Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 14 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;1;1),B(0;1;2),C( - 2;1;4) và mặt phẳng (P):x - y + z + 2 = 0. Tìm điểm N \in (P) sao cho S = 2NA^{2} + NB^{2} + NC^{2} đạt giá trị nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;1;1),B(0;1;2),C( - 2;1;4) và mặt phẳng (P):x - y + z + 2 = 0. Tìm điểm N \in (P) sao cho S = 2NA^{2} + NB^{2} + NC^{2} đạt giá trị nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Vận dụng
    Viết PT mp biết thể tích chóp

    Cho hai điểm A\left( {2, - 3,4} ight);\,\,\,\,B\left( { - 1,4,3} ight). Viết phương trình tổng quát của mặt phẳng (P) vuông góc với AB, cắt ba trục tọa độ Ox, Oy, Oz tại M, N, E sao cho thể tích hình chóp O.MNE  bằng \frac{3}{14} đvtt.

    Hướng dẫn:

     Vecto pháp tuyến của \left( P ight):\overrightarrow {AB}  = \left( { - 3,7, - 1} ight)

    Phương trình \left( P ight):3x - 7y + z + D = 0

    (P) cắt 3 trục tọa độ tại M\left( { - \frac{D}{3},0,0} ight);\,\,N\left( {0,\frac{D}{7},0} ight);\,\,E\left( {0,0, - D} ight)

    Thể tích hình chóp O.MNE là:

    V_{O.MNE} = \frac{1}{6}OM.ON.OE = \frac{1}{6}\left| {\frac{D}{3}.\frac{D}{7}.D} ight|

    \begin{array}{l} \Leftrightarrow \dfrac{{{{\left| D ight|}^3}}}{{126}} = \dfrac{3}{{14}} \Leftrightarrow {\left| D ight|^3} = 27 \Leftrightarrow D =  \pm 3\\ \Rightarrow \left( P ight):3x - 7y + z \pm 3 = 0\end{array}

  • Câu 3: Thông hiểu
    Chọn kết luận đúng

    Trong không gian Oxyz, cho các điểm A(1;0;0),B( - 2;0;3),M(0;0;1)N(0;3;1). Mặt phẳng (P) đi qua các điểm M;N sao cho khoảng cách từ điểm B đến (P) gấp hai lần khoảng cách từ điểm A đến (P). Hỏi có bao nhiêu mặt phẳng (P) thỏa mãn đề bài?

    Hướng dẫn:

    Gọi \overrightarrow{n} = (a;b;c) là vectơ pháp tuyến của (P). Khi đó (P): ax + by + cz + d = 0.

    M(0; 0; 1) ∈ (P) ⇔ c + d = 0 ⇔ c = −d.

    N(0; 3; 1) ∈ (P) ⇔ 3b + c + d = 0 ⇔ 3b = 0 ⇔ b = 0.

    Do đó (P): ax − dz + d = 0

    Khoảng cách từ điểm B đến (P) gấp hai lần khoảng cách từ điểm A đến (P)

    \frac{| - 2a - 3d + d|}{\sqrt{a^{2} +
d^{2}}} = 2.\frac{|a + d|}{\sqrt{a^{2} + d^{2}}}

    \Leftrightarrow \frac{\left| - 2(a + d)
ight|}{\sqrt{a^{2} + d^{2}}} = 2.\frac{|a + d|}{\sqrt{a^{2} +
d^{2}}} (luôn đúng)

    Vậy có vô số mặt phẳng (P).

  • Câu 4: Thông hiểu
    Tính thể tích khối tứ diện

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 3y + z - 6 = 0 cắt ba trục tọa độ Ox,Oy,Oz lần lượt tại ba điểm A,B,C. Lúc đó thể tích V của khối tứ diện OABC là:

    Hướng dẫn:

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) lần lượt là giao của mặt phẳng (P) với ba trục tọa độ Ox,Oy,Oz.

    Khi đó A(3;0;0),B(0; -
2;0),C(0;0;6) và tứ diện OABCOA,OB,OC đôi một vuông góc tại O.

    Do đó V_{OABC} = \frac{1}{6}OA.OB.OC =
\frac{1}{6}.3.2.6 = 6

  • Câu 5: Nhận biết
    Định phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz. Phương trình của mặt phẳng chứa trục Ox và qua điểm I(2; - 3;1) là:

    Hướng dẫn:

    Trục Ox đi qua A(1;0;0) và có \overrightarrow{i} = (1;0;0)

    Mặt phẳng đi qua I(2; - 3;1) và có vectơ pháp tuyến \overrightarrow{n} =
\left\lbrack \overrightarrow{i},\overrightarrow{AI} \right\rbrack =
(0;1;3) có phương trình y + 3z =
0.

    Vậy y + 3z = 0.

  • Câu 6: Thông hiểu
    Chọn khẳng định sai

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - y + 1 = 0. Trong các mệnh đề sau, mệnh đề nào sai?

    Hướng dẫn:

    Mặt phẳng (P) có một véc-tơ pháp tuyến \overrightarrow{n_{P}} = (2; - 1;0).

    Ta có \frac{2}{2} = \frac{- 1}{1} eq
\frac{0}{1} nên \overrightarrow{n_{P}} không cùng phương với \overrightarrow{n} = (2; -
1;1).

    Suy ra \overrightarrow{n} = (2; -
1;1) không là vectơ pháp tuyến của (P).

    Vậy khẳng định sai là: “Vectơ \overrightarrow{n} = (2; - 1;1) là một véc-tơ pháp tuyến của (P)”.

  • Câu 7: Thông hiểu
    Định độ dài đoạn thẳng

    Trong không gian với hệ tọa độ Oxyz, cho A(1;2;3),B( - 2;4;4),C(4;0;5). Gọi G là trọng tâm của tam giác ABC. Gọi M là điểm nằm trên mặt phẳng (Oxy) sao cho độ dài đoạn thẳng GM ngắn nhất. Tính độ dài đoạn thẳng GM.

    Hướng dẫn:

    Ta có: G là trọng tâm tam giác ABC nên G = (1;2;4)

    Mặt phẳng (Oxy) có phương trình z = 0.

    GM ngắn nhất khi và chỉ khi M là hình chiếu vuông góc của G lên mặt phẳng (Oxy). Khi đó, ta có:

    GM = d\left( G,(Oxy) ight) =
\frac{4}{\sqrt{1}} = 4.

  • Câu 8: Thông hiểu
    Xác định phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz; cho điểm A(1;2; - 3). Gọi M,N,P là hình chiếu vuông góc của điểm A trên ba trục tọa độ Ox,Oy,Oz. Viết phương trình mặt phẳng (MNP)?

    Hướng dẫn:

    M(1;0;0),N(0;2;0),P(0;0; - 3) là hình chiếu của A lên các trục tọa độ nên mặt phẳng cần tìm là (MNP):\frac{x}{1} + \frac{y}{2} + \frac{z}{- 3} =
1

    \Rightarrow (MNP):6x + 3y - 2z - 6 =
0

  • Câu 9: Thông hiểu
    Tìm các giá trị thực của tham số m và n

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):3x + (m - 1)y + 4z - 2 = 0, (\beta):nx + (m + 2)y + 2z + 4 = 0. Với giá trị thực của m,n bằng bao nhiêu để (\alpha) song song (\beta)

    Hướng dẫn:

    Để (\alpha) song song (\beta) \Rightarrow \frac{3}{n} = \frac{m - 1}{m +
2} = \frac{4}{2} \neq \frac{4}{- 2}

    \Leftrightarrow m = - 3;n =
6.

    Vậy m = - 3;n = 6.

  • Câu 10: Nhận biết
    Xác định vecto pháp tuyến của mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) có phương trình 3x + 2y - z + 1 = 0. Mặt phẳng (P) có một vectơ pháp tuyến là:

    Hướng dẫn:

    Mặt phẳng (P): 3x + 2y - z + 1 =
0 có một vectơ pháp tuyến \overrightarrow{n}(3;2; - 1)

  • Câu 11: Thông hiểu
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho điểm M(1;2;3). Gọi (P) là mặt phẳng đi qua điểm M và cách gốc tọa độ O một khoảng cách lớn nhất, khi đó mặt phẳng (P) cắt các trục tọa độ tại các điểm A,B,C. Tính thể tích V của khối chóp O.ABC.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm M(1;2;3). Gọi (P) là mặt phẳng đi qua điểm M và cách gốc tọa độ O một khoảng cách lớn nhất, khi đó mặt phẳng (P) cắt các trục tọa độ tại các điểm A,B,C. Tính thể tích V của khối chóp O.ABC.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(2; - 1;1),\ B(1;0;4)C(0; - 2; - 1). Phương trình mặt phẳng qua A và vuông góc với đường thẳng BC là:

    Hướng dẫn:

    Ta có: \overrightarrow{CB}(1;2;5).

    Mặt phẳng qua A và vuông góc với đường thẳng BCcó một VTPT\overrightarrow{CB}(1;2;5)nên có phương trình là: x + 2y + 5z - 5 =
0.

    Vậy x + 2y + 5z - 5 = 0.

  • Câu 13: Thông hiểu
    Xác định phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x + 2y - z + 1 = 0. Gọi mặt phẳng (Q) là mặt phẳng đối xứng của mặt phẳng (P) qua trục tung. Khi đó phương trình mặt phẳng (Q) là?

    Hướng dẫn:

    Gọi M(x,y,z) là điểm bất kỳ thuộc mặt phẳng (P).

    Điểm M'( - x,y, - z) là điểm đối xứng của Mqua trục tung \Rightarrow (Q): - x + 2y + z + 1 = 0 là mặt phẳng đi qua M' và là mặt phẳng đối xứng của(P)

    Vậy x - 2y - z - 1 = 0.

  • Câu 14: Nhận biết
    Tìm tọa độ giao điểm

    Trong không gian với hệ trục tọa độ Oxyz. Tọa độ giao điểm Mcủa mặt phẳng (P):2x + 3y + z - 4 = 0 với trục Ox là?

    Hướng dẫn:

    Gọi M(a,0,0) là điểm thuộc trục Ox. Điểm M \in (P) \Rightarrow 2a - 4 = 0 \Leftrightarrow a
= 2 .

    Vậy M(2,0,0) là giao điểm của (P),Ox.

    Phương pháp trắc nghiệm

    Giải hệ PT gồm PT của (P) và của (Ox): \left\{ \begin{matrix}
2x + 3y + z - 4 = 0 \\
y = 0 \\
z = 0 \\
\end{matrix} \right.; bấm máy tính.

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(3;0; - 1),B(1; - 1;3),C(0;1;3). Viết phương trình mặt phẳng đi qua ba điểm A;B;C.

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 2; - 1;4) \\
\overrightarrow{AC} = ( - 3;1;4) \\
\end{matrix} ight.

    Mặt phẳng (ABC) có một vectơ pháp tuyến là \overrightarrow{n} =
\left\lbrack \overrightarrow{AB};\overrightarrow{AC} ightbrack = ( -
8; - 4; - 5)

    Từ đó phương trình mặt phẳng (ABC)8x +
4y + 5z - 19 = 0.

  • Câu 16: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho điểm I(1; 1; 1). Phương trình mặt phẳng (P) cắt trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O) sao cho I là tâm đường tròn ngoại tiếp tam giác ABC?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm I(1; 1; 1). Phương trình mặt phẳng (P) cắt trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O) sao cho I là tâm đường tròn ngoại tiếp tam giác ABC?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Thông hiểu
    PT Mặt phẳng trung trực

    Viết phương trình tổng quát của mặt phẳng trung trực (P) của đoạn AB với A\left( {\,1,\,\,4,\,\,3\,} ight);\,\,B\left( {\,3,\,\, - 6,\,\,5\,} ight).

    Hướng dẫn:

    Vì I là trung điểm của đoạn AB nên ta có tọa độ điểm I là: I\left( {2, - 1,4} ight)

    Mặt khác, ta lại có (P) là mặt phẳng trung trực của đoạn AB nên (P) nhận \vec{AB} làm 1 VTPT. Ta có VTPT của \left( P ight):\,\,\overrightarrow {AB}  = 2\left( {1, - 5,1} ight)

    \Rightarrow \left( P ight):\left( {x - 2} ight)1 + \left( {y + 1} ight)\left( { - 5} ight) + \left( {z - 4} ight).1 = 0

    \Leftrightarrow x - 5y + z - 11 = 0

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, gọi (P) là mặt phẳng chứa trục Ox và vuông góc với mặt phẳng (Q):x + y + z - 3 = 0. Phương trình mặt phẳng (P) là:

    Hướng dẫn:

    Ta có: (Q) có một vectơ pháp tuyến là \overrightarrow{n}(1;1;1).

    Từ giả thiết, ta suy ra (P) có một vectơ pháp tuyến là \left\lbrack
\overrightarrow{n};\overrightarrow{i} ightbrack = (0;1; -
1).

    Do (P) đi qua gốc tọa độ O nên phương trình của (P) là y - z = 0.

  • Câu 19: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian với hệ tọa độ Oxyz, cho hai vectơ \overrightarrow{m} = (4;3;1),\overrightarrow{n} =
(0;0;1). Gọi \overrightarrow{p} là vectơ cùng hướng với vectơ \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack (tích có hướng của hai vectơ \overrightarrow{m}\overrightarrow{n}. Biết \left| \overrightarrow{p} ight| = 15, tìm tọa độ vectơ \overrightarrow{p}.

    Hướng dẫn:

    Ta thấy \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack = (3; -
4;0)

    \overrightarrow{p} là vectơ cùng hướng với vectơ \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack = (3; -
4;0) nên \overrightarrow{p} = (3k;
- 4k;0),k\mathbb{\in R};k > 0.

    Mặt khác \left| \overrightarrow{p}
ight| = 15 \Leftrightarrow \sqrt{9k^{2} + 16k^{2} + 0} = 15
\Rightarrow k = 3

    Vậy \overrightarrow{p} = (9; -
12;0).

  • Câu 20: Nhận biết
    Tìm vecto pháp tuyến của mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) có phương trình - 2x + 2y - z - 3 = 0. Mặt phẳng (P) có một vectơ pháp tuyến là:

    Hướng dẫn:

    Mặt phẳng (P) có phương trình - 2x + 2y -
z - 3 = 0 có một vectơ pháp tuyến \overrightarrow{n}(4; - 4;2)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo