Trong không gian cho mặt phẳng
. Điểm nào sau đây nằm trên mặt phẳng
?
Ta thấy tọa độ điểm thỏa mãn phương trình mặt phẳng
nên điểm
nằm trên
.
Trong không gian cho mặt phẳng
. Điểm nào sau đây nằm trên mặt phẳng
?
Ta thấy tọa độ điểm thỏa mãn phương trình mặt phẳng
nên điểm
nằm trên
.
Trong không gian , cho điểm
và mặt phẳng
. Mặt phẳng đi qua
và song song với
có phương trình là:
Mặt phẳng cần tìm song song với (P) nên có dạng:
Do mặt phẳng qua nên ta có
Vậy phương trình mặt phẳng cần tìm là .
Viết phương trình tổng quát của mặt phẳng qua hai điểm
và song song với trục
Vì Vecto chỉ phương của (P) là:
Theo đề bài, ta có vecto chỉ phương thứ hai của (P) là:
Từ 2 VTCP, ta suy ra được VTPT của (P) là tích có hướng của 2 VTCT
Mp (P) đi qua và nhận vecto
làm 1 VTPT có phương trình là:
Trong không gian , viết phương trình mặt phẳng
chứa
và đi qua điểm
?
Mặt phẳng có cặp véc-tơ chỉ phương là
Suy ra mặt phẳng có một véc-tơ pháp tuyến là
.
Mặt phẳng đi qua
có vectơ pháp tuyến (4; 3; 0).
Vậy mặt phẳng có phương trình tổng quát là
.
Cho tứ giác ABCD có . Viết phương trình tổng quát của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD có tỉ số thể tích bằng
.
Tỷ số thể tích hai khối AMNE và ABCD:
M chia cạnh BA theo tỷ số -2
Vecto pháp tuyến của
Trong không gian với hệ trục tọa độ , có bao nhiêu mặt phẳng song song với mặt phẳng
và tiếp xúc với mặt cầu
?
+) Mặt phẳng song song với mặt phẳng
có dạng:
.
+) Do mặt phẳng tiếp xúc với mặt cầu
nên
với
là tâm cầu,
là bán kính mặt cầu.
Tìm được hoặc
(loại) Vậy có 1 mặt phẳng thỏa mãn.
Trong không gian với hệ tọa độ , cho hai điểm
và
và mặt phẳng
. Viết phương trình mặt phẳng
qua
và vuông góc với
?
Mặt phẳng có một vectơ pháp tuyến là
Mặt phẳng có một vectơ pháp tuyến là
Từ đó, phương trình mặt phẳng là
.
Trong không gian với hệ tọa độ , viết phương trình mặt phẳng đi qua ba điểm
và
.
Ta có:
Mặt phẳng đi qua điểm
và nhận
làm vectơ pháp tuyến có phương trình là:
Trong không gian với hệ tọa độ , mặt phẳng
đi qua
và chứa trục
có phương trình là:
Ta có: (P) có cặp véc-tơ chỉ phương
Khi đó véc-tơ pháp tuyến của (P) là , ta chọn
.
Mặt phẳng (P) đi qua và có véc-tơ pháp tuyến
nên có phương trình
hay
.
Trong không gian với hệ toạ độ , cho mặt phẳng (P) có phương trình
. Mặt phẳng (P) có một vectơ pháp tuyến là:
Mặt phẳng (P) có phương trình có một vectơ pháp tuyến
Trong không gian , cho đường thẳng
đi qua điểm
và có véc-tơ chỉ phương là
. Phương trình nào sau đây không phải là của đường thẳng
?
Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình .
Phương trình tổng quát của mặt phẳng chứa giao tuyến của hai mặt phẳng
và
, chứa điểm
là:
Vì mặt phẳng chứa giao tuyến của hai mặt phẳng
và
nên thuộc chùm mặt phẳng
Mặt khác, ta có
Thế vào .
Một công trình đang xây dựng được gắn hệ trục (đơn vị trên mỗi trục tọa độ là mét). Ba bức tường
(như hình vẽ) của tòa nhà lần lượt có phương trình:
,
,
.

Tính khoảng giữa hai bức tường và
của tòa nhà.
Trước hết thực hiện kiểm tra tính song song hoặc vuông góc giữa các bức tường của tòa nhà.
có vectơ pháp tuyến là
có vectơ pháp tuyến là
. có vectơ pháp tuyến là
Ta có nên hai bức tường
và
song song nhau
nên bức tường
vuông góc với hai bức tường
và
,
Chọn điểm
Do hai bức tường và
song song nhau nên:
Trong không gian với hệ trục tọa độ , cho bốn điểm
. Gọi
là chân đường cao vẽ từ
của tứ diện
. Lập phương trình mặt phẳng đi qua ba điểm
.
Phương trình mặt phẳng đi qua ba điểm là
Phương trình mặt phẳng
H là chân đường cao vẽ từ A của tứ diện S.ABC nên H là hình chiếu vuông góc của S lên mặt phẳng
Mặt phẳng qua
với VTPT
.
Phương trình mặt phẳng
.
Cho hai mặt phẳng và
. Với
cho biết
và cặp vectơ chỉ phương
. Với
cho PTTQ
. Phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của
và
, qua điểm
là:
Trước tiên, ta cần đưa phương trình về dạng tổng quát.
Theo đề bài, ta có và cặp vectơ chỉ phương
nên vecto pháp tuyến của mp
là tích có hướng của 2 vecto chỉ phương.
Ta có .
Chọn làm vectơ pháp tuyến cho
thì phương trình tổng quát của
có dạng
.
Vậy phương trình
Để tìm phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của và
ta xét chùm mặt phẳng :
Mặt khác, ta có
Thế vào (*) ta được:
Trong không gian với hệ trục tọa độ . Cho hai mặt phẳng
,
. Khoảng cách giữa hai mặt phẳng
là bao nhiêu?
Lấy thuộc mặt phẳng
.
Ta có .
Vậy .
Cho và mặt phẳng
. Mặt phẳng
song song với mặt phẳng
và
cách điểm
một khoảng bằng
. Phương trình mặt phẳng
là:
Vì
Mà
Vậy .
Trong không gian với hệ tọa độ , cho ba điểm
. Điểm
thuộc mặt phẳng
sao cho
đạt giá trị nhỏ nhất là:
Gọi G là trọng tâm của tam giác ABC.
Ta có:
Dễ thấy nhỏ nhất khi MG nhỏ nhất, suy ra M là hình chiếu vuông góc của G trên mặt phẳng (Oxy).
Dễ thấy .
Trong không gian , cho mặt phẳng
, mặt phẳng
chứa trục
và đi qua điểm
. Tìm tham số m để hai mặt phẳng
và
vuông góc với nhau?
Ta có
Mặt phẳng chứa trục
và đi qua điểm
⇒ (Q) có vectơ pháp tuyến
Mặt phẳng (P) có véc-tơ pháp tuyến
Để hai mặt phẳng và
vuông góc với nhau thì
Trong không gian , tìm tập hợp các điểm cách đều cặp mặt phẳng sau đây:
.
Gọi điểm
Mặt phẳng cách đều hai mặt phẳng trên có dạng:
Để mp (γ) cách đều hai mp trên thì
hoặc
Mặt khác điểm hai điểm A; B phải nằm về hai phía của mp (γ).
Với ta có
nên A; B cùng phía.
Với ta có
nên A; B khác phía.
Vậy phương trình mặt phẳng cần tìm là .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: