Trong không gian với hệ tọa độ cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các trục tọa độ tại
sao cho
là trực tâm tam giác
. Hãy viết trình mặt phẳng
.
Hình vẽ minh họa
Ta có:
Chứng minh tương tự BC ⊥ OH.
Do đó
Suy ra .
Trong không gian với hệ tọa độ cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các trục tọa độ tại
sao cho
là trực tâm tam giác
. Hãy viết trình mặt phẳng
.
Hình vẽ minh họa
Ta có:
Chứng minh tương tự BC ⊥ OH.
Do đó
Suy ra .
Trong không gian với hệ tọa độ , cho ba điểm
. Phương trình mặt phẳng
đi qua ba điểm
là:
Phương trình mặt phẳng theo đoạn chắn .
Ta có
Trong không gian với hệ trục tọa độ , cho ba điểm
. Viết phương trình mặt phẳng đi qua ba điểm
.
Ta có:
Theo giả thiết mặt phẳng cần tìm qua A(2; 0; −1) và nhận làm vectơ pháp tuyến.
Vậy phương trình mặt phẳng qua là
Trong không gian với hệ trục tọa độ . Cho hai mặt phẳng
,
. Khoảng cách giữa hai mặt phẳng
là bao nhiêu?
Lấy thuộc mặt phẳng
.
Ta có .
Vậy .
Trong không gian , phương trình của mặt phẳng
đi qua điểm
, đồng thời vuông góc với hai mặt phẳng
là:
Ta có lần lượt là vectơ pháp tuyến của các mặt phẳng
.
Do mặt phẳng vuông góc với hai mặt phẳng
nên
là một vectơ pháp tuyến của
.
Từ đó suy ra mặt phẳng có phương trình
.
Trong không gian với hệ toạ độ , cho ba điểm
,
,
. Phương trình mặt phẳng
là:
Phương pháp tự luận
,
qua
và có vectơ pháp tuyến
Phương pháp trắc nghiệm
Sử dụng MTBT tính tích có hướng.
Hoặc thay tọa độ cả 3 điểm A, B, C vào mặt phẳng xem có thỏa hay không?
Trong không gian với hệ tọa độ , cho ba điểm
và mặt phẳng
. Điểm
nằm trên mặt phẳng
thỏa mãn
. Tính
?
Ta có
Với , ta có
Với , ta có
Từ (1); (2); (3) ta có hệ phương trình:
Trong không gian , cho điểm
và mặt phẳng
. Mặt phẳng đi qua
và song song với
có phương trình là:
Mặt phẳng cần tìm song song với (P) nên có dạng:
Do mặt phẳng qua nên ta có
Vậy phương trình mặt phẳng cần tìm là .
Trong không gian , hãy tính
và
lần lượt là khoảng cách từ điểm
đến mặt phẳng
và mặt phẳng
?
Do mặt phẳng có phương trình y = 0 nên
Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên
Trong không gian với hệ tọa độ , cho hai điểm
. Phương trình mặt phẳng trung trực của đoạn thẳng
là:
Gọi (P) là mặt phẳng trung trực của đoạn thẳng AB.
Ta có
Suy ra một vectơ pháp tuyến của là
Hơn nữa, trung điểm của AB là I(2; 4; −3) thuộc mặt phẳng (P) nên
.
Cho tứ diện , có
đôi một vuông góc và
. Gọi
lần lượt là trung điểm của
và
. Gọi
là trọng tâm của tam giác
. Khoảng cách từ
đến mặt phẳng
là:
Chọn hệ trục tọa độ như hình vẽ.

Ta có ,
sao cho
.
Khi đó: là trọng tâm tam giác
nên
là trung điểm
nên
là trung điểm
nên
.
Phương trình mặt phẳng là:
hay
Vậy khoảng cách từ đến mặt phẳng
là:
.
Trong không gian với hệ tọa độ , cho hai điểm
và
. Viết phương trình của mặt phẳng
đi qua
và vuông góc với đường thẳng
.
Mặt phẳng đi qua
và nhận vecto
là vectơ pháp tuyến
.
Trong không gian , mặt phẳng
có phương trình là
Mặt phẳng đi qua điểm
và nhận
là một véc-tơ pháp tuyến nên phương trình của mặt phẳng
là
.
Trong không gian với hệ toạ độ , cho ba điểm
. Phương trình mặt phẳng
đi qua
và cách
một khoảng lớn nhất?
Hình vẽ minh họa

Gọi lần lượt là hình chiếu
của lên mp
và doạn thẳng
Ta có : lớn nhất khi
. Khi đó mặt phẳng
đi qua
và vuông với mặt phẳng
Ta có
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng đi qua điểm
và cắt các trục Ox, Oy, Oz lần lượt tại
,
,
( khác gốc toạ độ
) sao cho
là trực tâm tam giác
. Mặt phẳng
có phương trình là:
Hình vẽ minh họa

Cách 1: Gọi là hình chiếu vuông góc của
trên
,
là hình chiếu vuông góc
trên
.
là trực tâm của tam giác
khi và chỉ khi
Ta có : (1)
Chứng minh tương tự, ta có: (2).
Từ (1) và (2), ta có:
Ta có: .
Mặt phẳng đi qua điểm
và có một VTPT là
nên có phương trình là:
.
Cách 2:
+) Do lần lượt thuộc các trục
nên
(
).
Phương trình đoạn chắn của mặt phẳng là:
.
+) Do là trực tâm tam giác
nên
.
Giải hệ điều kiện trên ta được
Vậy phương trình mặt phẳng: .
Cho hai mặt phẳng .
Gọi là góc nhọn tạo bởi
và
thì giá trị đúng của
là:
Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:
có vectơ pháp tuyến
có vectơ pháp tuyến
Áp dụng công thức tính cosin giữa 2 vecto, ta có:
Cho hai mặt phẳng và
. Với
cho biết
và cặp vectơ chỉ phương
. Với
cho PTTQ
. Phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của
và
, qua điểm
là:
Trước tiên, ta cần đưa phương trình về dạng tổng quát.
Theo đề bài, ta có và cặp vectơ chỉ phương
nên vecto pháp tuyến của mp
là tích có hướng của 2 vecto chỉ phương.
Ta có .
Chọn làm vectơ pháp tuyến cho
thì phương trình tổng quát của
có dạng
.
Vậy phương trình
Để tìm phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của và
ta xét chùm mặt phẳng :
Mặt khác, ta có
Thế vào (*) ta được:
Cho hình chóp có đáy là hình thoi cạnh
,
, mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi
lần lượt là trung điểm các cạnh
và
là giao điểm của
với
. Khoảng cách từ trung điểm
của đoạn thẳng
đến mặt phẳng
bằng bao nhiêu?
Cho hình chóp có đáy là hình thoi cạnh
,
, mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi
lần lượt là trung điểm các cạnh
và
là giao điểm của
với
. Khoảng cách từ trung điểm
của đoạn thẳng
đến mặt phẳng
bằng bao nhiêu?
Trong không gian với hệ tọa độ , cho ba điểm
. Vectơ nào dưới đây là vectơ pháp tuyến của mặt phẳng
?
Ta có:
Vậy là đáp án cần tìm.
Trong không gian , cho mặt phẳng
đi qua điểm
và chắn trên các trục tọa độ
theo ba đoạn có độ dài đại số lần lượt là
. Phương trình tổng quát của mặt phẳng
khi
theo thứ tự tạo thành một cấp số nhân có công bội bằng
là:
Do giả thiết suy ra .
Giả sử khi đó phương trình mặt phẳng
.
Do M thuộc (P) nên
Suy ra do đó phương trình mặt phẳng
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: