Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 1 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định số cực đại của hàm số

    Cho hàm số y = f(x) có đạo hàm f'(x) = x(x + 1)(x - 4)^{3};\forall
x\mathbb{\in R}. Số điểm cực đại của hàm số là:

    Hướng dẫn:

    Ta có: f'(x) = x(x + 1)(x - 4)^{3} =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    Lập bảng biến thiên của hàm số

    Suy ra số điểm cực đại của hàm số là 1 điểm.

  • Câu 2: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hàm số y =x^{3} - x^{2} + 3mx - 1 với m là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2brack để hàm số đã cho đồng biến trên \mathbb{R}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =x^{3} - x^{2} + 3mx - 1 với m là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2brack để hàm số đã cho đồng biến trên \mathbb{R}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Thông hiểu
    Xác định khoảng nghịch biến của hàm số

    Hàm số y = x^{3} - 3x nghịch biến trên khoảng nào?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}.

    Ta có y' = 3x^{2} - 3;y' = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight..

    Ta có bảng xét dấu y':

    Từ bảng xét dấu ta thấy hàm số nghịch biến trên khoảng ( - 1;1).

  • Câu 5: Thông hiểu
    Tìm điều kiện của tham số m

    Hàm số y = x^{3} - 2mx^{2} + m^{2}x -
2 đạt cực tiểu tại x = 1 khi:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
y' = 3x^{2} - 4mx + m^{2} \\
y'' = 6x - 4m \\
\end{matrix} ight..

    Hàm số đạt cực tiểu tại x = 1 suy ra y'(1) = 3 - 4m + m^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 3 \\
\end{matrix} ight.

    y''(1) = 6 - 4m

    Với m = 1 \Rightarrow y''(1) = 2
> 0(tm)

    Với m = 3 \Rightarrow y''(1) = -
6 < 0(ktm)

    Vậy với m = 1 thì hàm số y = x^{3} - 2mx^{2} + m^{2}x - 2 đạt cực tiểu tại x = 1.

  • Câu 6: Thông hiểu
    Xác định khoảng đồng biến

    Cho hàm số y =
f(x) có đạo hàm y = f'(x) =
x^{2}\left( x^{2} - 1 ight);\forall x\mathbb{\in R}. Hàm số y = f( - x) đồng biến trên khoảng:

    Hướng dẫn:

    Ta có:

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
\end{matrix} ight.

    Ta có bảng xét dấu:

    y = f( - x) \Rightarrow y' = -
f'( - x)

    Hàm số y = f( - x) đồng biến khi và chỉ khi

    - f'( - x) < 0 \Leftrightarrow
f'( - x) > 0

    \Leftrightarrow - 1 < - x < 1
\Leftrightarrow 1 > x > - 1

    Vậy đáp án cần tìm là ( -
1;1).

  • Câu 7: Nhận biết
    Chọn đáp án đúng

    Hàm số nào dưới dây nghịch biến trên khoảng ( - \infty; + \infty)?

    Hướng dẫn:

    Xét hàm số y = - 2x + 1y' = - 2 < 0;\forall x\mathbb{\in
R} nên hàm số y = - 2x + 1 nghịch biến trên khoảng ( - \infty; +
\infty).

  • Câu 8: Thông hiểu
    Chọn đáp án đúng:

    Hàm số y = x^{3} +3x^{2} - 9x - 1 đồng biến trên khoảng nào sau đây?

  • Câu 9: Thông hiểu
    Chọn kết quả đúng nhất

    Cho hàm số y = - x^{3} + 3x^{2} -
1, kết luận nào sau đây về tính đơn điệu của hàm số là đúng nhất:

    Hướng dẫn:

    Ta có hàm số xác định trên \mathbb{R}.

    y = - x^{3} + 3x^{2} - 1 \Rightarrow y' = - 3x^{2} + 6x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight..

    Bảng biến thiên

    Vậy đáp án “Hàm số đồng biến trên khoảng (0;\ 2) và nghịch biến trên các khoảng ( - \infty;0);(2; + \infty)“ là đúng nhất.

  • Câu 10: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hàm số y = \frac{1}{3}x^{3} -\frac{m}{2}x^{2} - \left( 3m^{2} - 1 ight)x + m với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để ham số đã cho đạt cực trị tại hai điểm x_{1};x_{2} thỏa mãn x_{1}.x_{2} + 2\left( x_{1} + x_{2}ight) + 4 = 0. Tìm số phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{1}{3}x^{3} -\frac{m}{2}x^{2} - \left( 3m^{2} - 1 ight)x + m với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để ham số đã cho đạt cực trị tại hai điểm x_{1};x_{2} thỏa mãn x_{1}.x_{2} + 2\left( x_{1} + x_{2}ight) + 4 = 0. Tìm số phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu
    Xác đinh hàm số có cực trị

    Hàm số nào sau đây có cực trị?

    Hướng dẫn:

    Hàm số y = \sqrt{x - 1}y' = \frac{1}{2\sqrt{x - 1}} > 0;\forall x
\in (1; + \infty) suy ra hàm số không có cực trị.

    Hàm số y = x^{2} - 2x + 3y' = 2x - 2 = 0 \Leftrightarrow x =
1y' đổi dấu đi qua x = 1 suy ra hàm số có cực trị tại điểm x = 1.

    Hàm số y = x^{3} + 8x + 9y' = 3x^{2} + 8 > 0;\forall
x\mathbb{\in R} suy ra hàm số không có cực trị.

    Hàm số y = \frac{2x - 1}{3x + 1}y' = \frac{5}{(3x + 1)^{2}} >
0 với \forall x \in \left( -
\infty; - \frac{1}{3} ight) \cup \left( - \frac{1}{3}; + \infty
ight) suy ra hàm số không có cực trị.

  • Câu 12: Thông hiểu
    Tìm m để hàm số đạt cực đại

    Cho hàm số y = f(x) = \frac{1}{3}x^{3} -
mx^{2} + \left( m^{2} - m + 1 ight)x + 1. Tìm m để hàm số đã cho đạt cực đại tại x = 1?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = x^{2} - 2mx + m^{2} - m +
1

    Để x = 1 là điểm cực đại của hàm số thì y'(1) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight.

    Với m = 1 thì y' = x^{2} - 2x + 1 = (x - 1)^{2} \geq
0;\forall x\mathbb{\in R}. Vậy m =
1 không thỏa mãn.

    Với m = 2 thì y' = x^{2} - 4x + 3 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Xét dấu y' ta được y'  có điểm cực đại.

    Vậy m = 2 là giá trị cần tìm.

  • Câu 13: Nhận biết
    Chọn đáp án chính xác

    Đồ thị hàm số y = f(x) được biểu diễn bởi hình vẽ:

    Điểm cực tiểu của hàm số đã cho là:

    Hướng dẫn:

    Quan sát đồ thị của hàm số ta thấy hàm số có điểm cực tiểu là x = 2.

  • Câu 14: Thông hiểu
    Tìm khoảng nghịch biến thích hợp

    Cho hàm số f(x) có đồ thị như hình vẽ:

    Hàm số y = - 3f(x - 2) nghịch biến trên khoảng nào?

    Hướng dẫn:

    Ta có: y' = - 3f'(x - 2) < 0
\Leftrightarrow f'(x - 2) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 2 > 2 \\
x - 2 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x > 4 \\
x < 2 \\
\end{matrix} ight.

    Vậy hàm số y = - 3f(x - 2) nghịch biến trên khoảng ( -
\infty;1).

  • Câu 15: Thông hiểu
    Tìm tham số m thỏa mãn đề bài

    Tìm các giá trị của tham số m để hàm số y = x^{4} - 2mx^{2} + 1 có ba điểm cực trị A(0;1); B;C thỏa mãn BC = 4?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4mx = 4x\left(
x^{2} - m ight)

    Để hàm số có ba cực trị thì m >
0

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow y(0) = 1 \\
x = \pm \sqrt{m} \Rightarrow y\left( \pm \sqrt{m} ight) = 1 - m^{2} \\
\end{matrix} ight.

    Suy ra A(0;1); B\left( \sqrt{m};1 - m^{2} ight);C\left( -
\sqrt{m};1 - m^{2} ight)

    BC = 4 \Rightarrow \sqrt{4m} = 4
\Leftrightarrow m = 4

    Vậy đáp án đúng là m = 4

  • Câu 16: Nhận biết
    Chọn khoảng nghịch biến của hàm số

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau:

    Hướng dẫn:

    Do f'(x) < 0\forall x \in ( -
1;3) nên hàm số f(x) nghịch biến trên khoảng ( -
1;3).

  • Câu 17: Thông hiểu
    Xác định hàm số thích hợp

    Hàm số nào sau đây nghịch biến trên \mathbb{R}?

    Hướng dẫn:

    Ta có:

    y = - x^{3} + 2x^{2} - 4x +
1

    \Rightarrow y' = - 3x^{2} + 4x - 4 =
- 2x^{2} - (x - 2)^{2} < 0,\forall x\mathbb{\in R}

    Do đó hàm số nghịch biến trên \mathbb{R}.

  • Câu 18: Vận dụng
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên \mathbb{R}. Hàm số y = f'(x) có đồ thị như hình vẽ. Hàm số g(x) = f(x - 1) + \frac{2019 -
2018x}{2018} đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có g'(x) = f'(x - 1) -
1.

    g'(x) \geq 0 \Leftrightarrow f'(x- 1) - 1 \geq 0 \Leftrightarrow f'(x - 1) \geq 1

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 \leq - 1 \\
x - 1 \geq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x \leq 0 \\
x \geq 3 \\
\end{matrix} ight.\ .

    Từ đó suy ra hàm số g(x) = f(x - 1) +
\frac{2019 - 2018x}{2018} đồng biến trên khoảng ( - 1\ ;\ 0).

  • Câu 19: Thông hiểu
    Tìm m để hàm số có cực trị theo yêu cầu

    Cho hàm số y = \frac{x^{3}}{3} - (m +
1)x^{2} + \left( m^{2} - 3 \right)x + 1 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số đạt cực trị tại x = - 1.

    Hướng dẫn:

    Ta có y' = x^{2} - 2(m + 1)x + m^{2}
- 3.

    Yêu cầu bài toán \Leftrightarrow y' = 0 có hai nghiệm phân biệt x_{1}
eq x_{2} = - 1

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' = (m + 1)^{2} - \left( m^{2} - 3 ight) > 0 \\
y'( - 1) = m^{2} + 2m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2m + 4 > 0 \\
m^{2} + 2m = 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 0

  • Câu 20: Thông hiểu
    Tính giá trị biểu thức

    Biết \frac{a}{b} là giá trị của tham số m để hàm số y = 2x^{3} - 3mx^{2} - 6\left( 3m^{2} - 1 ight)x
+ 2020 có hai điểm cực trị x_{1};x_{2} thỏa mãn x_{1}x_{2} + 2\left( x_{1} + x_{2} ight) =
1. Tính giá trị biểu thức Q = a +
2b?

    Hướng dẫn:

    Xét hàm số y = 2x^{3} - 3mx^{2} - 6\left(
3m^{2} - 1 ight)x + 2020

    Ta có: y' = 6x^{2} - 6mx - 6\left(
3m^{2} - 1 ight)

    y' = 0 \Leftrightarrow x^{2} - mx -
3m^{2} + 1 = 0(*)

    Hàm số có hai điểm cực trị x_{1};x_{2} khi và chỉ khi phương trình (*) có hai nghiệm phân biệt:

    \Leftrightarrow 13{m^2} - 4 > 0 \Leftrightarrow \left[ \begin{gathered}
  m <  - \frac{2}{{\sqrt {13} }} \hfill \\
  m > \frac{2}{{\sqrt {13} }} \hfill \\ 
\end{gathered}  ight.

    Khi đó theo định lí Vi – et ta có: \left\{ \begin{matrix}
x_{1} + x_{2} = m \\
x_{1}.x_{2} = - 3m^{2} + 1 \\
\end{matrix} ight.

    Theo giả thiết:

    x_{1}.x_{2} + 2\left( x_{1} + x_{2}
ight) = 1

    \Leftrightarrow - 3m^{2} + 1 + 2m = 1
\Leftrightarrow - 3m^{2} + 2m = 0

    \Leftrightarrow \left\lbrack\begin{matrix}m = 0 \\m = \dfrac{2}{3} \\\end{matrix} ight.\  \Rightarrow a = 2;b = 3 \Rightarrow Q = a + 2b =8

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo