Cho hàm số có đạo hàm
. Hỏi hàm số có bao nhiêu điểm cực tiểu?
Ta có:
Bảng biến thiên
Dựa vào bảng biến thiên suy ra hàm số có một điểm cực tiểu.
Cho hàm số có đạo hàm
. Hỏi hàm số có bao nhiêu điểm cực tiểu?
Ta có:
Bảng biến thiên
Dựa vào bảng biến thiên suy ra hàm số có một điểm cực tiểu.
Hàm số có đạo hàm
, với
. Hỏi hàm số
có bao nhiêu điểm cực tiểu?
Ta có:
Suy ra có
nghiệm bội lẻ và hệ số
nên có
cực tiểu.
Cho hàm số y = f(x) có đạo hàm f’(x) = x2 + 1, . Mệnh đề nào dưới đây đúng?
Ta có:
f’(x) = x2 + 1 > 0,
=> Hàm số đống biến trên khoảng (-∞; +∞)
Cho hàm số có đạo hàm
. Tìm số điểm cực đại của hàm số đã cho.
Ta có:
Ta có bảng xét dấu:
Suy ra hàm số có một điểm cực đại.
Cho hàm số liên tục và có đạo hàm trên
, biết
có đồ thị như hình vẽ:
Điểm cực đại của hàm số đã cho là:
Dựa vào đồ thị hàm số ta có:
Khi đó ta có bảng xét dấu như sau:
Dựa vào bảng xét dấu suy ra điểm cực đại của hàm số là
.
Có bao nhiêu giá trị nguyên của tham số để hàm số
đồng biến trên tập số thực?
Ta có:
Hàm số đồng biến trên khi
Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số có bảng xét dấu của đạo hàm như sau
Hàm số nghịch biến trên khoảng nào trong các khoảng dưới đây?
Xét .
Ta có
.
Dựa vào bảng xét dấu của , ta có bảng xét dấu của
:
Dựa vào bảng xét dấu, ta thấy hàm số nghịch biến trên khoảng
.
Tập hợp tất cả các giá trị của tham số để hàm số
đồng biến trên khoảng
là:
Hàm số đồng biến trên khi và chỉ khi
Vậy là giá trị cần tìm.
Cho hàm số với
là tham số. Tìm các giá trị nguyên dương tham số
không vượt quá
để hàm số đã cho có ba điểm cực trị?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số đa cho có ba điểm cực trị khi và chỉ khi
Mà không vượt quá
nên
suy ra có
giá trị thỏa mãn yêu cầu.
Cho hàm số với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số đã cho nghịch biến trên từng khoảng xác định?
Ta có:
Để hàm số nghịch biến trên từng khoảng xác định thì
Mà
Vậy có tất cả 4 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số có đồ thị như hình vẽ
Hàm số đồng biến trên khoảng nào dưới đây
Hàm số có
Do đó hàm số đồng biến trên .
Cho hàm số có bảng biến thiên như sau:
Hàm số đồng biến trên khoảng nào sau đây?
Ta có:
Vậy hàm số đồng biến trên các khoảng
Suy ra hàm số đồng biến trên khoảng
.
Hàm số nào dưới đây đồng biến trên khoảng ?
Vì .
Cho hàm số y = f(x) có đạo hàm . Gọi M là giá trị cực đại của hàm số đã cho. Chọn khẳng định đúng?
Ta có:
Ta có bảng biến thiên như sau:

Dựa vào bảng biến thiên ta có giá trị cực đại của hàm số là M = f(-3)
Cho hàm số có bảng biến thiên như sau:
Hàm số đạt cực tiểu tại điểm
Từ bảng biến thiên, hàm số đạt cực tiểu tại điểm .
Cho hàm số có đạo hàm trên
và có bảng xét dấu
như sau:
Hỏi hàm số có bao nhiêu điểm cực tiểu?
Đặt
Từ bảng xét dấu của hàm số có
Ta có bảng biến thiên
Từ bảng xét dấu ta suy ra hàm số có 1 điểm cực tiểu.
Có bao nhiêu giá trị nguyên dương của tham số để hàm số
đồng biến trên khoảng
?
Ta có:
Hàm số đồng biến trên khoảng
Theo yêu cầu bài toán ta có:
Mà
Suy ra có tất cả 10 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Cho đồ thị hàm số như hình vẽ:
Hàm số đồng biến trên khoảng:
Ta có:
Nên suy ra hàm số cũng đồng biến trên .
Cho hàm số có đạo hàm
. Số điểm cực trị của hàm số đã cho là
Bảng biến thiên
Từ bảng biến thiên ta thấy hàm số đã cho có đúng một điểm cực trị đó là điểm cực tiểu .
Giá trị cực tiểu của hàm số
là:
Ta có
Do đó hàm số đạt cực tiểu tại .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: