Cho tam giác ABC với .
Viết phương trình tổng quát của mặt phẳng vuông góc với mặt phẳng
song song đường cao AH của tam giác ABC.
Theo đề bài, ta có: song song đường cao
Cho tam giác ABC với .
Viết phương trình tổng quát của mặt phẳng vuông góc với mặt phẳng
song song đường cao AH của tam giác ABC.
Theo đề bài, ta có: song song đường cao
Trong không gian với hệ trục tọa độ , cho
và mặt phẳng
. Hình chiếu vuông góc của
lên mặt phẳng
là
Đường thẳng đi qua
và vuông góc với mặt phẳng
có phương trình
.
Gọi
Ba mặt phẳng cắt nhau tại điểm A.Tọa độ của A là:
Tọa độ của A là nghiệm của hệ phương trình :
Giải (1),(2) tính x,y theo z được
Thế vào phương trình (3) được , từ đó có
.
Vậy .
Trong không gian với hệ trục tọa độ , cho điểm
Gọi
là mặt phẳng chứa trục
và cách
một khoảng lớn nhất. Phương trình của
là:
Hình vẽ minh họa

+) Gọi lần lượt là hình chiếu vuông góc của
trên mặt phẳng
và trục
.
Ta có :
Vậy khoảng cách từ đến mặt phẳng
lớn nhất khi mặt phẳng
qua
và vuông góc với
.
Phương trình mặt phẳng:
Trong không gian với hệ tọa độ , cho mặt phẳng
và hai điểm
. Gọi
là mặt phẳng qua
và vuông góc với
. Phương trình nào là phương trình của mặt phẳng
?
Vì là mặt phẳng đi qua A, B và vuông góc với
nên mặt phẳng
nhận
làm hai vectơ chỉ phương.
Vectơ pháp tuyến của mặt phẳng là
Phương trình mặt phẳng
Trong không gian với hệ toạ độ , phương trình nào sau đây là phương trình tổng quát của mặt phẳng
Phương trình tổng quát của mặt phẳng là : .
Trong không gian với hệ trục tọa độ , có bao nhiêu mặt phẳng song song với mặt phẳng
và tiếp xúc với mặt cầu
?
+) Mặt phẳng song song với mặt phẳng
có dạng:
.
+) Do mặt phẳng tiếp xúc với mặt cầu
nên
với
là tâm cầu,
là bán kính mặt cầu.
Tìm được hoặc
(loại) Vậy có 1 mặt phẳng thỏa mãn.
Trong không gian với hệ tọa độ , cho hai điểm
. Phương trình mặt phẳng trung trực của đoạn thẳng
là:
Gọi (P) là mặt phẳng trung trực của đoạn thẳng AB.
Ta có
Suy ra một vectơ pháp tuyến của là
Hơn nữa, trung điểm của AB là I(2; 4; −3) thuộc mặt phẳng (P) nên
.
Trong không gian với hệ trục toạ độ ,cho
điểm
,
,
và mặt phẳng
. Lập phương trình mặt phẳng
đi qua
, vuông góc với mặt phẳng
cắt đường thẳng
tại
sao cho
biết tọa độ điểm
là số nguyên
Do thẳng hàng và
Vì tọa độ điểm là số nguyên nên
Lúc đó mặt phẳng đi qua
và vuông góc với mặt phẳng
.
Trong không gian với hệ toạ độ . Mặt phẳng (P) đi qua các điểm
,
,
có phương trình là:
Phương pháp tự luận
Theo công thức phương trình mặt chắn ta có:
.
Vậy .
Phương pháp trắc nghiệm
Nhập phương trình mặt phẳng (P) vào máy tính, sau đó dùng hàm CALC và nhập tọa độ của các điểm vào. Nếu tất cả các điểm đều cho kết quả bằng 0 thì đó đó là mặt phẳng cần tìm. Chỉ cần 1 điểm làm cho phương trình khác 0 đều loại.
Trong không gian với hệ trục toạ độ , cho điểm
và hai mặt phẳng
và
. Tìm khẳng định đúng?
Có ,
Và
Trong không gian với hệ toạ độ ,cho hai đường thẳng
lần lượt có phương trình
,
. Phương trình mặt phẳng
cách đều hai đường thẳng
là:
Ta có đi qua
và có
,
đi qua
và có
;
nên
chéo nhau.
Do cách đều
nên
song song với
có dạng
Theo giả thiết thì
Trong không gian , cho hình chóp
có đáy là hình vuông và
vuông góc với đáy. Biết
, lập phương trình mặt phẳng
.
Dễ dàng chứng minh được là mặt phẳng trung trực của
.
Chọn vectơ pháp tuyến của mặt phẳng là
.
Mặt phẳng đi qua trung điểm
của
và có vtcp
nên có phương trình:
.
Trong không gian với hệ tọa độ , cho tam giác
có
. Độ dài đường cao của tam giác
kẻ từ
là:
Ta có:
Mà
Trong không gian , tìm tập hợp các điểm cách đều cặp mặt phẳng sau đây:
.
Gọi điểm
Mặt phẳng cách đều hai mặt phẳng trên có dạng:
Để mp (γ) cách đều hai mp trên thì
hoặc
Mặt khác điểm hai điểm A; B phải nằm về hai phía của mp (γ).
Với ta có
nên A; B cùng phía.
Với ta có
nên A; B khác phía.
Vậy phương trình mặt phẳng cần tìm là .
Trong không gian , mặt phẳng
có một vectơ pháp tuyến là:
Mặt phẳng có một vectơ pháp tuyến là:
.
Trong không gian với hệ trục tọa độ , cho mặt phẳng
. Gọi mặt phẳng
là mặt phẳng đối xứng của mặt phẳng
qua trục tung. Khi đó phương trình mặt phẳng
là?
Gọi là điểm bất kỳ thuộc mặt phẳng
.
Điểm là điểm đối xứng của
qua trục tung
là mặt phẳng đi qua
và là mặt phẳng đối xứng của
Vậy .
Chọn khẳng định đúng
Câu đúng là: Nếu hai mặt phẳng song song thì hai vectơ pháp tuyến tương ứng cùng phương
Trong không gian với hệ trục tọa độ , cho hai mặt phẳng
và
. Mặt phẳng nào sau đây cách đều hai mặt phẳng (P) và (Q)?
Gọi (R) là mặt phẳng cách đều hai mặt phẳng (P) và (Q) thì
Do đó (R) có dạng .
Gọi .
Khi đó trung điểm M của đoạn AB nằm trên (R), tức .
Suy ra .
Vậy hay
.
Trong không gian với hệ trục tọa độ , cho hai mặt phẳng
. Viết phương trình của mặt phẳng
song song với trục
và chứa giao tuyến của
và
?
Mặt phẳng chứa giao tuyến của hai mặt phẳng
và
nên có dạng:
Mặt phẳng song song với trục
nên
.
Chọn n = 1 ta có
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: