để hai mặt phẳng (A’BD)(MBD) vuông góc với nhau bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có điểm A trùng với gốc tọa độ O, B(a;0;0),D(0;a;0), A'(0;0;b),(a > 0,b > 0). Gọi M là trung điểm của cạnh CC'. Giá trị của tỉ số \frac{a}{b} để hai mặt phẳng (A’BD)(MBD) vuông góc với nhau bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Thông hiểu
    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm M(1;0;0),N(0; - 2;0),P(0;0;1). Tính khoảng cách h từ gốc toạ độ O đến mặt phẳng (MNP)?

    Hướng dẫn:

    Phương trình tổng quát của mặt phẳng (MNP) có dạng:

    \frac{x}{1} + \frac{y}{- 2} +
\frac{z}{1} = 1 \Leftrightarrow 2x - y + 2z - 2 = 0

    Khoảng cách từ gốc tọa độ (0;0;0) đến (MNP) là: h =
\frac{| - 2|}{\sqrt{4 + 1 + 4}} = \frac{2}{3}

  • Câu 14: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hai mặt phẳng (P):2x - y + 2z - 3 =
0(Q):x + my + z - 1 =
0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau.

    Đáp án: 4

    Đáp án là:

    Cho hai mặt phẳng (P):2x - y + 2z - 3 =
0(Q):x + my + z - 1 =
0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau.

    Đáp án: 4

    Ta có: \overrightarrow{n_{P}} = (2; -1;2);\overrightarrow{n_{Q}} = (1;m;1)

    Để hai mặt phẳng (P)(Q)vuông góc với nhau thì \overrightarrow{n_{P}}\bot\overrightarrow{n_{Q}}.

    \Leftrightarrow 2.1 - 1.m + 2.1 = 0
\Leftrightarrow m = 4.

  • Câu 15: Nhận biết
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;3;1),B(0;1;2). Phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB là:

    Hướng dẫn:

    Ta có: \overrightarrow{AB} = ( - 2; -
2;1) là vectơ pháp tuyến của mặt phẳng (P)

    Phương trình mặt phẳng (P) là:

    - 2(x - 2) - 2(y - 3) + (z - 1) =
0

    \Leftrightarrow (P):2x + 2y - z - 9 =
0

  • Câu 16: Nhận biết
    Tìm mặt phẳng (P)

    Trong không gian Oxyz, hãy viết phương trình của mặt phẳng (P) đi qua điểm M(0; - 1;0) và vuông góc với đường thẳng OM.

    Hướng dẫn:

    Mặt phẳng (P) đi qua điểm M(0; -
1;0) và có một véc-tơ pháp tuyến là \overrightarrow{OM} = (0; - 1;0) nên có phương là:

    0(y - 0) + ( - 1)(y + 1) + 0(z - 0) = 0
\Leftrightarrow y + 1 = 0.

  • Câu 17: Thông hiểu
    Tính giá trị biểu thức T

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Điểm M(a;b;c) nằm trên mặt phẳng (P) thỏa mãn MA = MB = MC. Tính T = a + 2b + 3c?

    Hướng dẫn:

    Ta có M(a; b; c) ∈ (P) ⇔ a + b + c − 2 = 0 (1)

    MA^2 = (a − 2)^2 + (b − 0)^2 + (c − 1)^2 = a ^2 + b^ 2 + c^ 2 − 4a − 2c + 5

    MB^2 = (a − 1)^2 + b^ 2 + c ^2 = a^ 2 + b^ 2 + c^ 2 − 2a + 1

    MC^2 = (a − 1)^2 + (b − 1)^2 + (c − 1)^2 = a ^2 + b ^2 + c ^2 − 2a − 2b − 2c + 3

    Với MA = MB, ta có a + c − 2 = 0 (2)

    Với MA = MC, ta có a − b − 1 = 0 (3)

    Từ (1); (2); (3) ta có hệ phương trình:

    \left\{ \begin{matrix}
a + b + c = 2 \\
a + c = 2 \\
a - b = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 18: Thông hiểu
    Chọn kết quả thích hợp

    Trong không gian với hệ trục toạ độ Oxyz,cho 2 đường thẳng d_{1}:\frac{x}{2} = \frac{y - 1}{- 1} =
\frac{z}{1}d_{2}:\frac{x - 1}{1} = \frac{y}{2} = \frac{z +
1}{1} . Viết phương trình mặt phẳng (\alpha) vuông góc với d_{1},cắt Oz tại A và cắt d_{2} tại B (có tọa nguyên) sao cho AB = 3.

    Hướng dẫn:

    Do mặt phẳng (\alpha) vuông góc với d_{1} \Rightarrow 2x - y + z + m =
0.

    Mặt phẳng (\alpha) cắt Oz tại A(0;0;
- m) , cắt d_{2} tại B\left( {m + 1,2m,m - 1} \right)

     \Rightarrow
\overrightarrow{AB} = (m + 1,2m,2m - 1) \Rightarrow \sqrt{9m^{2} - 2m +
2} = 3

    \Leftrightarrow 9m^{2} - 2m - 7 = 0
\Leftrightarrow m = 1,m = - \frac{7}{9}.

    Vậy mặt phẳng (\alpha):2x - y + z + 1 =
0.

  • Câu 19: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(5;1;3),B(1;2;6),C(5;0;4),D(4;0;6). Viết phương trình mặt phẳng qua D và song song với mặt phẳng (ABC).

    Hướng dẫn:

    Phương pháp tự luận

    +)\overrightarrow{AB} = ( - 4;1;3),\ \
\overrightarrow{AC} = (0; - 1;1) \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} \right\rbrack =
(4;4;4).

    +) Mặt phẳng đi qua Dcó VTPT \overrightarrow{n} = (1;1;1)có phương trình: x + y + z - 10 =
0.

    +) Thay tọa độ điểm A vào phương trình mặt phẳng thấy không thỏa mãn.

    Vậy phương trình mặt phẳng thỏa mãn yêu cầu bài toán là: x + y + z - 10 = 0.

    Phương pháp trắc nghiệm

    Gọi phương trình mặt phẳng(ABC) có dạng Ax + By + Cz + D = 0.

    Sử dụng MTBT giải hệ bậc nhất 3 ẩn, nhập tọa độ 3 điểmA,B,Cvào hệ, chọn D = 1 ta được A = \frac{1}{9},B = \frac{1}{9},C =
\frac{1}{9}. (Trong trường hợp chọn D = 1 vô nghiệm ta chuyển sang chọn D = 0).

    Suy ra mặt phẳng(ABC) có VTPT \overrightarrow{n} = (1;1;1)

    Mặt phẳng đi qua Dcó VTPT \overrightarrow{n} = (1;1;1)có phương trình: x + y + z - 10 = 0.

    Thay tọa độ điểm A vào phương trình mặt phẳng thấy không thỏa mãn.

  • Câu 20: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm E(1;2;3) và song song với mặt phẳng (Oxy)?

    Hướng dẫn:

    Mặt phẳng (Oxy) có phương trình là z = 0 nên có một vectơ pháp tuyến là \overrightarrow{k} =
(0;0;1).

    Phương trình của mặt phẳng cần tìm có dạng

    0(x - 1) + 0(y - 2) + 1(z - 3) = 0
\Leftrightarrow z = 3.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo