Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 14 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Xác định phương trình (ABC)

    Trong không gian Oxyz. Cho A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0. Biết mặt phẳng (ABC) qua điểm I(1;3;3) và thể tích tứ diện O.ABC đạt giá trị nhỏ nhất. Khi đó phương trình (ABC):

    Hướng dẫn:

    Phương trình mặt phẳng (ABC):\frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    I(1;3;3) \in (ABC) \Rightarrow
(ABC):\frac{1}{a} + \frac{3}{b} + \frac{3}{c} = 1

    Áp dụng bất đẳng thức Cauchy ta có:

    1 = \frac{1}{a} + \frac{3}{b} +
\frac{3}{c} \geq \sqrt[3]{\frac{3^{2}}{abc}} \Rightarrow abc \geq
9

    Thể tích tứ diện O.ABCV = \frac{1}{6}abc \geq \frac{3}{2}

    Đẳng thức xảy ra khi \frac{1}{a} =
\frac{3}{b} = \frac{3}{c} = \frac{1}{3} \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = c = 9 \\
\end{matrix} ight.

    Phương trình mặt phẳng (ABC)\frac{x}{3} + \frac{y}{9} + \frac{z}{9} = 1
\Rightarrow 3x + y + z - 9 = 0

  • Câu 2: Vận dụng
    Chọn khẳng định đúng

    Cho A(1; - 1;0)(P):2x - 2y + z - 1 = 0. Điểm M(a;b;c) \in (P) sao cho MA\bot OA và đoạn AM bằng 3 lần khoảng cách từ A đến (P). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \left\{ \begin{matrix}
M \in (P) \\
MA\bot OA \\
AM = 3d\left( A;(P) ight) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
1(a - 1) - 1(b + 1) + 0(c - 0) = 0 \\
\sqrt{(a - 1)^{2} + (b + 1)^{2} + (c - 0)^{2}} = 3 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
a - b - 2 = 0 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = a - 2 \\
c = - 3 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
c = - 3 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow a + b + c = - 3.

  • Câu 3: Thông hiểu
    Tìm M để biểu thức có giá trị nhỏ nhất

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;1),B( - 1;2;1),C(36; - 5). Điểm M thuộc mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất là:

    Hướng dẫn:

    Gọi G là trọng tâm của tam giác ABC.

    Ta có: MA^{2} + MB^{2} + MC^{2} = 3MG^{2}
+ GA^{2} + GB^{2} + GC^{2}

    Dễ thấy MA^{2} + MB^{2} + MC^{2} nhỏ nhất khi MG nhỏ nhất, suy ra M là hình chiếu vuông góc của G trên mặt phẳng (Oxy).

    Dễ thấy G(1;3; - 1) \Rightarrow
M(1;3;0).

  • Câu 4: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):2x - y + z - 1 = 0. Vectơ nào là vectơ pháp tuyến của mặt phẳng (P)?

    Hướng dẫn:

    Vectơ nào là vectơ pháp tuyến của mặt phẳng (P) có tọa độ là (2; - 1;1) hoặc ( - 2;1; - 1).

  • Câu 5: Thông hiểu
    Lập phương trình mặt phẳng

    Trong không gian Oxyz, cho hình chóp S.ABCD có đáy là hình vuông và SA vuông góc với đáy. Biết B(2;3;7),D(4;1;3), lập phương trình mặt phẳng (SAC).

    Hướng dẫn:

    Dễ dàng chứng minh được (SAC) là mặt phẳng trung trực của BD.

    Chọn vectơ pháp tuyến của mặt phẳng (SAC)\overrightarrow{BD} = (2; - 2; - 4).

    Mặt phẳng (SAC) đi qua trung điểm I(3;2;5) của BD và có vtcp \overrightarrow{BD} nên có phương trình: x - y - 2z + 9 = 0.

  • Câu 6: Thông hiểu
    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A( - 1; - 2;1),B( - 4;2; - 2), C( - 1; - 1; - 2),D( - 5; - 5;2). Tính khoảng cách từ điểm D đến mặt phẳng (ABC).

    Hướng dẫn:

    Ta có \overrightarrow{\ AB} = ( - 3;4; -
3),\overrightarrow{AC} = (0;1; - 3)

    \Rightarrow \left\lbrack
\overrightarrow{\ AB};\overrightarrow{AC} ightbrack = ( - 9; - 9; -
3)

    Mặt phẳng (ABC) đi qua A( - 1; - 2;1) và nhận \overrightarrow{n} = (3;3;1) là vectơ pháp tuyến có phương trình tổng quát là 3x +
3y + z + 8 = 0.

    Khoảng cách từ điểm D đến mặt phẳng (ABC) là:

    d = d\left( D;(ABC) ight) = \frac{| -
15 - 15 + 2 + 8|}{\sqrt{3^{2} + 3^{2} + 1^{2}}} =
\frac{20}{\sqrt{19}}.

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, gọi (P) là mặt phẳng chứa trục Ox và vuông góc với mặt phẳng (Q):x + y + z - 3 = 0. Phương trình mặt phẳng (P) là:

    Hướng dẫn:

    Ta có: (Q) có một vectơ pháp tuyến là \overrightarrow{n}(1;1;1).

    Từ giả thiết, ta suy ra (P) có một vectơ pháp tuyến là \left\lbrack
\overrightarrow{n};\overrightarrow{i} ightbrack = (0;1; -
1).

    Do (P) đi qua gốc tọa độ O nên phương trình của (P) là y - z = 0.

  • Câu 8: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho điểm I(1; 1; 1). Phương trình mặt phẳng (P) cắt trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O) sao cho I là tâm đường tròn ngoại tiếp tam giác ABC?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm I(1; 1; 1). Phương trình mặt phẳng (P) cắt trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O) sao cho I là tâm đường tròn ngoại tiếp tam giác ABC?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Thông hiểu
    Tính thể tích khối tứ diện

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 3y + z - 6 = 0 cắt ba trục tọa độ Ox,Oy,Oz lần lượt tại ba điểm A,B,C. Lúc đó thể tích V của khối tứ diện OABC là:

    Hướng dẫn:

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) lần lượt là giao của mặt phẳng (P) với ba trục tọa độ Ox,Oy,Oz.

    Khi đó A(3;0;0),B(0; -
2;0),C(0;0;6) và tứ diện OABCOA,OB,OC đôi một vuông góc tại O.

    Do đó V_{OABC} = \frac{1}{6}OA.OB.OC =
\frac{1}{6}.3.2.6 = 6

  • Câu 10: Nhận biết
    Tìm tọa độ tâm mặt cầu

    Trong không gian toạ độ Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng?

    Hướng dẫn:

    PTTQ của mặt phẳng có dạng Ax + By + Cz +
D = 0, với A^{2} + B^{2} + C^{2}
eq 0 nên ta chọn 2x + 3y + z - 12
= 0.

  • Câu 11: Thông hiểu
    Tìm khoảng cách từ điểm đến mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, tam giácABCA(1,2,
- 1),B( - 2,1,0),C(2,3,2). Điểm G là trọng tâm của tam giác ABC. Khoảng cách từ A đến mặt phẳng (OGB) bằng bao nhiêu?

    Hướng dẫn:

    Do G là trọng tâm tam giác \Delta ABC \Rightarrow G\left(
\frac{1}{3},2,\frac{1}{3} \right)

    Gọi \overrightarrow{n} là một vtpt của mặt phẳng (OGB)

    \Rightarrow \overrightarrow{n} =
\overrightarrow{OG} \land \overrightarrow{OB} = \left( - \frac{1}{3}, -
\frac{2}{3},\frac{13}{3} \right)

    Phương trình mặt phẳng:

    (OGB):x + 2y - 13z
= 0 \Rightarrow d\left( A,(OGB) \right) =
\frac{3\sqrt{174}}{29}

  • Câu 12: Thông hiểu
    Viết phương trình mặt phẳng thỏa mãn điều kiện

    Trong hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau \left( d_{1}
ight):\frac{x - 2}{2} = \frac{y + 2}{1} = \frac{z - 6}{- 2}\left( d_{2} ight):\frac{x - 4}{1} =
\frac{y + 2}{- 2} = \frac{z + 1}{3}. Phương trình mặt phẳng (P) chứa \left( d_{1} ight) và song song với \left( d_{2} ight)

    Hướng dẫn:

    Phương trình tham số \left( d_{1}
ight):\left\{ \begin{matrix}
x = 2 + 2t_{1} \\
y = - 2 + t_{1} \\
z = 6 - 2t_{1} \\
\end{matrix} ight.\ ;\left( t_{1}\mathbb{\in R} ight)

    \left( d_{1} ight) đi qua điểm M(2; - 2;6) và có vectơ chỉ phương \overrightarrow{u_{1}} = (2;1; -
2)

    Phương trình tham số \left( d_{2}
ight):\left\{ \begin{matrix}
x = 4 + t_{2} \\
y = - 2 - 2t_{2} \\
z = - 1 + 3t_{2} \\
\end{matrix} ight.\ ;\left( t_{2}\mathbb{\in R} ight)

    \left( d_{2} ight) đi qua điểm N(4; - 2; - 1) và có vectơ chỉ phương \overrightarrow{u_{2}} = (1; -
2;3)

    Vì mặt phẳng (P) chứa \left( d_{1} ight) và song song với \left( d_{2} ight), ta có:

    \left\{ \begin{matrix}
\overrightarrow{n_{P}}\bot\overrightarrow{u_{1}} \\
\overrightarrow{n_{P}}\bot\overrightarrow{u_{2}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{u_{P}} = \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = -
(1;8;5)

    Mặt phẳng (P) đi qua M(2; - 2;6) và vectơ pháp tuyến \overrightarrow{u_{1}} = (2;1; - 2) nên phương trình mặt phẳng (P):(x - 2) + 8(y +
2) + 5(z - 6) = 0 hay (P):x + 8y +
5z - 16 = 0.

  • Câu 13: Thông hiểu
    Tìm khẳng định đúng

    Trong không gian với hệ trục toạ độ Oxyz, cho điểm A( - 1;2;1) và hai mặt phẳng (\alpha):2x + 4y - 6z - 5 = 0(\beta):x + 2y - 3z = 0. Tìm khẳng định đúng?

    Hướng dẫn:

    \overrightarrow{n_{\alpha}} = (2;4; -
6), \overrightarrow{n_{\beta}} =
(1;2; - 3) \Rightarrow
(\alpha)//(\beta)

    A \in (\beta)

  • Câu 14: Thông hiểu
    Tìm các giá trị thực của tham số m thỏa mãn yêu cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P):x + my + (m - 1)z + 2 = 0, (Q):2x - y + 3z - 4 = 0. Giá trị số thực m để hai mặt phẳng (P),(Q) vuông góc

    Hướng dẫn:

    Để 2 mặt phẳng (P),(Q) vuông góc

    \Rightarrow
{\overrightarrow{n}}_{p}.\overrightarrow{n_{Q}} = 0 \Leftrightarrow 1.2
+ m.( - 1) + (m - 1).3 = 0 \Leftrightarrow m = \frac{1}{2}.

    Vậy m = \frac{1}{2}.

  • Câu 15: Nhận biết
    Viết phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm A(1; -
1;2) và vectơ \overrightarrow{n} =
(2;4; - 6). Viết phương trình mặt phẳng (\alpha) qua A và nhận vectơ \overrightarrow{n} làm vectơ pháp tuyến.

    Hướng dẫn:

    Phương trình mặt phẳng có dạng:

    A\left( x - x_{A} ight) + B\left( y -
y_{A} ight) + C\left( z - z_{A} ight) = 0 .

    2(x - 1) + 4(y + 1) + 6(z - 2) =
0

    \Leftrightarrow x + 2y - 3z + 7 =
0.

  • Câu 16: Thông hiểu
    Viết PT mp song song Oz

    Cho hai điểm C\left( { - 1,4, - 2} ight);D\left( {2, - 5,1} ight). Mặt phẳng chứa đường thẳng CD và song song với Oz có phương trình :

    Hướng dẫn:

    Theo đề bài ta có C\left( { - 1,4, - 2} ight);D\left( {2, - 5,1} ight)

    \Rightarrow \overrightarrow {CD}  = \left( {3, - 9,3} ight) cùng phương với vectơ \overrightarrow a  = \left( {1, - 3,1} ight)

    Mặt khác, trục Oz có vectơ chỉ phương \overrightarrow k  = \left( {0,0,1} ight)

    \Rightarrow \left[ {\overrightarrow a ,\overrightarrow k } ight] = \left( { - 3, - 1,0} ight) cùng phương với vectơ \overrightarrow n  = \left( {3,1,0} ight)

    Chọn \overrightarrow n  = \left( {3,1,0} ight) làm vectơ pháp tuyến cho mặt phẳng chứa CD và song song với trục Oz. Phương trình mặt phẳng này có dạng : 3x + y + D = 0

    Mặt phẳng cần tìm còn qua điểm C nên ta thay tọa độ điểm C vào pt trên, có: 

    - 3 + 4 + D = 0 \Leftrightarrow D =  - 1

    Vậy phương trình mặt phẳng cần tìm : 3x + y - 1 = 0

  • Câu 17: Thông hiểu
    PT Mặt phẳng trung trực

    Viết phương trình tổng quát của mặt phẳng trung trực (P) của đoạn AB với A\left( {\,1,\,\,4,\,\,3\,} ight);\,\,B\left( {\,3,\,\, - 6,\,\,5\,} ight).

    Hướng dẫn:

    Vì I là trung điểm của đoạn AB nên ta có tọa độ điểm I là: I\left( {2, - 1,4} ight)

    Mặt khác, ta lại có (P) là mặt phẳng trung trực của đoạn AB nên (P) nhận \vec{AB} làm 1 VTPT. Ta có VTPT của \left( P ight):\,\,\overrightarrow {AB}  = 2\left( {1, - 5,1} ight)

    \Rightarrow \left( P ight):\left( {x - 2} ight)1 + \left( {y + 1} ight)\left( { - 5} ight) + \left( {z - 4} ight).1 = 0

    \Leftrightarrow x - 5y + z - 11 = 0

  • Câu 18: Nhận biết
    Giao điểm 3 mp

    Ba mặt phẳng 2x + y - z - 1 = 0,3x - y - z + 2 = 0,4x - 2y + z - 3 = 0 cắt nhau tại điểm A.Tọa độ của A là:

    Hướng dẫn:

     Tọa độ của A là nghiệm của hệ phương trình :

    \left\{ \begin{array}{l}2x + y - z - 1 = 0\left( 1 ight)\\3x - y - z + 2 = 0\left( 2 ight)\\4x - 2y + z - 3 = 0\left( 3 ight)\end{array} ight.

    Giải (1),(2) tính x,y theo z được x = \frac{{2z - 1}}{5};y = \frac{{z + 7}}{5}

    Thế vào phương trình (3) được z=3, từ đó có x=1,y=2.

    Vậy A(1, 2, 3).

  • Câu 19: Thông hiểu
    Chọn phương án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (\alpha) đi qua M(0; - 2;3), song song với đường thẳng d:\frac{x - 2}{2} = \frac{y + 1}{- 3} =
z và vuông góc với mặt phẳng (\beta):x + y - z = 0 có phương trình:

    Hướng dẫn:

    Phương pháp tự luận

    Ta có \overrightarrow{u_{d}} = (2; -
3;1), \overrightarrow{n_{\beta}} =
(1;1; - 1)

    Mặt phẳng (\alpha) đi qua M(0; - 2;3) và có vectơ pháp tuyến \overrightarrow{n_{\ ^{\alpha}}} = \left\lbrack
\overrightarrow{u_{d}},\overrightarrow{n_{\beta}} \right\rbrack =
(2;3;5)

    \Rightarrow (\alpha):2x + 3y + 5z - 9 =
0.

    Phương pháp trắc nghiệm

    Do \left\{ \begin{matrix}
(\alpha)//(d) \\
(\alpha)\bot(Q) \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{n_{\alpha}} = k\overrightarrow{n_{Q}} \\
\overrightarrow{n_{\alpha}}.\overrightarrow{n_{Q}} = 0 \\
\end{matrix} \right. kiểm tra mp (\alpha)nào thỏa hệ

  • Câu 20: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A( - 1;0;1),B( - 2;1;1). Phương trình mặt phẳng trung trực của đoạn AB là:

    Hướng dẫn:

    Phương pháp tự luận

    +) \overrightarrow{AB} = ( -
1;1;0).

    +) Trung điểm I của đoạnABI(\frac{- 3}{2};\frac{1}{2};1)

    Mặt phẳng trung trực của đọan AB là- (x +
\frac{3}{2}) + (y - \frac{1}{2}) = 0 hay x - y + 2 = 0.

    Phương pháp trắc nghiệm

    Do (\alpha) là mặt phẳng trung trực của AB nên (\alpha)\bot AB

    Kiểm tra mặt phẳng (\alpha) nào có \overrightarrow{n_{\alpha}} =
k\overrightarrow{AB}và chứa điểm I

    Cả 4 đáp án đều thỏa điều kiện \overrightarrow{n_{\alpha}} =
k\overrightarrow{AB}.

    Cả 4 PT đều chung dạng: x–y+0z+D=0, nên để kiếm tra PT nào thỏa tọa độ điểm I ta bấm máy tính: trong đó nhập A, B, C là tọa độ I, còn D là số hạng tự do từng PT, nếu cái nào làm bằng 0 thì chọn.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo