Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 14 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz cho điểm H(2;1;1). Gọi (P) là mặt phẳng đi qua H và cắt các trục tọa độ tại A;B;C sao cho H là trực tâm tam giác ABC. Hãy viết trình mặt phẳng (P).

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left| \begin{matrix}
AB\bot OC \\
AB\bot CH \\
\end{matrix} ight.\  \Rightarrow AB\bot OH

    Chứng minh tương tự BC ⊥ OH.

    Do đó OH\bot(ABC) \Rightarrow
\overrightarrow{n_{ABC}} = \overrightarrow{OH} = (2;;1)

    Suy ra (P):2x + y + z - 6 =
0.

  • Câu 2: Thông hiểu
    Viết phương trình mặt phẳng (P)

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;6;0),B(0;0; - 2);C( - 3;0;0). Phương trình mặt phẳng (P) đi qua ba điểm A;B;C là:

    Hướng dẫn:

    Phương trình mặt phẳng theo đoạn chắn \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    Ta có \frac{x}{3} + \frac{y}{- 6} +
\frac{z}{2} = 1

    \Leftrightarrow - 2x + y - 3z =
6

    \Leftrightarrow 2x - y + 3z + 6 =
0

  • Câu 3: Thông hiểu
    Viết phương trình mặt phẳng đi qua ba điểm

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(2;0; - 1),B(1; - 2;3),C(0;1;2). Viết phương trình mặt phẳng đi qua ba điểm A;B;C.

    Hướng dẫn:

    Ta có: \overrightarrow{AB} = ( - 1; -
2;4),\overrightarrow{AC} = ( - 2;1;3)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 1;4; -
5)

    Theo giả thiết mặt phẳng cần tìm qua A(2; 0; −1) và nhận \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = -
5(2;1;1) làm vectơ pháp tuyến.

    Vậy phương trình mặt phẳng qua A;B;C

    2(x - 2) + (y - 0) + (z + 1) =
0

    \Leftrightarrow 2x + y + z - 3 =
0

  • Câu 4: Thông hiểu
    Tính khoảng cách giữa hai mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz. Cho hai mặt phẳng (\alpha):x - 2y + 2z - 3 = 0, (\beta):x - 2y + 2z - 8 = 0. Khoảng cách giữa hai mặt phẳng (\alpha),(\beta) là bao nhiêu?

    Hướng dẫn:

    Lấy M(1,0,1) thuộc mặt phẳng (\alpha).

    Ta có d\left( (\alpha),(\beta) \right) =
d\left( M,(\beta) \right) = \frac{5}{\sqrt{1 + ( - 2)^{2} + 2^{2}}} =
\frac{5}{3}.

    Vậy d\left( (\alpha),(\beta) \right) =
\frac{5}{3}.

  • Câu 5: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1; - 3), đồng thời vuông góc với hai mặt phẳng (Q):x + y + 3z = 0,(R):2x
- y + z = 0 là:

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (1;1;3) \\
\overrightarrow{n_{2}} = (2; - 1;1) \\
\end{matrix} ight. lần lượt là vectơ pháp tuyến của các mặt phẳng (Q),(R).

    Do mặt phẳng (P) vuông góc với hai mặt phẳng (Q),(R) nên \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ightbrack = (4;5; -
3) là một vectơ pháp tuyến của (P).

    Từ đó suy ra mặt phẳng (P) có phương trình 4x + 5y - 3z - 22 =
0.

  • Câu 6: Thông hiểu
    Định phương trình mặt phẳng ABC

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(3; - 2; - 2), B(3;2;0), C(0;2;1). Phương trình mặt phẳng (ABC) là:

    Hướng dẫn:

    Phương pháp tự luận

    \overrightarrow{AB} = (0;4;2), \overrightarrow{AC} = ( -
3;4;3)

    (ABC) qua A(3; - 2; - 2) và có vectơ pháp tuyến \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} \right\rbrack = (4; - 6;12) =
2(2; - 3;6)

    \Rightarrow (ABC):2x - 3y + 6z =
0

    Phương pháp trắc nghiệm

    Sử dụng MTBT tính tích có hướng.

    Hoặc thay tọa độ cả 3 điểm A, B, C vào mặt phẳng xem có thỏa hay không?

  • Câu 7: Thông hiểu
    Tính giá trị biểu thức T

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Điểm M(a;b;c) nằm trên mặt phẳng (P) thỏa mãn MA = MB = MC. Tính T = a + 2b + 3c?

    Hướng dẫn:

    Ta có M(a; b; c) ∈ (P) ⇔ a + b + c − 2 = 0 (1)

    MA^2 = (a − 2)^2 + (b − 0)^2 + (c − 1)^2 = a ^2 + b^ 2 + c^ 2 − 4a − 2c + 5

    MB^2 = (a − 1)^2 + b^ 2 + c ^2 = a^ 2 + b^ 2 + c^ 2 − 2a + 1

    MC^2 = (a − 1)^2 + (b − 1)^2 + (c − 1)^2 = a ^2 + b ^2 + c ^2 − 2a − 2b − 2c + 3

    Với MA = MB, ta có a + c − 2 = 0 (2)

    Với MA = MC, ta có a − b − 1 = 0 (3)

    Từ (1); (2); (3) ta có hệ phương trình:

    \left\{ \begin{matrix}
a + b + c = 2 \\
a + c = 2 \\
a - b = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 8: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm M(1;\ 0;\ 2) và mặt phẳng(P):2x - y + 3z + 5 = 0. Mặt phẳng đi qua M và song song với (P) có phương trình là:

    Hướng dẫn:

    Mặt phẳng cần tìm song song với (P) nên có dạng: 2x - y + 3z + d = 0

    Do mặt phẳng qua M(1;\ 0;\ 2) nên ta có 2.1 - 0 + 3.2 + d = 0 = > d = -
8

    Vậy phương trình mặt phẳng cần tìm là 2x
- y + 3z - 8 = 0.

  • Câu 9: Nhận biết
    Chọn kết luận chính xác

    Trong không gian Oxyz, hãy tính pq lần lượt là khoảng cách từ điểm M(5; - 2;0) đến mặt phẳng (Oxz) và mặt phẳng (P):3x - 4z + 5 = 0?

    Hướng dẫn:

    Do mặt phẳng (Oxz) có phương trình y = 0 nên

    p = d\left( M;(Oxz) ight) = \frac{| -
2|}{\sqrt{0^{2} + 1^{2} + 0^{2}}} = 2

    Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên

    q = d\left( M;(P) ight) = \frac{|3.5 -
4.0 + 5|}{\sqrt{3^{2} + 0^{2} + ( - 4)^{2}}} = 4

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;6; - 7);B(3;2;1). Phương trình mặt phẳng trung trực của đoạn thẳng AB là:

    Hướng dẫn:

    Gọi (P) là mặt phẳng trung trực của đoạn thẳng AB.

    Ta có \overrightarrow{AB} = (2; -
4;8)

    Suy ra một vectơ pháp tuyến của (P)\overrightarrow{n_{(P)}} = (1; - 2;4)

    Hơn nữa, trung điểm của AB là I(2; 4; −3) thuộc mặt phẳng (P) nên

    (P):(x - 2) - 2(y - 4) + 4(z + 3) = 0

    \Leftrightarrow x - 2y + 4z + 18 =
0.

  • Câu 11: Vận dụng
    Tính khoảng cách từ điểm đến mặt phẳng

    Cho tứ diện OABC, có OA,OB,OC đôi một vuông góc và OA = 5,OB = 2,OC = 4. Gọi M,N lần lượt là trung điểm của OBOC. Gọi G là trọng tâm của tam giác ABC. Khoảng cách từ G đến mặt phẳng (AMN) là:

    Hướng dẫn:

    Chọn hệ trục tọa độ Oxyznhư hình vẽ.

    Ta có O(0;0;0), A \in Oz,\ \ B \in Ox,\ \ C \in Oy sao cho AO = 5,\ \ OB = 2,\ \ OC = 4

    \Rightarrow A(0;0;5),\ \ B(2;0;0),\ \
C(0;4;0).

    Khi đó: G là trọng tâm tam giácABC nên G\left( \frac{2}{3};\frac{4}{3};\frac{5}{3}
\right)

    Mlà trung điểm OBnên M(1;0;0)

    Nlà trung điểm OCnên N(0;2;0).

    Phương trình mặt phẳng (AMN) là: \frac{x}{1} + \frac{y}{2} + \frac{z}{5} =
1 hay 10x + 5y + 2z - 10 =
0

    Vậy khoảng cách từ G đến mặt phẳng (AMN) là:

    d\left( G,(AMN) \right) = \dfrac{\left|
\dfrac{20}{3} + \dfrac{20}{3} + \dfrac{10}{3} - 10 \right|}{\sqrt{100 + 25
+ 4}} = \dfrac{20}{3\sqrt{129}}.

  • Câu 12: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;1;1)B(1;2;3). Viết phương trình của mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.

    Hướng dẫn:

    Mặt phẳng (P)đi qua A(0;1;1)và nhận vecto \overrightarrow{AB} = (1;1;2)là vectơ pháp tuyến

    (P):1(x - 0) + 1(y - 1) + 2(z - 1) =
0

    \Leftrightarrow x + y + 2z - 3 =
0.

  • Câu 13: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, mặt phẳng (Oxz) có phương trình là

    Hướng dẫn:

    Mặt phẳng (Oxz) đi qua điểm O(0;0;0) và nhận \overrightarrow{j} = (0;1;0) là một véc-tơ pháp tuyến nên phương trình của mặt phẳng (Oxz)(Oxz).

  • Câu 14: Nhận biết
    Xác định phương trình mặt phẳng (P)

    Trong không gian với hệ toạ độ Oxyz , cho ba điểm A(2;1;3);B(3;0;2);C(0; - 2;1) . Phương trình mặt phẳng (P) đi qua A,B và cách C một khoảng lớn nhất?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi H,K lần lượt là hình chiếu C của lên mp(P) và doạn thẳng AB

    Ta có : CH = d\left( I,(P) \right) \leq
CK \Rightarrow d\left( C,(P) \right) lớn nhất khi H \equiv K. Khi đó mặt phẳng (P) đi qua A,B và vuông với mặt phẳng (ABC)

    Ta có \overrightarrow{n_{p}} =
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} \right\rbrack \land
\overrightarrow{AB} = ( - 9, - 6, - 3)

    \Rightarrow (P):3x + 2y + z - 11 =
0

  • Câu 15: Vận dụng
    Tìm phương trình mặt phẳng thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (\alpha) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại A , B , C ( khác gốc toạ độ O ) sao cho M là trực tâm tam giác ABC . Mặt phẳng (\alpha) có phương trình là:

    Hướng dẫn:

    Hình vẽ minh họa

    Cách 1: Gọi H là hình chiếu vuông góc của Ctrên AB, K là hình chiếu vuông góc B trên AC.M là trực tâm của tam giác ABC khi và chỉ khi M = BK \cap CH

    Ta có : \left. \ \begin{matrix}
AB\bot CH \\
AB\bot CO \\
\end{matrix} \right\} \Rightarrow AB\bot(COH) \Rightarrow AB\bot OM\
(1) (1)

    Chứng minh tương tự, ta có: AC\bot
OM (2).

    Từ (1) và (2), ta có: OM\bot(ABC)

    Ta có: \overrightarrow{OM}(1;2;3).

    Mặt phẳng (\alpha)đi qua điểm M(1;2;3) và có một VTPT\overrightarrow{OM}(1;2;3) nên có phương trình là:

    (x - 1) + 2(y - 2) + 3(z
- 3) = 0 \Leftrightarrow x + 2y + 3z - 14 = 0.

    Cách 2:

    +) Do A,B,C lần lượt thuộc các trục Ox,Oy,Oznên A(a;0;0),B(0;b;0),C(0;0;c)(a,b,c\ \  \neq 0).

    Phương trình đoạn chắn của mặt phẳng (ABC) là: \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    +) Do M là trực tâm tam giác ABC nên \left\{ \begin{matrix}
\overrightarrow{AM}.\overrightarrow{BC} = 0 \\
\overrightarrow{BM}.\overrightarrow{AC} = 0 \\
M \in (ABC) \\
\end{matrix} \right. .

    Giải hệ điều kiện trên ta được a,b,c

    Vậy phương trình mặt phẳng: x + 2y + 3z -
14 = 0.

  • Câu 16: Nhận biết
    Cosin Góc giữa 2 mp

    Cho hai mặt phẳng \left( \alpha  ight):x + 5y - z + 1 = 0,\left( \beta  ight):2x - y + z + 4 = 0.

    Gọi \varphi là góc nhọn tạo bởi (\alpha)(\beta) thì giá trị đúng của cos \varphi là:

    Hướng dẫn:

    Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:

    (\alpha) có vectơ pháp tuyến \overrightarrow a  = \left( {1,5, - 2} ight)

    (\beta) có vectơ pháp tuyến \overrightarrow b  = \left( {2, - 1,1} ight)

    Áp dụng công thức tính cosin giữa 2 vecto, ta có:

    \cos \varphi  = \frac{{\left| {1.2 + 5\left( { - 1} ight) + \left( { - 2} ight).1} ight|}}{{\sqrt {{1^2} + {5^2} + {{\left( { - 2} ight)}^2}} .\sqrt {{2^2} + {{\left( { - 1} ight)}^2} + {1^2}} }} = \frac{{\sqrt 5 }}{6}

  • Câu 17: Thông hiểu
    PT mp chứa giao tuyến

    Cho hai mặt phẳng (\alpha)(\beta) . Với  (\alpha) cho biết A\left( { - 1,2,1} ight) \in \left( \alpha  ight) và cặp vectơ chỉ phương \overrightarrow a  = \left( {2, - 1,3} ight);\overrightarrow b  = \left( { - 3,1, - 2} ight). Với (\beta) cho PTTQ \left( \beta  ight):2x + y - z + 1 = 0. Phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của (\alpha)(\beta) , qua điểm M\left( {3, - 2,1} ight) là:

    Hướng dẫn:

     Trước tiên, ta cần đưa phương trình (\alpha) về dạng tổng quát.

    Theo đề bài, ta có A\left( { - 1,2,1} ight) \in \left( \alpha  ight) và cặp vectơ chỉ phương \overrightarrow a  = \left( {2, - 1,3} ight);\overrightarrow b  = \left( { - 3,1, - 2} ight) nên vecto pháp tuyến của mp (\alpha) là tích có hướng của 2 vecto chỉ phương.

    Ta có \left[ {\overrightarrow a ,\overrightarrow b } ight] = \left( { - 1, - 5, - 1} ight).

    Chọn \overrightarrow n  = \left( {1,5,1} ight) làm vectơ pháp tuyến cho (\alpha) thì phương trình tổng quát của (\alpha) có dạng x + 5y + z + D = 0

    A \in \left( \alpha  ight) \Leftrightarrow  - 1 + 5.2 + 1 + D = 0 \Leftrightarrow D =  - 10.

    Vậy phương trình (\alpha): x + 5y + z - 10 = 0

    Để tìm phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của (\alpha)(\beta) ta xét chùm mặt phẳng :

    \begin{array}{l}m\left( {x + 5y + z - 10} ight) + \left( {2x + y - z + 1} ight) = 0\\ \Leftrightarrow \left( {m + 2} ight)x + \left( {5m + 1} ight)y + \left( {m - 1} ight)z - 10m + 1 = 0\left( * ight)\end{array}

    Mặt khác, ta có  M \in \left( P ight)

    \Leftrightarrow \left( {m + 2} ight).3 + \left( {5m + 1} ight).\left( { - 2} ight) + m - 1 - 10m + 1 = 0

    \Leftrightarrow m = \frac{1}{4}

    Thế vào (*) ta được: 

    \begin{array}{l}\left( * ight):\left( {\frac{1}{4} + 2} ight)x + \left( {\frac{5}{4} + 1} ight)y + \left( {\frac{1}{4} - 1} ight)z - \frac{{10}}{4} + 1 = 0\\ \Leftrightarrow 9x + 9y - 3z - 6 = 0\\ \Leftrightarrow 3x + 3y - z - 2 = 0\end{array}

  • Câu 18: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Thông hiểu
    Tìm vectơ pháp tuyến của mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2; −1; 3), B(4; 0; 1), C(−10; 5; 3). Vectơ nào dưới đây là vectơ pháp tuyến của mặt phẳng (ABC)?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (2;1; - 2) \\
\overrightarrow{AC} = ( - 12;6;0) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (12;24;24) =
12(1;2;2)

    Vậy \overrightarrow{n_{(ABC)}} =
(1;2;2) là đáp án cần tìm.

  • Câu 20: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(2; - 4;1) và chắn trên các trục tọa độ Ox,Oy,Oz theo ba đoạn có độ dài đại số lần lượt là a;b;c. Phương trình tổng quát của mặt phẳng (P) khi a;b;c theo thứ tự tạo thành một cấp số nhân có công bội bằng 2 là:

    Hướng dẫn:

    Do giả thiết suy ra \left\{
\begin{matrix}
a,b,c eq 0\  \\
b = 2a,c = 2b \\
\end{matrix} ight..

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c) khi đó phương trình mặt phẳng\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1.

    Do M thuộc (P) nên \frac{2}{a} -
\frac{4}{b} + \frac{1}{c} = 1 \Leftrightarrow \frac{2}{a} - \frac{4}{2a}
+ \frac{1}{4a} = 1 \Leftrightarrow a = \frac{1}{4}

    Suy ra b = \frac{1}{2};c = 1 do đó phương trình mặt phẳng (P):4x + 2y + z -
1 = 0.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo