Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 1 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định số điểm cực trị của hàm số

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)(x - 2)^{2}(x - 3)^{3}(x -
4)^{4},\ \forall x\mathbb{\in R}. Số điểm cực trị của hàm số đã cho là

    Hướng dẫn:

    Ta có :

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = 3 \\
x = 4 \\
\end{matrix} ight.

    Bảng biến thiên:

    Dựa vào bảng biến thiên: Số điểm cực trị của hàm số đã cho là 2.

  • Câu 2: Thông hiểu
    Xác định điều kiện của tham số a và b

    Cho hàm số y = x^{3} + ax^{2} + bx +
c và giả sử A,\ B là hai điểm cực trị của đồ thị hàm số. Khi đó, điều kiện nào sau đây cho biết đường thẳng AB đi qua gốc tọa độ O?

    Hướng dẫn:

    Ta có y' = 3x^{2} + 2ax +
b.

    Thực hiện phép chia y cho y', ta được

    y = \left( \frac{1}{3}x + \frac{1}{9}a
ight).y' + \left( \frac{2}{3}b - \frac{2}{9}a^{2} ight)x + c -
\frac{1}{9}ab.

    Suy ra phương trình đường thẳng AB là:

    y =
\left( \frac{2}{3}b - \frac{2}{9}a^{2} ight)x + c -
\frac{1}{9}ab.

    Do AB đi qua gốc tọa độ O\overset{}{ightarrow}c - \frac{1}{9}ab = 0
\Leftrightarrow ab = 9c.

  • Câu 3: Thông hiểu
    Diện tích tam giác ABC

    Cho hàm số y = {x^4} - 2{x^2} + 1 có đồ thị (C). Biết rằng đồ thị (C) có ba điểm cực trị tạo thành ba đỉnh của tam giác ABC. Diện tích tam giác ABC bằng:

    Hướng dẫn:

    Ta có: y' = 4{x^3} - 4x

    Tọa độ các điểm cực trị của đồ thị hàm số là A\left( {0;1} ight),B\left( { - 1;0} ight),C\left( {1;0} ight)

    \begin{matrix}  \overrightarrow {AB}  = \left( { - 1; - 1} ight),\overrightarrow {AC}  = \left( {1; - 1} ight) \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\overrightarrow {AB} .\overrightarrow {AC}  = 0} \\   {AB = AC = \sqrt 2 } \end{array}} ight. \hfill \\ \end{matrix}

    => Tam giác ABC vuông cân tại A => S = \frac{1}{2}AB.AC = 1

  • Câu 4: Nhận biết
    Chọn khoảng nghịch biến của hàm số

    Cho hàm số y =
f(x) có đạo hàm f'(x) trên khoảng ( - \infty; + \infty). Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng nào sau đây?

    Hướng dẫn:

    Hàm số y = f(x) nghịch biến khi f'(x) \leq 0 \Leftrightarrow x \in
(0;3)

    Vậy hàm số nghịch biến trên khoảng (0;3).

  • Câu 5: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = x^{3} - 3x^{2} + mx -
1 đạt cực đại tại x_{1};x_{2} thỏa mãn {x_{1}}^{2} + {x_{2}}^{2} = 3. Khi đó:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 6x + m hàm số có hai cực trị x_{1};x_{2} khi và chỉ khi \Delta > 0 \Leftrightarrow
9 - 3m > 0 \Leftrightarrow m < 3

    Khi đó \left\{ \begin{matrix}x_{1} + x_{2} = 2 \\x_{1}.x_{2} = \dfrac{m}{3} \\\end{matrix} ight..

    Mặt khác {x_{1}}^{2} + {x_{2}}^{2} = 3
\Leftrightarrow \left( x_{1} + x_{2} ight)^{2} - 2x_{1}.x_{2} =
3

    \Leftrightarrow 2^{2} - 2.\frac{m}{3} =
3 \Leftrightarrow m = \frac{3}{2}(tm)

    Vậy đáp án cần tìm là m \in
(1;2).

  • Câu 6: Thông hiểu
    Tìm tham số m thỏa mãn yêu cầu

    Hàm số y = - x^{4} + 2mx^{2} + 1 đạt cực tiểu tại x = 0 khi:

    Hướng dẫn:

    Hàm số xác định với mọi x\mathbb{\in
R}

    Ta có: \left\{ \begin{matrix}
y' = - 4x^{3} + 4mx \\
y'' = - 12x^{2} + 4m \\
\end{matrix} ight.

    Hàm số đạt cực tiểu tại x = 0 khi

    \left\{ \begin{matrix}
y'(0) = 0 \\
y''(0) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 4.0^{3} + 4m.0 = 0(TM) \\
- 12.^{2} + 4m > 0 \\
\end{matrix} ight.\  \Leftrightarrow m > 0

    Vậy m > 0 thỏa mãn yêu cầu bài toán.

  • Câu 7: Thông hiểu
    Chọn đáp án thích hợp

    Cho hàm số y = x^{4} - 2x^{2}. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    TXĐ: D\mathbb{= R}.

    y' = 4x^{3} - 4x;\ \ y' = 0
\Leftrightarrow 4x^{3} - 4x = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Suy ra hàm số đồng biến trên các khoảng (
- 1;\ 0), (1;\  + \infty); hàm số nghịch biến trên các khoảng ( -
\infty;\  - 1), (0;\ 1). Vậy hàm số nghịch biến trên khoảng ( -
\infty;\  - 2).

    Cách 2: Dùng chức năng mode 7 trên máy tính kiểm tra từng đáp án.

  • Câu 8: Thông hiểu
    Tìm giá trị nguyên của tham số m

    Cho hàm số f(x) = \frac{mx - 4}{x -
m} (m là tham số thực). Có bao nhiêu giá trị nguyên của m để hàm số đã cho đồng biến trên khoảng (0\
;\  + \infty)?

    Hướng dẫn:

    Tập xác định D =
\mathbb{R}\backslash\left\{ m ight\}.

    Đạo hàm f'(x) = \frac{- m^{2} + 4}{(x
- m)^{2}}.

    Hàm số đồng biến trên (0\ ;\  +
\infty) khi và chỉ khi

    f'(x) > 0\ \forall x \in (0; +
\infty) \Leftrightarrow \left\{ \begin{matrix}
- m^{2} + 4 > 0 \\
m otin (0; + \infty) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 2 < m < 2 \\
m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow - 2 < m \leq 0.

    Do m\mathbb{\in Z \Rightarrow}m = \left\{
- 1\ ;\ 0 ight\}. Vậy có hai giá trị nguyên của m thỏa mãn đề bài.

  • Câu 9: Thông hiểu
    Định m để hàm số đồng biến trên R

    Tìm tất cả các giá trị của tham số m để hàm số y = (m - 1)x^{3} - 3(m - 1)x^{2} + 3x +
2; (m là tham số) đồng biến trên tập số thực?

    Hướng dẫn:

    Ta có: y' = 3(m - 1)x^{2} - 6(m - 1)x
+ 3

    Hàm số đã cho đồng biến trên \mathbb{R} khi và chỉ khi y' \geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\lbrack
\begin{matrix}
m - 1 = 0 \\
\left\{ \begin{matrix}
m - 1 > 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
\left\{ \begin{matrix}
m > 1 \\
9(m - 1)^{2} - 9(m - 1) \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = 1 \\
\left\{ \begin{matrix}
m > 1 \\
1 \leq m \leq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 1 \leq m \leq 2

    Vậy đáp án cần tìm là 1 \leq m \leq
2.

  • Câu 10: Vận dụng
    Tính giá trị biểu thức

    Gọi m_{1};m_{2} là giá trị của tham số m để đồ thị hàm số y = 2x^{3} - 3x^{2} + m - 1 có hai điểm cực trị là P;Q sao cho diện tích tam giác OPQ bằng 2 (O là gốc tọa độ). Khi đó giá trị biểu thức m_{1}.m_{2} bằng:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}.

    Ta có: y' = 6x^{2} - 6x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow y = m - 1 \\
x = 1 \Rightarrow y = m - 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Suy ra P(0;m - 1),Q(1;m - 2)

    \Rightarrow \overrightarrow{PQ} = (1; -
1) \Rightarrow \left| \overrightarrow{PQ} ight| =
\sqrt{2}

    Đường thẳng (PQ) đi qua điểm P(0;m -
1) và nhận \overrightarrow{n} =
(1;1) làm một vecto pháp tuyến nên có phương trình

    1(x - 0) + 1(y - m + 1) = 0
\Leftrightarrow x + y - m + 1 = 0

    d(O;PQ) = \frac{|1 -
m|}{\sqrt{2}}

    Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:

    S_{OAB} = \frac{1}{2}.d(O;PQ).PQ =
2

    \Leftrightarrow \frac{1}{2}.\frac{|1 -
m|}{\sqrt{2}}.\sqrt{2} = 2 \Leftrightarrow |1 - m| = 4

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 - m = 4 \\
1 - m = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 3 \\
m = 5 \\
\end{matrix} ight.

    Vậy m_{1}.m_{2} = - 15.

  • Câu 11: Vận dụng
    Tìm giá trị tham số m theo yêu cầu

    Cho hàm số y = \frac{\ln x - 4}{\ln x -2m} với m là tham số. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số đồng biến trên khoảng (1;e). Tìm số phần tử của S.

    Hướng dẫn:

    Ta có: y = f(x) = \frac{\ln x - 4}{\ln x
- 2m}

    Đặt t = \ln x, điều kiện t \in (0;1)

    g(t) = \frac{t - 4}{t - 2m}; g'(t) = \frac{- 2m + 4}{(t -
2m)^{2}}

    Để hàm số f(x) đồng biến trên (1;e) thì hàm số g(t) đồng biến trên (0;1) \Leftrightarrow g'(t) > 0,\ \ t \in
(0;1)

    \Leftrightarrow \frac{- 2m +
4}{(t - 2m)^{2}} > 0,t \in (0;1)

    \Leftrightarrow \left\{ \begin{matrix}
- 2m + 4 > 0 \\
2m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\frac{1}{2} < m < 2 \\
m < 0 \\
\end{matrix} ight.

    S là tập hợp các giá trị nguyên dương \Rightarrow S = \left\{ 1
ight\}.

    Vậy số phần tử của tập S1.\Leftrightarrow \left\{ \begin{matrix}
- 2m + 4 > 0 \\
2m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\dfrac{1}{2} < m < 2 \\
m < 0 \\
\end{matrix} ight.

  • Câu 12: Thông hiểu
    Chọn đáp án thích hợp

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây

    Hướng dẫn:

    Ta có D\mathbb{= R},

    y' = \frac{2x}{\sqrt{2x^{2} + 1}}; y' > 0 \Leftrightarrow x >
0.

    Vậy hàm số nghịch biến trên khoảng ( -
\infty;\ 0) và đồng biến trên khoảng (0;\  + \infty).

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Khoảng nghịch biến của hàm số y = x^{4} + 4x^{2}là:

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Cho hàm số f(x) có bảng biến thiên như sau:

    Điểm cực đại của hàm số đã cho là

    Hướng dẫn:

    Hàm số đã cho xác định trên \mathbb{R}.

    Qua x = - 2, đạo hàm f'(x) đổi dấu từ dương sang âm nên hàm số đạt cực đại tại x = - 2.

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{x + 1}{x + 3m} nghịch biến trên khoảng (6; + \infty)?

    Hướng dẫn:

    Tập xác định D =
\mathbb{R\backslash}\begin{pmatrix}
- 3m \\
\end{pmatrix}; y' = \frac{3m -
1}{(x + 3m)^{2}}.

    Hàm số y = \frac{x + 1}{x + 3m} nghịch biến trên khoảng (6; +
\infty) khi và chỉ khi:

    \left\{ \begin{matrix}
y' < 0 \\
(6; + \infty) \subset D \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
3m - 1 < 0 \\
- 3m \leq 6 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m < \frac{1}{3} \\
m \geq - 2 \\
\end{matrix} ight. \Leftrightarrow - 2 \leq m <
\frac{1}{3}.

    m\mathbb{\in Z} \Rightarrow m \in \left\{ - 2; - 1;0
ight\}.

  • Câu 16: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = \frac{x - 2}{x +
1}. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Tập xác định: \mathbb{R}\backslash\text{\{} - 1\}.

    Ta có y' = \frac{3}{(x + 1)^{2}} >
0, \forall x \in
\mathbb{R}\backslash\text{\{} - 1\}.

  • Câu 17: Thông hiểu
    Tìm khoảng nghịch biến của hàm số

    Hàm số y = \frac{2}{x^{2} + 1} nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có y' = \frac{- 4x}{\left( x^{2} +
1 ight)^{2}} < 0 \Leftrightarrow x > 0

  • Câu 18: Thông hiểu
    Chọn biểu thức chính xác

    Gọi M,N lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số y = -
x^{3} - 3x^{2} + 9x - 1. Chọn biểu thức đúng?

    Hướng dẫn:

    Ta có: y' = - 3x^{2} - 6x + 9
\Rightarrow y'' = - 6x - 6

    y' = 0 \Leftrightarrow x^{2} + 2x -
3 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 3 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
y''(1) = - 12 \Rightarrow x_{CD} = 1;y_{CD} = 4 = M \\
y''( - 3) = 12 \Rightarrow x_{CD} = - 3;y_{CD} = - 28 = N \\
\end{matrix} ight.

    Vậy 7M + N = 7.4 - 28 = 0

  • Câu 19: Thông hiểu
    Chọn đáp án thích hợp

    Để hàm số y = x^{3} - 3x^{2} +
mx đạt cực tiểu tại x = 2 thì tham số m thuộc khoảng nào sau đây?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
y' = 3x^{2} - 6x + m \\
y'' = 6x - 6 \\
\end{matrix} ight.. Để hàm số y
= x^{3} - 3x^{2} + mx đạt cực tiểu tại x = 2 thì

    \left\{ \begin{matrix}
y' = 0 \\
y'' > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y'(2) = 0 \\
y''(2) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 0 \\
6.2 - 6 > 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 0

    Vậy đáp án cần tìm là m \in ( -
1;1).

  • Câu 20: Nhận biết
    Xác định số cực trị của hàm số

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Đồ thị hàm số y = f(x) có mấy điểm cực trị?

    Hướng dẫn:

    Từ đồ thị suy ra đồ thị có điểm một điểm cực tiểu và một điểm cực đại.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo