Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 1 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn phương án đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực tiểu của hàm số đã cho bằng

    Hướng dẫn:

    Từ bảng biến thiên, ta thấy giá trị cực tiểu của hàm số đã cho bằng - 4.

  • Câu 2: Thông hiểu
    Tìm khoảng nghịch biến của hàm số

    Hàm số y = \frac{2}{x^{2} + 1} nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có y' = \frac{- 4x}{\left( x^{2} +
1 ight)^{2}} < 0 \Leftrightarrow x > 0

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Hàm số y = \left| x^{3} + 3x^{2}
ight| đạt cực đại tại

    Hướng dẫn:

    Tập xác định: D\mathbb{= R}

    Ta có: y = \left| x^{3} + 3x^{2} ight|
= \left\{ \begin{matrix}
x^{3} + 3x^{2}\ \ khi\ x \geq - 3 \\
- x^{3} - 3x^{2}\ \ khi\ x < - 3 \\
\end{matrix} ight.

    \Rightarrow y' = \left\{
\begin{matrix}
3x^{2} + 6x\ \ khi\ x \geq - 3 \\
- 3x^{2} - 6x\ khi\ x < - 3 \\
\end{matrix} ight.

    \Rightarrow y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Vậy hàm số đạt cực tiểu tại x = -
3x = 0.

  • Câu 4: Thông hiểu
    Chọn giá trị cực tiểu của hàm số

    Tìm giá trị cực tiểu y_{CT} của hàm sốy = - x^{3} + 3x - 4.

    Hướng dẫn:

    Tập xác định: D\mathbb{= R}; y' = - 3x^{2} + 3; y' = 0 \Leftrightarrow x = \pm 1.

    Bảng biến thiên

    Vậy y_{CD} = y(1) = - 2; y_{CT} = y( - 1) = - 6.

  • Câu 5: Thông hiểu
    Chọn đáp án chính xác

    Cho hàm số f(x) có đạo hàm f'(x) = x(x - 1)(x - 2)^{2},\forall
x\mathbb{\in R}. Số điểm cực trị của hàm số đã cho là

    Hướng dẫn:

    Ta có

    f'(x) = 0\  \Leftrightarrow \
x(x - 1)(x - 2)^{2} = 0\  \Leftrightarrow \ \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight..

    Lập bảng xét dấu của f'(x) như sau:

    Ta thấy f'(x) đổi dấu khi đi qua các điểm x = 0x = 1, do đó hàm số y = f(x) có hai điểm cực trị.

  • Câu 6: Thông hiểu
    Tìm tham số m thỏa mãn đề bài

    Tìm các giá trị của tham số m để hàm số y = x^{4} - 2mx^{2} + 1 có ba điểm cực trị A(0;1); B;C thỏa mãn BC = 4?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4mx = 4x\left(
x^{2} - m ight)

    Để hàm số có ba cực trị thì m >
0

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow y(0) = 1 \\
x = \pm \sqrt{m} \Rightarrow y\left( \pm \sqrt{m} ight) = 1 - m^{2} \\
\end{matrix} ight.

    Suy ra A(0;1); B\left( \sqrt{m};1 - m^{2} ight);C\left( -
\sqrt{m};1 - m^{2} ight)

    BC = 4 \Rightarrow \sqrt{4m} = 4
\Leftrightarrow m = 4

    Vậy đáp án đúng là m = 4

  • Câu 7: Thông hiểu
    Xác định hàm số đồng biến trên tập số thực

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Ta có hàm số y = \left( \frac{5}{4}
ight)^{x} có cơ số a =
\frac{5}{4} > 1 nên đồng biến trên \mathbb{R}.

    Ngoài ra các hàm số y = \frac{x + 4}{x +
3}; y = x^{4} - 2x^{2} +
1; y = \tan x không thể đồng biến hoặc nghịch biến trên \mathbb{R}.

  • Câu 8: Vận dụng
    Tìm tham số m để hàm số nghịch biến trên khoảng

    Giá trị của tham số m sao cho hàm số y = {x^3} - 2m{x^2} - \left( {m + 1} ight)x + 1 nghịch biến trên khoảng (0; 2)?

    Hướng dẫn:

    Ta có: y' = 3{x^2} - 4mx - m - 1

    Hàm số nghịch biến trên khoảng (0; 2)

    => 3{x^2} - 4mx - m - 1 \leqslant 0,x \in \left[ {0;2} ight]

    => 3{x^2} - 1 \leqslant 3\left( {4x + 1} ight) \Leftrightarrow \frac{{3{x^2} - 1}}{{4x + 1}} \leqslant m,\left( {\forall x \in \left[ {0;2} ight]} ight)

    Xét hàm số g\left( x ight) = \frac{{3{x^2} - 1}}{{4x + 1}};\forall x \in \left[ {0;2} ight]

    Ta có: g'\left( x ight) = \frac{{6x\left( {4x + 1} ight) - 4\left( {3{x^2} - 1} ight)}}{{{{\left( {4x + 1} ight)}^2}}} = \frac{{12{x^2} + 6x + 4}}{{{{\left( {4x + 1} ight)}^2}}};\forall x \in \left[ {0;2} ight]

    => g(x) đồng biến trên đoạn [0; 2]

    Ta có:

    \begin{matrix}  g\left( x ight) = \dfrac{{3{x^2} - 1}}{{4x + 1}} \leqslant m;\forall x \in \left[ {0;2} ight] \hfill \\   \Rightarrow m \geqslant g\left( 2 ight) = \dfrac{{11}}{9} \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu
    Tìm điều kiện của tham số m

    Hàm số y = x^{3} - 2mx^{2} + m^{2}x -
2 đạt cực tiểu tại x = 1 khi:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
y' = 3x^{2} - 4mx + m^{2} \\
y'' = 6x - 4m \\
\end{matrix} ight..

    Hàm số đạt cực tiểu tại x = 1 suy ra y'(1) = 3 - 4m + m^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 3 \\
\end{matrix} ight.

    y''(1) = 6 - 4m

    Với m = 1 \Rightarrow y''(1) = 2
> 0(tm)

    Với m = 3 \Rightarrow y''(1) = -
6 < 0(ktm)

    Vậy với m = 1 thì hàm số y = x^{3} - 2mx^{2} + m^{2}x - 2 đạt cực tiểu tại x = 1.

  • Câu 10: Nhận biết
    Cho bảng biến thiên sau:

    Trắc nghiệm Toán 12 Kết nối tri thức bài 1

    Khẳng định sai là:

  • Câu 11: Thông hiểu
    Tìm phương án đúng

    Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số hàm số y = \frac{1}{3}\left( m^{2} - m \right)x^{3} +
2mx^{2} + 3x - 2 đồng biến trên khoảng ( - \infty;\  + \infty)?

    Hướng dẫn:

    Ta có:

    y' = \left( m^{2} - m ight)x^{2} +
4mx + 3

    Hàm số đã cho đồng biến trên khoảng ( -
\infty;\  + \infty) \Leftrightarrow y' \geq 0 với \forall x\mathbb{\in R}.

    + Với m = 0 ta có y' = 3 > 0 với \forall x\mathbb{\in R \Rightarrow} Hàm số đồng biến trên khoảng ( - \infty;\  +
\infty).

    + Với m = 1 ta có y' = 4x + 3 > 0 \Leftrightarrow x > -
\frac{3}{4} \Rightarrow m =
1 không thảo mãn.

    + Với \left\{ \begin{matrix}
m eq 1 \\
m eq 0 \\
\end{matrix} ight. ta có y'
\geq 0 với \forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
m^{2} - m > 0 \\
\Delta' = m^{2} + 3m \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m > 1 \\
m < 0 \\
\end{matrix} ight.\  \\
- 3 \leq m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow - 3 \leq m < 0.

    Tổng hợp các trường hợp ta được - 3 \leq
m \leq 0.

    m\mathbb{\in Z \Rightarrow}m \in \left\{
- 3;\  - 2;\ \  - 1;\ 0 ight\}.

    Vậy có 4 giá trị nguyên của m thỏa mãn bài ra.

  • Câu 12: Thông hiểu
    Ghi đáp án vào ô trống

    Ta xác định được các số a, b, c để đồ thị hàm số y = x^{3} + ax^{2} + bx +
c đi qua điểm ( - 1;1) và có điểm cực trị (2;1). Tính giá trị biểu thức T = 2025(a + c -
b).

    Đáp án: 4050

    Đáp án là:

    Ta xác định được các số a, b, c để đồ thị hàm số y = x^{3} + ax^{2} + bx +
c đi qua điểm ( - 1;1) và có điểm cực trị (2;1). Tính giá trị biểu thức T = 2025(a + c -
b).

    Đáp án: 4050

    Ta có: y' = 3x^{2} + 2ax +
b.

    Đồ thị hàm số y = x^{3} + ax^{2} + bx +
c đi qua điểm ( - 1;1) nên ta có: a - b +c = 2.

    Đồ thị hàm số có điểm cực trị (2;1) nên \left\{ \begin{matrix}
4a + 2b + c = - 7 \\
y'(2) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
4a + 2b + c = 7 \\
4a + b = - 12 \\
\end{matrix} ight..

    Xét hệ phương trình \left\{
\begin{matrix}
a - b + c = 2 \\
4a + 2b + c = - 7 \\
4a + b = - 12 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = 0 \\
c = 5 \\
\end{matrix} ight..

    Vậy T = 2025(a + c - b) = 2025( - 3 + 5 -
0) = 4050.

  • Câu 13: Thông hiểu
    Tìm số giá trị nguyên của tham số m

    Cho hàm số y = \frac{mx + 9}{4x +
m} với m là tham số, khi đó có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng (0;4)?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{- m}{4} ight\}

    Ta có: y' = \frac{m^{2} - 36}{(4x +
m)^{2}}

    Hàm số nghịch biến trên (0;4) khi và chỉ khi

    \left\{ \begin{matrix}
m^{2} - 36 < 0 \\
- \frac{m}{4} otin (0;4) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 6 < m < 6 \\
\left\lbrack \begin{matrix}
m \geq 0 \\
m \leq - 16 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 0 \leq m < 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;1;2;...;5 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} - mx^{2} + (2m - 1)x - m + 2 nghịch biến trên khoảng ( - 3;0)?

    Hướng dẫn:

    Ta có: y' = x^{2} - 2mx + 2m -
1

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 2m - 1 \\
\end{matrix} ight.

    Hàm số đã cho nghịch biến trên khoảng ( -
3;0) khi ( - 3;0) nằm trong khoảng hai nghiệm

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 \leq - 3 < 0 \leq 2m - 1 \\
2m - 1 \leq - 3 < 0 \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow 2m - 1 \leq - 3 \Leftrightarrow m
\leq - 1

    Vậy đáp án cần tìm là m \leq -
1.

  • Câu 15: Nhận biết
    Xác định khoảng nghịch biến của hàm số

    Hàm số f(x) =
\frac{2x + 3}{x - 1} nghịch biến trên khoảng nào?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    f'(x) = \frac{- 5}{(x - 1)^{2}} <
0;\forall x \in D suy ra hàm số nghịch biến trên ( - \infty;1)(1; + \infty).

  • Câu 16: Thông hiểu
    Tìm điều kiện của m thỏa mãn yêu cầu bài toán

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= x^{3} + 2x^{2} + (m + 1)x - m^{2} đồng biến trên khoảng ( - \infty; + \infty) là:

    Hướng dẫn:

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi y' = 3x^{2} + 4x + m + 1
\geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a = 3 > 0 \\
\Delta' = 2^{2} - 3(m + 1) \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \geq \frac{1}{3}

    Vậy m \in \left( \frac{1}{3}; + \infty
ight) là giá trị cần tìm.

  • Câu 17: Thông hiểu
    Tìm tham số m theo yêu cầu

    Có bao nhiêu giá trị nguyên của tham số m sao cho hàm số f(x) = \frac{1}{3}x^{3} + mx^{2} + 4x + 3 đồng biến trên \mathbb{R}.

    Hướng dẫn:

    Ta có f'(x) = x^{2} + 2mx +
4.

    Hàm số đã cho đồng biến trên \mathbb{R} khi và chỉ khi f'(x) \geq 0,\ \forall x\mathbb{\in
R} (Dấu ‘=’ xảy ra tại hữu hạn điểm).

    Ta có f'(x) \geq 0,\ \forall
x\mathbb{\in R \Leftrightarrow}\Delta' \leq 0

    \Leftrightarrow \Delta' = m^{2} - 4
\leq 0

    \Leftrightarrow - 2 \leq m \leq
2.

    m\mathbb{\in Z} nên m \in \left\{ - 2;\  - 1;\ 0;\ 1;\ 2
ight\}, vậy có 5 giá trị nguyên của m thỏa mãn.

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Số điểm cực trị của hàm số y = (x + 1)(x
- 2)(3 - x) là:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có:

    y' = (x - 2)(3 - x) + (x + 1)(3 - x)
- (x + 1)(x - 2)

    = - 3x^{2} + 8x - 1

    \Rightarrow y' = 0 \Leftrightarrow x
= \frac{4 \pm \sqrt{13}}{3}

    Ta có bảng xét dấu:

    Vậy hàm số có hai điểm cực trị.

  • Câu 19: Vận dụng
    Tìm tất cả các giá trị của m để hàm số có cực trị

    Cho hàm số y = 2x^{3} + 3(m - 1)x^{2} +
6(m - 2)x - 1 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có điểm cực đại và điểm cực tiểu nằm trong khoảng ( - 2;3).

    Hướng dẫn:

    Ta có y' = 6x^{2} + 6(m - 1)x + 6(m -
2)

    y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 2 - m \\
\end{matrix} ight.\ .

    Để hàm số có hai cực trị \Leftrightarrow
y' = 0 có hai nghiệm phân biệt \Leftrightarrow 2 - m eq - 1 \Leftrightarrow m
eq 3.

    Nếu - 1 < 2 - m \Leftrightarrow m <
3, ycbt \Leftrightarrow - 2 < -
1 < 2 - m < 3

    \Leftrightarrow \left\{ \begin{matrix} m >-1 \\m<3 \\\end{matrix} ight.\  \Leftrightarrow - 1< m < 3.

    Nếu 2 - m < - 1 \Leftrightarrow m >
3, ycbt \Leftrightarrow - 2 < 2
- m < - 1 < 3

    \Leftrightarrow \left\{ \begin{matrix}
m > 3 \\
m < 4 \\
\end{matrix} ight.\  \Leftrightarrow 3< m<4.

    Vậy m \in ( - 1;3) \cup
(3;4).

  • Câu 20: Nhận biết
    Tìm phương án đúng

    Cho hàm số f(x) có bảng biến thiên như sau:

    Giá trị cực tiểu của hàm số đã cho bằng

    Hướng dẫn:

    Giá trị cực tiểu của hàm số đã cho bằng -
1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo